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Summary

When presented with two vowels simultaneously, humans are often able to identify the constituent vowels. Com-

putational models exist that simulate this ability, however they predict listener confusions poorly, particularly in

the case where the two vowels have the same fundamental frequency. Presented here is a model that is uniquely

able to predict the combined representation of concurrent vowels. The given model is able to predict listener’s

systematic perceptual decisions to a high degree of accuracy.
© 2018 The Author(s). Published by S. Hirzel Verlag - EAA. This is an open access article under the terms of the
Creative Commons Attribution (CCBY 4.0) license (https://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Humans demonstrate a significant ability to identify and
concentrate on specific speakers within a complex auditory
environment. Whilst this clearly relies on a multitude of
cues, listeners can still identify both of a pair of steady-
state vowels, presented simultaneously [1]. The concurrent
vowel identification (CVI) task probes the effect that cues,
such as pitch differences, have on this recognition [2].

Many models predicting human performance for CVI
have been created [3, 4, 5, 6, 7]. The most widely accepted
models generate segregated representations of each vowel
by segregating information in different frequency regions
according to fundamental frequencies (FOs) inferred from
the model. The segregated representations are then com-
pared to stored templates of individual vowels, to predict
the concurrent vowel pair presented.

Meddis and Hewitt’s model [5] is widely cited as it is
able to qualitatively predict human improvement in vowel
identification when pitch differences are introduced be-
tween the vowel-pair. However, when no FO differences
are present, it under-predicts the correct identifications
made by humans in their study (human: 57%, model:
37%). Recently, Chintanpalli and Heinz [8] further high-
lighted that although the model qualitatively reproduced
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the overall improvement with FO differences, it very poorly
accounted for the specific confusions made.

Even when the FOs of all vowels presented are identical,
human CVI performance is greatly above chance [3]. This
implies that identification cues beyond pitch differences
are utilized that are not well accounted for in existing mod-
els. In this identical-FO scenario, all existing models con-
struct predictions of just individual vowels being identified
by comparing unseparated representations of concurrent
vowel pairs with internal templates of individual vowels.
Furthermore, to construct predictions of concurrent vowel
pairs being identified, either deterministic algorithms are
used (e.g. [4, 5, 7, 8]), or probabilistic decisions are made
following assumptions of independence (e.g. [3, 6]).

Here we explore the consequences of an alternative
recognition process, for the important case where there
is no FO difference between vowel pairs. We hypothesize
that predicting the complete internal representation of the
presented stimulus would be an optimal solution to the
CVI task, and might produce results in line with human
behaviour. Therefore, internal representations should de-
scribe concurrent vowel pairs (i.e. retaining dependent in-
formation), as opposed to individual vowels. Our model
simulates different variants of auditory processing, fol-
lowed by a naive Bayesian classifier which allows for
probabilistic predictions of human decisions and system-
atic comparison of different recognition strategies.

© 2018 The Author(s). Published by S. Hirzel Verlag - EAA.
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2. Concurrent Vowel Identification
2.1. Stimuli

Synthetic vowels (steady-state harmonic complexes) were
created using a Klatt-synthesizer [9]. The formant frequen-
cies and bandwidths matched those specified by Chintan-
palli and Heinz [8]. The fundamental frequency of all vow-
els were 100 Hz, and all vowels were set to 65dB SPL.
All vowels had a duration of 400 ms (including 10ms on-
set/offset raised cosine ramps).

With a total of 5 individual synthetic vowels (/i/, /a/, /u/,
@/, /3/) there are a total of 15 unique pairwise combina-
tions. The waveforms were added to one another to create
concurrent vowel pairs.

2.2. Task

The CVI task and data are detailed in Chintanpalli and
Heinz [8]. Five subjects were randomly presented one of
the 15 concurrent vowel pairs and were required to iden-
tify two vowels from the set of five (different or identical).
Each subject responded to 300 trials of concurrent vowels
with identical FOs. Participants had considerable training
with individual and concurrent vowel stimuli.

3. Computational Model

Our computational model generated ideal-observer based
predictions of human decisions. For each concurrent vowel
pair a probabilistic distribution of auditory activity was
generated from a simulation of the auditory system. This
was compared to distributions associated with all se-
lectable concurrent vowel pairs, or individual vowels as
in previous models.

3.1. Auditory System

Waveforms of concurrent vowel pairs (/v;,v;/ where
vi,v; € {i,a, u, &, 3}) were bandpass filtered, simulat-
ing middle and outer ear effects, and then passed to a lin-
ear cochlear filter bank. This comprised 100 gammatone
filters centred at logarithmically spaced frequencies from
80 to 4000 Hz. Different filter bandwidths could be imple-
mented, determined from masking experiments in humans
[10, 11] or guinea-pigs [12]. The outputs of each filter
were then half-wave rectified. An auditory representation
(u;;) followed from one of two processing pathways:

e Spectral processing. The logarithm of the RMS of
each channel was calculated and standardised across
channels (mean of 0, SD of 1).

e Temporal processing. An autocorrelation function was
applied to each channel [6]. These were pooled across
all channels and then standardised as above.

Independent, normal, zero-mean noise with identical vari-

ance was then added to each value of this representa-

tion. This resulted in a distribution of auditory activity

(a ~ N.(ﬂ[j’ 621I)). The variance was the only free pa-

rameter in our model.
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Rew
[ Classify auditory activity: Eq. 1

Figure 1. A diagram describing our model of CVI.

3.2. Classification

The task of the listeners, and our classifier, was to deter-
mine what stimulus had been presented for all instances of
auditory activity (a). We did this using a naive Bayesian
classifier, which determined regions of auditory activity
(Ry) where a given stimulus class (Cy) was more probable
than any other stimulus class to have produced said audi-
tory activity (i.e. a € Ry if k = argmax; P(C;|a)). Given
the presentation of a concurrent vowel pair, the probability
that our model predicted a certain stimulus class had been
presented was

P(Ck|/Vi,Vj/)=JP(a|/v,~,vj/)da. (1)

acRy

These high dimensional integrals were then evaluated nu-
merically.

We modelled two approaches for classification which
differed in the stimulus classes used, each producing a
confusion matrix (P(/vy,vy/|/vi.v;/) where vy, v, €
{i,a,u, @, 3}):

e Combined Classes. Each class was a probabilistic tem-
plate describing a combination of vowels. These were
constructed by passing concurrent vowel pairs through
our auditory model. Due to the equivalence of stimuli
classes with the stimuli presented, calculating Equation
(1) produced a suitable confusion matrix.

e Individual Classes. Each class was a probabilistic
template describing an individual vowel (calculat-
ing Equation (1) resulted in P(/v,/|/vi,v;/) where
v, € {i,a,u, &, 3}). To obtain predictions of con-
current vowel pair presentation probabilities, individ-
ual vowel presentation probabilities were multiplied to-
gether. This approach, assuming individual vowels are
identified independently of one another, was initially
proposed in [4].

For each model variant, we selected the variance of the in-
ternal noise (o2; single free parameter) to predict the clos-
est fit to the overall percent of concurrent vowels correctly
identified by listeners.
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Figure 2. A scatter plot comparing the probabilities with which
humans predicted concurrent vowel pairs had been presented,
against probabilities predicted from the combined-class (o; 6% =
1.03) and individual-class (x; 6> = 1.20) variants of our spectral
model. The probabilities of confusing /3+,3/ for /u,3/, and cor-
rectly identifying /a,&/, are indicated.

4. Results

The model predicts the combined auditory response of pre-
sented concurrent vowels (Section 3.2: combined classes).
Given this assumption it was able to match the mean num-
ber of concurrent vowels correctly identified by listeners
in the absence of any FO differences (73%). More impor-
tantly, however, the probabilities of individual decisions
(i.e. the confusions) predicted by our model are acutely
similar to those made by listeners (Figure 2, circles), de-
spite the fact that no attempt was made to fit the confusions
themselves. Spectral processing models were best at pre-
dicting human decision probabilities (r > 0.94, p < 0.01;
r was calculated between sets of values, ignoring any ma-
trix structure). Decisions predicted using temporal pro-
cessing were less accurate (although in all cases r > 0.86,
p <0.01).

We also considered a model which compared auditory
responses of concurrent vowels to representations of indi-
vidual vowels (Section 3.2: individual classes). Like sim-
ilar previously published models, it fails to approach the
mean number of concurrent vowels correctly identified by
listeners for any amount of internal noise, predicting a
maximum value of 42% when a temporal pathway was im-
plemented. Additionally the probability of individual de-
cisions were poorly correlated with human data (max r of
0.42, p <0.01).

The predictions from the best fitting of such models
(Figure 2, crosses) are clustered close to 0% and 100%
correct, suggesting that these errors are much more spe-
cific and confident than those of human listeners. Consis-
tent with this, the entropy of the decision probabilities,
corresponding to their randomness, was lower for mod-
els of individual-class recognition (<4.86 bits) than either
the human data (5.11 bits) or the combined-class recogni-
tion model (>5.05 bits). Thus, the models of individual-
class recognition make more errors than people because
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Figure 3. Correlation coefficients () between predicted confu-
sions for model variants, and listener confusions. ‘Sp’: Spec-
tral pathway, ‘Te’: Temporal pathway. [11],[12],[13] are refer-
ences to different cochlea filter-shapes. a) Individual classes, b)
Combined classes, ¢c) Combined classes with non-linear cochlear
model [13].
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Figure 4. (Colour online) Average number of concurrent vowels
correctly predicted as a function of internal noise, for variants
of our model. [11],[12],[13] reference different cochlea filter-
shapes.

they make the wrong decisions consistently, and despite
the probabilistic nature of the models.

The combined-class model which predicted human de-
cisions best used spectral processing, outperforming the
temporal representation. Perhaps surprisingly, neither tem-
poral nor spectral processing depended on whether fil-
terbanks were based on human or guinea-pig bandwidth
estimates (Figure 3b). Further investigation revealed that
for spectral processing, filters with narrower bandwidths
approached human like performance with more internal
noise (Figure 4, solid lines). This was not the case when
using a temporal pathway, in which frequency resolution is
not such a constraint (Figure 4, dashed lines). In contrast,
identification from individual classes (Figure 4, dotted and
dash-dotted lines) did not converge on human performance
for any amount of internal noise.

Finally, we tested a more sophisticated model of the
guinea-pig cochlea, which incorporated non-linear filter-
ing and haircell transduction [13]. This produced the same
qualitative relationships aforementioned (Figure 3c).
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5. Discussion

The presented model demonstrated how predicting the
complete internal representation of concurrent vowels pro-
duces decisions in line with listener behaviour, when no
FO differences are presented. However, instead assuming
individual vowels are identified independently of one an-
other (Section 3.2: individual classes) produced poor esti-
mates of listener confusions. In fact fitting a confusion ma-
trix in order to optimise the correlation coefficient between
predicted and human confusions, under the constraint that
individual vowels are identified independently of one an-
other, results in a theoretical maximum r of 0.88.

Assmann and Summerfield [3] explored the effect of
various transformations to auditory excitation patterns on
predictions of listener CVI data, incorporating this as-
sumption of independence. They achieved correlations
with listener confusions between 0.42 and 0.71, over 0.25
lower than our best prediction. The authors found that em-
phasising spectral peaks best matched their listener data.

The work promotes the use of an ideal observer type
model as an initial point to investigate cues beyond pitch
for the CVI task. The model hints at a process that seeks
to optimally predict which concurrent-vowel pair led to a
corresponding auditory representation. Considering where
listener behaviour deviates most from ‘ideal’ could repre-
sent a structured approach to extending, and improving the
performance, of this model.

6. Conclusion

A novel computational model predicts human CVI be-
haviour, when vowels have identical pitches. It is better at
predicting listener’s systematic perceptual confusions than
existing models, when ideal representations of combined
speech were implemented. The model’s simplicity allows
potential extension to more complex scenarios with more
identification cues (e.g. FO differences), and to investigate
the possible mechanisms underlying CVIL.
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