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Abstract 

In this chapter, we provide an overview of the principles of active inference. We illustrate how 

different forms of short-term memory are expressed formally (mathematically) through appealing to 

beliefs about the causes of our sensations, and about the actions we pursue. This is used to motivate 

an approach to active vision that depends upon inferences about the causes of ‘what I have seen’ and 

learning about ‘what I would see if I were to look there’. The former could manifest as persistent 

‘delay-period’ activity – of the sort associated with working memory, while the latter is better suited 

to changes in synaptic efficacy – of the sort that underlies short-term learning and adaptation. We 

review formulations of these ideas in terms of active inference, their role in directing visual 

exploration, and the consequences – for active vision – of their failures. To illustrate the latter, we 

draw upon some of our recent work on the computational anatomy of visual neglect. 
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Introduction 

Active inference is a principled framework for describing Bayes optimal behaviour. It formalises the 

notion of perception as hypothesis testing (Gregory 1980, Friston, Adams et al. 2012), emphasising 

the active manipulation of sensory epithelia to perform perceptual experiments. Here, we focus 
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upon active vision (Wurtz, McAlonan et al. 2011, Andreopoulos and Tsotsos 2013, Ognibene and 

Baldassarre 2014, Mirza, Adams et al. 2016). Our formulation implies that perception of space is 

fundamentally tied to motor representations, as visual input at a point in space is the consequence 

of a saccade to that location (Zimmermann and Lappe 2016). This enactive view also brings with it 

perspectival aspect to the way that we sample – and internalise – our lived world: see (Rudrauf, 

Bennequin et al. 2017) for a treatment of the implicit phenomenology. In what follows, we provide 

an overview of active inference in the context of visual foraging. This takes the form of a generic 

description in terms of Markov Decision Processes and draws examples from our recent work to 

illustrate these ideas in concrete scenarios. We will illustrate visual foraging in an environment with 

volatile contingencies, to disclose the intimate relationship between past beliefs (i.e., working 

memory and attention) and future plans (i.e., working memory and intention). We then turn to 

scenes with multiple stimuli and show that the optimisation of beliefs about the causes of sensory 

impressions is an efficient way to deal with such environments. To demonstrate the importance of 

this sort of inference, we illustrate – via simulations – how these mechanisms can fail. This provides 

us with several plausible mechanisms that could account for visual neglect – a common 

neuropsychological syndrome that reflects a cardinal failure of active vision. 

 

A note on terminology 

In the following, we call on some technical concepts – e.g. evidence, free energy, and generative 

model. In this section, we briefly introduce the terms that will become important in the later parts of 

the chapter. Most of these terms reflect the fact that we are trying to understand behaviour in terms 

of a principled sampling of the world to make perceptual inferences. Formally speaking, this (active) 

inference can be described in terms of probability distributions or ‘beliefs’. Priors and posteriors are 

the probabilities before and after making an observation (respectively). Likelihoods quantify the 

probability of an observation given we knew how it was caused. A generative model is a probabilistic 

specification of beliefs about how a certain kind of sensory data is generated. It comprises priors and 

likelihoods and can be used to make predictions about the most probable cause of sensations; namely 

the posterior. Model evidence is the probability that a model could account for some given data. This 

is sometimes referred to as a marginal likelihood, or negative surprise. Self-evidence depends upon a 

‘self-model’ that specifies the kinds of data that will be observed by an organism given the sort of 

creature it is. For example, given that a creature is a fish, it might expect to be surrounded by water. 

Observing this carries high self-evidence, while finding itself on dry-land carries little evidence for its 

continued existence. From this, it is intuitively sensible that self-evidence should not drop too low. 
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Negative free energy (sometimes referred to as an ‘evidence lower bound’) is a quantity that is always 

less than the evidence for a model. Minimising free energy thus maximises the lower bound on 

evidence and ensures that self-evidence is maintained above a certain value. This is just a 

mathematical way of describing behaviour that minimises surprise (i.e., maximises model evidence) 

and thereby resolves uncertainty about sensory exchanges with the world. 

 

Active inference 

Bayes optimal behaviour requires that action maximises self-evidence (Hohwy 2016) or, 

equivalently, minimises surprise (Friston, Daunizeau et al. 2010). This is not always possible (or 

efficient) to compute directly, but can be approximated by a free energy bound (Beal 2003), as 

illustrated by Jensen’s inequality: 

( , , ) ( , , )
E ln ln E ln ( )

( , ) ( , )
Q Q

Free Energy
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Jensen's inequality

P o s P o s
F P o
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In this equation, P  is the probability distribution that represents a generative model. This 

probabilistic model expresses the beliefs an animal has about the way in which its sensations ( o ) are 

generated from hidden (unobservable) states ( s ) and the policy ( ), or action sequence that it is 

pursuing. The tilde (~) notation indicates a trajectory (or sequence) through time. The distribution 

Q  may be any arbitrary distribution but takes on an interesting interpretation when the free energy 

is minimised. A rearrangement of the equation above gives 

[ ( , ) || ( , | )] ln ( )KLF D Q s P s o P o     

This shows that the difference between surprise and the free energy is the KL-Divergence between 

Q  and the posterior distribution. This is minimal when the two distributions are the same, indicating 

that free energy minimisation entails finding Q  that approximates the posterior probability. Under 

mean-field assumptions (Feynman 1998) we rewrite the variational free energy: 

E [ ( )] [ ( ) || ( )]

( ) E [ln ( , | ) ln ( | )]

Q KL

Q
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This allows us to separate out perceptual inference (optimisation of ( | )Q s  ) from planning 

(optimisation of ( )Q  ). Planning requires us to define a prior probability distribution over possible 

action sequences. A self-consistent prior for a free energy minimising agent is that the most 
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probable policies are those that minimise expected free energy ( ( )G  ) (Friston, FitzGerald et al. 

2017). 

 ( ) ( )P G     

( ) ( , )

( , ) E [ln ( , | ) ln ( | )]

t
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Under these self-evidencing prior beliefs, the probability of each policy is defined by applying a 

softmax function ( ) to the negative expected free energy of policies or sequences of actions that 

are currently entertained (e.g., ‘where to look next’). To gain some intuition for the consequences of 

minimising expected free energy (i.e., expected surprise), we can express the expected free energy in 

the following form. 

( , ) E [ln ( | , ) ln ( | ) ln ( ) ]
Q

Epistemic value Extrinsic value

G P s o Q s P o           

The first pair of terms on the right shows that the expected free energy will be smaller if the (expected) 

difference between the posterior belief before and after the next observation is large. In other words, 

a policy will be more likely if its sensory consequences bring about a larger change in beliefs. This 

epistemic value is also known as salience, information gain, Bayesian surprise or epistemic affordance. 

The final term says that policies are more probable if they fulfil prior beliefs (preferences) about 

sensations that will be sampled under that policy. Together, these terms ensure explorative, 

information seeking (epistemic) and exploitative, goal seeking (pragmatic) behaviour (Friston, Rigoli 

et al. 2015). 

It remains for us to specify the form of the generative model ( P ). In this chapter, we appeal to a 

generative model that takes the form of a Markov Decision Process, as depicted in Figure 1. This is a 

discrete state-space model that incorporates the variables considered above; namely, states of the 

world and the action sequences that change those states. In a Markov decision process, hidden 

states evolve through time according to a probability transition matrix ( B ). At each time, a state 

depends upon only the state at the previous time, and upon the policy pursued. States give rise to 

observations as determined by a likelihood distribution ( A ). The probability of initial states is given 

by the distribution D , while preferences are defined by C . In the next section, we will look at the 

interplay between perceptual inference (i.e., optimising beliefs about states of the world) and 
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planning (i.e., optimising beliefs about policies from which actions are selected). This inference calls 

for a form of working memory that could be mediated by persistent neuronal firing rates (Funahashi, 

Bruce et al. 1989, Friston, Rosch et al. 2017, Parr and Friston 2017). We then turn to beliefs about 

the probability distributions, and an elemental form of short term memory that could be synaptically 

mediated (Hempel, Hartman et al. 2000, Wang, Markram et al. 2006, Mongillo, Barak et al. 2008, 

Parr and Friston 2017). 

 

Figure 1 – Markov Decision Process This graphic shows a Markov Decision Process in factor graph 

form (Loeliger, Dauwels et al. 2007). Blue squares indicate probability distributions (factors of the 

generative model). In the lower panel, these factors are expressed in terms of probability matrices. 

‘Cat’ denotes a categorical distribution. The mean-field factorisation of the approximate distribution, 

Q  is shown. This Figure has been adapted from (Parr and Friston Accepted). 

 

The neurobiology of active inference 



Novelty and neglect 
 

6 
 

While the mathematical formalism presented above might seem a little abstract, active inference is 

associated with a process theory (Friston, FitzGerald et al. 2017) that interprets these quantities in 

terms of their biological substrates. For example, the approximate posterior beliefs ( Q ) can be 

thought of as neuronal (firing rate) representations. The conditional probability distributions ( ,A B ) 

then represent the synaptic connections between different populations of neurons. Quantities like 

the expected free energy (G ) are computed from the above variables to evaluate competing plans of 

action – this evaluation could take place in cortico-basal ganglia-cortical loops. There have been many 

papers linking the computational anatomy and to functional anatomy in the human brain. These range 

from treatments of cortical hierarchies through to associative plasticity. In the next sections, we will 

focus on precision (the confidence in a given synapse) –that may be mediated by ascending 

neuromodulatory influences – and learning, which involves plastic modulation of synapses through 

long term potentiation or depression. 

 

Inference and salience 

Perceptual inference is the process of optimising beliefs about states (under a given policy). By 

minimising free energy, we find that inference or belief updating can be expressed as 

 
1 1( | ) 1 ( | ) 1( | ) [ln ( | , )] [ln ( | , )] ln ( | )Q s Q sQ s E P s s E P s s P o s

            
       

The first term on the right entails a form of memory, because beliefs about a state in the past are 

used to inform beliefs about the present (via the transition probabilities). However, the capacity for 

the past to inform the present depends upon the degree of uncertainty associated with transitions. 

Intuitively, if the environment changes randomly from one time to the next, the past is of no use in 

inferring the present. Conversely, in a deterministic environment, the present can be reliably 

inferred using beliefs about the past. We have previously described a way to parameterise transition 

probabilities so that we can manipulate the precision ( ) of these transitions (Parr and Friston 

2017). When 0  , there is no relationship between past and present. As   , transitions tend 

towards being deterministic. Another way to think about this is that   scales with the negative 

entropy of transition probabilities, also known as volatility (Parr and Friston 2017). Neurobiologically, 

this suggests that this parameter may play the role of a synaptic gain – controlling the degree to 

which neurons representing the past can influence those representing the present. In turn, this 

implicates neuromodulatory transmitters, such as noradrenaline, that have been associated with 

signalling volatility (Dayan and Yu 2006, Marshall, Mathys et al. 2016). 
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This has important consequences for visual search, and the selection of saccadic targets that 

minimise expected free energy. If we treat eye position as a hidden state (with transitions 

dependent on policies or saccadic sequences), this hidden state determines which other hidden 

states are informed by foveal visual data (Mirza, Adams et al. 2016). Figure 2 shows four objects 

(squares of various shades). Performing a saccade to a location means foveal vision will provide 

precise information about the object at that location. If the shade of each square can change, with a 

certain probability, this has important consequences for our belief about the shades of squares not 

currently foveated. Specifically, if   is high, the confidence in ( | )Q s   will be relatively high and 

the expected free energy of a saccade to that location will be high. In other words, actively sampling 

other squares would have a low epistemic affordance. This would make for a poor perceptual 

experiment, as it would do little to change beliefs. If low, the confidence in ( | )Q s   will decrease 

with each time step, making it an increasingly plausible (i.e., salient) saccadic target. 

 

Figure 2 – Persistent activity and inhibition of return On the left, we show the simulated eye 

tracking data (over 19 saccades), when each hidden case is associated with a differing level of 

volatility ( 1 ). The right upper plot shows the influence of the volatility of beliefs on the simulated 

inhibition of return (quantified by the average number of saccades between fixations) for one of the 

stimulus locations. The right lower plot shows the simulated neuronal encoding over time for three 

units, each representing a different hypothesis about the identity (1, 2, or 3) of one of the hidden 

states. Darker shades indicate greater firing rates. The red boxes indicate the times during which the 

location corresponding to this hidden state is foveated. This Figure has been reproduced from (Parr 

and Friston 2017). 
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The simulated eye-tracking trace (Parr and Friston 2017) in Figure 2 shows that those locations 

associated with precise (relatively deterministic) transition probabilities are less frequently the 

targets of saccades compared to the more volatile lower right square. This formulation of 

perisaccadic working memory, and its role in directing the eyes towards salient locations, reproduces 

the phenomenon of ‘inhibition of return’ (Posner, Rafal et al. 1985, Klein 2000), and shows how a 

Bayes optimal agent would modulate this at various levels of transition precisions. The lower right 

plot shows how expectations that a square possesses one of three alternative shades become more 

dispersed (as uncertainty accumulates) over time until a saccade is made to that location. This can 

be interpreted as a ‘raster plot’ showing the firing rates of three neurons (each row) over time. Each 

of these neurons encodes a probability that the square has one of three shades over time. This is 

exactly the profile of neuronal responses one sees in delayed saccade experiments used to elicit the 

neuronal correlates of working memory: see, for example (Kojima and Goldman-Rakic 1982). In 

short, simply inferring the best thing to do next mandate the encoding of trajectories of (hidden) 

states of the world that necessarily requires a neuronal encoding of beliefs about the past (and 

future. Crucially, this neuronal (working memory) encoding transcends the current moment, 

equipping the perceptual inference with a mnemonic aspect that allows for both prediction and 

postdiction. It is this encoding we suggest as a canonical form of working memory. 

 In this section, we have examined the relationship between salience (the potential to resolve 

uncertainty) and the sort of working memory that might be represented by persistently active 

neurons. In the next section, we turn to novelty, learning and their link with synaptic memory. 

 

Learning and novelty 

In this section, we draw from observations concerning visual neglect (Halligan and Marshall 1998). 

This is a disorder of active vision that biases saccadic exploration away from the left side of space 

(Husain, Mannan et al. 2001, Fruhmann Berger, Johannsen et al. 2008, Karnath and Rorden 2012). A 

common pen-and-paper test – used to assess this deficit – is the line cancellation task (illustrated in 

Figure 3) (Albert 1973, Fullerton, McSherry et al. 1986, Ferber and Karnath 2001). Patients are asked 

to cancel, by crossing out, all of the lines on a sheet of paper. Typically, neglect patients will cross 

out those on the right, but miss those on the left. Similar effects have been found in oculomotor 

variants of this task, but have demonstrated remarkably few re-cancellations in healthy participants 

(Mannan, Mort et al. 2005); even when there is no explicit (visual) cue to record that a target has 

been cancelled. The middle and right panels of Figure 3 make the point that maintaining a memory 

of previously visited locations would require many more neurons, if stored as persistent or delay 
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period activity, than if this information were stored through short term plastic changes (Parr and 

Friston 2017). 

 

 

Figure 3 – Persistent activity or synaptic efficacy? On the left, an example of a line cancellation task 

is shown. The subject is presented with a sheet of paper with a set of horizontal lines, and is asked to 

cancel (red marks) each of these lines. The middle panel shows the ensemble of 192 neurons that 

would be required to represent the subject’s beliefs about where the lines are, and whether they have 

cancelled them, if the memory of previously visited locations were stored as persistent activity in a 

neuronal population. The currently active neurons are represented by a black outline. The panel on 

the right shows a much more efficient way to represent this information; in terms of a mapping from 

a representation of space to representations of each of the possible observations that could be made 

on visiting a particular location. Clearly it is more efficient to make use of synaptic efficacy when 

storing transient, high dimensional, memories. In short, synaptic efficacy represents probabilistic 

mappings (i.e., ‘if I were to look there, I would see that’) as opposed to beliefs about the current state 

of the world (i.e., ‘I am looking there’ or ‘seeing that’) encoded by synaptic activity. This figure has 

been adapted from (Parr and Friston 2017). 

 

Under the process theory (Friston, FitzGerald et al. 2017) associated with active inference, we can 

think of synaptic plasticity in terms of changes in beliefs about conditional probabilities (Friston, 

FitzGerald et al. 2016). This is because synapses mediate the influence of beliefs represented in one 

population of neurons on another. For these to change, we supplement our generative model with 

beliefs about the parameters of the mapping from ‘where I am looking’ to ‘what I see’. When we do 

this for the parameters of the likelihood mapping, the expected free energy becomes: 
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Here, we have decomposed the epistemic value into the salience term used in the previous section, 

and a novelty term, that relates to the expected change in beliefs about the parameters of the 

likelihood distribution. Figure 4, shows a simulation of an oculomotor cancellation task (Parr and 

Friston 2017). This incorporates beliefs about what would be seen conditioned upon the eye 

position. These beliefs are optimised by accumulation of Dirichlet parameters (Beal 2003, Blei, Ng et 

al. 2003, Friston, FitzGerald et al. 2016) – this closely resembles activity dependent plasticity (Hebb 

1949, Brown, Zhao et al. 2009), as the element of the likelihood matrix ( A ) representing a state-

outcome mapping is increased whenever the two occur simultaneously. This means that, on fixating 

a location, uncertainty is resolved about the visual data obtained by saccades to that location and its 

novelty is decreased (Schwartenbeck, FitzGerald et al. 2013). 

Although phenomenologically, this sort of memory is very different from the working memory of 

previous section, they both emerge from the minimisation expected free energy or expected 

surprise (i.e., entropy or uncertainty). When resolving uncertainty about states of affairs in the world 

we sample salient information. However, when resolving uncertainty about the contingencies the 

corresponding epistemic affordance becomes novelty; i.e., the opportunity to resolve uncertainty 

about "what would happen if I did that?" If updating beliefs about states of the world and 

parameters – that underwrite probabilistic contingencies – correspond to perceptual inference and 

learning respectively, then novelty is to learning as salience is to inference. 

Figure 4 also shows the consequences of lesioning the generative model (Parr and Friston 2017). 

Increasing the Dirichlet parameters for the left side of space means that (despite representing the 

same likelihood distribution) the capacity for the beliefs about the likelihood to change is 

diminished. Cutting the connection between two regions would have this effect, as no plastic 

changes can occur following disconnection. This means there is little novelty to resolve on the left, 

biasing saccades to the right. This is consistent with the idea that visual neglect is a ‘disconnection 

syndrome’ (Geschwind 1965, Catani and ffytche 2005, Bartolomeo, Thiebaut de Schotten et al. 2007, 

He, Snyder et al. 2007). We additionally show the effect of including a preference ( C ) for 

proprioceptive outcomes on the right of space, and of directly biasing the prior beliefs over policies 

in favour of rightward saccades. The image on the left of Figure 4 shows common neuroanatomical 



Novelty and neglect 
 

11 
 

sites for lesions that induce neglect (Doricchi and Tomaiuolo 2003, Thiebaut de Schotten, Urbanski 

et al. 2005, Karnath and Rorden 2012) and relates these to the computational lesions shown on the 

right. In brief, this account suggests that the superior longitudinal fasciculus, that connects frontal to 

temporoparietal regions, might be the substrate of the likelihood distribution representing the visual 

consequences of each fixation. Plastic changes in this tract would then underwrite the learning 

described above, and its dysfunction would compromise the resolution of novelty following a given 

fixation. The dorsal pulvinar (Ungerleider and Christensen 1979), that projects to parietal cortex 

(Weller, Steele et al. 2002, Behrens, Johansen-Berg et al. 2003), may signal prior beliefs 

(preferences) about the ‘where’ data that the brain might seek out. Damage could bias these 

towards the left. The evaluation of competing saccadic policies is likely to implicate cortico-basal 

ganglia circuits (Schiller, True et al. 1980, Hikosaka and Wurtz 1985a, Schiller, Sandell et al. 1987), 

and disruption of these could manifest as a bias towards rightward saccades. In this – and the 

previous section – we have shown that disruption of any part of the expected free energy (salience, 

novelty, or extrinsic value) can have drastic consequences for active vision. 

 

 

Figure 4 – The computational anatomy of visual neglect On the left, three lesions implicated in visual 

neglect are highlighted here. 1 – Disconnection of the second branch of the right superior longitudinal 

fasciculus (a white matter tract that connects dorsal frontal with ventral parietal regions  (Makris, 

Kennedy et al. 2004, Bartolomeo, Thiebaut de Schotten et al. 2012)); 2 – Unilateral lesion to the right 

putamen (Karnath, Himmelbach et al. 2002); 3 – Unilateral lesion to the right pulvinar (a thalamic 

nucleus). This has been reproduced from (Parr, Rees et al. 2018). On the right, each panel shows the 

simulated eye tracking data (blue) during 20 saccades. In all cases, the target array was the same. The 

upper left panel shows the performance of the model with no simulated lesions. The upper right panel 
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shows the results when the Dirichlet parameters associated with the likelihood (i.e., hidden state to 

outcome) mapping were increased for the left hemifield, corresponding to a functional disconnection 

of the second branch of the right superior longitudinal fasciculus. The lower left panel shows 

performance when there is a biasing of policy selection, simulating a lesion of the putamen. The lower 

right panel represents a lesion of the prior beliefs about proprioceptive outcomes, which relates to a 

deficit in the inputs to the dorsal parietal cortex, likely from the pulvinar. Notably, the lesioned scan 

paths look very similar to one another. By eye, it is almost impossible to infer which path was 

generated by which lesion. Despite this, it is possible to disambiguate between the cortical 

disconnection (1) and the two subcortical lesions (2 and 3) using Bayesian model comparison (i.e. 

fitting each lesioned model to synthetic data, and comparing the evidence for each model) – for 

details, please see (Parr and Friston 2017). The scan paths here have been reproduced from (Parr and 

Friston 2017) 

 

Conclusion 

In this chapter, we have reviewed the basic principles of active inference, and have illustrated the 

importance of holding beliefs about hidden states and parameters for planning and action. In brief, 

uncertainty about hidden states renders those actions that resolve uncertainty salient. Uncertainty 

about parameters presents the opportunity for resolving uncertainty by selecting actions that entail 

novelty. Interestingly, each of these beliefs equips actively inferring creatures with a form of 

memory. Optimisation of beliefs about states relies in part upon the propagation of beliefs about the 

past to the present, suggesting a form of working memory mediated by persistent activity in 

neuronal populations representing relevant beliefs. However, it is more efficient, for higher 

dimensional memories, to represent context sensitive states of the sampled world as relationships 

between variables; e.g. the mapping from ‘where I look’ to ‘what I see’. This implicates changes in 

the connections between neuronal populations, and short-term plasticity. We have illustrated the 

consequences of the requisite belief updating – for active vision – and the repertoire of 

computational lesions that could lead to visual neglect. 
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