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The Hospital Readmissions Reduction Program (HRRP) reduces Medicare payments to hospitals with

higher-than-expected readmission rates where the expected readmission rate for each hospital is determined

based on the readmission levels at other hospitals. Although similar relative-performance-based schemes are

shown to lead to socially optimal outcomes in other settings (e.g., cost cutting efforts), HRRP differs from

these schemes in three respects: (i) deviation from the targets are adjusted using a multiplier; (ii) the total

financial penalty for a hospital with higher-than-expected readmission rate is capped; and (iii) hospitals with

lower-than-expected readmission rates do not receive bonus payments. We study three regulatory schemes

derived from HRRP to determine the impact of each feature, and use a principal-agent model to show

that: (i) HRRP over-penalizes hospitals with excess readmissions because of the multiplier and its effect

can be substantial; (ii) having a penalty cap can curtail the effect of financial incentives and result in a

no-equilibrium outcome when the cap is too low; and (iii) not allowing bonus payments leads to many

alternative symmetric equilibria, including one where hospitals exert no effort to reduce readmissions. These

results show that HRRP does not provide the right incentives for hospitals to reduce readmissions. Next we

show that a bundled payment type reimbursement method, which reimburses hospitals once for each episode

of care (including readmissions), leads to socially optimal cost and readmissions reduction efforts. Finally

we show that, when delays to accessing care are inevitable, the reimbursement schemes need to provide

additional incentives for hospitals to invest sufficiently in capacity.
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1. Introduction

Hospital readmissions have drawn increased attention worldwide as medical professionals and

healthcare regulators start to identify the substantial cost of excess readmissions and the potential

to reduce healthcare costs and improve the quality of care by eliminating avoidable readmissions.

The (unplanned) readmission rates are especially high for Medicare patients in the US; almost

one-fifth of beneficiaries are rehospitalized within 30 days of discharge (Jencks et al. 2009) and
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they account for over $17 billion in Medicare spending annually. (In Canada, UK and France, stud-

ies reported readmission rates between 6–9% for different patient cohorts, see Robinson (2010),

Lanièce et al. (2008), Monette (2012).) Although it is not clear what proportion of these readmis-

sions is avoidable (estimates range from 9–59%), a 10% reduction in readmissions would save over

one billion dollars annually in the US (MedPAC 2013).

Regulators in different countries introduced payment reforms specifically to incentivize hospitals

to reduce avoidable readmissions. The Centers for Medicare & Medicaid Services (CMS) imple-

mented the HRRP in the US in 2012, which reduces the reimbursement to hospitals with excess

30-day readmissions (i.e., those hospitals whose readmission rates are higher than the risk-adjusted

national average) for Medicare patients and it is expected to implement similar policies for other

healthcare providers (Joynt et al. 2016). The National Health Service (NHS) in the UK imple-

mented a similar policy but the benchmark is set by a local clinic review for each hospital. In

Germany hospitals receive a single payment for each episode of treatment, including all poten-

tial readmissions following the initial (i.e., index) hospitalization (Kristensen et al. 2015). Despite

worldwide attention on hospital readmissions, there is little understanding about the effectiveness

of these payment reforms. The goal of this paper is to determine their impact on hospitals’ actions

and to guide their design using a stylized principal-agent framework.

Agency issues in healthcare regulation: One of the main challenges in healthcare regulation

is the intrinsic information asymmetry between the regulator and the hospitals. This is because

hospitals (and their employees) are more informed about the condition and the cost of treating

patients and about the potential ways to improve their operations.1 Yardstick regulation (or com-

petition), which ties payments to a hospital with its relative performance compared to others, can

help a regulator evade information asymmetry. Specifically, Shleifer (1985) shows that a (benev-

olent) regulator can induce firms (e.g. hospitals) to exert socially optimal cost-reduction efforts

(i.e., maximize total social welfare) by observing the marginal and investment costs of multiple

firms from accounting data and then setting the reimbursement level of each firm equal to the

average cost of all the other firms (also see Laffont and Tirole (1993), Chp. 1.7). Although firms

are assumed to be identical in Shleifer’s original model, a risk-adjustment procedure that accounts

for observable differences between firms is shown to restore socially optimal cost-reduction efforts

if all differences can be captured in this procedure. In fact, the prospective payment system (PPS)

introduced by CMS in early 1980s (and later adopted in other countries) employs this scheme,

1 In the absence of information asymmetry regulation is straightforward. A fully informed regulator would easily
determine the optimal operating parameters and penalize the hospitals that refuse to operate at these levels. Although
most regulators have considerable bargaining power, e.g. the NHS in the UK is the single payer and Medicare and
Medicaid revenues constitute over half of the revenues of a typical hospital in the US, such contracts have not been
implemented in practice. See (Laffont and Tirole 1993, p. 40) for more details.
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along with a risk-adjustment procedure, to determine reimbursement levels based on Diagnosis

Related Groups (DRG). However, Shleifer’s model, and so intrinsically the PPS, assumes that

quality of service is exogenous. In situations where quality (e.g., hospital readmissions) depends on

providers’ actions, it is not clear how a yardstick competition-type payment scheme can be used to

elicit socially optimal effort levels from providers in both cost-reduction and quality improvement,

which are inextricably connected.

The goal of HRRP is to induce hospitals to invest in reducing readmissions by adding a yard-

stick competition type penalty term to the PPS based on hospitals’ readmission rates. However,

HRRP regulation has three additional unique features:2 (i) Multiplier effect: Deviations from the

readmission targets are adjusted using a multiplier. Medical practitioners are concerned that this

feature, referred to as the ‘multiplier effect’, leads to excessive penalties (MedPAC 2013); (ii) Capped

penalty: The financial penalty imposed on a hospital with higher-than-expected readmission rate

is capped, currently at 3% of the total payments a hospital receives from CMS; (iii) No bonus

payments: Hospitals with a lower-than-expected readmission rates do not receive bonus payments.

It is not difficult to see the rationale behind capping penalties and not allowing bonus payments.

Capping penalties limits HRRP’s financial impact on hospitals, and not allowing bonus payments

reduces the financial burden of HRRP on CMS. The multiplier, on the other hand, amplifies

the impact of the financial incentives that relative benchmarking provides (by making the excess

readmission penalty amount larger than the reimbursement level) (MedPAC 2013). However, the

precise impact of these provisions on hospitals’ actions and hence on the equilibrium outcomes

(and so on the long-run ‘cost’) under a yardstick competition type regulation is not known because

the readmission targets depends on the actions of all the hospitals. In addition, CMS continues to

use these provisions in other initiatives, for example, the Hospital-Acquired Condition Reduction

Program does not allow bonus payments, and the Value-Based Purchasing program pays bonuses

but the penalties are capped, see Bastani et al. (2016). Hence a thorough understanding of the

impact of these three features is critical, not just for HRRP but for other healthcare payment

reforms as well.

Analysis of HRRP: In this paper we use a principal-agent model (similar to Shleifer (1985))

to establish hospitals’ equilibrium actions under HRRP. We proceed as follows:

• To better understand the impact of each individual element of HRRP, we first remove the cap

and allow bonus payments to hospitals with lower-than-expected readmission rates. We show that

hospitals over-invest (relative to socially optimal levels) in reducing readmissions because of the

2 In addition, HRRP monitors multiple (but not all) conditions but imposes the penalty based on the total payments
for all conditions. Although this is not the main focus of our paper we show that our main conclusions hold in this
case as well, see Remark 1
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multiplier effect. We also show that the excess penalty induced by the multiplier is unbounded.

We demonstrate that the gap between the total cost of care under HRRP and that under social

optimum might be as much as 30% using a numerical study whose parameters are calibrated using

actual values from Medicare patient data for three monitored diseases. Interestingly, hospitals

under-invest in reducing costs because the marginal benefit of reducing cost is lower than that in

social optimum due to lower total demand (including readmissions) in equilibrium.

• Next, we show that, if the adjustments to payments (penalties as well as bonus payments) are

capped, there might be no equilibrium (when the cap is too low), as some hospitals may choose to

exert no effort in reducing readmissions.

• Finally, under HRRP–when bonus payments are not allowed and penalty is capped–we show

that there are multiple (uncountably many to be more specific) equilibria. Although this set may

contain the socially optimal readmission rate, a less than fully informed regulator cannot determine

the optimal cost and readmission reduction effort levels.

More generally, we show that the theoretical support for the PPS to incentivize hospitals to pick

socially optimal cost-cutting efforts when readmission levels are assumed to be exogenous (i.e., not

affected by hospital actions) does not extend to HRRP when readmission levels are endogenous.

Consequently, HRRP is unlikely to yield the desired (i.e., socially optimal) readmission levels in

practice.

Our model relies on two important simplifying assumptions. First, we assume that hospitals have

ample capacity. We make this assumption because HRRP solely focuses on hospitals’ readmissions

and does not consider capacity issues (and timely access to healthcare). However, readmission

reduction efforts have a direct impact on the effective capacity of hospitals and this impact needs

to be taken into account in capacity-constrained settings. We explore the impact of readmission

reduction efforts on capacity issues later in the paper (see below). Second, we assume that each

disease is monitored separately. Although HRRP uses the same mechanism in our model to calculate

the financial penalty for each monitored disease, the cap is applied to the total penalty for all

diseases, not separately to each disease. We present an extension to our basic model to demonstrate

that our main result holds in this case as well.

Our paper is not the first to point out issues with the HRRP. However the main focus in this

stream of literature has been on the insufficient risk adjustment (e.g., HRRP is criticized for not

risk-adjusting readmission targets for socio-economic status of patients) used in determining target

readmission rates–see, for example Barnett et al. (2015) and Joynt et al. (2016). The detrimen-

tal impact of insufficient risk adjustment in yardstick regulation when agents (e.g., hospitals) are

heterogeneous has been long well known, see Armstrong and Sappington (2007). In the context of

HRRP, Zhang et al. (2016) show (among other results) that hospitals whose readmission rates are
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higher than a certain threshold will find it more beneficial to pay the penalty instead of exerting

costly efforts to reduce readmissions. They demonstrate that more hospitals would reduce read-

missions if the readmission targets were further adjusted using geographical locations of hospitals,

indirectly accounting for socio-economic status of patients.

We believe that the more fundamental problem lies in the incentive mechanism HRRP uses. As

described above, a relative performance-based reimbursement scheme that yields socially optimal

efforts in a setting with homogeneous hospitals can be modified to account for heterogeneity using

an accurate risk-adjustment procedure under certain assumptions (Shleifer 1985). However, if an

incentive mechanism does not provide the right incentives in a setting with homogenous hospitals

to begin with, a risk-adjustment procedure is not going to fix this. Therefore, our results imply

that HRRP will not lead to socially optimal outcomes even if CMS improves the risk adjustment

procedure and accounts for all the differences between hospitals (assuming it is at all possible).

Socially optimal regulation: We next show that hospitals exert socially optimal efforts to

reduce costs and readmissions if bonus payments to hospitals with lower-than-expected readmission

rates are allowed, and the multiplier and cap are removed from the HRRP. Surprisingly the resulting

reimbursement scheme is similar to the well-known bundled payment scheme. Under this scheme the

regulator reimburses hospitals for each episode of treatment once, including readmissions, instead

of per-visit reimbursement with a separate financial penalty for excess readmissions (e.g., HRRP).

Bundled payment systems have been used for certain conditions in Germany (Kristensen et al.

2015), the Netherlands (Struijs (2015)), and the US (Gruessner 2016). To the best of our knowledge,

however, the fact that bundled payments can induce socially optimal cost and readmission reduction

efforts has not been established in the literature.

Finally, we consider the impact of readmission reduction regulation on hospitals’ capacity invest-

ment decisions and in turn on patients’ welfare (until this point we assume patients do not experi-

ence significant delays to accessing care). Readmission rates have a direct impact on the effective

capacity of hospitals since reducing readmissions can free up bottleneck resources. Hence reducing

readmissions can also decrease delays to accessing care and increase hospital throughput, boost-

ing hospital revenues as well as patient welfare. We propose a payment scheme that reimburses

hospitals based on a bundled payment scheme alongside a yardstick competition type payment

adjustment based on each hospital’s performance in waiting times. Then we show that hospitals

pick costs, readmission rates and capacities at socially optimal levels under this payment scheme.

When capacity is limited, excessive delays may force patients to seek treatment through emergency

care, and also may have a detrimental impact on their health. We show that the ‘cost’ of such delays

has to be taken into account in determining the (bundled) payment amount. We also demonstrate
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that the proposed schemes can be extended to account for heterogeneity and competition between

hospitals, and we present additional modeling extensions.

One of the interesting theoretical findings of our paper is that the no-bonus and capped-penalty

provisions have significantly different impact on hospital actions when the readmission target and

reimbursement levels in HRRP payment scheme (without the multiplier) are set exogenously (at

socially optimal levels) as opposed to endogenously (e.g., based on other hospitals’ actions as done

under HRRP and other payment systems). Specifically, we show that, when targets in the HRRP

payment scheme without the multiplier are set exogenously at socially optimal levels, hospitals

do choose socially optimal actions, and the capped-penalty (if the cap is not too low) and no-

bonus provisions have no impact on hospital actions. This may have encouraged CMS to use these

provisions in HRRP as well as in other payment schemes.3 These results are in stark contrast

to those under endogenous targets. When targets are set endogenously, these provisions greatly

diminish the incentives provided by HRRP’s yardstick-based scheme, leading to multiple equilibria.

To the best of our knowledge, our study is the first to discover the dramatic impact of these

provisions on hospital actions when used in conjunction with endogenous targets.

2. Literature review

Our paper contributes to three streams of literature: (i) analysis of HRRP and bundled payment

schemes; (ii) yardstick competition; and (iii) operational impact of payment schemes in healthcare

delivery.

HRRP and bundled payments: Hospital readmissions have attracted a lot of attention in

the literature (see Burgess and Hockenberry (2014) for historical background and Kristensen et al.

(2015) for an international perspective). Our paper is most related to research on consequences of

different components of the HRRP scheme, specifically the impact of a cap and no-bonus clause.

MedPAC (2013) argues that the current penalty multiplier is too high. Zhang et al. (2016) (see

below for a detailed review) shows that the cap is too low to incentivize all hospitals, a conclusion

supported also by Bastani et al. (2016) and Aswani et al. (2016). In this paper we characterize the

precise impact of the multiplier, cap, and no-bonus provisions on hospital actions in equilibrium.

Zhang et al. (2016) is perhaps the most related to our paper in this stream. Although they

do not consider incentive mechanism design questions or whether HRRP attains social optimum,

they do analyze the impact of different features of HRRP using analytical modeling and data

analysis. Taking the HRRP scheme as a given, they analyze the readmission reduction efforts of

hospitals with different characteristics and show that certain hospitals may choose to pay the

3 Also, when the penalty cap is too low, hospitals exert no effort in reducing readmissions. Thus, upon observing
hospitals’ actions, a regulator can progressively increase the cap if it is regarded too low.
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penalty instead of reducing readmissions, thus demonstrating that HRRP is ineffective for these

hospitals. They show that one of the main reasons behind this phenomenon is the fact that the

readmission benchmarks for these hospitals are too low because HRRP does not incorporate the

socio-economic status of the local population of a hospital in risk adjustment. Using hospital data

from the US for fiscal year 2013, they show that benchmarking hospitals locally, which indirectly

captures the impact of socio-economic status of the patients in their locality, improves the results.

We instead focus on the incentives provided by HRRP in a principal-agent framework and assume

that hospitals are identical to alienate the impact of risk adjustment. We show that HRRP will not

lead to desired readmissions reduction efforts, even in this ‘ideal’ setting, hence demonstrating that

HRRP is unlikely to be effective, even if all the issues surrounding risk-adjustment are addressed.

Zhang et al. (2016) also study how different characteristics of hospitals, changing the penalty cap,

and the procedure to determine target readmissions in HRRP, may impact readmission reduction

efforts based on a structural model calibrated using the aforementioned data. We, on the other

hand, precisely determine the impact of different provisions (i.e. the multiplier, cap and no-bonus)

of HRRP on hospitals’ actions, and then show that there are other payment schemes that lead to

socially optimal readmission reduction efforts even when the capacity is limited.

There is an increasing interest in understanding the benefits and risks associated with bundled

payments relative to other payment schemes–see Struijs (2015) and Porter and Kaplan (2016), more

so in the US as CMS rolls out different bundled payment schemes–see Mechanic and Tompkins

(2012). Our paper contributes to this literature in two ways. We show that (i) bundled payments

provide the right incentives for hospitals to reduce readmissions, and (ii) in capacity-constrained

settings, the cost of patients’ inability to access healthcare in a timely manner needs to be taken into

account while determining the reimbursement amounts (currently CMS uses different approaches,

see Gupta and Mehrotra (2015), Baggot and Edeburn (2015)).

Yardstick competition: Yardstick competition is first analyzed in Shleifer (1985) in a setting

where the main focus is on cost reduction. It was implemented in the prospective reimbursement

schemes in healthcare (Pope 1989), in addition to many other industries where local monopolies

arise naturally. Recent extensions most related to our research focus on models to capture qual-

ity improvement efforts while containing costs, see Ma (1994), Chalkley and Malcomson (1998),

Tanger̊as (2009) and references therein, mostly focusing on adverse-selection issues. Savva et al.

(2018) proposes a payment scheme based on yardstick regulation to incentivize hospitals to reduce

waiting times. Part of the reimbursement system we propose in the capacity-constrained setting

is based on that scheme. Our work contributes to this literature by establishing the equilibrium

outcomes when bonus payments are not allowed and penalty is capped in yardstick competition,

using a model inspired by Shleifer (1985).
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Operational impact of payment schemes: A stream of literature focuses on the operational

impact of different healthcare regulations by explicitly modeling hospital actions. Adida et al.

(2016) compares fee-for-service with bundled payments in a model where hospitals choose the

treatment intensity for heterogeneous patients. Zorc et al. (2017) considers contracting issues in a

setting where patients are treated by a general practitioner and a specialist, and their decisions

jointly affect patients’ health status. Bastani et al. (2016) studies incentive schemes that have small

reward and/or penalty terms to model the current practices of CMS. Andritsos and Tang (2018)

compares fee-for-service and bundled payment schemes in a model with readmissions. Guo et al.

(2019) extends this analysis by modeling the capacity of hospitals and its impact on waiting time of

patients explicitly. Adida and Bravo (2019) studies reimbursement contracts between a managing

organization, which provides basic care, and an external provider, which provides advanced care

and which is reimbursed by the former. They show that a penalty-only contract (without bonus

payments) can elicit system-wide or socially optimal effort levels for successful treatment, for

example, by reducing readmissions. (See also So and Tang (2000), Ata et al. (2013), Gupta and

Mehrotra (2015), Jiang et al. (2012), Bavafa et al. (2017) for studies that focus on regulation

on other healthcare settings, and Batt et al. (2018a) and Chen and Savva (2018) for empirical

analysis of the impact of HRRP on hospital actions.) Typically, papers in this stream assume that

the reimbursement amounts are either exogenous or chosen optimally under varying assumptions

about available information at regulator’s disposal. Although Zhang et al. (2016) study endogenous

readmission targets, they take the reimbursement levels as exogenous and establish a lower bound

on the number of hospitals that would not exert any readmission reduction effort (primarily due

to the fact that their initial readmission levels are too high, as explained above). To better explore

the impact of payment systems used in practice and to capture the fact that the regulator has

limited information about hospitals’ cost parameters, we focus on PPS (and HRRP) where the

reimbursement amount as well as the readmission target are endogenous. In addition, we propose

socially optimal payment schemes that have the same information burden on the regulator as the

PPS and HRRP, a research direction that is not explored in Zhang et al. (2016).

3. Model

We focus on the treatment of a single condition and consider a model (similar to Shleifer (1985),

Savva et al. (2018), Tanger̊as (2009)) with three parties: (i) patients; (ii) hospitals/providers; and

(iii) the regulator (see Remark 1 for an extension to multiple diseases). It is assumed that each

hospital is a monopoly in its catchment area and provides treatment to a fixed population. With

the objective of maximizing total welfare, the regulator sets the terms of the reimbursement scheme

that dictates how providers are reimbursed for providing treatment to patients. Informed with
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the terms of the reimbursement scheme, each provider chooses its marginal cost and readmission

rate. In order to determine the effectiveness of a reimbursement scheme, we analyze the actions of

providers in equilibrium of a (Stackelberg) game where the regulator moves first and each entity

is self-interested. Specifically, we assume that the regulator commits to the reimbursement scheme

and we establish the (pure-strategy) Nash equilibrium in a one-round game in which each player

holds correct expectations about the other players’ actions, with the aim of assessing the long-term

impact of reimbursement schemes (see, Fudenberg and Tirole 1991, Osborne and Rubinstein 1994).

3.1. Interactions between patients, providers and regulator

Patients: We assume that patients arrive to each hospital at a fixed rate λ and that they need to be

admitted to the hospital for treatment. (We consider a case with demand dependent on hospitals’

actions in §5.2.) A patient’s index hospitalization may be followed by a hospital readmission to

(successfully) complete the treatment and, for notational simplicity, we assume that each patient

can be readmitted (at most) once, an assumption we relax in §5.3.

Providers: We consider N providers and assume that each provider operates as a local monopoly

in its catchment area (see §5.3 for an extension) and we consider two decisions by each provider:

(i) readmission rate (or the probability that a patient is readmitted) r; and (ii) marginal cost of

treating a patient c. More specifically, c denotes the cost of treating a patient each time the patient

seeks treatment. We assume that the cost of treatment c is the same for index hospitalizations

and readmissions (see §5.3 for an extension), and it does not depend on r. Each hospital has an

initial constant marginal cost cmax and readmission level rmax and can reduce the marginal cost

to c and readmission level to r by spending R(r, c). This represents the fixed cost of all activities

undertaken by a hospital to reduce the readmission rate to r and the marginal cost to c.4

In practice, hospitals can adopt various interventions aimed at reducing readmissions, such as

patient education, better discharge planning, and better co-ordination of clinical intervention with

community and social care providers (see Hansen et al. (2011) for more on readmission-reduction

interventions). They can also improve the cost efficiency of treatment by purchasing new equipment

that allows for more precise and faster diagnosis/treatment, employing more and better-qualified

staff, improving staff training programs, and/or process re-engineering among others. These inter-

ventions are typically costly since they require investment in facilities, labor, staff/patient educa-

tion, and so on.5

4 There are alternative ways to model hospital actions that result in similar insights. For example hospital actions can
be modeled using a fixed (investment) cost F and a variable cost c, which in turn jointly determine the readmission
levels. Under mild conditions, such a model is equivalent to our model.

5 We only consider the impact of hospital actions on cost of treatment and readmissions but not on, for example,
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A hospital’s objective, Π, hence can be written as

Π(r, c) = T − c(1 + r)λ−R(r, c), (1)

where T denotes the payment from the regulator to the provider (see below for details). To avoid

technical subtleties, we assume that r ∈ [rmin, rmax] and c∈ [cmin, cmax], for some 0< rmin ≤ rmax < 1

and 0≤ cmin < cmax <∞.

Regulator: The regulator’s objective is to maximize the total social welfare S (i.e., total patient

surplus minus total cost), given by

S(r, c) = V (λ)− c(1 + r)λ−R(r, c), (2)

subject to the constraint that providers break even, i.e., Π(r, c)≥ 0. Here V (λ) denotes the total

utility of patients from receiving treatment and the last two terms constitute the total cost of

providing treatment. Notice that T is absent from this expression since it is a transfer payment

from the regulator (financed typically indirectly by patients via taxes or insurance premiums) to

the providers. Also because V (λ) is a constant, the objective of the regulator can be viewed as

minimizing the total cost of providing care (to a fixed population). We keep V (λ) in our model

because of the extensions we consider later in the paper where its value depends on hospitals’

actions.

Assumptions and preliminaries: Throughout, we make the following standard technical

assumptions that guarantee that the regulator and the providers have unique optimal actions that

can be determined using first order conditions (FOCs). We assume that R(r, c) is decreasing and

jointly convex in r and c, and is twice differentiable. Also we assume that RrrRcc > (Rrc + λ)2,

i.e., R is sufficiently convex6 (where Rx denotes partial derivative with respect to variable x), and

Rcr > 0, i.e., readmission reduction is more costly when the treatment cost is low. We impose

additional boundary conditions to ensure that optimal actions are interior. These conditions are

presented in Appendix A for the sake of brevity. We use these assumptions throughout the paper

without further mention.

Under these assumptions, the socially optimal (or first-best) readmission rate and treatment

cost, denoted by (r∗, c∗), are unique and can be characterized using the FOCs.

other medical outcomes. We do this because HRRP does not take any other measures, besides readmission rates, into
account in calculating penalties. However, CMS introduced Hospital Value-Based Purchasing and Hospital-Acquired
Condition Reduction Programs that tie hospital payments to various additional medical outcomes. These programs
should encourage hospitals to take actions that increase the prospect of good medical outcomes while reducing
readmissions.

6 This assumption is just a sufficient condition that ensures that objective functions of the regulator and hospitals are
unimodal (i.e. have unique maximums). There are other sufficient conditions ensuring unimodality of all objective
functions. For example, it can be shown that conditions in Lemma A8 of Appendix F are sufficient to ensure the
regulator’s objective function S(r, c) defined in (2) to be unimodal.
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Lemma 1 (First-best benchmark). The regulator’s objective in (2) has a unique maximizer

(r∗, c∗), where r∗ ∈ (rmin, rmax) and c∗ ∈ (cmin, cmax) satisfy FOCs

λc∗+Rr(r
∗, c∗) = 0, (3)

λ(1 + r∗) +Rc(r
∗, c∗) = 0. (4)

We note that the information asymmetry in this setting is embodied in the inability of the reg-

ulator to fully estimate the cost function R. A fully informed regulator could easily determine

the first-best cost and readmission levels from (3) and (4) (assuming that the demand rate is

observable, which is usually the case in practice), and then penalize those hospitals that refuse to

operate at these levels. However, due to this information asymmetry, the regulator is compelled

to use yardstick competition type schemes, e.g., the PPS and HRRP, that only utilize available

information. Specifically, under these payment systems, the regulator only needs to observe the

marginal treatment cost, readmission rate and investment cost of each hospital from accounting

data. This information is already collected by CMS to determine the DRG reimbursement levels

as well as the penalties under HRRP.

For the rest of the paper we use h(r) to denote the solution of (4) in c for fixed r, that is

λ(1 + r) +Rc(r,h(r)) = 0. (5)

By the assumptions above, h is well defined and is decreasing in r, for r ∈ [rmin, rmax), see Lemma A1

in Appendix B.

3.2. HRRP payment scheme

We use a model similar to Shleifer (1985) to model the HRRP reimbursement scheme. Because we

focus on a single disease, the payment scheme we consider is slightly different from the payment

scheme CMS uses in HRRP. We discuss the differences and how our model can be extended to

incorporate these differences in Remark 1 below, after we explain our basic model.

First the regulator observes the marginal cost ci, the readmission rate ri, and the investment

cost Ri ≡R(ri, ci) for each hospital and sets

c̄i =
1

N − 1

∑
k 6=i

ck, r̄i =
1

N − 1

∑
k 6=i

rk, and R̄i =
1

N − 1

∑
k 6=i

Rk, for i= 1, . . . ,N. (6)

Then the transfer payment Ti to hospital i is given by

Ti = c̄iλ(1 + ri)−
(

min

{
ri− r̄i
r̄i

, Pcap

})+

c̄i(1 + ri)λ︸ ︷︷ ︸
π(ri|r̄i, c̄i)

+R̄i, (7)



12

where x+ =max{x,0}. We refer to this reimbursement scheme as ‘HRRP reimbursement scheme’

for the rest of the paper, or just HRRP for simplicity, with a slight abuse of terminology. The

HRRP consists of three components: (i) a payment equal to c̄i per patient; (ii) a penalty based on

the hospital’s relative performance on readmission rates (term π); and (iii) a lump-sum payment

R̄i to help recover the hospital’s investment cost. Under this reimbursement scheme the hospital’s

i objective can be written, from (1) and (7), as

Π(ri, ci) = (c̄i− ci)(1 + ri)λ−π(ri|r̄i, c̄i) + R̄i−R(ri, ci). (8)

We note that CMS does not make lump-sum payments but makes per-discharge capital payments

that cover costs for depreciation, interest, rent and tax related costs. However, the lump-sum

payment R̄i in our model can be instead made per-discharge by dividing the total payment amount

by the demand, i.e., R̄i/(1 + ri)λ. In addition, the readmission penalty in our model is based only

on the total per-patient payments but not on the payments to cover the cost and readmission

reduction efforts (i.e., R̄i,). This is in line with CMS’s practice because the penalties under HRRP

are only applied to operating payments (that cover labor and supply costs to treat a patient) but

not to capital payments (CMS 2019).

Differences between PPS and HRRP: Shleifer (1985) models the PPS using (7) without

the readmission penalty term π and shows that this scheme (referred to as PPS for simplicity from

here on) leads to socially optimal cost-reduction efforts when the readmission rates are exogenous.7

The PPS’s capability to induce socially optimal efforts (when readmission levels are assumed to be

exogenous) is based on the indirect cost competition it induces between hospitals that otherwise

operate in different markets in that those hospitals that are more cost-efficient than the other

hospitals, i.e., ci < c̄i, will enjoy positive profits and others will suffer losses.

Under the PPS, hospitals have no incentive to reduce readmissions when readmission levels are

assumed to be endogenous (in fact we show below that they do not exert any effort at all in

equilibrium–see Proposition 3) and the novelty of HRRP is the introduction of the additional term

π to the PPS reimbursement scheme in order to provide this missing incentive. This penalty term

induces an indirect competition between hospitals in reducing readmissions (in a way similar to

what the PPS does for cost-reduction efforts) by comparing provider i’s readmission rate, ri, to

its expected (yardstick) readmission rate r̄i. Clearly, if hospital i’s readmission rate is higher than

r̄i, then it pays a penalty, proportional to how much worse its performance relative to its target is

(i.e., ri/r̄i) and to the total amount of per patient reimbursement it receives (i.e., c̄i(1 + ri)).

7 In Shleifer (1985)’s original model, patients bear the cost of treatment and the total demand is price sensitive.
However his result can easily be extended to our model where we assume that insurance (e.g., Medicare) covers the
cost of treatment, excluding a potential co-payment independent from hospital’s readmission rate and marginal cost.
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As discussed above, the HRRP readmission penalty mechanism has three features that the PPS

does not share. Having presented the details of our model, we are in a good position to explain

these differences in detail using the definition of this reimbursement schemes in our setting. (i)

Multiplier effect: The deviation from the target is normalized using the average readmission rates,

term ((1 + ri)/r̄i) (ri− r̄i) in (7), in penalty calculations under HRRP, whereas under the PPS, the

cost-reduction incentive is provided by the absolute deviation from the target, term (c̄i− ci) in (8).

(ii) No bonus payments: HRRP is a penalty-only scheme (note that π= 0 if ri < r̄i), and so hospitals

with lower-than-expected readmission rates do not receive bonus payments, whereas under the

PPS hospitals do enjoy profits if they are more cost efficient. (iii) Capped penalty: The penalty is

capped, denoted by Pcap(≥ 0) in (7), under HRRP, limiting the potential financial burden of the

scheme on hospitals, but no such cap exists under the PPS on profits or losses. Hence, although

the PPS is shown to lead to socially optimal cost-reduction efforts when readmission levels are

assumed to be exogenous and HRRP uses a similar incentive mechanism, it is not clear what the

impact of these additional features on hospitals’ efforts on cost and readmission reduction is when

readmission levels are assumed to be endogenous. We characterize their precise impact in the next

section.

Remark 1 (Modeling assumptions). We note that the reimbursement scheme we use is sim-

pler than the actual implementation of the HRRP8 in that HRRP monitors multiple diseases (six as

of 2017), imposes a penalty as a proportion of the total payments from CMS (including payments

for unmonitored diseases), and the total penalty is capped–see, for example, Zhang et al. (2016).

Our main result can be extended to a model that incorporates multiple diseases. The details are

presented in Appendix D. Also, if the financial penalty is imposed on total payments (as opposed

to payments for the monitored disease as in (7)), then this can be incorporated in our model

by increasing the cap (Pcap), assuming that the total reimbursement for monitored diseases is a

constant fraction of the total payments received from the regulator, see (4) in Zhang et al. (2016).

Using a single disease model allows us to derive clean insights from the analysis. Also by focusing

on identical hospitals, we remove the impact of the HRRP’s risk-adjustment procedure on hospital’s

actions, which is studied widely elsewhere. Finally, when hospitals are heterogeneous, Shleifer

(1985) shows that the PPS yields socially optimal cost-reduction efforts (when the readmission

rates are exogenous) with an accurate risk adjustment procedure and a similar result holds in our

setting as well once the issues with incentive mechanism are addressed, see §5.3 for more details.

8 We delineate the procedure CMS uses to determine reimbursement amounts under Inpatient Prospective Payment
System and penalties under HRRP in Appendix I. In addition, we describe the connection between CMS’ procedures
and our model along with the implications of recent changes in HRRP for our results.
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4. Analysis of HRRP

In this section we analyze the equilibrium outcomes under the HRRP reimbursement scheme using

the principal-agent framework described above. To precisely determine the impact of each of the

three provisions (i.e., the multiplier, no-bonus, and penalty cap) we analyze two additional reim-

bursement schemes obtained from HRRP by altering term π in (7). Specifically we establish the

equilibrium under the following cases. (i) We allow bonus payments for hospitals with lower-than-

expected readmissions and remove the cap on financial incentives, which enables us to isolate the

impact of the multiplier effect. We refer to this scheme as HRRP-I. (ii) Next we re-introduce the

cap but still allow hospitals to receive bonus payments. Combined with the analysis of HRRP-I,

this enables us to study the impact of the cap. We refer to this scheme as HRRP-II. (iii) Finally we

consider the original HRRP scheme defined in (7) where hospitals do not receive bonus payments

and the penalty is capped.

4.1. Equilibrium under HRRP-I scheme

When there is no cap on financial incentives (i.e., setting Pcap =∞ in (7)) and bonus payments are

allowed in HRRP, the transfer payment to hospital i becomes

Ti = c̄iλ(1 + ri)−
1

r̄i
(ri− r̄i) (1 + ri)c̄iλ︸ ︷︷ ︸

πI(ri|r̄i, c̄i)

+R̄i. (9)

The next proposition characterizes the equilibrium outcomes under this scheme, referred to as

HRRP-I.

Proposition 1 (Equilibrium under HRRP-I). Under the reimbursement scheme HRRP-I

there exists at least one symmetric equilibrium (r̃, c̃), and all symmetric equilibria satisfy r̃ < r∗,

c̃ > c∗. Furthermore, if there are only two hospitals, i.e., N = 2, there cannot be any asymmetric

equilibrium.

This result confirms the argued impact of the multiplier in the medical literature and shows that

hospitals over-invest in readmission reduction efforts in symmetric equilibrium, since r̃ < r∗ in

all symmetric equilibria. In addition, over-investment in readmission reduction leads to under-

investment in cost-reduction efforts (i.e., c̃ > c∗), relative to first-best, because in equilibrium the

total number of admissions (index admissions plus readmissions) for each hospital is lower than

what it would have been under the first-best readmission levels, and so the total benefit of reducing

marginal cost is lower.

To demonstrate the multiplier effect more precisely, consider the relative performance-based

penalty under HRRP-I, term πI in (9). For simplicity assume that r̄i = r∗. By (9) hospital i with
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readmission rate ri will incur a penalty equal to (1+ri)

r̄i
(ri− r̄i)c̄iλ, assuming ri > r̄i. However, the

cost of excessive readmissions to the regulator is only c̄iλ(ri− r̄i) (see (2)) and so the readmission

penalty is (1+ri)

r̄i
times higher. We refer to this quantity as the multiplier from here on. We note that

the multiplier is always greater than 3 if rmax ≤ 0.5 (a range that covers the current readmission

rates for most diseases), and, for any fixed ri/r̄i, it is increasing in r̄i and goes to infinity as r̄i→ 0.

Therefore, penalties imposed in practice could be excessive if there is no cap (especially if r̄i is low)

because of the multiplier. In the presence of a penalty cap, most hospitals may have to pay the

maximum penalty, even when they deviate slightly from their readmission target. We determine

the precise impact of the multiplier on hospitals’ actions and on treatment costs using parameters

estimated from Medicare patient data for three monitored diseases in §4.1.1 below.

Remark 2 (Asymmetric equilibria). Our result does not rule out the possibility of asymmetric

equilibria in general, which is common in such settings–see for example, Shleifer (1985). We do

not focus on asymmetric equilibrium for three main reasons. First, it is possible to slightly alter

the reimbursement scheme to rule out the possibility of asymmetric equilibrium by dividing the

hospitals into two groups and setting the target readmission level of one group using the average

performance of the hospitals in the other group and vice versa (proof is similar to that in EC4 of

Savva et al. (2018) by using the fact that there are no asymmetric equilibrium outcomes with two

hospitals). Second, in our model all hospitals are identical, hence the readmission reduction effort

levels in an asymmetric equilibrium cannot be socially optimal. Third, we show that there exists no

asymmetric equilibrium under HRRP if R satisfies an additional mild condition, see Proposition 3

below.

In the next two sections we establish the equilibrium outcomes under HRRP-II and HRRP, and

the results depend on those under HRRP-I. We make the following assumption for the rest of the

analysis for simplicity (we provide sufficient conditions for this assumption to hold in Appendix

F).

Assumption 1. Under HRRP-I there is a unique symmetric equilibrium (r̃, c̃).

It is possible to extend the subsequent analysis to cases with multiple symmetric equilibria, see

Appendix G.

4.1.1. Numerical examples Although Proposition 1 and the subsequent discussion show

that the multiplier can have a substantial impact on financial incentives, its impact on ensuing

equilibria is less clear. In this section we demonstrate the multiplier’s impact on hospital actions

and the total cost of care using a simple example. We use the following investment cost function,

which allows us to determine first-best and equilibrium outcomes in closed forms,

R(r, c) =
τ1λ

r
+
τ2λ

c
, (10)
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for constants τ1, τ2 > 0. By Lemma 1 socially optimal actions satisfy

r∗ =
√
τ1/c∗ and c∗ =

√
τ2/(1 + r∗) (11)

and equilibrium actions under HRRP-I satisfy

r̃=
√
r̃/(1 + r̃)

√
τ1/c̃ and c̃=

√
τ2/(1 + r̃). (12)

(Results (12) follow from (A17) in the proof of Proposition 1 assuming FOCs are necessary and

sufficient to determine a hospital’s optimal choices.) By (11) and (12) (after some algebra), if

r∗ ≤ 0.5

r̃/r∗ ≤ 70%, (13)

that is, the equilibrium readmission rates under HRRP-I is at least 30% less than socially optimal

rates.

To demonstrate the impact of the multiplier more precisely, we present the results of a set

of numerical experiments where we use the cost and readmission rate values for three HRRP

monitored diseases: acute myocardial infarction (AMI), heart failure (HF) and pneumonia (PN)

with complications and co-morbidities, from CMS data in 2013 to calibrate the parameters of our

cost model as follows. First, for each disease, we assume that r∗ and c∗ are around 90% of the

current respective national average rates and then determine τ1 and τ2 using (11). Finally we find

r̃ and c̃ using (12). (For all numerical examples here, we verified that the convexity assumption

RrrRcc > (Rrc + λ)2 and all assumptions in Appendix A are satisfied and that there is a unique

symmetric equilibrium by Lemma A9(ii) in Appendix F.) Socially optimal and equilibrium actions,

along with the increase in the total cost of care when hospitals pick equilibrium actions instead of

socially optimal actions, are presented in Table 1.

Disease c∗ r∗ c̃ r̃ Increase in cost

AMI 5900 18% 6316.9 2.9% 30%
HF 5300 22% 5732.4 4.3% 27%
PN 5000 16% 5323.0 2.4% 32%

Table 1 First-best and equilibrium actions, and increase in cost due to deviation from first-best in three settings

driven from average costs and readmission rates for HRRP monitored diseases.

Clearly the multiplier effect is substantial in these cases (much more than the bound in (13)

estimates); r̃ is around 20% of r∗ on average. In addition, the total cost of care increases by almost

30% on average because of suboptimal hospital actions in equilibrium. Interestingly the deviation

in marginal cost is much lower; on average c̃/c∗ ≈ 107%. This follows from the fact that the impact

of readmission rates is limited in (11) and (12) and one can show that c̃ is at most 22.5% higher

than c∗ for r∗ ≤ 0.5.
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4.2. Equilibrium under HRRP-II scheme

Next we consider a reimbursement scheme obtained from HRRP-I by imposing a cap, equal to

Pcap ≥ 0, on rewards and penalties. Consider the following reimbursement scheme, referred to as

HRRP-II, with the transfer payment for hospital i equal to

Ti = c̄iλ(1 + ri)−πII(ri|r̄i, c̄i) + R̄i, (14)

where

πII(ri|r̄i, c̄i) =

 min
[

1
r̄i

(ri− r̄i) , Pcap
]

(1 + ri)c̄iλ, if ri ≥ r̄i,

−min
[

1
r̄i

(r̄i− ri) , Pcap
]

(1 + ri)c̄iλ, if ri < r̄i.

Clearly this reimbursement scheme can also be derived from the HRRP scheme by adding capped

bonus payments when ri < r̄i in (7). The next proposition characterizes the equilibrium outcomes.

Proposition 2 (Equilibrium under HRRP-II). Suppose Assumption 1 holds. Under HRRP-

II scheme:

(i) There exists P̄cap > 0 such that (r̃, c̃) is the unique symmetric equilibrium if Pcap ≥ P̄cap.

(ii) No symmetric equilibrium exists if 0<Pcap < P̄cap.

(iii) (rmax, h(rmax)) is the unique symmetric equilibrium if Pcap = 0.

This proposition shows that, if the cap is low enough, it can have a drastic impact on hospitals’

actions, leading to no symmetric equilibrium and nullifying the effect of readmission reduction

financial incentive scheme. Interestingly there is a phase transition and the cap has no impact if it

is larger than a certain value (i.e., the equilibrium is identical to the case with no cap).

To explain the intuition behind this result, and why r̃ may no longer be an equilibrium outcome,

consider a scenario with just two hospitals. If hospital 2 chooses readmission level r̃, it might be

more profitable for hospital 1 not to exert any readmission reduction effort if the cap is low enough,

because the readmission penalty (term πII(ri|r̄i, c̄i)) is bounded. Observing this, hospital 2 then

can re-choose a readmission level slightly below hospital 1 and obtain positive profits, but hospital

1 would lose money in that case, and would choose to change its action. Hence there might not

exist a symmetric equilibrium–again we cannot rule out the possibility of asymmetric equilibria.

Finally, Proposition 2(iii) shows that, if the penalty cap is zero, hospitals will exert no readmission

reduction effort in equilibrium. Note that in this case HRRP-II reimbursement scheme is equivalent

to the PPS by (7) and (14) (because π ≡ 0 in (7) when Pcap = 0), thus verifying the necessity of

introducing additional incentives to the PPS to reduce readmissions.
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4.3. Equilibrium under HRRP scheme

Finally we establish the equilibrium outcomes under the HRRP scheme defined in (7), where hos-

pitals with lower-than-expected readmission rates do not receive bonus payments and the penalty

is capped.

We need to introduce additional terminology to specify the equilibrium outcomes in this case.

First, let

re = rmax/(Pcap + 1) (15)

and rp = max{re, r̃}. Intuitively, re is a threshold on the readmission target beyond which the

financial cap has no impact. Hence, a hospital’s equilibrium actions will be different depending on

their target being above or below this level. To specify the equilibrium outcomes we set

Sp = {(r,h(r)) : r ∈ [rp, rmax]} (16)

and note that, if Pcap > 0, rp < rmax by Proposition 1 and so Sp is non-empty. Finally let S =

{(r,h(r)) : r ∈ [r̃, rp]} and Pmax = rmax
r̃
− 1. We have the following result.

Proposition 3 (Equilibrium under HRRP). Suppose Assumption 1 holds. The following hold

under the HRRP scheme:

(i) For any Pcap ≥ 0, there exists So ⊂ S (depending on Pcap), such that any (r, c) ∈ So ∪Sp is a

symmetric equilibrium and there is no other symmetric equilibrium.

(ii) There exists ¯̄Pcap ∈ (0, Pmax) such that for any (r, c)∈ So∪Sp, r > r∗ and c < c∗ for Pcap <
¯̄Pcap.

(iii) If Pcap ≥ Pmax, then any

(r, c)∈ {(r,h(r)) : r ∈ [r̃, rmax]} (= S ∪Sp)

is a symmetric equilibrium.

(iv) There is no asymmetric equilibrium if dR(r,h(r))/dr < 0 for all r ∈ [rmin, rmax] (even when

Assumption 1 does not hold).

Proposition 3 shows that removing bonus payments has a non-trivial impact on hospitals’ actions

as any point in a set (namely, So∪Sp) with uncountably many outcomes, which include no effort lev-

els (i.e., (rmax, cmax)) and might include the first-best outcomes. In addition, parts (i)–(iii) together

establish that the equilibrium set shrinks as the penalty cap becomes smaller. More specifically,

part (ii) shows that if Pcap is small enough, hospitals always underinvest in readmission reduction

efforts, and part (iii) shows that, if Pcap is large enough, any r ≥ r̃ can be an equilibrium. Note

that part (iii) includes the case when there is no cap (i.e., Pcap =∞) and therefore establishes the

impact of removing bonus payments from HRRP-I. Part (iv) shows that no asymmetric equilib-

rium exists if the cost function satisfies a mild technical condition and this result does not require
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Assumption 1. In addition, it can be shown that dR(r,h(r))/dr < 0 if Rcc >Rc(λ+Rcr)/Rr, for

r ∈ [rmin, rmax], i.e., if R is “sufficiently” convex in c for all r ∈ [rmin, rmax].

Propositions 1–3 together show that removing bonus payments has a very different impact on

equilibrium than imposing caps. Specifically introducing a cap will never increase the set of poten-

tial equilibria, unlike removing bonus payments which increases the number of equilibrium points

to uncountably many.

To demonstrate the impact of removing bonus payments and explain the intuition behind the

proof Proposition 3, assume that Pcap =∞ (part (iii) in Proposition 3) and again consider a case

with two hospitals. If hospital 2 chooses a readmission level higher than r̃ then hospital 1 would not

pick a lower readmission level because it will not receive a bonus payment for performing better

(unlike the case under HRRP-I). Also hospital 1’s cost is increasing in r (due to concavity of the

hospital’s objective function, and because r≥ r̃) hence it will not choose a readmission level higher

than hospital 2. As a result, any r ≥ r̃ will be an equilibrium. Proof of part (ii) of Proposition 3

follows from the fact that, if Pcap <∞, it may be optimal for hospital 1 to exert no effort when

hospital 2 picks a low enough readmission level, in a way similar to the case under HRRP-II. Hence,

for low enough Pcap, only r > r∗ can be an equilibrium.

Remark 3 (Mixed-strategy equilibrium). Throughout this section we only focused on pure-

strategy equilibrium, however, there exists at least one mixed-strategy equilibrium under HRRP-

II and there may exist additional equilibria under HRRP payment schemes by Theorem 12.4

in Fudenberg and Tirole (1991). Nevertheless, it is difficult to anticipate how a mixed-strategy

equilibrium can be implemented by the hospitals in the current context. First, determining mixed-

strategy equilibrium proved to be elusive, even in our stylised model. Hence it is unlikely that

hospitals can even identify these strategies in practice. Second, various interpretations of mixed

equilibrium do not apply to rational hospitals making long-term investment decisions in cost and

readmission reduction efforts, see Chapter 3.2 in Osborne and Rubinstein (1994) for a detailed

discussion. The most relevant interpretation is based on the celebrated result of Harsanyi (1973),

where mixed equilibrium strategies can be approximated by the set of pure-strategy equilibria

for a disturbed game (e.g., updating the cost function by adding a small random component) of

incomplete information in which the payoffs of each player are known to themselves but not their

opponents. However, a mixed-strategy equilibrium will clearly not be socially optimal.

Our equilibrium analysis does not render a definitive conclusion about how hospitals would react

to HRRP incentives in practice.9 Therefore, we turn to the extant empirical research on HRRP

9 Standard tools used in the literature to refine the equilibrium concept when multiple equilibria exist do not help in
this case. For example, it is easy to show that all equilibria under HRRP is stable, see van Damme (1983).
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to infer what equilibria might be observed in practice. First, Zuckerman et al. (2016), Batt et al.

(2018b), and Wasfy et al. (2017) report that the average readmission rates of Medicare patients

have decreased after the introduction of HRRP. However Desai et al. (2016), Chen and Grabowski

(2019), and Wasfy et al. (2017) (among others) show that hospitals with the highest pre-HRRP

readmission levels had the greatest improvement. In addition, Mellor et al. (2017) and Ziedan

(2018) demonstrate (using different identification strategies) that there is a statistically significant

decrease in readmission rates only for AMI patients for low-performing hospitals. They conclude

that there is no statistically significant reduction for other hospitals (for AMI) nor for the other

two monitored conditions (PN and HF) in all hospitals and find that the readmission rates for

these conditions decreased as well, also see Samsky et al. (2019), and Ody et al. (2019). Although

the conclusions of the empirical research on the impact of HRRP on hospital actions are somewhat

mixed, findings in Ziedan (2018) and Mellor et al. (2017) provide additional support for the impact

of no-bonus and capped-penalty provisions that our study identified on hospital actions. Their

findings also indicate that hospitals may be settling in the no-effort equilibria for PN and HF.

In conclusion, HRRP does not provide the right incentives for hospitals to pick socially optimal

readmission reduction levels. The equilibrium action of hospitals is not clear (even when one ignores

all the additional complicating factors such as risk adjustment) and the eventual outcome probably

depends on the initial readmission levels of the hospitals when the program started. In addition,

findings based on empirical analysis of hospital readmissions data in Ziedan (2018), and Mellor

et al. (2017) support our (theoretical) findings. In theory the regulator could use additional policy

tools to enforce hospitals to settle in a desired output. However, the essential reason that the

regulator has to use a yardstick competition type regulation in the first place is its inability to

estimate hospitals’ cost function. The very same information asymmetry hinders regulators’ ability

to determine the ‘desired’ levels for marginal cost and readmission rates. In the next section we

show that a similar reimbursement scheme, which imposes no additional informational burden on

the regulator, leads to first-best outcomes, unequivocally.

5. Socially optimal relative performance-based regulation

The purpose of this section is to show that it is possible to design reimbursement schemes, guided

by our findings in the previous section, that lead to socially optimal outcomes. We do this under

two settings. First in §5.1 we consider the same setting as §4 for a comparative analysis. Then in

§5.2 we consider a setting where hospitals have limited capacity and delays to access healthcare

are inevitable. Lastly in §5.3 we demonstrate how the proposed payment schemes can be modified

to account for various additional extensions in the proposed model.
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5.1. Modified HRRP

Consider the following payment system, referred to as m(odified)-HRRP; the regulator sets the

transfer payment Ti to hospital i as

Ti = c̄i(1 + ri)λ+ (r̄i− ri) c̄iλ︸ ︷︷ ︸
πm(ri|r̄i, c̄i)

+R̄i, (17)

where c̄i, r̄i, and R̄i are defined as in (6). Reimbursement scheme m-HRRP is similar to HRRP-I

(see (9)) in that it does not impose a cap on payment adjustments specified in term πm, and does

allow bonus payments for hospitals with lower-than-expected readmission rates. However, unlike

HRRP-I, m-HRRP does not adjust the relative performance of each hospital by the multiplier (i.e.

term (1 + ri)/r̄i). We highlight the fact that m-HRRP imposes the same informational burden on

the regulator as HRRP. We next show that it restores first-best, and then discuss the implications

of this result.

Proposition 4. Under m-HRRP there exists a unique equilibrium and each hospital chooses the

first-best readmission and cost levels (r∗, c∗) in this equilibrium.

There are two different ways to interpret the financial incentives that m-HRRP provides. First

interpretation is based on the observation that hospital i’s objective can be written as

Π(ri, ci) = (c̄i− ci) (1 + ri)λ+ (r̄i− ri) c̄iλ−R(ri, ci) + R̄i (18)

by (1) and (17). It is clear from (18) that m-HRRP provides two different (but interrelated)

incentives: i) to reduce costs (cost-efficient hospitals are rewarded owing to term (c̄i− ci)); and ii) to

reduce readmissions (hospitals with lower-than-expected readmission rates are rewarded owing to

term (r̄i− ri)). More generally, this scheme provides evidence that it is possible to design yardstick

competition type reimbursement schemes to incentivize hospitals to take desired actions on multiple

fronts, e.g., cost and readmission reduction.

Another (arguably more interesting) interpretation is based on the observation that hospital i’s

objective under m-HRRP can also be written (again by (1) and (17)) as

Π(ri, ci) = (1 + r̄i)c̄iλ− (1 + ri)ciλ−R(ri, ci) + R̄i. (19)

To wit, hospital i receives a per patient payment equal to the average expected marginal cost of all

other hospitals to successfully treat a patient (i.e., when a patient is permanently discharged from

the hospital), equal to (1 + r̄i)c̄i. Therefore, in addition to the investment cost Ri, the regulator

only needs to estimate the cost of treating a patient, including the cost of potential readmissions.
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In fact, this is the idea behind the well-known bundled payment scheme, which is widely used by

regulators around the world, see Kristensen et al. (2015), Altman (2012).

Finally m-HRRP is equivalent to the reimbursement scheme that reimburses hospital i by c̄i(1+

r̄i)/(1 + ri) per admission, for index hospitalization or readmission, in addition to the transfer

payment equal to R̄i. (It can easily be shown that the objective of hospital i is identical to (19)

with this per-patient reimbursement.) Hence, if m-HRRP is implemented this way, hospitals are

reimbursed per admission basis under m-HRRP (as is the case under the PPS) as opposed to

per patient basis under bundled payments. Therefore m-HRRP can be viewed as a mechanism

to alter the per admission reimbursement based on hospitals’ relative performance in reducing

readmissions, without imposing a separate financial penalty for excess readmissions. On a different

note, if a patient is readmitted to a hospital different from the index-admission hospital (which is

not captured in our model), the payment for the readmission hospital can easily be determined

using this scheme.

Remark 4 (Impact of no-bonus and penalty cap without the multiplier effect). The

reimbursement scheme m-HRRP is obtained by removing the multiplier from the HRRP-I scheme

and we showed that the equilibrium outcome moves to r∗ from r̃. Interestingly a similar result

holds for HRRP (and HRRP-II) as well. To demonstrate, we obtain the following transfer payment

by removing the multiplier from HRRP reimbursement scheme (see (7))

Ti = c̄i(1 + ri)λ−
(

min

{
ri
r̄i
− 1, Pcap

})+

r̄ic̄iλ+ R̄i. (20)

(Note that is equivalent to m-HRRP if we allow bonus payments and remove the cap.) Results

of Proposition 3 are still valid after replacing r̃ with r∗ in definitions of rp, S, and So under the

reimbursement scheme defined in (20). In addition, if we allow bonus payments in (20), results

of Proposition 2 hold as well, again after replacing r̃ with r∗. Together these results imply that

the suboptimal outcomes under HRRP are not caused entirely by the multiplier but also by the

no-bonus payment and capped-penalty provisions.

Remark 5. In Appendix E we establish the optimal hospital actions under m-HRRP with no-

bonus and capped-penalty provisions (see (20)) and when the reimbursement level and the read-

mission target for a hospital are set (exogenously) at socially optimal levels (i.e, c̄i = c∗ and r̄i = r∗).

We show that there is a fundamental difference between hospitals’ optimal actions when the targets

are set exogenously and endogenously. Specifically, we show that when targets are set exogenously

at socially optimal levels in m-HRRP, hospitals still choose socially optimal actions, and imposing

the capped-penalty (if the cap is not too low) and no-bonus provisions have no impact on hospital

actions. These results are in stark contrast with those under endogenous targets; these provisions

greatly diminish the incentives that the yardstick-based scheme m-HRRP utilizes; see Remark 4

and Proposition 3.
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5.2. Limited capacity

So far we have studied the impact of reimbursement schemes on hospital decisions, focusing on the

trade-off between cost efficiency and reduced readmissions, under the assumption that hospitals

have ample capacity to treat all patients in a timely manner. However, hospitals typically need

to operate under high utilization (Campbell 2017) resulting in excessive waiting times, even in

developed OECD countries (Viberg et al. 2013). In addition, readmissions have a direct impact on

the effective capacity of hospitals, since avoiding readmissions would free up bottleneck resources.

This additional capacity can be utilized to treat more patients and to reduce delays to access

healthcare, increasing total patient welfare.

Before we present a detailed model that captures the impact of delays to access care, we first

demonstrate the interaction between a system’s capacity and readmissions in a simple example.

Assume that a hospital can be modeled as a G/G/1 queue (i.e., a single server queue with generally

distributed service and interarrival times) with readmissions (referred to as retrials in queueing

literature), i.e., a patient can be readmitted with probability r after receiving treatment for the first

time (e.g., index hospitalization). Let τ(r) denote the throughput (i.e., the rate patients are treated

successfully or the rate they leave the system) of this system as a function of the readmission rate,

assuming the service rate (i.e., capacity), µ, and the arrival rate Λ are fixed. Then, assuming that

readmitted patients have preemptive priority over newly admitted patients,

τ(r) =

{
Λ, if (1 + r)Λ≤ µ,
µ

1+r
, if (1 + r)Λ>µ.

The result implies that, if (1+r)Λ>µ then the throughput will be limited by the available capacity.

This follows from the fact that, if this condition holds, then the server does not have enough

capacity to treat all patients and its total throughput will be limited to µ
1+r

. If the regulator ignores

the impact of readmissions on capacity and uses a reimbursement scheme similar to (19) for such

systems, the equilibrium readmission rate can be large and the system might be overloaded, i.e.,

(1 + r)Λ>µ, especially when the nominal utilization (i.e., Λ/µ) is close to 100%. In this case the

throughput will be lower than Λ and the total welfare will be less than V (Λ), hence our results

in §5.1 would not hold. Therefore, the regulator needs to use an additional mechanism to ensure

hospitals invest sufficiently in capacity in its reimbursement scheme.

If the regulator is able to observe the capacity of each hospital, it is possible to augment the

reimbursement scheme (19) by another relative performance-based scheme on hospitals’ capacity,

just as that for readmissions in (18). However, the regulator is unlikely to have the capability to

determine the precise capacity of a hospital because of various reasons including, but not limited

to: randomness in treatment times; the fact that resources are shared among different patient
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groups; and complicated patient flows. Although throughput is typically observable, the regulator

cannot infer capacity from this information because, in most cases, the (potential) demand is not

observable. In contrast, the regulator can usually track the waiting times of patients, which reflects

the capacity-demand balance. Therefore we propose a reimbursement scheme based on patient

waiting times.

We next present a model similar to Savva et al. (2018) to capture the impact of waiting times on

patients’ and hospitals’ choices and then show that a reimbursement scheme, obtained by adding a

relative performance-based financial incentive term for waiting times to m-HRRP, achieves socially

optimal outcomes.

5.2.1. Treatment model when capacity is limited

Effect of waiting times on patient behavior: To model the impact of waiting times on

patients’ decisions and their welfare, we assume that patients are delay-sensitive and let u denote

their utility from the treatment. Patients are heterogeneous in their treatment utilities. We use Θ to

denote the distribution of treatment utility across the population.10 We assume that the treatment

utility u is private information (i.e., only patients know their own treatment utility), but hospitals

have accurate information about its distribution Θ. Let W (λ, r,µ) denote the expected waiting

time11 of patients with equilibrium arrival rate λ (which we define next), readmission rate r, and

capacity µ. We assume that waiting cost is t per unit time and so all patients whose treatment

utilities are larger than tW (λ, r,µ) seek service. Hence the equilibrium arrival rate, λ(r,µ), is the

unique solution of

λ(r,µ) = ΛΘ̄ (tW (λ(r,µ), r, µ)) , (22)

where Θ̄(x) := 1−Θ(x). For simplicity we assume that patients make joining decisions only at the

time of index hospitalization and will always seek treatment when they need to be readmitted.

Parameter t can be interpreted in different ways–besides the way we presented above–depending

on the severity of the disease under consideration. Viewing t as the patients’ tolerance for delay

might be more appropriate for less severe conditions. For time-sensitive conditions, t can be viewed

as the rate a patient’s condition deteriorates and, given a patient’s ‘utility’ u, quantity u/t can

be viewed as the time a patient needs be treated by via the (regular) care channel. If not treated

10 We assume that Θ is differentiable and denote its derivative by θ. We also assume that θ is strictly positive
everywhere in [0,∞).

11 Throughout we assume that conditions stated in §3 continue to hold. We make the following technical assumptions:
for any λ∈ (0, µ),

W (λ, r,µ)>W (0, r, µ) and lim
µ↓(1+r)λ

W (λ, r,µ) = ∞, (21)

which, for example, hold for M/M/1 queues with readmissions, see Guo et al. (2019).
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within this time limit, the patient may have to be admitted to the emergency department, and

in some situations may suffer from additional complications and health problems due to excessive

delay. Finally, smaller values of t along with a suitable distribution Θ can be used when delay to

accessing care is more tolerable.

Providers: We assume that each provider picks its capacity level µ in addition to its readmission

rate r and marginal cost c and we use R(r,µ, c) to denote the cost associated with actions (r,µ, c).

A hospitals’ objective, Π, can be written as

Π(r,µ, c) = T − c(1 + r)λ(µ, r)−R(r,µ, c), (23)

in a way similar to (1), where T denotes the payment from the regulator to the provider. We

assume for simplicity that µ≥ µmin for some µmin > 0.

Regulator: The regulator’s objective is again to maximize the total social welfare but, in the

current context, the cost of delays to access care has to be accounted for in total patient welfare.

First, some of the patients will not be able to access care and we assume that the regulator incurs a

penalty equal to ce for each such patient. We use the cost parameter ce as a catch-all cost parameter

to account for the total cost of emergency care and the cost of additional complications caused by

excessive delay. On the other hand, patients who eventually access care experience disutility from

waiting, equal to tW (λ,µ, r) on average. Therefore the objective of the regulator can be written as

follows

S(r,µ, c) = Λ

∫ ∞
tW (λ,µ,r)

(x− tW (λ,µ, r))dΘ(x)− c(1 + r)λ−R(r,µ, c)− ce(Λ−λ), (24)

where we set λ = λ(µ, r) for notational simplicity. The regulator’s objective S consists of three

components: i) the total patient utility for those who eventually access care (the first term

Λ
∫∞
tW (λ,µ,r)

xdΘ(x) is the total treatment utility and Λ
∫∞
tW (λ,µ,r)

tW (λ,µ, r)dΘ(x) is the total disu-

tility from waiting); ii) total cost of providing treatment (the second and third terms); and iii) cost

of excessive delays (the last term). We assume that there is a unique optimal solution (r∗, µ∗, c∗) to

the regulator’s problem, referred to as socially optimal actions, and FOCs of S(r,µ, c) are necessary

and sufficient to determine regulator’s optimal actions.

Remark 6. The model we use to capture the impact of delays to access care is similar to that in

Guo et al. (2019) except they assume that patients are homogeneous in their treatment utilities,

hence Θ assigns probability 1 to a single point. Our results can be generalized to this case easily.

Zorc et al. (2017) also use a similar model for the impact of delay on treatment utility but they

do not model patient’s ‘joining’ decisions. Our model is also similar to Savva et al. (2018) but

they assume ce = 0 and they do not consider (endogenous) readmissions in their model. Cost of
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excessive delay, ce, might be small in certain healthcare settings. For example, for some emergency

room patients, there are more appropriate healthcare channels (Uscher-Pines et al. 2013). However,

elective care patients are carefully screened by general practitioners, hence they typically need

to receive treatment from specialists in a timely manner. Excessive delays to access care may

deteriorate their health to a degree that they have to seek more costly emergency care.

Reimbursement scheme when capacity is limited: For each hospital i, let c̄i and R̄i be

defined as in (6) and let

W̄i =
1

N − 1

∑
j 6=i

Wj, and λ̄i =
1

N − 1

∑
j 6=i

λj (25)

denote the average waiting time and the average arrival rate, respectively, at all hospitals excluding

hospital i. Consider the reimbursement scheme, which we refer to as m-HRRPW(ait), where the

transfer payment to hospital i is given by

Ti = ceλi− t(W (ri, µi)− W̄i)λi + R̄i + (c̄i(1 + r̄i)− ce)λ̄i. (26)

Before we discuss the interpretation of different components of this reimbursement scheme, we

first show that it leads to socially optimal outcomes in equilibrium. For the next result we assume

that FOCs of hospitals’ objective functions are necessary and sufficient to determine their unique

optimal actions.

Proposition 5. Under the reimbursement scheme given in (26), the unique symmetric equilibrium

is for each hospital i to pick ri = r∗, µi = µ∗, and ci = c∗.

The proposed reimbursement scheme (26) has three components: (i) payment for successful treat-

ment (the first term); (ii) a yardstick competition type financial incentive term for waiting times

(the second term); and (iii) transfer payment to make sure hospitals break even and do not collect

rents (the last two terms). Jointly the first two components ensure that the hospitals exert socially

optimal efforts to reduce readmissions and costs while ensuring that patients have timely access

to care. Also, although Proposition 5 does not rule out the possibility of asymmetric equilibrium,

it is possible to modify the reimbursement scheme (26) as outlined in Remark 2 to guarantee the

uniqueness of the equilibrium outcomes, because we can rule out the possibility of asymmetric

equilibrium when N = 2 in this setting as well (the proof is identical to that of the second part of

Proposition 1).

The proposed reimbursement system imposes additional information burden on the regulator

relative to the reimbursement scheme for the case with ample capacity. Specifically the regulator

needs to observe average waiting times Wis and estimate the parameters t and ce. The waiting
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times in different healthcare systems have already being collected as one of the quality measures

in healthcare (Viberg et al. 2013). Also, the cost of waiting t and cost of excessive delay ce can be

estimated from current system-wide patient flow data for time-sensitive conditions. In addition, if

ce = c̄i(1 + r̄i) then the proposed reimbursement scheme reduces to the bundled payment scheme

(with an additional incentive payment for waiting time performance). Hence, a bundled-payment

type reimbursement scheme still induces socially optimal actions for conditions for which (average)

cost of excessive delay is not significantly different from the cost of providing care through the

‘regular’ channel, when used with an incentive payment for waiting time performance.

5.3. Other extensions

The following additional features can be incorporated in our models and reimbursement schemes.

Heterogeneous hospitals: In our proposed reimbursement scheme, the regulator should be

able to identify (at least pairs of) identical hospitals. In practice, however, hospitals may differ along

multiple dimensions due to, for example, geographical and demographic factors. Nevertheless, if

these factors are observable to the regulator and exogenous to hospitals, then the proposed scheme

can be modified in a way similar to that in Shleifer (1985)§4, also see Savva et al. (2018). In fact

CMS uses a hierarchical generalized linear model to estimate the target readmission rate for each

hospital.

In our setting, reimbursement scheme (26) can be adjusted as follows. The regulator can use the

information on the total costs, readmission rates, arrival and average waiting times of all other

providers, along with the vector of observable characteristics to predict the target readmission

rates, costs and waiting times for each provider. This new adjusted target can then be used in

(26) in place of the ‘bare’ averages. As discussed in the introduction, the predictive accuracy of

this estimation procedure is essential for a relative performance-based reimbursement mechanism

to lead to desired outcomes when hospitals are heterogeneous, see Laffont and Tirole (1993) for a

more extensive discussion.

Disutility of readmissions: We can extend our model to incorporate an explicit cost for

patient readmissions, accounting for additional health risks due to increased time spent in hospital

and for patient disutility. To illustrate, let K denote the cost of readmission to a patient, and so

to the regulator. Then (26) can be modified by adding the following term

K (r̄i− ri)λi. (27)

Intuitively, term (27) makes hospitals internalize the total cost of readmissions to patients. It can

be shown similar (proof is virtually identical) to Proposition 5 that, with this additional term, the

reimbursement scheme (26) induces socially optimal actions.
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Competition between hospitals: Typically the US hospitals in urban areas are not monopo-

lies and compete for patients. If in addition patients use readmission rates to pick among competing

hospitals, our model needs to be modified. This can be done in a similar way to Savva et al. (2018),

which studies the impact of waiting times on patient choice in the presence of hospital competition.

The basic idea is to benchmark the group of hospitals operating in the same catchment area using

the performance of hospitals operating in a different but similar market.

Multiple Readmissions per Patient: A patient may be readmitted multiple times following

the index hospitalization12. This could be incorporated in our reimbursement scheme m-HRRPW

by redefining the cost of successful treatment (equal to (1 + r̄i)c̄i in our base case) as follows.

Suppose that each patient can be admitted at most M ≥ 2 times. Let rji denote the proportion of

patients whose treatment is successful after j visits and assume that the cost of treating a patient in

jth admission is cji at hospital i. For notational simplicity set ri = (r1
i , . . . , r

M
i ) and ci = (c1

i , . . . , c
M
i ).

Now assume that each hospital determines its readmission levels r, cost of treatment c, and capacity

µ and let R(r, µ,c) denote the cost of these actions. (Note that there are 2M + 1 decision variables

in this setting as opposed to three decision variables in the model in §5.2.1.)

Let

¯̄ci ≡
1

N − 1

∑
6̀=i

M∑
j=1

cj`r
j
` .

Term ¯̄ci can be interpreted as the average cost of successfully treating a patient. We note that it

reduces to (1 + r̄i)c̄i if a patient can only be readmitted once and the (average) cost of treatment

is the same in each admission, i.e. c1
i = c2

i = ci, as in our base model. Then the regulator can use

the same reimbursement scheme in (26) except by changing the last term ((c̄i(1 + r̄i)− ce)λ̄i) to

(¯̄ci− ce)λ̄i to induce socially optimal actions.

Spillover between hospitals: A patient requiring readmission could either return to the

hospital from which she was originally discharged, or visit a different hospital, see Zhang et al.

(2016). The proposed payment scheme m-HRRP still elicits socially optimal actions from hospitals

under symmetric demand and spillovers if hospitals have ample capacity. That is, assume that each

patient whose index admission is at hospital i and requires readmission visit to hospital i with

probability ρ and to one of the other hospitals j with probability (1− ρ)/(N − 1). Then we show

in Appendix H that m-HRRP restores first-best.

When capacity is limited, a direct extension of m-HRRPW (see (26)) does not elicit socially

optimal outcomes because of the interlink between hospitals’ arrival rates. In particular, if a hospi-

tal increases its readmission rate, this would increase the arrival rate of all the hospitals operating

12 Under HRRP, if a patient experiences multiple readmissions within 30 days of the index hospitalization, only the
first readmission is included in the total number of readmissions used in penalty calculations.
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in the same catchment area. This, in turn, would reduce other hospitals’ waiting time performance,

increasing the waiting time target for the hospital itself. Hence, if we use m-HRRPW without alter-

ing the waiting time benchmarks, it would introduce perverse incentives. Instead, we benchmark

each hospital using the performance of hospitals operating in a different catchment area, an idea

first proposed in Savva et al. (2018). With this modification, m-HRRPW also restores first-best,

see Appendix H.

6. Conclusion and policy implications

The traditional PPS rewards hospitals with high readmission levels because it reimburses hospitals

on a per admission basis. To eliminate this perverse incentive, CMS has introduced financial penal-

ties to hospitals with higher-than-expected readmission rates for targeted conditions. Although

readmissions for these conditions declined after the introduction of HRRP, the debate about this

program’s effectiveness and the effects of its financial incentive mechanism on hospital actions con-

tinues. Specifically, HRRP is criticized for over-penalizing hospitals because of the multiplier effect,

and there is growing evidence in the literature on the negative impact of no-bonus and penalty cap

provisions on hospitals’ incentives (see for example Bastani et al. (2016) and Zhang et al. (2016)).

Analysis of HRRP: To understand the precise impact of these three features, we analyze the

readmission reduction efforts of hospitals under reimbursement schemes derived from HRRP in a

setting where customers do not experience significant delays to access care. First we remove the cap

and allow bonus payments and show that HRRP does indeed over-penalize hospitals, which results

in hospitals over-investing in readmission reduction efforts and under-investing in cost-reduction

efforts (relative to social optimum). An even more troubling observation is that the multiplier goes

to infinity (so too the potential penalties in the absence of a penalty cap) as readmission targets

fall when the percentage deviation of a hospital from its target is held fixed. Next we introduce a

cap on payment adjustments, while still allowing bonus payments for hospitals with lower-than-

expected readmissions, and show that there might be no equilibrium if the cap is too low. We

then show that, when bonus payments are not allowed (with or without a penalty cap), there are

multiple equilibria and the impact of HRRP on hospital actions is unclear.

These results have important policy implications. Our results show that CMS should remove the

multiplier from the HRRP scheme to better align its own incentives with hospitals. Potentially, CMS

might have considered additional factors, which our model fails to capture, in using a multiplier.

However, we did not find any supporting argument in the literature for using a multiplier. In fact,

some industry observers suggest that this penalty multiplier was “simply a drafting error in the

legislation” (MedPAC 2013). Although the multiplier is problematic, we also show that removing
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the multiplier by itself is not enough to restore social optimum as long as the adjustments to

payments are capped and bonus payments are not allowed.

The proponents of capping adjustments to payments argue that hospitals with low operat-

ing margins (such as teaching hospitals and those with a relatively greater share of low-income

patients) will not be able to afford further reductions in CMS payments, see, for example, Eijke-

naar et al. (2013), Barnett et al. (2015). However, such concerns should be addressed by improving

the risk-adjustment procedure but not by curtailing the financial incentives provided to reduce

readmissions. In fact we show that a low enough cap may completely eliminate the incentives to

reduce readmissions. As a result, we suggest further increasing the cap (CMS has increased the

cap from 1% to 3% from 2013 to 2015), in addition to the other changes in HRRP, in line with the

results in Bastani et al. (2016), Zhang et al. (2016) and Aswani et al. (2016). While the issues with

risk-adjustment procedure are being addressed,13 CMS should at least commit to future increases

in the cap so as to make it more profitable to reduce readmissions than to pay the maximum

penalty, in the long run.

By using a penalty-only scheme perhaps CMS aimed to demonstrate immediate cost savings

from the HRRP program because there was a consensus that avoidable readmissions were already

at high levels. In addition, adding bonus payments would increase the overall cost of the program to

CMS, at least in the short run. However, we show that a penalty-only yardstick competition scheme

does not provide the right incentives for hospitals and long-term costs of suboptimal actions are

likely to be much larger than the short-term savings. This result is driven by the fact that hospitals

whose readmission levels are below the target do not invest in additional readmission reduction

efforts due to lack of bonus payments. In turn, this results in higher target readmission rates for

all other hospitals, limiting the impact of the regulation. In addition, not making bonus payments

may have other unintended consequences because those hospitals that were already successful in

reducing readmissions to below their targets are more likely to discover novel methods to further

reduce readmissions in the future as more conditions are monitored under the HRRP program, and

treatment methods advance with new techniques. Finally, instead of merely financially penalizing

hospitals with excessive readmissions, it may be more effective to channel (at least some of) these

‘savings’ to readmission reduction efforts in hospitals with higher-than-expected readmission rates.

This could reduce the readmission targets for all hospitals. Both the NHS and CMS have already

initiated programs that implement this idea, see Kristensen and Sutton (2016), James (2013) for

details.

13 In November 2017, CMS announced that it will use a new stratified methodology to account for socio-economic
status in risk adjustment starting in the calculation of financial penalties starting from 2019 (CMS 2017).
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Improving HRRP: We show that hospitals exert socially optimal efforts in cost cutting and

readmission reduction if bonus payments to hospitals with lower-than-expected readmission rates

are allowed and the multiplier and cap are removed from the HRRP scheme. Interestingly the

proposed payment system is similar to the well-known (prospective) bundled payment system,

where the regulator reimburses hospitals once for the entire episode of care. This payment system

does not rely on explicit financial penalties on excessive readmissions because hospitals that can

treat patients in a more cost-effective way, through a combination of reduced readmissions and

reduced marginal costs, would enjoy higher profits, leading to socially optimal actions, akin to

results of Shleifer (1985). One of the challenges in implementing a bundled payment system is that

DRG classifications used for the PPS, which has a separate code for each hospitalization, need

to be expanded to cover the whole episode of care. However, bundled payments were successfully

implemented in Germany in 2004 along with suitable DRGs (Kristensen et al. 2015).

Finally we show that, when capacity is limited and delays to accessing care might deteriorate

a patient’s condition, reimbursement schemes need to incentivize hospitals to install sufficient

capacity in addition to reducing readmissions and costs. We propose a yardstick regulation scheme

that introduces additional financial incentives to reduce delays using the average waiting time

across all (other) hospitals as a benchmark. In addition, the reimbursement levels in this scheme are

tied to the cost of treating patients who cannot access care in a timely manner due to long delays.

Therefore the reimbursement amount should be determined using disease-specific cost information

for each condition and an effective one-size-fits-all scheme (e.g., yardstick regulation) may not be

appropriate when delays to accessing care are inevitable.

6.1. Limitations of our study

In this section we discuss the limitations of our study in addition to potential extensions of our

models and directions for future research.

In the analysis of HRRP in §4 we assumed that hospitals are identical. In practice hospitals

are heterogeneous and HRRP uses a risk-adjustment procedure to account for differences in hospi-

tals. Considering identical hospitals enabled us to identify the incentives the multiplier, no-bonus,

capped-penalty provisions provide. However it is not clear how the HRRP risk adjustment proce-

dure affects the impact of the three provisions on hospital actions. Yet it is unlikely that a risk-

adjustment procedure will ameliorate the negative impact of these provisions on hospital actions

and we provided a payment scheme (m-HRRP) that yields socially optimal outcomes when used

with a proper risk adjustment procedure in case hospitals are heteregenous.

Our equilibrium analysis of HRRP (Proposition 3) shows that there is a continuum of equilibria

and our analysis does not yield which equilibrium is more likely. To gain more insight into how
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hospitals are reacting to incentives provided by HRRP, data on current hospital actions can be used

(see §4.3 for a summary of the current empirical research on HRRP). However, HRRP is relatively

new and it is not clear how to use current data on hospital actions to determine equilibrium

outcomes. Another interesting potential research direction is to compare how hospitals react to

payment reforms with different provisions that CMS implemented. For example, the Value-Based

Purchasing program pays bonuses but the penalties are capped. Such an analysis could help shed

more light on the impact of some of the provisions HRRP uses.

Our results on HRRP-II and HRRP rely on the assumption that there is a unique symmetric

equilibrium under HRRP-I, i.e., Assumption 1. Although we extended our analysis to multiple

symmetric equilibrium (see Appendix G), our analysis does not cover the case with asymmetric

equilibrium. Also we ignore the fact that there is uncertainty in readmission rates for the sake of

analytical tractability. Finally, we assume that the investment cost function satisfies the conditions

in Assumption A1. These conditions ensure that the regulator’s and hospitals’ objective functions

have unique optimal solutions. We did not explore the impact of HRRP on hospital actions if the

regulator and/or hospitals have multiple optimal actions. We leave these directions for future work.

The desired outcomes under yardstick-competition-based reimbursement systems can only be

obtained if performance targets are risk-adjusted for factors outside hospitals’ control. However, it

can be difficult to select appropriate factors to be included in a risk-adjustment formula, an issue

outside the scope of this paper. Moreover, some of the influential factors might be unobservable

to the regulator. In this setting the adverse-selection issues have to be taken into account and the

optimal regulation for coordinating cost-cutting efforts is a hybrid scheme between fee-for-service

and yardstick-competition-based schemes (Laffont and Tirole 1993). However, readmissions are

not studied explicitly in the current literature (to the best of our knowledge). Our results can

guide the design of new reimbursement mechanisms when adverse-selection issues are present and

readmission rates are determined by hospitals’ actions.

Hospitals have additional ‘low-powered’ financial incentives to reduce readmissions. For example,

readmission rates of hospitals are publicly reported by CMS and hospitals might be concerned about

the negative impact that reporting high readmission rates on their reputation (hence on their future

demand). Also competition between hospitals in close proximity might amplify this effect. Our

model does not take hospital reputation and competition into account. However, reimbursement

schemes that align the incentives of hospitals and the regulator are likely to yield better outcomes,

even when these additional factors are present.
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Eijkenaar, F., M. Emmert, M. Scheppach, and O. Schöffski (2013). Effects of pay for performance in health

care: A systematic review of systematic reviews. Health Policy 110 (2-3), 115–130.

Fudenberg, D. and J. Tirole (1991). Game theory. MIT Press, Cambridge, MA.

Gruessner, V. (2016). CMS includes rich history of healthcare

bundled payments. https://healthpayerintelligence.com/news/

cms-includes-rich-history-of-healthcare-bundled-payments, last accessed on October 03,

2018.

Guo, P., C. S. Tang, Y. Wang, and M. Zhao (2019). The impact of reimbursement policy on social welfare,

revisit rate, and waiting time in a public healthcare system: Fee-for-service versus bundled payment.

Manufacturing & Service Operations Management 21 (1), 154–170.

Gupta, D. and M. Mehrotra (2015). Bundled payments for healthcare services: Proposer selection and

information sharing. Operations Research 63 (4), 772–788.

Hansen, L. O., R. S. Young, K. Hinami, A. Leung, and M. V. Williams (2011). Interventions to reduce

30-day rehospitalization: A systematic review. Ann. Intern. Med. 155 (8), 520–528.

Harsanyi, J. C. (1973, Dec). Games with randomly disturbed payoffs: A new rationale for mixed-strategy

equilibrium points. International Journal of Game Theory 2 (1), 1–23.

James, J. (2013). Medicare hospital readmissions reduction program. Health Affairs Health Policy Brief.

Jencks, S. F., M. V. Williams, and E. A. Coleman (2009). Rehospitalizations among patients in the Medicare

fee-for-service program. N. Engl. J. Med. 360 (14), 1418–1428.

Jiang, H., Z. Pang, and S. Savin (2012). Performance-based contracts for outpatient medical services.

Manufacturing & Service Operations Management 14 (4), 654–669.

https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Downloads/HRRP_StratMethod_ImpctFile_UG.PDF
https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Downloads/HRRP_StratMethod_ImpctFile_UG.PDF
https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Downloads/HRRP_StratMethod_ImpctFile_UG.PDF
https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/downloads/AcutePaymtSysfctsht.pdf
https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/downloads/AcutePaymtSysfctsht.pdf
https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/downloads/AcutePaymtSysfctsht.pdf
https://healthpayerintelligence.com/news/cms-includes-rich-history-of-healthcare-bundled-payments
https://healthpayerintelligence.com/news/cms-includes-rich-history-of-healthcare-bundled-payments


35

Joynt, K. E., J. Figueroa, J. Oray, and A. K. Jha (2016). Opinions on the hospital readmission reduction

program: Results of a national survey of hospital leaders. Am. J. Manag. Care. 22 (8), e287–e294.

Kristensen, S. R., M. Bech, and W. Quentin (2015). A roadmap for comparing readmission policies with

application to Denmark, England, Germany and the United States. Health Policy 119 (3), 264–273.

Kristensen, S. R. and M. Sutton (2016). Financial penalties for readmissions in the English NHS. 2016 Royal

Economic Society Annual Conference.

Laffont, J. J. and J. Tirole (1993). A Theory of Incentives in Procurement and Regulation. MIT Press,

Cambridge, MA.
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