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A B S T R A C T

The relation between a stimulus and the evoked brain response can shed light on perceptual processes within the
brain. Signals derived from this relation can also be harnessed to control external devices for Brain Computer
Interface (BCI) applications. While the classic event-related potential (ERP) is appropriate for isolated stimuli,
more sophisticated “decoding” strategies are needed to address continuous stimuli such as speech, music or
environmental sounds. Here we describe an approach based on Canonical Correlation Analysis (CCA) that finds
the optimal transform to apply to both the stimulus and the response to reveal correlations between the two.
Compared to prior methods based on forward or backward models for stimulus-response mapping, CCA finds
significantly higher correlation scores, thus providing increased sensitivity to relatively small effects, and supports
classifier schemes that yield higher classification scores. CCA strips the brain response of variance unrelated to the
stimulus, and the stimulus representation of variance that does not affect the response, and thus improves ob-
servations of the relation between stimulus and response.
Introduction

Common techniques to measure brain activity include electroen-
cephalography (EEG), magnetoencephalography (MEG), electro-
corticography (ECoG), and functional magnetic resonance imaging
(fMRI). Paired with controlled sensory stimulation, such techniques
allow sensory and perceptual processes to be probed. In the case of EEG
and MEG, one common approach has been to examine how the time
course of brain potentials/fields is affected by particular stimuli. How-
ever, stimuli usually need to be repeated several times, and the recorded
signals averaged to overcome the many sources of noise and brain ac-
tivity unrelated to the stimulation. This is practical only for short stimuli
or isolated events, and precludes the study of responses to longer and
more naturalistic stimuli such as speech, music, or environmental sound.
Recently, new approaches based on system identification allow mean-
ingful response functions to be derived from ongoing stimulation.
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A short event such as a click or sound onset produces a stereotyped
EEG/MEG response, with peaks and troughs that are referred to by
conventional names (N100, P300, etc.). Their morphology, timing and
dependency on experimental conditions have yielded a wealth of infor-
mation about perceptual processes (Woodman, 2010). Activity related to
ongoing stimulation is harder to interpret because responses to each in-
dividual event overlap in time, and the lack of repetition precludes
simple averaging over trials. Nonetheless, supposing that the system is
linear and time-invariant, the relation between stimulus and response can
be described as a convolution, and characterized by an impulse response
or temporal response function (TRF) that can be estimated from the stim-
ulus and response pair by systems identification techniques (Lalor et al.,
2009; Crosse et al., 2016).

This linear model can be estimated and evaluated in either of two
ways. In the first (“forward model”) the model is used to predict the
neural response from the stimulus, and the prediction is compared to the
ry 2018
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actual measurement. In the second (“backward model”, or “stimulus
reconstruction”), the model is used to infer the stimulus from the
response, and the inferred stimulus is compared to the actual stimulus.
The quality of fit may be quantified in terms of correlation coefficient,
and results cross-validated by measuring the correlation on data distinct
from the data that served to train the model. The model can also be used
to design a classifier, and its quality quantified by percentage correct
classification, or area under the Receiver Operating Curve (ROC).

With either approach correlation scores are usually modest (on the
order of r¼ 0.1–0.2 for EEG data) albeit statistically significant. Such low
scores are sobering, but they should not come as a surprise. EEG signals
reflect many brain processes in addition to those related to sensory
processing, and thus only a fraction of EEG variance can be predicted
from the stimulus (Woodman, 2010). Conversely, certain features of the
stimulus may have little or no impact on the percept or brain activity
evoked. Low correlation scores thus reflect the fact that the EEG and the
stimulus each include variance that is irrelevant to the perceptual
process.

In this paper we explore a third approach: transform both stimulus
and response so as to minimize irrelevant variance, and evaluate the
quality of the model by measuring the correlation after each data set has
been transformed. This allows the stimulus representation to be stripped
of dimensions irrelevant for measurable brain responses, and the EEG to
be stripped of activity unrelated to auditory perception. The method we
use is based on canonical correlation analysis (CCA) (Hotelling, 1936).
Given two sets of data (here stimulus and EEG), CCA finds the best linear
transform W1 to apply to the first to maximize its projection on the
second, and the best linear transform W2 to apply to the second to
maximize its projection on the first. CCA is a linear technique, but it can
be extended to characterize non-linear and convolutional relations by
including appropriate transforms of the data before applying CCA (see
Discussion).

Methods

EEG/MEG data model

Electrical activity within the brain is picked up by electrodes on the
skull (EEG) or magnetometers (MEG) surrounding the head. The source-
to-sensor relation is assumed linear: the J measured brain signals bjðtÞ at
T time steps, forming a matrix of dimensions T � J, are linearly related to
the activities of I sources siðtÞ within the brain:

bjðtÞ ¼
X
i

siðtÞmij; (1)

where t is time and themij are unknown source-to-sensor mixing weights.
In matrix notation B¼ SU. The sources include both brain sources sen-
sitive to sensory stimulation, and “noise” sources unrelated to stimula-
tion. A role of data processing is to minimize the noise relative to the
activity of interest.
Acoustic data model

An auditory stimulus consists of a pressure waveform pðtÞ, or pLðtÞ
and pRðtÞ if the ears are independently stimulated, that is transduced and
processed within the auditory system (cochlear filtering, haircell trans-
duction, neural processing, etc.). To more easily relate the rapidly-
varying sound signal to the slower brain signals measured by EEG, the
pressure waveform pðtÞ must be transformed to a slower-varying repre-
sentation aðtÞ. Standard transforms (or “sound descriptors”) include the
temporal envelope obtained by smoothing the instantaneous power p2ðtÞ
or the absolute value of the analytical signal obtained by the Hilbert
transform, and the spectrogram obtained as a time series of short-term
Fourier transform coefficients or of demodulated filterbank outputs
mimicking the frequency selectivity found at multiple stages in the
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auditory system (“auditory spectrogram”). For convenience, the acoustic
representation is usually resampled to the same sampling rate as the EEG.
It is well known that the same percept can arise from different stimuli
(metamers) (Zaidi et al., 2013), and a yet larger set of stimuli may trigger
EEG responses that are indistinguishable. A desirable feature of an
EEG-relevant stimulus descriptor is to discard dimensions of the data that
are not relevant to predict the response.
Processing model

There are many linear processing techniques that may be used to
enhance relevant components of EEG and acoustic representations. EEG
sources responsive to soundmay be enhanced in three ways: (1) by spatial
filtering

bðtÞ ¼
X
j

bjðtÞuj; (2)

(2) by spectral filtering implemented as a finite impulse response (FIR)
filter

bjðtÞ ¼
X
τ

bjðt � τÞuτ; (3)

or (3) by a combination of the two implemented as a multichannel FIR
filter

bðtÞ ¼
X
j

X
τ

bjðt � τÞujτ; (4)

where bðtÞ is a linear combination of time-lagged brain signals. Spatial
filtering allows unwanted sources to be suppressed based on the corre-
lation structure between channels, whereas spectral filtering allows them
to be attenuated based on their rate of fluctuation. The multichannel FIR
filter of Eq. (4) subsumes both, as well as more complex ”spatio-spectral”
filters, for example for which different spectral filtering affects different
spatial components.

The acoustic representation can likewise be enhanced with a FIR filter
(for the stimulus envelope) or multichannel FIR filter (for a multichannel
representation such as a spectrogram)

aðtÞ ¼
X
i

X
τ

aiðt � τÞviτ; (5)

where aðtÞ is a linear combination of time-lagged audio descriptor sig-
nals. A FIR filter applied to the audio envelope or a channel of a spec-
trogram might select components based on their modulation spectrum,
whereas the multichannel FIR applied to a spectrogram also captures
more complex cross-spectral structure.

These linear models allow great flexibility to optimize the relation
between audio and EEG. However, the question remains as to how to find
the appropriate coefficients ujτ and viτ to apply to the EEG and audio
signals respectively to maximize the correlation between the two.
Canonical correlation analysis

Given two sets of multichannel data, CCA finds linear transforms of
both that are maximally correlated. Given data matrices X1 of size T � J1
and X2 of size T � J2, CCA produces transform matrices W1 and W2 of
sizes J1 � J0 and J2 � J0, where J0 is at most equal to the smaller of J1 and
J2. The columns of X1W1 are mutually uncorrelated, as are the columns
of X2W2, while pairs of columns taken from both (“canonical correlate
pairs”) are maximally correlated. The first pair of canonical correlates
(CC) define the linear combinations of each data set with the highest
possible correlation. The next pair of CCs are the most highly correlated
combinations orthogonal to the first, and so-on. Assuming that X1 and X2

represent audio and EEG signals, possibly with time lags, CCA will pro-
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duce weighted sums as in Eqs. (4) and (5) that are maximally correlated,
which is exactly what we are looking for.
Dimensionality and overfitting

Reasoning in terms of vector spaces, the J EEG signals span a space of
dimension J (at most) that contains all of their linear combinations. If T
time lags are applied to those signals (as in Eqs. (4) and (5)), the resulting
space is of dimension JT at most. Likewise, a spectrogram descriptor
with J' bands spans a signal space of dimension of at most J', or J 'T ' if T '
time lags are applied. The weighted sums produced by CCA belong to
these vector spaces. For each CC pair, the data-driven CCA process needs
to find as many weights as the number of dimensions of the signal spaces
(JT þ J'T ' in this example). The number of dimensions is important
because it determines the risk of overfitting in the data-driven calculation.
Overfitting occurs when there are too many parameters relative to the
amount of data and the algorithm latches on to spurious features.

There is a tradeoff between flexibility and overfitting: increasing the
number of EEG channels and/or filter taps increases the ability to fit the
data and resolve interesting sources and features, but this comes with a
greater risk of misleading results.

Our strategy with respect to overfitting is twofold. First, the outcome
of any analysis can be tested for overfitting by applying cross-validation.
Second, overfitting itself can be limited by dimensionality reduction or
regularization techniques, which are closely related (Jiang and Guo,
2007). Dimensionality reduction can be obtained by applying principal
component analysis (PCA) and discarding principal components (PCs)
with smallest variance. However this procedure implicitly equates vari-
ance to relevance, which may not always be appropriate (EEG artifacts
and noise components often have high variance). Alternative approaches
are considered in the Discussion.
Filter bases

The processing model (Eqs. (4) and (5)) allows for FIR filters of order
T to equalize EEG and audio signals and attenuate irrelevant power. A
larger T captures temporal structure (of target and/or interference) on a
longer-term scale, but there are more parameters and greater risk of
overfitting. An alternative is to replace the set of time lags by a set of T
fixed filters with impulse responses of duration longer than T , for
example a logarithmic (or wavelet) filterbank. Again, it is useful to reason
in terms of a vector space: T time lags span the space of FIR filters of
order T , subspace of the space of all filters, whereas a T -channel fil-
terbank spans a different subspace with the same dimension, distinct
from the first and including filters with different properties (in particular
longer impulse responses). The number of parameters in either case is the
same, but one subspace may better fit the requirements than the other.
Tailoring the convolutional basis in this way is akin to parameter tying
within a space of higher-order filters (LeCun et al., 2015). Whichever
basis is chosen, CCA finds optimal coefficients on that basis.
Fig. 1. Overview of the models tested. In the forward model, the audio en-
velope is transformed and compared with the EEG. In the backward model,
the EEG is transformed and compared with the audio envelope. In CCA model
1, a FIR filter is applied to the audio envelope and a spatial filter to the EEG. In
CCA model 2, the spatial filter is replaced by a multichannel FIR filter. In CCA
model 3, FIR filters are implemented using a bank of filters F k instead
of delays.
The quadratic trick

CCA can be made to handle nonlinear relations between data sets by
replacing the data (or augmenting them) with a set of nonlinear trans-
forms. A class of nonlinearity that deserves particular mention is
quadratic forms. The rationale for considering this is the following. Sup-
pose that there exists a source within the brain that displays a useful
pattern of power (for example its power is correlated with the stimulus),
but that source is weak and can only be observed after applying a spatial
filter with coefficients uj. The values of these coefficients are unknown.
However we note that the expression for the instantaneous power of the
spatially filtered signal:
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sðtÞ2 ¼
 X

bjðtÞuj
!2

(6)

j

can be expanded as:

sðtÞ2 ¼
X
jj'

bjðtÞbj'ðtÞvjj': (7)

This expression is linear in the cross products bjðtÞbj'ðtÞ, and thus we
can apply linear techniques such as CCA to find a set of vjj' that maximize
the correlation between the stimulus and the space of cross-products,
from which we may derive an approximation of the optimal weights uj
(de Cheveign�e, 2012). This technique is equally applicable to spectral
(FIR) filtering as to spatial filtering.

Implementation

Processing is done in MATLAB using routines from the NoiseTools
toolbox (http://audition.ens.fr/adc/NoiseTools/). Time lags and other
transforms lead to large data matrices, and care must be given to
computational constraints. The main ingredient used by the algorithms is
the covariance matrix of the joint data set (½X1;X2�'*½X1;X2�) which can be
calculated incrementally from subsets of the data, without loading all of
the data into in memory. The main computational bottleneck is eigen-
decomposition of the covariance matrix (MATLAB ‘eig’ function) with a
cost that varies as Oðn3Þ where n is the total number of columns.

Evaluation

We implement several models, and evaluate each to determine the
benefit of using CCA relative to other techniques. Model performance is
quantified by calculating the correlation coefficient between stimulus-
derived and EEG-derived quantities according to a cross-validation pro-
cedure. In brief, the model parameters are estimated using a subset of the
data, and the correlation score is measured on the remaining data. This is
repeated, leaving out different parts of the data in turn, and the final
score is calculated as the mean of these estimates. When comparing
models we take care to use the same number of parameters.

Auditory processing involves response latencies that are not perfectly
known, and the convolutional transforms produced by CCA also
contribute delays. In order to compensate for eventual differences in

http://audition.ens.fr/adc/NoiseTools/


Fig. 2. Backward model. Left: correlation score between the
speech temporal envelope and the best linear combination of
EEG, as a function of the overall temporal shift L of the
stimulus relative to the EEG, for one subject (EL). A positive
value of the abscissa means that the envelope has been
delayed relative to the EEG. Dotted line is measured on the
training set, full line on the test set. Right: spatial topography
of the correlation between EEG and envelope at the optimal
shift.

Fig. 3. Forward model. Left: cross-validated correlation
score between the FIR-filtered stimulus temporal envelope
and the best EEG channel as a function of the overall tem-
poral shift L of the stimulus relative to the EEG, for one
subject (EL). Right: impulse response (top) and correspond-
ing amplitude transfer function (bottom).
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temporal alignment between stimulus and EEG, the entire process (model
parameter estimation and correlation evaluation) is repeated for various
time shifts L of the audio relative to the EEG. The optimal shift is
determined from the peak of the correlation as a function of shift (see
Figs. 1–3). This ensures an optimal temporal alignment for every model.
This overall time shift L is distinct from the filter time lags τ that appear in
some of the models (e.g. Eqs. (4) and (5)).

The decision to introduce a global time shift L distinct from τ was
motivated by the desire to capture the effect of audio-to-EEG latency (fit
by L) separately from that of spectral mismatch (fit by coefficients of
aðt � τÞ or bðt � τÞ, τ ¼ 1…T ). The alternative of a wider range of τ to
absorb latency would have entailed a larger number of parameters, and
made it harder to make a fair comparison withmodels that don't involve τ
(e.g. Eq. (4)). Introducing the parameter L allows each model to operate
in optimal conditions.

Models are also evaluated by designing a classifier for a simple match-
vs-mismatch classification task that involves deciding which of two
segments of audio gave rise to a particular segment of EEG data of
duration D. Segment duration is varied as a parameter, shorter durations
being harder to classify because they contain less discriminative infor-
mation. Again, cross-validation is used to control for overfitting: the
classifier is trained on a subset of the data, and the classification score
measured on unseen data. The classifier is trained and tested using the
time shift L that maximized correlation.

Evaluation data

The algorithms are evaluated using a database of EEG responses to
209
natural speech reported in a previous study (Di Liberto et al., 2015). Full
details of the stimulus and recording conditions are given in that refer-
ence. In brief, EEG data were recorded from 8 subjects using a
128-channel Biosemi system with standard electrode layout, at 512 Hz
sampling rate (data from 2 additional subjects recorded with a
160-channel system were not used). Each subject listened to 32 speech
excerpts, each of duration approximately 155s from an audio book pre-
sented diotically via headphones, for a total of approximately 1.4 h. The
EEG data were downsampled to 64 Hz and detrended by subtracting a
10th-order polynomial fit weighted to exclude outliers using a robust
detrending routine (de Cheveign�e and Arzounian, 2018). The STAR al-
gorithm (de Cheveign�e, 2016) was used to suppress channel-specific
noise, and the data were convolved with a boxcar window of duration
20ms to suppress 50 Hz and harmonics. The data were then high-pass
filtered with a Butterworth filter of order 2 and cutoff 0.1 Hz and rere-
ferenced to the mean over channels. To calculate the stimulus' temporal
envelope, the stimulus (sampled at 44,100Hz) was squared, smoothed by
convolution with a square window of width 15.6ms (1/64 Hz), down-
sampled to 64Hz, and then raised to the power 1/3.
Models tested

To allow comparisons, we implemented backward and forward
models, and three versions of the CCA model as schematized in Fig. 1.

In the backward model the stimulus representation aðtÞ is inferred
or “reconstructed” as a transform bðtÞ of the EEG, for example a spatial
filter:
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bðtÞ ¼
j

bjðt þ LÞuj; (8)

X

or spatiotemporal filter:

bðtÞ ¼
X
j

X
τ

bjτðt � τ þ LÞuj; (9)

where the weights uj are calculated as the cross-correlation between the
audio and time-lagged EEG. This model was simulated based on Eq. (8)
(spatial filter). The 128 EEG channels were first submitted to PCA and the
first 80 PCs retained, so the model had 80 parameters. The overall time
shift L was varied over a range from �3 to þ7 s, to find the highest
correlation coefficient between aðtÞ and bðtÞ. A variant of the model was
simulated based on Eq. (8) (spatiotemporal filter) with 17 time lags,
again with PCA to reduce the number of parameters to 80 (see Results).

In the forward model the response of a brain signal channel bjðtÞ is
predicted from a transform aðtÞ of the stimulus, for example a weighted
sum of time-lagged stimulus envelope samples (FIR filter):

aðtÞ ¼
X
τ

aðt � τ þ LÞvτ; (10)

where the time shift L absorbs any temporal misalignment between
stimulus and EEG. To give this model the best chances to succeed, the
prediction was applied to the optimal linear combination of channels
found by the backward model, rather than to a particular brain signal
channel. The model was applied with 80 values of the delay τ (spanning
0–1.25 s), so this model too has 80 parameters.

In CCA model 1, both the stimulus and the EEG are transformed ac-
cording to:

bðtÞ ¼
X
k

bðtÞuk; aðtÞ ¼
X
τ

aðt � τ þ LÞvτ; (11)

where the shift L is varied to absorb any mismatch in response or pro-
cessing latency. CCA was applied to a set of 40 time lagged envelope
signals and a set of 40 principal components of the EEG, producing 40
canonical correlate pairs. This model too has 80 parameters.

In CCA model 2, time lags are applied also to the EEG channels:

bðtÞ ¼
X
k

X
τ

bðt � τÞukτ; aðtÞ ¼
X
τ

aðt � τ þ LÞvτ: (12)

The EEG was submitted to PCA and the first 60 PCs were selected and
submitted to 10 time lags. The compound matrix (600 channels) was
submitted to PCA and 40 PCs retained, while the stimulus envelope was
split into 40 time-lagged versions. This model too has 80 parameters. In a
variant of this model (model 2þ), 80 PCs were retained for both EEG and
audio, so the model had 160 parameters.

In CCA model 3, time lags are replaced by a filter bank, motivated as
follows. The stimulus envelope and EEG both include long-term fluctu-
ations on the order of seconds. For example, these could reflect slow
patterns shared by stimulus and response (e.g. phrase or semantic
structure), or else slow artifacts that need to be removed. To resolve them
requires filters with a long impulse response which, if implemented as a
FIR, would require a filter of high order and thus many parameters
leading to overfitting. For example, at 64 Hz sampling rate a two-second
impulse response requires 128 taps, which applied separately to 50 EEG
PCs (multichannel FIR) involves 6400 parameters. To address this issue,
one can use a set of filterbank output channels as a “basis” for the space of
filters, instead of time lags. For a T -channel filterbank the number of
parameters is the same as for T time lags, but the filter subspace spanned
is different. With a logarithmic or wavelet filterbank the basis can include
both narrow filters with long impulse response, and wider filters with
shorter impulse response. CCA model 3 was tested with a dyadic bank of
FIR bandpass filters with characteristics (center frequency, bandwidth,
duration of impulse response) approximately uniformly distributed on a
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logarithmic scale. There was a total of 21 channels with impulse response
durations ranging from 2 to 128 samples (2 s). The filterbank was applied
to the stimulus envelope, yielding 21 filtered signals, and also to the EEG
represented by 60 PCs, yielding 1260 filtered signals that were submitted
to another PCA from which 139 PCs were retained. These two data sets
(21 and 139 channels respectively) were then processed by CCA. Like the
previous model (CCA model 2þ), this model has 160 parameters. The
numbers chosen for this and previous models are largely arbitrary, the
aim being to put the models in a range where they perform reasonably
well, and allow comparisons between models with the same number of
parameters.

Match-vs-mismatch classification was performed using Linear
Discriminant Analysis (LDA) trained on the model correlation scores. The
ability of each model to identify matching EEG and audio segments was
assessed using leave-one-out cross-validation. The classifier was trained
on all time segments from 31 of the 32 trials and tested on all segments in
the remaining trial. To examine classification accuracy as a function of
test data duration, we performed the classification with time segments of
duration 1–64 s. This provided between 4960 (for 1 s segments) and 64
(for 60 s segments) non-overlapping tokens for classification.

Results

This section compares the performance of the different approaches
described in Sect. 2, and investigates how the multiple canonical corre-
late pairs revealed by CCA can be used for classification.

Comparison between models

In the paragraphs to follow, we compare forward and backward
models with CCA, using correlation as a performance metric.

Backward model
Fig. 2 (left, full line) shows the correlation coefficient between the

spatially filtered EEG and the speech temporal envelope, with cross-
validation, as a function of the shift L, for one subject. The correlation
coefficient is large for values of L near zero and falls for larger positive or
negative values. The dotted line shows the coefficient without cross-
validation. Plots in all other figures represent cross-validated correla-
tion coefficients. Fig. 2 (right) shows the spatial distribution over the
scalp of the correlation coefficient between stimulus envelope and indi-
vidual EEG channels. Coefficients for individual channels approach
~0.09, whereas the linear combination (Eq. (8)) yields a score of ~0.13,
reflecting the benefit of the spatial filtering.

Other studies, e.g. (O'Sullivan et al., 2014), used a model similar to
Eq. (9) in which the stimulus is modeled as a weighted sum of
time-lagged EEG channels. We simulated such a model using a set of 17
time lags (spanning 0–250 ms) as described in the Methods, using PCA to
reduce the number of parameters to 80 as in the previous model. The
peak score with this version was 0.17, vs 0.13 with the previous non--
lagged model (Eq. (8)), suggesting a benefit of reconstruction based on
spatio-spectral filtering over purely spatial filtering.

Forward model
Fig. 3 (left) shows the correlation coefficient between the filtered

stimulus envelope ajðtÞ and the best EEG channel (the channel that yields
the highest correlation score). As for the backward model, the correlation
coefficient peaks for small values of L and falls for larger positive or
negative values. Fig. 3 (right) shows the impulse response (top) and
transfer function (bottom) of the FIR filter for the best shift. The transfer
function peaks near 1 Hz, suggesting that correlation is better at the
lower end of the frequency range.

The backward model was calculated from 80 PCs, while the forward
model involved 80 time lags, so the degrees of freedomwere the same for
both. The second model applies an FIR filter applied to the stimulus
envelope to predict an EEG channel, whereas the second applies spatial



Fig. 5. Best correlation scores for each subject as a function of the model. The
thick blue line is the subject (EL) used for the comparison in Figs. 1–3
and Fig. 5.

A. de Cheveign�e et al. NeuroImage 172 (2018) 206–216
filter applied to the EEG data to infer the stimulus envelope. Since these
filtering operations address different sources of noise, it is worth
considering combining the two. The next sections explore how to do so in
a systematic way using CCA.

CCA model 1
This first model is designed to be most comparable to the forward and

backward model. Subsequent models take advantage of the flexibility of
CCA to introduce a series of improvements. Fig. 4 (first panel, red) shows
the correlation coefficients for the first canonical correlate (CC) pair as a
function of time shift. Values are comparable to the forward and back-
ward models, but CCA producesmultiple CCs beyond the first (thin lines),
several of which seem to show elevated correlation scores for a limited
range of shifts L.

CCA model 2
CCA model 2 allows time shifts for the EEG channels (Eq. (12)). Fig. 4

(second panel, red) shows the correlation coefficients for the first ca-
nonical correlate (CC) pair as a function of temporal alignment between
stimulus and EEG. Values are higher than for the previous model, pre-
sumably as a result of the more flexible spatio-spectral filter. It is likely
that the multichannel FIR filter adapts the spectral content of the EEG
signals to that of the stimulus envelope. Thin lines show correlation co-
efficients for subsequent CC pairs.

Fig. 4 (third panel, red) shows similar results assuming 80 time lagged
stimulus envelope signals (instead of 40), and 80 PCs of time-lagged EEG
signals (instead of 40) for a total of 160 parameters. Values are higher
than for the smaller model, indicating that the more complex model gives
a better fit to the data. This outcome was not a forgone conclusion, as the
more complex model could instead have led to overfitting and thus a
lower score with cross-validation. The larger correlation coefficients
likely reflect the ability of higher-order FIRs to capture and resolve fea-
tures on a longer time scale.

CCA model 3
Fig. 4 (fourth panel, red) shows the correlation coefficient for the first

CC pair as a function of time shift. The correlation coefficient approaches
0.4 at the best shift, indicating that CCA has discovered a transform of the
stimulus that is highly predictive of a component extracted from the EEG
by applying a spatio-spectral filter. In addition to this CC pair, there are
additional well-correlated pairs, further discussed in the next Section.

The correlation coefficients for all subjects for these different models
are summarized in Fig. 5 (the previous subject is the thick blue line). The
values differ greatly between subjects, but the trends are overall similar.
A Wilcoxon rank-sum test indicates that CCA conditions yield
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significantly larger scores than either forward or backward models
(p< 0.002, not corrected for multiple tests) and that CCA model 3 yields
larger scores than any other model (p< 0.002, not corrected).

Exploiting multiple canonical components

A useful feature of CCA solutions is that there are multiple CCs with
elevated correlation scores (Fig. 4). Each CC corresponds to a particular
FIR-filtered stimulus-envelope signal, orthogonal to those of the other
CCs, and that differs from the others in spectral magnitude and/or phase.
In this sense, CCA performs a decomposition of the stimulus envelope in
the modulation spectrum domain (Dau et al., 1997). Each CC is also
associated with a spatial- or spatio-spectrally filtered EEG signal
orthogonal to those of the other components, that differs from the others
in spatial pattern and/or spectral magnitude and/or phase. CCA thus also
decomposes the brain response into uncorrelated components, each
mapped to a component of the stimulus envelope.

Fig. 6 (top) shows the magnitude transfer functions of the FIR filters
corresponding to the first 12 CCs of model 3 for subject EL. For most CCs
the transfer function peaks in a particular spectral region, although the
peak-to-skirt ratio is usually modest (roughly 4:1 in magnitude, 16:1 in
Fig. 4. CCA models. See text for a description of each model.
Each plot shows the correlation coefficient between canoni-
cal correlate pairs as a function of the temporal shift of the
stimulus relative to the EEG, with cross-validation, for one
subject (EL). One signal of each pair is derived by filtering
the stimulus envelope with a FIR filter, and the other from
the EEG by filtering with a spatial (leftmost) or multichannel
FIR filter. The red line in each plot is the first (“best”) pair,
other lines are for subsequent CC pairs.
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power density). Each CC appears to cover a different spectral region but
with considerable overlap between CCs. In this example, the transfer
functions are peaked, and the peak frequencies roughly follow the order
of the components, suggesting greater correlation values for lower fre-
quencies, although the pattern is not perfect.

Fig. 6 (bottom) shows the corresponding EEG topographies, calcu-
lated as the cross-correlation between the FIR-filtered envelope signal
and the raw EEG channels (the polarity of each component is arbitrary).
The topography gives a rough indication of the spatial substrate of the
EEG component of the CC pair. Whereas the time-courses of activation
are mutually orthogonal, there is no such constraint on the associated
topographies, and indeed several seem quite similar. The patterns for
weaker components tend to be noisy (note the different color scales for
each CC).

As argued elsewhere (de Cheveign�e and Parra, 2014) it is not possible
to establish a one-to-one correspondence between components and spe-
cific sources within the brain. Component waveforms are mutually un-
correlated, whereas brain activity implicated in perceptual processing is
likely to be correlated between sources. Even if the sources were un-
correlated, the source-to-component mixing matrix might not be diago-
nal. What can be said is that the components obtained from the analysis
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span a subspace of the EEG data containing the stimulus-related
behavior. From a neuroscience perspective, the most interesting impli-
cation is that there are multiple processes, and that they cannot be sub-
sumed by a single TRF model. CCA may be a useful tool to unravel them.

Classification

Another yardstick to measure a stimulus-response model is its per-
formance in a classification task. Here we consider the task of deciding,
given segments of stimulus and EEG of duration T, whether the EEG was
in response to that stimulus or to an unrelated stimulus, using correlation
scores as a feature as in prior studies. Classification involves determining
whether a sample belongs to either of two distributions (Duda et al.,
2012), in this case those of correlation scores for matched and mis-
matched segments respectively. Assuming Gaussian distributions with
equal variance, the performance of a one dimensional linear classifier
depends on the ratio of between-class to within-class variance, that can
be quantified by the d' metric (distance between means divided by
standard deviation). In the case of the forward and backward models,
there is only one discriminant dimension, in the case of CCA there may be
multiple discriminant dimensions.
Fig. 6. CCA model 3. Top: amplitude transfer functions of
the first 12 CCA-derived FIR filters applied to the stimulus
envelope normalized to a peak value of 1, for one subject
(EL). Bottom: corresponding topographies. The value at each
point of the topography is the normalized cross-correlation
coefficient between the EEG component waveform and the
EEG channel waveform. Signs are arbitrary. Note that the
color scale differs between components, reflecting the lower
SNR of higher-order components.
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Fig. 7 (a) shows the d' scores for the first 6 CC pairs from CCAmodel 3,
as a function of the size of the data segment over which the correlation
between pairs is calculated. The d' values increase as the data segment
becomes longer (as there is more information and estimates are more
stable), and are greater for the first than for subsequent CC pairs. Values
for the first few pairs are also greater than for the forward and backward
models (Fig. 7 (c)). CC pairs that lead to large correlation scores tend to
show large values of d' (Fig. 7 (b)), although the ratio between d' and
correlation tends to be smaller for pairs for which the component
waveforms are dominated by low frequencies (coded as blue) rather than
higher frequencies (coded as red). Frequency content is quantified here
by calculating the centroid of the power spectrum of the component
waveform.

Rather than using individual CCs, correlation values can be combined
over CC pairs using multivariate Linear Discriminant Analysis (LDA), as
illustrated in Fig. 7 (d) (thick blue line) for the principal discriminant
dimension. As expected, combining features frommultiple CC pairs leads
to better discrimination than the best CC Fig. 7 (d) (thin blue line), itself
better than either the forward and backward models (red and orange
lines). The dashed line in Fig. 7 (d) shows the 95th percentile of the
classification score attained for 1000 random permutations of the class
labels. We chose a simple linear classifier for simplicity and ease of
exposition. A companion paper describes results with more sophisticated
classifiers and classification strategies.

The match-vs-mismatch task, also chosen for simplicity of exposition,
differs from the cocktail-party task considered by other studies (which of
two concurrent streams is attended by the listener), although it captures
the main aspects of that task. Here, the classifiers were trained over a
relatively large dataset (>one hour) and tested on segments of new data,
analogous to what might occur in a practical system designed to control a
device (see paragraph Relevance for Applications of the next Section).
Note that the durations indicated in Fig. 7 (d) do not take into account the
impulse responses of filters implied in certain models, so the amount of
data involved in each case is slightly longer. In other words, the nominal
durations may not faithfully characterize the ability of a classifier to track
rapid changes in attention. The issue of classification latency is complex
(it depends on the time scales of attention-dependent features as well as
noise) and is explored in a companion paper.

Discussion

This study used CCA to reveal a subspace of cortical activity well
correlated with ongoing auditory stimulation (speech). CCA yielded
more accurate predictions (larger correlation values) than simpler for-
ward and backward models on the same data, and allowed better
Fig. 7. Match-vs-mismatch classification. (a) d' metric for the correlations of the fir
(b) Scatterplot of d' values (for an interval of 64s) versus correlation for all subjects
the audio envelope-derived component of the pair. (c) d' metric for the forward and
LDA model (thick blue line). (d) Percentage correct scores for a linear discriminant
95th percentile of the classification score attained for 1000 random permutations
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classification. The presence of multiple CC pairs with different spatial
signatures suggests that the analysis taps a complex cortical process
involving multiple sources. The multiple discriminative dimensions
support a wider range of classification schemes, and relatively good
classification scores were obtained with short data segments, which is a
step towards the goal of controlling an external device (for example a
hearing aid) on the basis of cortical signals measured by EEG.

This study builds upon a growing body of work exploring stimulus-
response relations using system-identification techniques and decoding
(Lalor et al., 2009; Lalor and Foxe, 2010; Power et al., 2011, 2012; Pasley
et al., 2012; Ding and Simon, 2012; Brandmeyer et al., 2013; Ding and
Simon, 2013; Ding et al., 2014; O'Sullivan et al., 2014; Koskinen and
Sepp€a, 2014; Treder et al., 2014; Di Liberto et al., 2015; Mirkovic et al.,
2015; Baltzell et al., 2016; Crosse et al., 2016; Ki et al., 2016; O'Sullivan
et al., 2017; Biesmans et al., 2017; Fiedler et al., 2017; Khalighinejad
et al., 2017; Fuglsang et al., 2017). Invasive measurements such as ECoG
(Mesgarani and Chang, 2012; Tankus et al., 2012; Zion Golumbic et al.,
2013; Chan et al., 2014; Martin et al., 2014; Leonard and Chang, 2014;
Mesgarani et al., 2014; Lotte et al., 2015; Martin et al., 2015; Herff et al.,
2015; Rao et al., 2017) support reconstruction of detailed spec-
trotemporal or symbolic representations of the stimulus, while EEG and
MEG have been related to coarser representations such as the stimulus
waveform envelope, as used here. Whereas ECoG samples mass electric
fields relatively close to their source, the quality of EEG and MEG signals
is degraded by source-to-sensor mixing and additional sources of noise.
Methods such as CCA can contribute to improve the quality of these
signals.

A complex stimulus-response relationship for continuous speech

Each CC pair is characterized by a filter applied to the speech enve-
lope. Each such filtered envelope waveform is orthogonal to the others,
and together they form an empirical decomposition that splits the stim-
ulus envelope into components spectrally distinct in amplitude and/or
phase (Fig. 6, top). This is analogous to decomposition over a modulation
filterbank, a hypothesized component of perceptual processing (Dau et al.,
1997; Ewert and Dau, 2000; Lorenzi et al., 2001; Singh and Theunissen,
2003; Joris et al., 2004; Ghitza, 2011; McDermott and Simoncelli, 2011;
Giraud and Poeppel, 2012; Wang et al., 2012; Xiang et al., 2013) that has
also been proposed as relevant for processing temporally modulated
sounds such as speech (Elhilali et al., 2003; Sukittanon et al., 2004;
Hermansky, 2010; Nemala et al., 2013). Early studies applied a bandpass
filter to EEG data to optimize SNR, e.g. 2–35Hz (Lalor and Foxe, 2010) or
2–8 Hz (O'Sullivan et al., 2014). Koskinen and Sepp€a (2014) applied a
logarithmic filterbank (wavelet analysis) to MEG data, obtaining
st 6 CC pairs from CCA model 3, calculated over intervals of various durations.
and CC pairs up to rank 12. The color indicates the spectral centroid (in Hz) of
backward models, the first CC pair of CCA model 3, and the joint multivariate
classifier for the same models as in (c). The dashed line in Fig. 7 (d) shows the
of the class labels.
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relatively high correlation values within each band, particularly for the
lowest frequency bands. Crosse et al. (2015) performed a similar analysis
on EEG data using a linear filterbank (bandwidth 2 Hz). Compared to a
filterbank, the empirical decomposition provided by CCA allows filter
parameters to be directly optimized in both amplitude and phase (at the
risk of overfitting, see paragraph Caveats).

Each CC is also characterized by a spatiotemporal filter applied to the
EEG data. Each filtered EEG waveform is orthogonal to the others, and
together they form a decomposition of the cortical activity into compo-
nents that are spectrally and/or spatially distinct. Evidence has been
found for spatially differentiated responses as a function of selective
attention (Power et al., 2012; O'Sullivan et al., 2014; Fuglsang et al.,
2017), linguistic competence (Brandmeyer et al., 2013), intelligibility
(Tiitinen et al., 2012), phonemic feature (Khalighinejad et al., 2017), or
modulation frequency band (Wang et al., 2012; Koskinen and Sepp€a,
2014). The general pattern suggests an early response to acoustic features
from primary regions, and later responses to higher-order features (e.g.
phonetic) from multiple secondary cortical regions (Norman-Haignere
et al., 2015). CCA captures this spatially distributed and
temporally-staggered activity, although, as mentioned earlier, there is
not a one-to-one correspondence between components and neural
sources.

Canonical correlation analysis

CCA is a powerful tool to find linear transforms to apply to time series
of brain data (Correa et al., 2010a; D€ahne et al., 2015). Like PCA it
produces component time series that are mutually decorrelated, but
whereas PCA maximizes variance, CCA is designed to maximize corre-
lation with a second set of time series. CCA is symmetrical with respect to
the datasets, and thus a similar transform is found for the second set that
maximizes correlation with the first. Components come by pairs (ca-
nonical correlates), the first pair consisting of the linear combinations of
either data set with the highest possible correlation between them.

CCA is intended for multichannel data, but can be applied to single
channel data by augmenting them with time-lags. The solution (linear
combination of time-lagged data) is then a FIR filter, the effect of which is
to equalize the spectrum of the time series so as to maximize its corre-
lation with the other dataset. Applying time lags to multichannel data
results in multichannel FIR filters that exploit both spectral and spatial
structure. The time lags can also be replaced by other convolutional
transforms (such as the logarithmic filterbank we used here). Finally,
applying nonlinear transforms to the data before CCA allows it to capture
non-linear relations between data sets, that can also be found using deep
learning techniques (Bießmann et al., 2009; Andrew et al., 2013; D€ahne
et al., 2015; Wang et al., 2015; Tang et al., 2017). CCA is a flexible tool to
discover complex convolutional and non-linear relations between sets,
but this flexibility is of course offset by the risk of overfitting entailed by
the many parameters involved (see paragraph Caveats).

In a recent study CCA was used to characterize auditory and audio-
visual EEG responses (Dmochowski et al., 2017). They applied
time-lags to the stimulus representation but not both stimulus and EEG,
and they did not consider a convolutional basis other than time lags, both
of which provided significant improvements in our study. CCA was used
by Biesmans et al. (2017) to combine information across channels of an
auditory filterbank to maximize correlation with EEG, and by Koskinen
and Sepp€a (2014) to maximize trial-to-trial reproducibility before
relating stimuli to responses. CCA is one example of a wider class of
methods that apply linear transforms to EEG to isolate components
correlated between datasets (Bießmann et al., 2009; Dmochowski et al.,
2012, 2015; Lankinen et al., 2014; Sturm et al., 2015; Biesmans et al.,
2017) or between modalities (Correa et al., 2010b; Sui et al., 2013).

Caveats and cautions

As other data-driven analysis techniques, CCA is prone to overfitting
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and circularity (Kriegeskorte et al., 2009). The risk is aggravated because
of the many parameters, particularly if multiple transforms of the data
(convolutional and non-linear) are included. Overfitting may be detected
and to some degree remediated using standard cross-validation and
surrogate data techniques, and the tendency to overfit limited by
dimensionality reduction, regularization, or prior constraints (Jiang and
Guo, 2007; Lahti et al., 2009; Andrew et al., 2013). While dimensionality
reduction and regularization are closely related, we prefer the former as
it allows dimensionality to be reduced based on criteria other than that
optimized by CCA (e.g. spectral content, or repeatability), and competing
models can be put on a similar footing by giving them the same number
of free parameters.

CCA, based on least-squares minimization, is prone to large-
amplitude outliers and glitches that may dominate the solution. It may
also pick up artifacts that happen to be correlated between data sets,
such as power line interference, linear trends, or filtering transients.
Introducing time lags (or filters) allows CCA to synthesize filters that
isolate particular frequency regions, leading to higher correlation
scores (compare CCA model 2 and 3 to CCA model 1). However, higher
correlation might also arise merely from the greater serial correlation
introduced by lowpass or narrowband filtering, that reduces the degrees
of freedom within the data and thus exacerbates overfitting. Indeed,
we observed that, for a given value of correlation, discriminability (d')
tends to be lower for components dominated by lower frequencies
(Fig. 7 (b)).

Fig. 7 (d) reports classification scores for data segments as short as 1 s,
but it should be noted that these nominal durations do not include the
length of the FIR filters. This should be taken into account when
comparing models, or judging the ability of an algorithm to track fast
changes in an application (see next section).

Relevance for applications

A motivation for this study was to develop a method to steer an
auditory assistive device (e.g. hearing aid) using brain signals. Several
studies have shown that it is possible to determine which sound source
among several is the focus of attention using EEG (Power et al., 2012;
O'Sullivan et al., 2014; Mirkovic et al., 2015; Fuglsang et al., 2017; Ki
et al., 2016; Biesmans et al., 2017). Good performance has been reported
for stimulus-response data of long duration (e.g. 30 or 60 s) for some
subjects, but accuracy falls short of what would be needed for real-time
control in a usable device. For example, a 95% accuracy (as reported
by Biesmans et al. (2017) for their best subject at 30 s duration) would
amount to one error in every 20 decisions. An error rate such as this is
likely to be frustrating for a user, and having to wait tens of seconds for a
decision is also not acceptable.

CCA brings our goal closer in at least three ways. The first is by
allowing the representations of both stimulus and response to be opti-
mized jointly, leading to higher correlation scores (Fig. 5) and better
classification (Fig. 7). The second is by providing multiple discriminant
measures that support multivariate classification as illustrated here with
a simple multivariate LDA classifier (Fig. 7 (d)). The third is by providing
a flexible framework that can harness additional streams of information
(for example non-linear transforms of the data). The best scores reported
here (Fig. 7) still fall short of what is needed for a useful device, but the
CCA methodology opens many routes that may lead to better perfor-
mance. In our opinion the value of CCA lies less in the scores reported
here, however encouraging, as in the potential it offers for further
development. A companion paper describes results with more sophisti-
cated classifiers based on CCA.

The computational costs associated with CCA are mild. The solution
requires eigendecomposition of a covariance matrix that can be calcu-
lated incrementally and updated in real time, and efficient standard
methods are available for eigendecomposition. Once the solution has
been derived, processing amounts merely to application of a multi-
channel FIR (Eqs. (4) and (5)).
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Conclusion

CCA strips the brain response of variance unrelated to the stimulus,
and the stimulus of variance that does not affect the brain response, and
thus improves our observation of the relation between stimulus and
response. The best performing CCA model produced multiple component
pairs, each consisting of a FIR filter applied to the stimulus waveform,
and a multichannel FIR filter (spatiotemporal filter) applied to the EEG
signal. The spatial signatures of these filters were diverse, suggesting that
the analysis is sensitive to multiple neural sources, although there is no
simple mapping of components to sources. Each pair was also associated
with a different FIR filter applied to the stimulus envelope, indicating
sensitivity to different rates of change. Signal components isolated by
CCA supported effective classification, in particular thanks to the fact
that multiple discriminative components are available, bringing closer
the perspective of a cognitively-controlled device based on recording of
attention-sensitive correlates of auditory stimulation. CCA is of great
interest as a tool to explore the effectiveness of transforms (e.g. nonlinear
or convolutional) applied to the data, to further our understanding of
perceptual processes and increase the effectiveness of applications.
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