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Abstract. The optimization of the variance of a portfolio of N independent but not identically distributed
assets, supplemented by a budget constraint and an asymmetric `1 regularizer, is carried out analytically by
the replica method borrowed from the theory of disordered systems. The asymmetric regularizer allows us
to penalize short and long positions differently, so the present treatment includes the no-short-constrained
portfolio optimization problem as a special case. Results are presented for the out-of-sample and the
in-sample estimator of the regularized variance, the relative estimation error, the density of the assets
eliminated from the portfolio by the regularizer, and the distribution of the optimal portfolio weights.
We have studied the dependence of these quantities on the ratio r of the portfolio’s dimension N to the
sample size T , and on the strength of the regularizer. We have checked the analytic results by numerical
simulations, and found general agreement. Regularization extends the interval where the optimization can
be carried out, and suppresses the large sample fluctuations, but the performance of `1 regularization is
rather disappointing: if the sample size is large relative to the dimension, i.e. r is small, the regularizer
does not play any role, while for r’s where the regularizer starts to be felt the estimation error is already so
large as to make the whole optimization exercise pointless. We find that the `1 regularization can eliminate
at most half the assets from the portfolio (by setting their weights to exactly zero), corresponding to this
there is a critical ratio r = 2 beyond which the `1 regularized variance cannot be optimized: the regularized
variance becomes constant over the simplex. These facts do not seem to have been noticed in the literature.

1 Introduction

In this paper, we present analytic results for a simple
quadratic optimization problem with a linear constraint
plus an `1 regularizer. Although we are going to speak
in terms of portfolio optimization, it is important to
emphasize that the problem we address is not specific to
portfolios, but is a generic feature of quadratic optimiza-
tion if the dimension is high and the objective function is
estimated on the basis of a limited number of observations.
We will assume that there is no additional information
(like prior knowledge or sparsity) available besides the
observations and wish to find out how much can be learned
from the limited data. Our objective function will be
the portfolio variance. In order to find the optimum of
the variance over the portfolio weights, one has to invert
the estimated covariance matrix, which is possible only
if its dimension N is not larger than the number of
observations T . The ratio r = N/T is a fundamentally
important control parameter of the problem. If the num-
ber of observations is much larger than the dimension,
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classical statistics works and the estimated optimum will
be very close to the true optimum which can be obtained
in the limit T →∞. If T is not very large relative to N , we
are in the high-dimensional regime where sample fluctua-
tions can be large and regularizers have to be introduced
to rein them in. Regularizers suppress large excursions,
and unavoidably introduce bias, but the hope is that a
reasonable trade-off can be achieved between the bias and
sample fluctuations with a proper choice of the strength
of the regularizer. To see whether this hope is fulfilled is
one of the aims of this paper.

A common regularizer is `2 (shrinkage or ridge regres-
sion) whose effect has been studied by a number of
authors, see [1–7] among many others. In its most recent
nonlinear form shrinkage can produce very good qual-
ity estimates [8–10]. Another popular regularizer is based
on the `1 norm (lasso) [11]. Lasso is known to lead
to sparse estimates, reducing the effective dimension of
the problem and stabilizing the estimator. Jagannathan
and Ma [12] considered portfolio optimization under a
constraint excluding short positions. Although they did
not speak about regularization, a no-short constraint is,
in fact, a special case of an asymmetric `1 regularizer.
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Brodie et al. [13] and DeMiguel et al. [14] studied the
effect of `1 regularization on the performance and stabil-
ity of portfolio selection. Subsequently, a number of groups
investigated various aspects of the application of `1 and
related regularizers in portfolio optimization, e.g. [15–19].

The problem of optimizing the variance under an `1
constraint is a quadratic programming task which can be
solved numerically. Our purpose here is to solve this prob-
lem analytically, which, to the best of our knowledge, has
not been done before. The method that enables us to do
this is borrowed from the theory of disordered systems
and goes by the name of the method of replicas [20]. It
assumes that the underlying distribution is Gaussian and
it works in the Kolmogorov limit, where both N and T go
to infinity, but their ratio r = N/T is kept finite.

We will show that the `1 regularizer does not elimi-
nate the instability, only shifts its value. (A similar effect
was observed in the case of the Expected Shortfall risk
measure in [21].) The new critical value turns out to be
r = 2, corresponding to the fact that `1 sets to strictly
zero at most half the portfolio weights. (Of course, in a
strongly heterogeneous portfolio the high volatility ele-
ments can be suppressed, with their weights rendered
very small in the optimal portfolio. We distinguish this
from the elimination of some of the dimensions by `1,
with the corresponding weights becoming exactly zero,
even if there is little or no difference between their true
volatilities.)

There is an important difference between our analytic
approach and the standard statistical estimation proce-
dure which analyzes a given sample and tests it by cross
validation [22]. Instead, our method allows us to aver-
age over the whole ensemble of samples. Corresponding to
this, the step-like effect of `1, eliminating the dimensions
one by one, is replaced upon averaging over the samples
by a smooth, monotonically increasing density of the zero
weights.

In order to make contact with a previous work in which
we treated the case of excluded short positions [23], we
are going to consider an asymmetric `1 regularizer here,
with different slopes for positive, resp. negative weights.
We find that in the most important results only the right
hand side slope appears.

Many dimensionality reduction or cleaning methods
focus on the covariance matrix, especially on its spectrum.
In contrast, the special version of the replica method we
use allows us to derive the distribution of optimal portfolio
weights directly.

The plan of the paper is as follows. In Section 2, we
set up the problem and present some preliminary results.
In Section 3, we recall some results from [23] where the
task of optimizing over the N portfolio weights has been
reduced to the optimization of an effective objective func-
tion depending on five order parameters. We also spell out
the first order conditions (or saddle point conditions) that
determine the stationary point of the objective function.
The solution to the saddle point equations is analyzed in
a number of subsections and the results for various special
cases are displayed graphically. Section 4 is a summary of
the results, while a sketch of the derivation of the effective
objective function is provided in the Appendix.

2 Preliminaries

In this section, we set up the optimization problem, fix
notation and present some preliminary results that will
be useful as checks on the replica calculation later.

We consider a portfolio of N assets with random returns
xi, i = 1, . . . , N . For simplicity, we assume that the
returns are independent Gaussian random variables with
zero expectation value and variance σ2

i , which may be dif-
ferent for each asset i. For the time being we assume that
we have complete knowledge of the distribution of the
returns. If we denote the portfolio weights as wi, the return

on the portfolio is
∑N
i=1 wixi, and under the assumption

above the variance of the portfolio will be

σ2
p =

∑
i

σ2
iw

2
i . (1)

This is to be minimized subject to the budget constraint

∑
i

wi = N, (2)

where we set the budget to be N instead of the usual 1,
to have O(1) weights in the limit of large N .

Then, with the Lagrange multiplier associated with the
budget constraint denoted by λ we would have to find the
minimum of

F =
∑
i

σ2
iw

2
i − λ

(
N∑
i=1

wi −N

)
(3)

over the weights wi, a trivial task.
So far, the distribution of the returns (in particular,

the variances of the assets σ2
i ) have been assumed to be

known. In real life this is never the case, instead we have to
estimate the optimal weights and portfolio variance on the
basis of finite samples. Let us assume that we draw these
samples from a multivariate distribution of independent
Gaussian variables with individual standard deviations σi.
These samples are constituted of T observations for each
asset: xit, i = 1, 2, . . . , N ; t = 1, 2, . . . , N . We wish to learn
to what extent it is possible to recover the true optimum
of the variance and the optimal weights by averaging over
a large number of such samples.

Thus, we have the optimization problem

minwi

∑
i,j

wiCijwj

 , s.t.
N∑
i=1

wi = N, (4)

where Cij is the estimated covariance matrix

Cij =
1

T

T∑
t=1

xitxjt . (5)
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Substituting (5) into (4) the optimization problem
becomes

minwi

 1

T

T∑
t=1

(∑
i

wixit

)2
 , s.t.

N∑
i=1

wi = N . (6)

This is a quadratic optimization problem which can be
solved numerically, as long as the covariance matrix is
positive definite, which holds with probability one for
T ≥ N , that is for r < 1.

As r approaches 1 from below, sample fluctuations
become larger and larger, until at r = 1 the estimation
error diverges, and for r > 1 the optimization becomes
meaningless. In order to tame the large sample fluctua-
tions, it is a standard procedure to introduce regularizers
that suppress large excursions of the estimated weights
(at the price of introducing bias).

The regularizer we wish to use here is based on the `1
norm (lasso) [11]. It is known to result in sparse estimates,
which in the present context means eliminating a part of
the assets from the optimal portfolio, thereby reducing its
effective dimension. Lasso is extensively used in a variety
of problems in high-dimensional statistics and machine
learning [22,24]. Its first applications to portfolio opti-
mization is due to Brodie et al. [13] and DeMiguel et al.
[14]. For the non-analytic character of lasso a full analytic
treatment has, to our knowledge, not been attempted.
An analytic approach valid in the large N limit will be
presented in the next section.

Let us spell out the `1 regularizer we are going to apply:

`1(η1, η2) = η1

∑
i

wiθ(wi)− η2

∑
i

wiθ(−wi) , (7)

where η1 and η2 are positive coefficients and θ(x) is the
Heaviside function. The regularizer so defined is asym-
metric, having different slopes for positive and negative
weights. The special case η1 = η2 = η corresponds to
the usual expression η

∑
i |wi|. Keeping the two slopes

different allows us to penalize long and short positions
differently.

Our regularized objective function is then

F =
1

T

T∑
t=1

(∑
i

wixit

)2

+ η1

∑
i

wiθ(wi)

− η2

∑
i

wiθ(−wi)− λ

(
N∑
i=1

wi −N

)
. (8)

As the first term is non-negative and the last term van-
ishes for wi’s satisfying the budget constraint, F is larger
or equal to the minimum of `1(η1, η2), which is Nη1.
Therefore F ≥ Nη1, where the equality holds when the
variance vanishes and the weights minimize the regular-
izer `1(η1, η2) (which requires that they are on the simplex
wi ≥ 0, ∀i,

∑
i wi = N). Alternatively, for the value of the

objective function per asset we have the inequality

F

N
= f ≥ η1. (9)

This will prove important later.
As it stands, (8) is amenable for numerical work, with

the returns drawn from a suitable distribution. When the
returns are independent Gaussians and N and T are large,
one can derive the analytic results displayed in the next
section.

A special limit of the above optimization problem is
already worth considering at this point, because it pro-
vides an important consistency check on the results to
be presented later: Let us assume that we have very
large samples compared with the number of assets in
the portfolio, i.e. T � N , or r = N/T → 0. This means
we have complete information about the distribution of
returns. Then, for the independent random returns con-
sidered here, the covariance matrix Cij becomes diagonal
with diagonal elements σ2

i , and the optimization problem
becomes

F =
∑
i

σ2
iw

2
i + η1

∑
i

wiθ(wi)− η2

∑
i

wiθ(−wi)

−λ

(
N∑
i=1

wi −N

)
. (10)

A little reflection shows that the solution of this optimiza-
tion problem can satisfy the budget constraint

∑
i wi = N

for a positive N only if the Lagrange multiplier λ is larger
than the right slope η1 of the regularizer: λ > η1. Then
the Lagrange multiplier works out to be

λ =
2N∑N

j=1 1/σ2
j

+ η1, (11)

the optimal weights

w∗i =
N∑N

j=1 1/σ2
j

1

σ2
i

, (12)

and the minimal value of the objective function F obtains
as

F ∗ =
N2∑N

j=1 1/σ2
j

+Nη1, (13)

while the minimal value of the objective function per asset
is

F ∗

N
= f∗ =

N∑N
j=1 1/σ2

j

+ η1 =
λ+ η1

2
. (14)

Note the order of magnitudes in the above formulae:

λ, η1,2 and w∗i are of O(1), the sum
∑N
j=1 1/σ2

j and the

objective function are O(N). (Here and in most of the
following, we are assuming that the standard deviations
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σ2
j are of order one. When one of the assets is riskless, the

corresponding σ2
j goes to zero, and one has to pay special

attention to this exceptional asset.) We also have to point
out that there is a difference in the notation relative to
our earlier papers, especially [23], where we absorbed a
factor 1/2r in the definition of the objective function f∗

and the Lagrange multiplier λ. This did not change any of
the results there, except sending λ to infinity in the limit
r → 0, which resulted in some convenience. In contrast to
that paper, instead of considering the special limit η1 = 0
and η2 →∞, here we are going to keep the coefficients of
the regularizer finite, so the convention of absorbing 1/2r
into the objective function would dictate its absorption
into η1, η2 as well. This would distort some of the figures,
and would make the message of the paper harder to grasp.
Therefore, in the present paper we have this factor 1/2r
explicitly written out and kept throughout the paper.

The results obtained above for the Lagrange multiplier,
the optimal weights and the optimal value of the objective
function in the limit r → 0 are the true values for these
quantities that would be obtained over an infinitely long
observation time, when sample fluctuations become irrel-
evant. Likewise, in the same limit the distribution p(w) of
the optimal portfolio weights would be a series of sharp
spikes

p(w) =
1

N

N∑
i=1

δ(w − w∗i ), (15)

where δ(x) is the Dirac delta distribution.

3 Results for the variance optimized under
an `1 constraint

Our task is to find the optimum of the objective function
in (8), where the returns xit are assumed to be drawn
from the joint probability density of N independent Gaus-
sian variables with zero mean and variance σ2

i . Following
the special version of the replica method laid out in [21],
in [23] we showed how the optimization of (8) could be
reduced to that of an effective objective function depend-
ing on five “order parameters”. The method we applied
to achieve this was the method of replicas, borrowed from
the statistical mechanics of disordered systems [20]. (We
will denote this effective objective function by the same
symbol f as its full-information counterpart in the pre-
ceding section, and will omit the adjective “effective” in
the following.)

The derivation has been presented in [21] and also in the
appendices of [23], and is sketched in the Appendix to this
paper for easier reference. In the present section, we can
start from the expression for the effective objective func-
tion f(λ, q0,∆, q̂0, ∆̂) depending on the order parameters

λ, q0, ∆, q̂0, ∆̂, as given in the Appendix:

f(λ, q0,∆, q̂0, ∆̂) =
q0

(1 + ∆)
− 2rq̂0∆− 2r∆̂q0 + λ

+ min
~w

〈
V (~w)

〉
z,σ
, (16)

where

V = 2r∆̂σ2w2 − 2rwzσ
√
−2q̂0 − λw + η1wθ(w)

− η2wθ(−w) (17)

and the double average 〈. . . 〉z,σ means∫ ∞
0

dσ
1

N

∑
i

δ(σ − σi)
∫ ∞
−∞

dz√
2π
e−z

2/2 . . . , (18)

and σi is the standard deviation of the distribution of
returns on asset i.

The minimum of the “potential” V is at

w∗ =
2rσz

√
−2q̂0 + λ− η1θ(w

∗) + η2θ(−w∗)
4r∆̂σ2

. (19)

Substituting this back into (17) and performing the
averaging according to the recipe (18) we find

min~w〈V (~w)〉z,σ =
2rq̂0

∆̂

1

N

∑
i

(
W

(
λ− η1

2rσi
√
−2q̂0

)
+W

(
− λ+ η2

2rσi
√
−2q̂0

))
. (20)

This is then the explicit form of the last term in (16),
which thus becomes

f(λ, q0,∆, q̂0, ∆̂) =
q0

(1 + ∆)
− 2rq̂0∆− 2r∆̂q0 + λ

+
2rq̂0

∆̂

1

N

∑
i

(
W

(
λ− η1

2rσi
√
−2q̂0

)
+W

(
− λ+ η2

2rσi
√
−2q̂0

))
. (21)

The function W appearing here is the third integral
of the standard normal Gaussian density; its precise def-
inition will be given shortly, together with two more
functions that appear frequently in the following.

Stationarity of (21) with respect to the order parame-
ters gives the first order conditions

∆̂ =
1

2r(1 + ∆)
(22)

q̂0 = − q0

2r(1 + ∆)2
(23)

1
√
q0r

=
1

N

∑
i

1

σi

(
Ψ

(
w

(i)
1

σ
(i)
w

)
−Ψ

(
−w

(i)
2

σ
(i)
w

))
(24)

∆ =

r
N

∑
i

(
Φ

(
w

(i)
1

σ
(i)
w

)
+ Φ

(
−w(i)

2

σ
(i)
w

))
1− r

N

∑
i

(
Φ

(
w

(i)
1

σ
(i)
w

)
+ Φ

(
−w

(i)
2

σ
(i)
w

)) (25)

1

2r
=

1

N

∑
i

(
W

(
w

(i)
1

σ
(i)
w

)
+W

(
−w(i)

2

σ
(i)
w

))
. (26)
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Here r = N/T , as before. The functions Φ, Ψ and W are
the integrals of the Gaussian density:

Φ(x) =

∫ x

−∞

dt√
2π
e−t

2/2, (27)

Ψ(x) =

∫ x

−∞
dtΦ(t), (28)

W (x) =

∫ x

−∞
dtΨ(t). (29)

In the above formulae the following notations have been
introduced:

w
(i)
1 =

λ− η1

4rσ2
i ∆̂

=
(λ− η1)(1 + ∆)

2σ2
i

, (30)

w
(i)
2 =

λ+ η2

4rσ2
i ∆̂

=
(λ+ η2)(1 + ∆)

2σ2
i

, (31)

and

σ(i)
w =

√
q0r

σi
, (32)

where in (30), (31) and (32) use has been made of (22)

and (23). With this we can eliminate q̂0 and ∆̂ from our
equations. Proceeding similarly in (21) and using (26) we
find the expression for the objective function in terms of
the remaining three order parameters as

f = λ− q0

2r(1 + ∆)2
. (33)

According to the derivation of the objective function in the
Appendix, when (24), (25) and (26) are solved and λ, q0

and ∆ are obtained as functions of the control parameters
r, η1 and η2, equation (33) gives the in-sample estimate
of the objective function.

With (19) the distribution of weights obtains from
p(w) = 〈δ(w − w∗)〉zσ as

p(w) = n0δ(w) +
1

N

∑
i

1

σ
(i)
w

√
2π
e
− 1

2

(
w−w(i)

1

σ
(i)
w

)2

θ(w)

+
1

N

∑
i

1

σ
(i)
w

√
2π
e
− 1

2

(
w−w(i)

2

σ
(i)
w

)2

θ(−w), (34)

where δ is the Dirac-delta function.
The first term in this formula shows that the `1 regu-

larizer eliminates some of the assets from the portfolio by
setting their weight to zero. The density of these assets,
n0, is given by

n0 =
1

N

∑
i

(
Φ

(
w

(i)
2

σ
(i)
w

)
− Φ

(
w

(i)
1

σ
(i)
w

))
. (35)

The two sums are made up of truncated Gaussians,
the first sum corresponding to the weight distribution

of positive (long) positions, and the second to negative
(short) ones. We see then that the series of discrete, sharp
spikes in (15) is broadened by sample fluctuations, and in
addition to the positive weights, also negative ones appear.
Equation (34) reveals the meaning of the symbols intro-

duced in (30), (31) and (32): w
(i)
1 and w

(i)
2 are the centers

of the estimated positive resp. negative weight distribu-

tions of asset i, and σ
(i)
w is the width of these distributions.

Note how the distribution of optimal weights has been
obtained directly from our formalism, without having to
go through the calculation of the estimated covariance
matrix.

The order parameter q0 will be of central importance
for us. In [25] we showed that

q0
1

N

∑
i

1/σ2
i = q̃0 (36)

is proportional to the out-of-sample estimate of the vari-
ance

∑
ij w

est
i Ctrue

ij west
j as:

q̃0 =

∑
ij w

est
i Ctrue

ij west
j∑

ij w
true
i Ctrue

ij wtrue
j

, (37)

where Ctrue
ij is the true covariance matrix, wtrue

i the cor-

responding optimal portfolio weights, and west
i is the

optimal weights corresponding to the estimated covariance
matrix. The denominator in (37) serves just to normalize
q̃0. From the definition it is clear that q̃0 ≥ 1 and that√

q̃0 − 1 (38)

is the relative estimation error.

3.1 Solution for complete information: r → 0

The limit r → 0 corresponds to T � N . This means we
have much more data than the dimension, so in this limit
we have to recover the results of Section 2.

From (30), (31), and (32) we see that w
(i)
1 and w

(i)
2 are

of order O(1), while σ
(i)
w vanishes. (In the small r limit

λ and q0 will be seen shortly to be of O(1), while ∆ of
O(r).)

Then, in the limit r → 0 the arguments of the Ψ func-
tions in (24) go to +∞ and −∞, respectively. For large
x, Ψ(x) ∼ x, and Ψ(−x) is exponentially small, so (24)
yields

1
√
q0r
≈ 1

N

∑
i

1

σi

w
(i)
1

σ
(i)
w

,

which, by (30) and (32), leads to

λ =
2

1
N

∑
i 1/σ2

i

+ η1, (39)

in accordance with (11).
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We anticipated that in the small r limit ∆ ≈ r.
Indeed, as limx→∞Φ(x) = 1 and limx→−∞Φ(x) = 0, (25)
immediately gives ∆ ≈ r, for r → 0.

Finally, from (26) we obtain q0 by noting that, for large
x, W (x) ∼ x2/2 and W (−x) is exponentially small:

q0 =
1

1
N

∑
i 1/σ2

i

, for r → 0. (40)

Equation (40) then implies that for r → 0, q̃0 → 1,
which means that the relative estimation error vanishes,
a natural result in the limit T/N →∞.

The value of the objective function at the stationary
point is obtained by substituting the above results into
equation (33):

f =
1

1
N

∑
i 1/σ2

i

+ η1, (41)

in agreement with (14).
Let us turn to the distribution of weights now. As the

argument of the Φs in (35) go to infinity for r → 0, the Φs
themselves go to 1, so n0 vanishes in this limit.

From (30) and (31) we see that for r → 0 both set of

weights w
(i)
1 and w

(i)
2 tend to

w
(i)
1,2 →

1

σ2
i

1
1
N

∑
j 1/σ2

j

, (42)

which is the same as the optimal weights found in (12).
In the same limit the standard deviations given in (32)

vanish, so the Gaussians in (34) go over into Dirac delta
functions. Since in the third term in (34) the delta spikes
are multiplied by θ(−w), they do not contribute, so the
distribution of weights in the r → 0 limit becomes

p(w) =
∑
i

δ(w − w∗i ), (43)

where w∗i is the true optimal weights given in (12). We see
then that in the limit r → 0 our results derived via the
replica method perfectly coincide with the results found
in Section 2, thereby providing an important consistency
check.

3.2 Including a riskless asset

If one of the assets, say the first, is riskless, σ1 → 0, then it
must take on the full weight of the portfolio. (Remember
that we have no constraint on the expected return of the
portfolio, and are looking for the global minimum of the
risk functional. Therefore, if there is a riskless asset in the
portfolio, the total wealth must be invested in this asset.)
Let us see how our equations lead to such a result.

As we will see later, above r = 1 zero modes (eigen-
vectors belonging to the proliferating zero eigenvalues of
the estimated covariance matrix) appear in the system,
and they start competing with the riskless asset. We will
study these zero modes later; in the present subsection
we restrict the discussion to the range r < 1, to avoid

the complications related to the zero modes. In order to
ensure that our formulae remain meaningful, we assume
that the product Nσ2

1 stays finite as σ1 → 0 and N →∞.
Now, if σ1 is much smaller than the other variances, in

(26) a single term dominates, and using the asymptotic
behavior of W (x) ∼ x2/2, x→∞, we find

1

N

(λ− η1)2(1 + ∆)2

4σ2
1q0

= 1. (44)

Similarly, from (24) we get

(λ− η1)(1 + ∆)

2Nσ2
1

= 1. (45)

Equations (44) and (45) imply

q0 = Nσ2
1 . (46)

Then by (36) the quantity q̃0 given in (37) is

q̃0 = q0
1

N

∑
i

1

σ2
i

≈ q0
1

Nσ2
1

= 1. (47)

As stated in (38),
√
q̃0 − 1 is the relative estimation error,

so (47) means that the portfolio concentrated on the single
riskless asset i = 1 is error free – an obvious result.

From (30), the weight w
(1)
1 is

w
(1)
1 =

(λ− η1)(1 + ∆)

2σ2
1

, (48)

which, by (45) leads to

w
(1)
1 = N, (49)

so the riskless asset carries the total weight, indeed.
The only other weight that could compete with this is

w
(1)
2 , but it is positive and is multiplied by θ(−w) in the

weight distribution, so it does not contribute, while all
other weights are negligible in the σ1 → 0 limit.

Although according to (49) the riskless asset carries all
the weight in the limit σ1 → 0, some small fluctuations
still remain. The standard deviation given in (32) works
out to be

σ(1)
w =

√
Nr, (50)

corresponding to Gaussian fluctuations about the average
(49).

The above consideration is easily extended to the case
when a few assets are much more stable than the oth-
ers, in that their true volatilities are much smaller than
those of the rest. Then this group of low volatility assets
will take on almost all of the total weight N and share
it among themselves in inverse proportion to their true
variances, while the rest will receive only a small fraction
of the weight. This distinction is encoded in the proba-
bility distribution of returns, and would show up in the
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Fig. 1. Elimination of weights with increasing regularization parameter η. Left: the proportion of zero weights n0 as function of
η for two different single samples (blue and red) of a portfolio with the same composition of 100 assets. Note that the step-like
functions are more or less following the trend of the theoretical curve (which has been derived in the large N limit and shown
in the figure by a black dashed line), but the fluctuations for N = 100 are still large. Right: the step-like curves have been
measured by averaging over 10 sample portfolios with the same composition: half of the 100 assets with σ2

1 = 1, the other half
with σ2

2 = 10. The red dashed line shows the replica theoretic contribution of the σ2
1 = 1 assets to the density of zero weights,

the blue dashed line shows the same from the σ2
2 = 10 assets. The contribution of the higher volatility component (shown in

blue) is larger than that of the lower volatility one (in red): the regularizer eliminates the higher volatility assets with higher
probability. Note that averaging over just 10 samples has substantially reduced the fluctuations.

estimated weights even in the absence of the regularizer.
The regularizer’s role becomes important when there is no
such strong separation between the assets in the portfolio,
and this is the case we are turning to now.

3.3 Elimination of assets by lasso

Before proceeding, we wish to emphasize again that we are
calculating averages over the random samples, rather than
trying to infer the behavior of the whole ensemble from
studying a single sample. The difference is perhaps the
most clearly seen in the case of the distribution of optimal
portfolio weights. The lasso is known to eliminate some of
the variables (setting their weights to zero). For a given
sample with a given ratio r = N/T this happens step-wise,
i.e. as we increase the strength of the regularizer η (setting
η1 = η2 = η for simplicity) first one, then two, three, etc.
weights will be rendered zero, in descending order of the
corresponding variances. In contrast, the averaging over
the samples in our formalism results in a density n0 of zero
weights that increases continuously with η and, according
to (35), receives contributions from each asset i.

In Figure 1, we show numerical results for a two-
variance portfolio and compare them to the results of the
replica calculation. The numerical model is constructed
from N = 100 assets, each having T = 300 data points
(r = 1/3) drawn from a normal distribution. The vari-
ance of the returns is set to be σ2

2 = 1 for half of the
assets, while the other half has σ2

1 = 10. As expected,
the `1 regularizer mostly eliminates the weights associ-
ated with the higher variance group: in the right hand

side figure n
(1)
0 indicates the proportion of the eliminated

weights associated with the higher variance, while n
(2)
0

is the contribution of the lower variance assets. To indi-
cate the size of fluctuations for a single portfolio, in the
left figure the results for two different samples are shown,

compared to the replica result. From these figures one can
form an idea how measurements performed on individual
samples compare with the sample averages (at r = 1/3).

Let us now see what our theory has to say about the
probability of the elimination of an asset depending on
its variance. In line with what is suggested by the above
measurement, one expects that more volatile assets will
be removed with larger probability than the less volatile
ones, that is the contribution to n0 from asset i will be
larger than that from asset j if σi > σj . Thus, we have to
show that

Φ

(
w

(i)
2

σ
(i)
w

)
− Φ

(
w

(i)
1

σ
(i)
w

)
> Φ

(
w

(j)
2

σ
(j)
w

)
− Φ

(
w

(j)
1

σ
(j)
w

)
. (51)

If we introduce the notations

w
(i)
2

σ
(i)
w

= zi,
w

(j)
2

σ
(j)
w

= zj ,
w

(i)
1

σ
(i)
w

= yi,
w

(j)
1

σ
(j)
w

= yj

(52)
then from (30)–(32) we see that

zj
zi

=
yj
yi

=
σi
σj

= a > 1, (53)

and

yi
zi

=
yj
zj

=
λ− η1

λ+ η2
= b < 1. (54)

(The constant a is obviously positive, and it follows from
(9) and (33) that λ ≥ η1, so b is non-negative.)

If we call zi = z, the other three variables are simply
proportional to it: yi = bz, zj = az, yj = abz.
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Fig. 2. The distribution of estimated weights with the ratio r = 0.3 resp. r = 0.68 and for different values of the regularizer’s
strength η when all the true standard deviations are the same, σi = 1 for all i, and η1 = η2 = η. Increasing η tends to suppress
the negative weights. The vertical dotted line at the origin is meant to represent the Dirac-delta contribution of the zero weights.

The inequality (51) can then be written as

Φ(z)− Φ(bz) > Φ(az)− Φ(abz).

The definition of Φ, (27), then leads to∫ z

bz

dt e−t
2/2 >

∫ az

abz

e−t
2/2, a > 1, (55)

so f(z) =
∫ z
bz
dte−t

2/2 must be a decreasing function of z.

But df
dz = e−z

2/2 − e−b2z2/2 < 0, indeed, because b < 1.
Thus, we have shown that more volatile assets are elimi-
nated from the portfolio by `1 with higher probability.

3.4 Resolution of portfolio weights

Turning now to the distribution of non-zero weights, we
see from (34) that the discrete spikes in (43) split into two
and get broadened by averaging over the samples. Figure 2
is an illustration of p(w) in the special case when all the
standard deviations σi are the same, σi = 1 for all i and
η1 = η2 = η.

As we can see, with increasing r the Gaussians mak-
ing up the distribution of weights become broader and
broader, and the original sharp structure of p(w) becomes
washed away.

The question arises how small r must be in order to
make it possible to resolve the structure of the weight
distribution of a portfolio consisting of, say, just two
classes of assets, N/2 assets with volatilities σi and
N/2 with σj . A glance at Figure 3 shows that this is
possible as long as the distance between the centers
of the two Gaussians is larger than the mean of their
standard deviations. From Figure 3 it is also clear that
it is sufficient to consider the positive weights side of the
distributions, so the requirement for resolvability is

(λ− η1)(1 + ∆)

2σ2
j

− (λ−η1)(1 + ∆)

2σ2
i

>
1

2

(√
q0r

σj
+

√
q0r

σi

)
,

(56)

Fig. 3. The illustration of the resolution of two different
assets.

that is

(λ− η1)(1 + ∆)
√
q0r

(
1

σj
− 1

σi

)
> 1, (57)

where we have assumed σj < σi.
When we have a large number of observations, i.e.

r � 1, λ−η1, q0, and ∆ can be replaced by their r = 0 val-
ues, as given in (39), (40), and ∆ = 0, respectively. Then
the resolvability of the two peaks will only depend on r
and the two volatilities, and the criterion of resolvability
becomes √

r

8
<

(σi − σj)√
σ2
i + σ2

j

, (58)

where we have substituted σi for half of the assets and
σj for the other half. It is then clear that for small r’s
the inequality (57) is easily satisfied for σ’s sufficiently
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Fig. 4. Resolution of different assets for r = 0.3, resp. r = 0.9 for two different values of the regularization parameter η. The
plot refers to the case where half of the assets have variance σi = 1, while the other half σi = 2, and η ≡ η1 = η2.

far apart. However, as will be seen shortly, with increas-
ing r the coefficient (λ − η1)(1 + ∆) on the left of (57)
decreases rapidly, and the inequality gets violated: sample
fluctuations will wash the structure away.

When one tries to estimate the portfolio weights from a
single sample of empirical data, one is effectively picking
the weights from the multimodal distribution p(w) (like
the distribution in Fig. 4, but with many more peaks). If
the peaks are well separated and narrow, the estimates
so obtained will be closed to the true weights, but this
assumes small values of r, that is a large number of obser-
vations T . If T is not very large compared to N , the
distribution of weights will lose its discrete structure, and
the estimated weights may have very little to do with their
true values. Figure 4 shows how much the discrete struc-
ture is already lost for r = 0.3, while for r = 0.9 there is
no way to resolve the structure.

3.5 Results in the high-dimensional regime

In this subsection, we present results for the range of
N and T values where their ratio is neither very small
nor very close to r = 2. While at the two extremes it is
easy to get analytic results by hand, in the intermediate
r range one has to solve the first order conditions by
the help of a computer. The results will be displayed
below in a few figures. For comparison, the results for
η1 = η2 = 0 (no regularization) and η1 = 0, η2 → ∞ (no
short positions allowed) are also shown. When the full
regularizer is applied we set η1 = η2 = η, for simplicity.
Also, since we have already displayed the results that
depend on the heterogeneity of the portfolio (dominance
of the riskless asset, preferential elimination of the large
volatility items and the condition for the resolvability of
nearby volatilities), we can henceforth set σi = σ = 1 for
all i, for simplicity again.

Without regularization the optimization of variance
does not have a meaningful solution beyond r = 1 where
the first zero eigenvalues of the covariance matrix appear.
Then q0 and ∆ diverge in the limit r → 1− 0, while λ and
the in-sample estimate for the objective function vanish at
r = 1. In the absence of regularization, the density n0 of
zero weights is identically zero.

Fig. 5. The fraction n0 of zero weights as function of r.

Regularization extends the region where the optimiza-
tion can be carried out, from 0 ≤ r < 1 to 0 ≤ r < 2.
We can see from Figure 5 that for small values of the
coefficient η of the regularizer n0 is very small for r < 1,
but starts increasing fast above r = 1, ultimately going to
1/2. Note that n0 can be directly measured by numerical
simulations; the agreement between the replica calcula-
tion and numerical simulation has already been shown in
Figure 1.

There is a simple relationship between the density
n0 of zero weights and the order parameter ∆. From
equations (25) and (35) one can see that

∆ =
r(1− n0)

1− r(1− n0)
. (59)

The rapid growth of n0 above r = 1 translates into a
strong increase of ∆. (Without regularization ∆ would
diverge at r = 1.) With the regularizer on and n0 going
to 1/2 as r → 2− 0, ∆ ultimately diverges at r = 2.
Equation (59) can serve as a recipe for the numerical
determination of ∆ through n0.
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Fig. 6. Left panel: the behavior of the order parameter q0 (proportional to the out-of-sample estimate for the variance, and
also to the relative estimation error) as function of the ratio r = N/T for different values of the coefficient η(= η1 = η2) of the
regularizer. For small values of η, q0 exhibits a sharp maximum (blue curve) around r = 1 where it would diverge without the
regularizer. For larger η the maximum is less pronounced (dashed red curve), and for the largest value of η = 0.1 (continuous
green curve) hardly any structure is noticeable around r = 1. Right panel: comparison with numerical simulations for different
values of η and N = 50. The agreement between the analytic formula and numerical simulations is already good for a system
of size N = 50.

Fig. 7. The order parameter λ as function of r. Note the
logarithmic scale on the vertical axis.

Figure 6 shows the behavior of the order parameter
q0 related to the estimation error and out-of-sample esti-
mate for the objective function; q0 is a quantity that can
be obtained directly from simulations, the analytical and
numerical results are compared in Figure 6 for various
values of η. Without the regularizer q0 would diverge at
r = 1, similarly to ∆. As a vestige of this, for small values
of the regularizer’s coefficient η, q0 shows a strong “res-
onance” around r = 1, but remains finite, and decreases
above r = 1 to a finite limit. For larger η’s the resonance
is suppressed, in particular, in the no-short-selling limit
(η2 → ∞)q0 is monotonically increasing over the entire
interval 0 ≤ r < 2.

Finally, the in-sample estimator for the objective func-
tion f can be obtained from (33) through calculating λ
from the stationarity conditions. The results for λ are
exhibited in Figure 7. We shall see shortly that f goes
to η1 as r → 2− 0, implying that the variance vanishes in
this limit.

3.6 Contour maps of estimation error

In order to assess the performance of regularization, we
have to construct the contour lines of the estimation error.
For simplicity we consider here a uniform portfolio with
all the true variances σ2

i = 1, and for a first orientation
let the left hand side slope η2 of the regularizer go to
infinity and keep the right hand side slope η1 finite. The
advantage of such an arrangement is that it excludes all

the negative weights: w
(i)
2 defined in (31) goes to infinity,

and Ψ

(
−w

(i)
2

σ
(i)
w

)
, Φ

(
−w

(i)
2

σ
(i)
w

)
and W

(
−w(i)

2

σ
(i)
w

)
all vanish

in equations (24), (25) and (26). This leads to the much
simplified set of equations:

1
√
q0r

= Ψ

(
(λ− η1)(1 + ∆)

2
√
q0r

)
(60)

∆ =
rΦ
(

(λ−η1)(1+∆)
2
√
q0r

)
1− rΦ

(
(λ−η1)(1+∆)

2
√
q0r

) (61)

1

2r
= W

(
(λ− η1)(1 + ∆)

2
√
q0r

)
. (62)

Applying the identity W (x) = x
2 Ψ(x) + 1

2Φ(x) in the last
equation and using the previous two, after some simple
manipulations one is led to the result that the arguments
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of the functions Ψ, Φ and W above are equal to
√

λ−η1
2r .

Then the equations themselves become

1
√
q0r

= Ψ

(√
λ− η1

2r

)
(63)

∆ =

rΦ

(√
λ−η1

2r

)
1− rΦ

(√
λ−η1

2r

) (64)

1

2r
= W

(√
λ− η1

2r

)
. (65)

The last equation gives the solution for λ as√
λ− η1

2r
= W (−1)

(
1

2r

)
, (66)

where W (−1) is the inverse of W . With r increasing λ
is decreasing and goes to η1 for r → 2. As we have seen
earlier, λ cannot be smaller than η1, so the square root
remains real, and r cannot grow beyond 2. Substituting
(66) into (64) and (65), respectively, we get the other two
order parameters as functions of r. At first it may seem
surprising that they depend only on r and do not depend
on η1 at all. (A little reflection shows that this is due to
the combined effect of the exclusion of short positions and
the budget constraint.) In particular, the order parameter
q0, which determines the out-of-sample estimator for the
objective function and the estimation error, works out to
be

q0 =
1

r

1

Ψ2
(
W (−1)( 1

2r )
) . (67)

This is independent of η1, but, of course, not indepen-
dent of the regularization. Without regularization (and a
very strong one at that; remember that we let η2 →∞ at
the beginning of this subsection) we would have q0 = 1

1−r
which is blowing up at r = 1, whereas (67) smoothly
increases from 1 to π as r goes from zero to 2. Because q0

is independent of η1, if we constructed the contour lines of
q0, i.e. the lines of fixed q0 on the r − η1 plane, we would
get a series of horizontal lines stacked above each other.
(The above solution taken at η1 = 0 is the optimization of
the variance with a no-short constraint that we studied in
[23].) When η2 is finite we have to resort to a computer to
construct the contour lines of q0. Now we set η1 = η2 = η,
that is we consider a symmetric regularizer. The result-
ing q0 contour lines are depicted in Figure 8a (This figure
contains the same information as Fig. 6: the difference is
that there q0 was shown as a function of r, with the value
of η as the parameter of the curves, while in here we are
showing the constant q0 lines on the r − η plane, with q0

as the parameter.)
We recognize the nearly horizontal contour lines imme-

diately: in the lower regions of the figure (below r = 0.3,
say) the lines of fixed q0 are nearly independent of the

strength of the regularizer. As we go higher, the effect
of the regularizer starts to be felt more and more. The
estimation error (

√
q0 − 1) on the first five contour lines,

from bottom up, is 5%, 10%, 20%, 30%, and 40%, respec-
tively. These lines are nearly horizontal, which means that
if we have enough data the strength of the regularizer
hardly matters at all, the error would be almost the same
even for η = 0. The first line where we can see a definite
increase of r with η is the one corresponding to the rela-
tive estimation error 0.4. Beyond this point the regularizer
is taking over and the estimation error for a large enough
η is determined more by the regularizer than the size of
the sample. We see then that either we have a sufficient
amount of data and then the regularizer does not play a
very important role, or it does, but by then the error is
so large as to make the whole optimization pointless. In
the higher regions of the contour map, the optimization
is completely determined by the regularizer. The highest
contour line corresponds to q0 = π with r hitting its crit-
ical value of 2. For q0 increasing further r must decrease
(see Fig. 6). With q0 going to infinity the contour lines
shrink to the point η = 0, r = 1, corresponding to the
singularity of the unregularized problem.

3.7 The critical behavior at r = 2

Let us start the analysis of the critical point with equation
(26) and consider the general case where η1 is different
from η2; we will see that η2 does not appear in the results
around r = 2. From equations (26), (30), (31) and (32) it
is clear that the limiting behavior of the various quantities
depends on λ and ∆, because q0 remains finite here. The
order parameter ∆ diverges for r → 2− 0, but we will
verify later that λ−η1 goes to zero so fast that the product
(λ− η1)(1 + ∆) still vanishes at r = 2. At the same time

(λ + η2)(1 + ∆) diverges, therefore W

(
−w(i)

2

σ
(i)
w

)
vanishes,

while according to

W (x) =
1

4
+

x√
2π

+ . . . , x→ 0 (68)

the terms with w
(i)
1 become

W

(
w

(i)
1

σ
(i)
w

)
=

1

4
+

1√
2π

(λ− η1)(1 + ∆)

2σi
√
q0r

+ . . . (69)

Then equation (26) becomes

1

2r
=

1

4
+

(λ− η1)r(1 + ∆)√
2πq0r

1

N

∑
i

1

σi
, (70)

or, to leading order in ε = 2− r,

ε

2
=

(λ− η1)∆)
√
πq0

1

N

∑
i

1

σi
, (71)

which shows that the product (λ− η1)∆ vanishes like ∼ ε
indeed.
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Fig. 8. (a) Contour plots of estimation error
√
q0 − 1 for `1 regularization with η1 = η2 = η. There is a critical value of q0

at π, below which solution exists for any η. For low values of q0 the result is almost insensitive to regularization. (b) Maximal
improvement obtained by using regularization as a function of q0.

Similarly, from equation (24) with Ψ(0) = 1√
2π

we get

near r = 2

q0 =
π(

1
N

∑
i

1
σi

)2 , r → 2− 0. (72)

Accordingly, the r → 2− 0 limit of the relative estimation
error given in (36) is

q̃0 = q0
1

N

∑
i

1/σ2
i = π

1
N

∑
i 1/σ2

i(
1
N

∑
i

1
σi

)2 , (73)

where the expression multiplying π is, by force of the
Cauchy inequality, larger or equal to 1 for any distribution
of the true volatilities σi, therefore q̃0 is larger than 1 for
any distribution of the volatilities σi, as it should.

The asymptotic behavior of the order parameter ∆ in
(25) can be worked out similarly to obtain

∆ =
4

2− r
, (74)

where use has been made of Φ(x) = 1
2 + x√

2π
+ . . . , for x

small.
Going back to (71) and using (72) and (74) we find

λ− η1 =
π

8

ε2(
1
N

∑
i

1
σi

)2 , (75)

vanishing quadratically for r → 2− 0. For the density of
the zero weights we find

n0 =
1

2
(76)

in the same limit.
Turning to the distribution of weights, we see that

w
(i)
1 → 0 for all i, so, in addition to the δ-peak at the

origin, all the positive weights collapse to zero, but with
a finite standard deviation

σ(i)
w =

1

σi

√
2π

1
N

∑
i

1
σi

. (77)

As for the weights w
(i)
2 , they all go to infinity, so the

corresponding contributions to (34) vanish exponentially.
Finally, the objective function can be obtained from

(33). Here, the second term vanishes because of the diver-
gence of ∆, while according to (75) the first term goes to
η1, so

lim
r→2−0

f = η1. (78)

As we see, η2 does not appear in any of the results near the
critical point, but it is important to realize that its non-
zero value ensures the vanishing of all the contributions

with w
(i)
2 .

What is happening at the transition at r = 2? To find
the answer, we have to go back to the discussion below
equation (6) where we found that the objective function
f ≥ η1 and the equality only holds when the empirical
variance vanishes and the optimal weight vector lies on the
simplex. But then equation (78) implies that it is precisely
this what is happening at the critical point. According to
equation (6) the variance is the sum of T squares. This
vanishes only if each T term vanishes separately. So, we
need to find a weight vector that is pointing to the simplex
and is orthogonal to the T random return vectors. This
is exactly the same random geometry problem that we
encountered in the case of the no-short-constrained opti-
mization [23]. There we displayed a closed formula, valid
for any N and T , for the probability of finding such a
vector:

p(N,T ) =
1

2N−1

N−1∑
k=T

(
N − 1

k

)
. (79)
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This formula depends only on the symmetry, and not on
the concrete form of the return distribution, and as such,
it is universal. For N ≤ T the probability of finding such a
solution is zero. For N exceeding T the probability starts
to increase, becomes 1/2 at N = 2T and goes to one as N
increases further. If N and T go to infinity with their ratio
r = N/T held fixed, the function p(N,T ) goes over into a
step function: the probability that the variance vanishes
becomes zero for 0 < r < 2 and 1 for r > 2. Thus, the
critical point at r = 2 corresponds to a sudden transition
between a situation where the variance is positive and one
where it is zero with probability one, while the objective
function becomes identically equal to η1, corresponding
to a flat optimization landscape. This transition is similar
to the large number of phase transitions in random high-
dimensional geometry studied in [26] and [27].

4 Summary

We have considered the optimization of variance sup-
plemented by a budget constraint and an asymmetric `1
regularizer. The present treatment includes as a special
case the no-short-constrained portfolio optimization
problem [23]. We have presented analytical results for the
order parameter q0, directly related to the out-of-sample
estimator of the objective function and the relative esti-
mation error; for the in-sample estimator of the objective
function; for the density of the assets eliminated from the
portfolio by the `1 regularizer; and for the distribution
of portfolio weights. We have studied the dependence of
these quantities on the ratio r of the portfolio’s dimension
N to the sample size T , and on the strength of the
regularizer. We have checked these analytic results by
numerical simulations, and found general agreement.
As the most conspicuous property of `1 is the step-like,
one by one, elimination of the dimensions, we also run
numerical experiments on single samples to reproduce
this phenomenon. We have confirmed the appearance
of the steps, and checked that the overall trend of the
numerical results by and large follows the theoretical
curve, which is remarkable, since the measurement was
carried out on a single sample of finite size, whereas the
theory is meant to work in the limit where both N and T
go to infinity and the results are averaged over the whole
ensemble of random samples. We have also seen that
averaging over merely ten numerical curves is already
enough to remove most of the fluctuations. We have
repeatedly emphasized that the replica theory we applied
in the analytic work is designed to average over infinitely
many samples, and thus the results reflect the typical
properties of the ensemble. Empirical work, in contrast, is
usually dealing with a single sample, or a small number of
samples, and tries to infer the properties of the ensemble
from the information contained therein. Considering the
rapid broadening with r of the Gaussians making up
the distribution of weights, one can immediately see how
misleading a small number of samples can be.

As portfolio optimization is just a simple representa-
tive example of quadratic optimization, our results have a
message for these kind of optimization problems at large.

The extension of the interval where the optimization can
be carried out, the maximal proportion of one half of
dimensions eliminated by `1 and the “resonance” of the
estimation error around the unregularized critical point
at r = 1 are important findings – as is the disappointing
performance `1 in the given context. The poor perfor-
mance should not be a surprise, as in the given problem
we were trying to rein in large fluctuations of a quadratic
objective function by a regularizer which increases lin-
early. The phase transition taking place at r = 2 belongs
to the large family of transitions in random geometri-
cal problems studied in [26] and [27] where they were
shown to be universal in the sense that the critical point
is independent of the distribution of the data. As a mani-
festation of this universality, the critical value r = 2 does
not depend on the Gaussian nature of the returns that
we assumed here for the sake of easy application of the
replica method.

We wish to point out that the present problem can be
viewed as a statistical field theory model of a rather simple
kind: an N -component φ2 model in zero spatial dimen-
sions with random masses. Because of the lack of a higher
order term (such as a φ4) in the model, there is no restor-
ing force beyond the phase transition, instead we have a
flat energy landscape. The budget constraint is a some-
what unusual feature of the model. If we replaced it by a
spherical constraint, for example, we would immediately
recognize the zero modes of the system as the Goldstone-
modes. With the budget constraint combined with the `1
regularizer the sphere is replaced by the simplex, and the
Goldstone-modes become the zero modes freely roaming
about this invariant set, and the order parameter ∆ blow-
ing up at the r = 2 transition with an exponent −1 can
be regarded as a kind of susceptibility associated with the
transition. The extension of the concept of universality
beyond the universality of the critical exponent also to
the universality of the critical point itself is due to the
purely geometric nature of the transition.

To conclude, we would like to call attention to the fact
that the transition at r = 2 is very easy to overlook in
empirical work. Upon approaching this critical point, the
solution of the optimization problem as posed here would
become unstable against “transverse” fluctuations which
would leave the length of the weight vector approximately
constant, but would result in large fluctuations in its direc-
tion. This corresponds to the weight vector freely roaming
over the simplex. In finance terms, it would mean the opti-
mal portfolio ending up with a different composition in
each sample. It is clear that such a situation is undesir-
able (such a frequent rebalancing of the portfolio would
be technically difficult and would result in high transac-
tion costs), so the investor should keep well away from the
point of instability. In numerical work, however, one may
use, even inadvertently, some of the standard solvers that
often contain a built in `2 regularizer without a clear warn-
ing about it. The presence of such “hidden” `2 regularizers
in standard quadratic solvers has been pointed out in [23].
Such a regularizer will stabilize the solution and drive it
toward the naive portfolio with all the weights equal. In
a situation where the original problem is unstable even a
very small `2 regularizer will suffice to do the job, thereby
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creating the illusion that a stable solution can be obtained
on the basis of a small number of observations.

In this paper, we have discussed the problem of optimiz-
ing a portfolio of independent assets, which is the worst
possible case from the point of view of the sparsity of the
underlying process that generates returns. Some of our
findings, e.g. the value of the critical point or the number
of eliminated dimensions, will certainly be modified when
correlations between the assets are taken into account.
Indeed, we expect the critical point to be shifted towards
values of r larger than 2, and the maximum number of
items that can be set to zero to increase beyond N/2 if the
variance of returns is dominated by a few principal com-
ponents. The study of the effect of correlations is however
left for a later work.
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Appendix A: Derivation of the free energy
with the replica method

As stated in the main text, (8), we have to find the
optimum of the following objective function:

F =
1

T

T∑
t=1

(∑
i

wixit

)2

+ η1

∑
i

wiθ(wi)

− η2

∑
i

wiθ(−wi)− λ

(
N∑
i=1

wi −N

)
(A.1)

where the returns xit are drawn from the joint probability
density of independent Gaussian variables with zero mean
and variance σ2

i .
Any optimization problem can be embedded into the

formalism of statistical physics by regarding the objective
function F as the “energy functional” of a fictitious sys-
tem, introducing a fictitious inverse temperature γ, and
integrating the Boltzmann factor e−γF over the coordi-
nates xit in a given sample to get the “partition function”
Z. The logarithm of the partition function lnZ is essen-
tially a cumulant generating function from which all the
quantities of interest can be obtained; in particular, the
optimal weights can be found by minimizing the partition
function over the weights in the “zero temperature” limit

γ →∞. The effectiveness of this procedure depends on the
fact that we work in the limit of large Ns where the distri-
bution in the space of returns is extremely sharp around
its maximum. The procedure just described gives us the
optimal weights in a given sample of size T . However, if T
is not much larger than the dimension N of the portfolio
we are in the realm of high-dimensional statistics, where
sample fluctuations are large, and optimizing our portfo-
lio over a single sample can be very misleading. Therefore,
in order to capture the typical properties, we have to
average over the full ensemble of samples. This is anal-
ogous to averaging over the “quenched” random samples
in the statistical physics of disordered systems [20], which
explains why the methods developed in that theory can be
successfully applied in the portfolio optimization context.

In order to average over the samples, we have to average
the logarithm of the partition function which is a random
variable fluctuating from sample to sample. Averaging the
logarithm of a random variable is hard, while calculating
the integer moments Zn may be feasible. Now Zn is just
the partition function of n independent copies or replicas
of the system (hence the name of the method). Assuming
that we can analytically continue Zn from the integers to
real ns we can make the use of the identity

〈(lnZ)n〉 =
〈Zn − 1

n

〉
, (A.2)

valid in the limit n→ 0.
Of course, the analytic continuation of a function from

the integers to the reals is not necessarily unique. It is
plausible, however, to assume that in the case of a convex
objective function like that in (A.1), in the limit of large
N all the replicas will go to the same minimum of lnZ,
and the simplest analytic continuation will do the job.
Because we cannot provide a rigorous proof of this claim,
we should regard the results of the replica calculation as
heuristic. This is why we performed extensive numerical
simulations to back up the analytic results in this paper.
The general agreement we found is clear evidence of the
correctness of the results. On the other hand, to deduce
the nontrivial results from a purely numerical approach
would have been obviously very hard if not impossible.

Let us now carry out the program sketched above. The
replicated partition function is

See equation (A.3) next page

where g(~w) = η1

∑
i wiθ(wi)− η2

∑
i wiθ(−wi) and, at an

appropriate point, we will have to take the limits

lim
γ→∞

lim
n→0

1

γ
Zn(~w), (A.4)

where 〈· · · 〉 represents an average over the probability
distribution of returns.

The above partition function refers to a system of n
replicas of the original system, and the index a is intro-
duced to label different replicas, so that wai represents the
ith weight of the ath replica. Introducing an integral rep-
resentation for the delta function and using the properties
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Zn(~w) =
〈∫ ∞
−∞

N∏
i=1

n∏
a=1

dwai e
−γ( 1

2

∑
i,j,t,a w

a
i xitxjtw

a
j+T

2

∑
a g(~w

a))+T
2 λ(

1
N

∑
i wi−1)

〉
~xt

(A.3)

Zn(~w) =

〈∫ ∞
−∞

N∏
i,a,t

dwai dφatdλ
aexp

−1

2

∑
a,t

φ2
at + i

√
γ
∑
i,t,a

φatw
a
i xit


× exp

[
T

2

∑
a

λa

(
1

N

∑
i

wai − 1

)
− Tγ

2

∑
a

g(~wa)

]〉
~xt

(A.5)

Zn(~w) =

∫ ∞
−∞

∏
i,a,b,t

dwai dQ̂abdφatdλ
a exp

−1

2

∑
a,t

φ2
at −

γ

2

∑
a,b,t

φatQabφb,t


× exp

∑
a,b

Q̂ab

(
NQab −

∑
i

σ2
iw

a
i w

b
i

)
+
T

2

∑
a

λa

(
1

N

∑
i

wai − 1

)
− Tγ

2

∑
a

g(~wa)

 (A.6)

Zn(~w) =

∫ ∞
−∞

∏
i,a,b,t

dwai dQ̂abdλ
a exp

[
−T

2
tr log (δab + γQab)

]

× exp

∑
a,b

Q̂ab

(
NQab −

∑
i

σ2
iw

a
i w

b
i

)
+
T

2

∑
a

λa

(
1

N

∑
i

wai − 1

)
− Tγ

2

∑
a

g(~wa)

 (A.7)

of Gaussian integrals the replicated partition function can
be written as

See equation (A.5) above.

Averaging over the probability distributions of returns
gives

See equation (A.6) above

where we have introduced the overlap matrix Qab =
1
N

∑
i σ

2
iw

a
i w

b
i and the conjugate variables Q̂ab to enforce

this relation.
We can now integrate over the variables φat to obtain

See equation (A.7) above.

It is at this point that we have to make the analytic
continuation in the replica number n. In view of the
permutation symmetry of the replicas and the convexity
argument put forward earlier, we can choose the replica
symmetric ansatz

Qab =

{
q0 + ∆, a = b
q0, a 6= b

(A.8)

Q̂ab =

{
q̂0 + ∆̂, a = b
q̂0, a 6= b.

(A.9)

The analytic continuation will then consist in simply
regarding n as a real variable. To leading order for small
n we have

−T
2

tr log(δab+γQab) = −Tn
2

[
log (1+γ∆) +

γq0

1+γ∆

]
(A.10)∑

a,b

Q̂abQab = Nn(q̂0∆ + q0∆̂ + ∆∆̂), (A.11)

while the ~w-dependent part of the partition function can
be written as∫

dλad∆̂dq̂0

× exp

[
Nn

2r

〈
log

∫
dwe−2r∆̂σ2w2+2rwzσ

√
−2q̂0+λw−g(~w)]

〉
zσ

]
,

(A.12)

where 〈· · · 〉z,σ denotes the average of an arbitrary function
h(z, σ) over the normal variable z and the distribution of
asset variances:

〈h(z, σ)〉zσ =

∫
dσ

1

N

∑
i

δ(σ−σi)
(∫ ∞
−∞

dz√
2π
h(z, σ)e−z

2/2

)
.

(A.13)

If we now write the partition function as

Zn =

∫
dλdq0d∆dq̂0d∆̂e−γn

T
2 F (λ,q0,∆,q̂0,∆̂), (A.14)
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we find for F/N

f(λ, q0,∆, q̂0, ∆̂)

=
1

γ

[
log(1 + γ∆) +

γq0

1 + γ∆

]
+
λ

γ

− 2r

γ
(q̂0∆ + q0∆̂ + ∆∆̂)

− 1

γ

〈
log

∫
dwe−2r∆̂σ2w2+2rwzσ

√
−2q̂0+λw−g(~w)

〉
zσ
.

Noting how the various quantities scale with the inverse
temperature we can perform the change of variables ∆→
∆/γ, q̂0 → γ2q̂0, ∆̂ → γ∆̂, λ → γλ and taking the limit
γ →∞ we finally have

f(λ, q0,∆, q̂0, ∆̂) =
q0

(1 + ∆)
− 2rq̂0∆− 2r∆̂q0 + λ

+ min
~w

〈
V (~w)

〉
zσ
, (A.15)

where

V = 2r∆̂σ2w2− 2rwzσ
√
−2q̂0−λw+ η1θ(w)− η2θ(−w).

(A.16)
This is the form of the objective function that we use in
the main text. Its minimization is explained in Section 3.
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