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Abstract

Entanglement is not only the key resource for many quantum technologies, but es-

sential in understanding the structure of many-body quantum matter. At the interface

of these two crucial areas are simulators, controlled systems capable of mimick-

ing physical models that might escape analytical tractability. Traditionally, these

simulations have been performed classically, where recent advancements such as

tensor-networks have made explicit the limitation entanglement places on scalability.

Increasingly however, analog quantum simulators are expected to yield deep insight

into complex systems. This thesis advances the field in across various interconnected

fronts. Firstly, we introduce schemes for verifying and distributing entanglement

in a quantum dot simulator, tailored to specific experimental constraints. We then

confirm that quantum dot simulators would be natural candidates for simulating

many-body localization (MBL) - a recently emerged phenomenon that seems to

evade traditional statistical mechanics. Following on from that, we investigate MBL

from an entanglement perspective, shedding new light on the nature of the transi-

tion to it from a ergodic regime. As part of that investigation we make use of the

logarithmic negativity, an entanglement measure applicable to many-body mixed

states. In order to tie back into quantum simulators, we then propose an experimental

scheme to measure the logarithmic negativity in realistic many-body settings. This

method uses choice measurements on three or more copies of a mixed state along

with machine learning techniques. We also introduce a fast method for computing

many-body entanglement in classical simulations that significantly increases the

size of system addressable. Finally, we introduce quimb, an open-source library

for interactive but efficient quantum information and many-body calculations. It

contains general purpose tensor-network support alongside other novel algorithms.





Impact Statement

Quantum technologies have the potential to make a huge impact across many ar-

eas of science and industry. One such technology is quantum simulation, which

aims to mimic crucial models of interacting quantum particles with other, more

controllable quantum systems. Such ‘many-body’ models are likely to underpin all

sorts of advanced materials and chemicals that we expect will essentially always be

impossible to fully simulate on normal, or ‘classical’, computers. One of the reasons

that current computers find this such a hard task is entanglement – correlations

between quantum components which are stronger than anything we are used to in

our ‘classical’, day-to-day lives. Beyond this, entanglement is also a key perspective

for understanding a myriad of outstanding problems in fundamental physics. Clearly

then, tools to address questions of entanglement in this many-body setting are highly

desirable, and these are a central part of what this thesis provides.

One of these is experimentally viable schemes for both measuring and dis-

tributing entanglement in quantum simulators. Another is a method for computing

entanglement in much larger systems than has previously been possible. These tools

are relevant for both quantum physicists working experimentally on quantum simula-

tion or those wanting to perform classical simulations. We also use entanglement

to reveal new features of a highly unusual phenomenon – many-body localization

– that has attracted much attention in the condensed matter community. These col-

laborations have resulted in various academic publications. Another part of this

research has been the development of open-source software for tackling quantum

entanglement and simulation problems. As well as being useful in this field, work

on the underlying software has involved collaborations with quantum chemists and

climate scientists among many others, and produced several software publications.
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Chapter 1

Introduction

Quantum science promises to fundamentally change many areas of technology,

including, possibly most prominently, computation. However, in its most universal

form, practical quantum computation is still widely considered to be a significantly

distant goal. A reprieve is that one of the most useful tasks a quantum computer

can do does not need to be done in a universal manner, nor even without errors —

this is the task of simulating other quantum systems. The desire to do this arises

from the huge difficulty in making ab initio calculations, either using analytical or

classical computational methods, of the properties and dynamics of general many-

body quantum systems. Many fundamental questions remain open regarding such

systems, which also underpin understanding of all complex materials and chemicals.

As such, any method that allows one to better predict their properties and understand

them is clearly attractive, and this is the essential offer of quantum simulation.

Simulation sits at the intersection of, and requires the study of, several distinct

fields. Firstly, the target systems and phenomena of interest are largely motivated

by condensed matter models and many-body quantum theory. Secondly, there is an

aspect of computational complexity - where does quantum simulation fit ‘below’

quantum computation, and what are the upper limits of classical simulation that

define when quantum simulation is useful? Finally, quantum simulations are at

the moment necessarily constrained by the physical architecture they run on —

what models and measurements are possible now is thus motivated by the latest

experimental developments.
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An important perspective to take across all of these areas is that of entanglement.

Although the situation is more subtle than simply saying that entanglement is the

only thing separating quantum from classical simulations, it can be seen as, broadly

speaking, the major ingredient. A direct implication of this is that at the limit of

both experimental and computational methods, there often exists an effort to include

or maintain as much controlled entanglement as possible. In the experimental

setting this might include suppressing coherence and improving the quality of multi-

qubit gates. In the classical simulation setting, the clearest example might be

tensor networks, which are explicitly constructed by specifying the geometry and

amount of entanglement. Beyond this feature of entanglement in a loose sense

‘delimiting’ classical and quantum simulations, it can also act itself when quantified

as a versatile probe of various many-body phenomena. Particularly, its very general

and abstract nature can reveal fundamental features that more traditional quantities

might otherwise miss.

Given these points above, there is a strong case to be made for developing

additional tools that let us address questions of entanglement in a many-body setting

– be it in actual quantum simulations, or classical computational simulations. Indeed,

developing these two sides hand in hand is particularly important with regards to

near term quantum devices, where it will be essential to verify and cross-reference

observed behaviour with known behaviour for as long as possible. In other words, as

well as offering insight of their own into complex systems, classical simulations will

be needed to certify and ‘trust’ quantum simulations, and entanglement should be a

key aspect of this.

In this thesis we explore and advance the topic of many-body entanglement

in quantum and classical simulations in a number of ways, but we begin in the

remainder of this chapter by reviewing a variety of topics necessary to understand

the context and basis for this research. This includes quantum simulation, key many-

body models, entanglement, tensor-networks and experimental realizations. These

sections aim to concisely set the scene, with more in-depth introductions found at

the beginning of each chapter.
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Then in Chapter 2 we propose two experimental schemes, one for characterizing

a ground-state and one for distributing entanglement, tailored to quantum-dot arrays

– a promising candidate for solid state quantum simulations. We also note that the

effective model relevant for quantum dot arrays is very similar to that of a many-

body localized spin chain and we provide numerical evidence that indeed quantum

dot-arrays should naturally exhibit a transition to non-ergodic behaviour.

In Chapter 3 we focus further on the posited many-body localization transition,

by studying two entanglement related quantities: the Schmidt gap and the disjoint

logarithmic negativity. In doing so we resolve two outstanding problems. Firstly, the

identification of a quantity that scales with a critical exponent in accordance with

theoretical predictions. Secondly, the identification of a length scale that appears

to diverge from both sides of the transition. Both of these results are evidence that

aspects of this unusual phase transition may yet be understood using traditional

methods – though exactly how this approach might be made remains elusive.

Given the success of the logarithmic negativity in revealing features of the many-

body localization transition, as well as its various uses elsewhere in the literature,

we then move in Chapter 4 onto developing a scheme for measuring the logarithmic

negativity in the laboratory. This scheme involves preparing copies of a state and

then performing counter-propagating swap measurements in order to evaluate the

‘partially transposed moments’. Crucially, by adopting a machine learning approach

to extracting the logarithmic negativity from these moments, we show that in many

situations three copies of the state is all that is needed for robust experimental

quantification of the many-body entanglement present.

The approaches in Chapter 3 and Chapter 4 both require the classical compu-

tation of the logarithmic negativity for as large subsystems of many-body states

as possible. Although the logarithmic negativity is one of the only ‘efficient’ en-

tanglement measures to compute, this is only in a technical sense. In fact, in the

general case, computing it naively one is still limited to relatively small subsystems.

To overcome this, in Chapter 5 we develop a generic method for stochastically but

accurately computing ‘spectral quantities’ for operators lazily represented as tensor
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networks. This method can be trivially applied to the computing of the logarithmic

negativity in arbitrary subsystems of densely represented states and block subsystems

of matrix product states. In doing so we essentially double the system size for which

many-body entanglement is a tractable quantity to classically compute.

Finally, in Chapter 6 we introduce and demonstrate quimb, a python library

for quantum information and many-body calculations developed as part of this

thesis. The relatively ambitious goal for quimb was to make a library that on the

one hand is very easy and interactive to use, thus promoting quick exploratory

research, but on the other hand does not sacrifice anything in terms of performance.

Structurally, quimb is split into two parts: an core module for ‘exact’ dense and

sparse calculations, and a tensor network module for larger many-body simulations.

We demonstrate basic usage of both whilst noting various novel design advances.

All of the other chapters make heavy use of simulation data generated with quimb,

which includes advanced implementations of algorithms not found elsewhere.

1.1 Quantum Simulation

As with many things, the idea of a quantum simulator begins with Feynman, and

his proposal in the early 1980s that a computer should be made with with quantum

components [7]. Although the exact nature of how a quantum computer would be

useful for solving general problems came later [8] (most prominently with Shor’s

algorithm [9] for factorizing prime numbers in polynomial time), Feynman under-

stood that a huge amount of power was to be gained, his clear example being the

difficulty met when attempting to simulate a quantum model using classical bits.

The last 20 years have seen an incredible push towards realizing universal quantum

computation, with much progress despite huge challenges. More recently however,

there has been also been rising interest in constructing controllable quantum systems

with the sole goal of simulation - spurred on by the fact that this comes with far less

stringent engineering requirements. Recent reviews of quantum simulation can be

found in [10, 11, 12, 13, 14, 15, 16].

The distinction between computing and simulating is important, which we hope
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to highlight in this section, but additionally, this emerging field has focussed on ana-

log rather than digital operation, so it is worth dwelling on what that means. Here, the

continuous dynamics of some physical system are used to mimic a model of interest,

with both being described approximately by the same mathematical equations. His-

tory has many examples of classical analog devices, both for simulating — such as

orreries that predicted the position of the solar system’s planets — and for computing

— for example electronic integrators and mechanical differential equation solvers. At

one point there was hope that these would even provide a form of supercomputing,

since they could potentially solve very hard problems (NP-Complete) in polynomial

time, although this was shown to come at the price of an exponential requirement for

resources [17] and huge sensitivity on the initial set-up of the physical parameters.

Instead, the rapid rise of general purpose digital computers, with discrete gates and

error correction, means that we now think largely of simulations taking place on

these – this is what we will refer to as classical simulations.

For simulating quantum systems, the first problem that one encounters is that

even storing a description of the state, |ψ〉, requires an exponential number of

coefficients. Taking the simplest non-trivial case of a generic pure system ofN spin-1
2

particles, 2N complex coefficients are required for a complete description, putting

sizes of N > 30 beyond the capability of modern computers to store completely

in memory, let alone manipulate and solve. So the idea of an analog quantum

simulator is to represent this quantum information with exponentially fewer quantum

components, interacting in the same way as the target model.

Here, the model is essentially all contained in the Hamiltonian, H, that governs

the system’s dynamics via Schrodinger’s equation:

∂

∂t
|ψ(t)〉 = − i

~
H |ψ(t)〉 (1.1)

where we set the reduced Planck constant ~ = 1 hereafter unless stated. We may be

interested in the static, equilibrium properties of such a system, derived from the

thermal state:

ρ(β) = e−βH (1.2)
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where β denotes the inverse temperature (kBT )−1. The groundstate |ψgs〉, in particu-

lar is likely to be of interest:

H |ψgs〉 = E0 |ψgs〉 (1.3)

where E0 is the minimum eigenvalue of the Hamiltonian. One can equivalently

define it as the zero temperature thermal-state:

|ψgs〉 〈ψgs| = lim
β→∞

ρ(β) (1.4)

when the system is non-degenerate. More ambitious might be to simulate the

dynamics of system, where for a time-independent Hamiltonian the unitary operator

governing evolution is given by:

U(t) = e−iHt (1.5)

such that at some later time the state is given by

|ψ(t)〉 = U(t) |ψ(0)〉 . (1.6)

Or written explicitly in terms of eigenpairs, {Ek, |k〉}, one finds

|ψ(t)〉 =
∑
k

|k〉 e−iEkt 〈k|ψ(0)〉 , (1.7)

which makes clear the important role that all Hamiltonian eigenstates play when

considering general dynamics – a theme we shall return to later.

In this thesis we will indeed mostly consider the simulation of finite dimensional,

pure states with time-independent Hamiltonians, since these are most relevant for

the idealised models of closed interacting quantum systems. We note that even in

this ‘simplified’ regime, which nonetheless must in some way underpin open and

driven dynamics, there is certainly no lack of open questions.

Before discussing what criteria an analog quantum simulator needs to fulfil in
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order to accomplish the above, it is worth mentioning digital quantum simulation.

As shown by Seth Lloyd in 1996 [18], it is possible to efficiently perform a quantum

simulation on a digital quantum computer, for physically reasonable Hamiltonians —

by which we mean finite dimensional systems with local interactions such that the

Hamiltonian can be written as:

H =
N∑
i=1

hi (1.8)

where each local term hi only acts non-trivially on a bounded number of particles,

say k. This type of Hamiltonian encompasses the vast majority of physical models.

The essential argument is to break down the exponential needed for the unitary

evolution operator U from Eq. (1.5) using the Suzuki-Trotter expansion:

U(t) = lim
n→∞

(∏
i

e−ihi
t
n

)n

. (1.9)

Since Lloyd considered a quantum computer with a universal set of gates, for each

time step ∆t = t
n

, the k-local exponential terms e−ihi∆t can always be applied

individually using discrete gates in an error corrected fashion. The overall error

accumulated originates from the discarded terms in the expansion, which can be

arbitrarily reduced using smaller time-steps (for the first order Suzuki-Trotter ex-

pansion above the error reduces as ∆t2), or by using a higher order expansion with

correspondingly more complex local exponential gates. However, although this is a

very powerful scheme, the requirements are essentially as demanding as for a full

quantum computer. Thus the quantum simulators we refer to here are implicitly

analog, and this is the case in most current literature.

So far, we have mentioned that a simulator must be governed by approximately

the same Hamiltonian as its target, with continuous dynamics, and have a degree of

controllability. To expand on these conditions it is worth roughly sketching the five

criteria proposed by Cirac and Zoller [13], in analogy to DiVincenzo’s criteria for a

quantum computer [19], which clarify to an extent the non-implementation specific

details that a quantum simulator needs to satisfy.
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1. Quantum System: It should be some isolated system of quantum particles,

with many degrees of freedom, and able to sustain large-scale entanglement.

This ensures both that a simulator will be applicable to real quantum models,

and also that it is useful in the sense of performing ‘calculations’ beyond any

classical computer.

2. Initialisation: It should be possible to prepare the simulator in a known state —

pure states in particular being desirable.

3. Hamiltonian Engineering: Although a simulator will likely be limited to a

particular class of models, the interactions and parameters within that model

should be tunable. This is particularly important in the context of exploring

the phases of a model.

4. Detection: A simulation if of course only useful if one can measure quantities

after and possibly during its operation. Often the available methods of mea-

surement will be limited, for example, only local or only collective properties

might be accessible.

5. Verification: There should be methods available to verify the operation of the

quantum simulator. In the end, and by definition, a useful run of a quantum

simulator will not be able to be completely verified by classical means. How-

ever, the constituent parts should be verifiable, as should certain limiting cases

of known models. For small sizes and time-scales, numerical methods should

serve as a comparison as well.

We can see from these criteria already that ‘large scale’ entanglement is expected to

play a part, and so we move on to introducing that next.

1.2 Entanglement
An increasing trend in the study of many-body quantum models is the application

of ideas from quantum information [20, 21, 22]. Much of this is related to moving

from classical notions of correlations to quantum entanglement, and in one sense,
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entanglement can be thought of as ‘super-correlation’. More specifically, entangle-

ment is generally defined for a bipartite mixed state, ρAB, as the inability to describe

a state as the sum of tensor product states over each subsystem:

ρAB 6=
∑
i

pi
(
ρA
i ⊗ ρB

i

)
(1.10)

where pi denote the weights or probabilities of each state. If Eq. (1.10) is satisfied

we call the state separable. While this definition is quite clear, when it comes the

quantifying the amount of entanglement present the story becomes trickier.

One case that is simple however is that of bipartitions of pure states, for which

ρAB = |ψAB〉 〈ψAB|. Here, once can compute the reduced density operator:

ρA = TrB(|ψAB〉 〈ψAB|) (1.11)

and then simply find its Von Neumann entropy:

S[ρA] = −Tr (ρA log2 ρA) . (1.12)

Since in this case the entropy can only be generated through entanglement between

A and B, it naturally quantifies the total entanglement between them. Indeed,

for pure bipartitions, all entanglement measures are monotonically related to this

entanglement entropy (though they don’t necessarily reduce to the same value).

Instead, for mixed states there are a range of operationally defined measures

which quantify how much of a helpful resource, such as singlet pairs, can be ex-

tracted [23]. These are generally hard to actually compute, particularly for many-

body states, since they often are defined as a maximum over operational procedures –

a tricky optimization problem for generic states. Similarly, entanglement measures

defined relative to the ‘closest’ separable state must also be computed using an

optimization – making them unwieldy.

For these reasons, in this thesis we largely stick to working with the logarithmic

negativity [24, 25, 26, 27], which can be calculated in a straightforward manner



30 Chapter 1. Introduction

and indeed is known rigorously to be one of the only measures for which that is

possible [28]. It is defined as:

E(ρAB) = log2 |ρ
TB
AB| (1.13)

with | · | denoting the trace-norm, and ·TB the partial transpose. One can see with

reference to Eq. (1.10) that in the separable case the partial transpose has no ef-

fect since ρBi is Hermitian, the trace norm thus remains equal to one and we find

E = log2(1) = 0. We note that while there are so-called ‘bound-entangled’ states

for which the logarithmic negativity is still zero, these are not expected to be espe-

cially important in the many-body setting – despite still being useful for quantum

information processing tasks [29].

One possible conceptual picture of entanglement is that of information encoded

non-locally, that is to say, only retrievable using a measurement that acts globally

on the whole system. A naive quantity that one might then expect to quantify

entanglement is the mutual information, defined as:

I(ρAB) = S[ρA] + S[ρB]− S[ρAB] . (1.14)

However the difference between I(ρAB) and E(ρAB), for example, is that the mutual

information quantifies the total amount of correlation – be it classical or quantum

– and thus also includes a contribution from information that is available locally.

In order to illustrate the various points made above, in Fig. 1.1 we generate many

random two-qubit states of varying purity, Tr(ρ2
AB), and plot the logarithmic nega-

tivity against the mutual information. We note that for all the pure states, there is

indeed a monotonic relationship between the entropy and the logarithmic negativity.

However, although there is a reasonable correlation between the mutual information

and logarithmic negativity, there are many states with significant classical correlation

but essentially no entanglement – as quantified by E . For this reason we expect there

to be fundamentally different aspects of many-body systems revealed by using a

genuine entanglement measure.
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Figure 1.1: Comparison of the logarithmic negativity and the mutual information for ran-
domly generated two-qubit states. The purity of each random instance is mapped
to its colour.

In terms of moving from the canonical case of two qubits to many-bodies, we

note that the logarithmic negativity is agnostic with regard to the underlying Hilbert

space sizes, unlike the concurrence for example. For a pure many-body state, |ψ〉 ,

to be ‘highly entangled’, as desirable in a quantum simulator, loosely speaking we

would expect the entanglement to be high across any bipartition. Although the

entanglement entropy is sufficient in that scenario, it is when we look at bipartite

subsystems within the pure state,

ρAB = TrC (|ψABC〉 〈ψABC|) , (1.15)

that the need for a genuine entanglement measure emerges. Being able to ignore an

environment, C, in this way allows one much greater flexibility when probing a many-

body state, as we will later demonstrate. Note that the many-body entanglement we

refer to is distinct from multipartite entanglement, though this can be defined easily

by considering combinations of bipartite entanglements [30].

The study of entanglement in many-body systems has been crucial in under-

standing, for example, topological systems [31], where long range entanglement is

an essential description of the different phases of matter that can occur. Many early

studies began by considering the block-properties of entanglement in interesting
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models [32, 33, 34] and this is still a recurring theme. More recent examples of

using of other, slightly different quantum information measures include character-

izing quantum phase transitions, for example using the quantum discord [35] or

Schmidt gap [36]. The relationship of entanglement to entropy in field theories has

also particularly flourished in recent years due to the development of the ‘replica

trick’ for analytically calculating both the entanglement entropy and the logarithmic

negativity [37, 38, 39]. This bridging of fields has also been fruitful the other way

round, with quantum error correcting codes and topological quantum computing [40]

both strongly dependent on input from the condensed matter community.

1.3 Many-Body Quantum Models
With these notions in place we move on to describing several canonical models from

many-body quantum physics that strongly motivate the development of fully fledged

quantum simulators and will act as reference points throughout the later chapters.

1.3.1 Hubbard Model

There is a vast range of possible models that motivate quantum simulation, but we

introduce the two most common lattice models, which nonetheless provide a very

rich range of behaviour. Firstly, the Hubbard model [41, 42], which aims to describe

particles hopping in a periodic potential while interacting with each other. The model

can be formulated for both bosons and fermions, but we show the latter, spin-1
2

version, since this applies to electron transport and thus has most relevance for the

simulation of real materials and molecules. The Hamiltonian is written for N sites

as:

HHubb = −t
∑
〈i,j〉,σ

(
f †i,σfj,σ + fi,σf

†
j,σ

)
+ U

N∑
i=1

ni↑ni↓. (1.16)

Let us break down the parts:

• The first term accounts for hopping between sites with tunnelling energy t, the

sum running over nearest-neighbours 〈i, j〉 and spin states σ = {↑, ↓}, with

f †i,σ (fi,σ) the fermionic creation (annihilation) operator acting on site i and

spin state σ.
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• The second term accounts for an on-site interaction, of strength U , with

niσ = f †i,σfi,σ the occupation number of site i with spin state σ.

We note that the Bose-Hubbard model can be formulated in very similar terms – as

the sum of kinetic and interaction contributions – with a couple of key differences.

Firstly, unless one adopts hardcore bosons, there is no effective repulsion from the

exclusion principle that limits the number of particles per local state. Secondly,

the fermionic operators must satisfy anti-commutation relations on different sites,

introducing a negative sign upon interchange of particles.

Despite the fact that Eq. (1.16) is possibly the simplest model we can formulate

of interacting fermions, it displays a rich variety of behaviour, much of which been

directly observed. For example, in two-dimensions and for small attractive U (< 0),

its groundstate exhibits a crossover from a Bardeen-Cooper-Schrieffer superfluid

to a Bose-Einstein Condensate [43]. For repulsive U (> 0), it instead can form a

Mott insulator [44], or exhibit antiferromagnetic ordering with an effective exchange

coupling Jex = 4t2

U
. However, depending on the choice of geometry and parameters,

the full phase diagram of Eq. (1.16) is far from being completely solved analytically

– though for one-dimensional systems is can be solved using the Bethe ansatz [45].

A few extensions of the model are notable in terms of quantum simulation for

their possible practical relevance. With the addition of spin-interactions, yielding

the t− J model, this kind of system is a strong candidate for capturing the essential

mechanism of high-temperature superconductivity [46, 47]. If we instead treat the

‘sites’ as molecular orbitals, by adding a two-electron hopping term we yield an

effective model relevant for quantum chemistry [48].

1.3.2 Heisenberg Model

Another crucial lattice model to consider is the Heisenberg model [49] and its variants,

which describe magnetic systems made up of lattices of spins. The Hamiltonian here,

for N sites, is given by:

HHeis =
∑
〈i,j〉

(
JxS

x
i S

x
j + JyS

y
i S

y
j + JzS

z
i S

z
j

)
+B

N∑
i=1

Szi (1.17)
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where again the first sum runs over nearest neighbours, and the spin operators acting

on site i for spin-half are given in relation to the Pauli operators, {X, Y, Z}, by:

Sxi =
1

2
Xi , Syi =

1

2
Yi , Szi =

1

2
Zi . (1.18)

For the second term B denotes the strength of an external magnetic field, here in the

z-direction.

If we take Jx = Jy = Jz = J then we recover the standard isotropic Heisenberg

model, with antiferromagnetic order induced when J > 0, and ferromagnetic order

when J < 0. Common variants of Eq.(1.17) include: (i) the Ising model, for which

Jx = Jy = 0 and the global magnetic field is often taken in the ‘transverse’ X-

direction; and (ii) the XY-model, for which Jz = 0. In its unmodified form, the

Heisenberg model is analytically tractable using the Bethe ansatz [50], though this

situation is complicated by the introduction of longer range interactions, or locally

varying coupling strengths and magnetic fields.

Although notionally describing quite different underlying physical systems, a

key aspect of Hubbard-like and Heisenberg-like models is that they can be mapped

into each other and thus in fact share certain fundamental features. A good example

of this is the Jordan-Wigner transformation [51], which maps spins to a system

of spinless (unlike Eq. (1.16)) fermions. The initial step is to define raising and

lowering spin operators acting on site j as:

S+
j = Sxj + iSyj (1.19)

S−j = Sxj − iS
y
j . (1.20)

These superficially look like good creation and annihilation operators, however, the

problem with these two is that they commute on different sites. In order to reproduce

the correct fermionic anti-commutation relations Jordan and Wigner introduced

additional ‘string’ operators that produce the correct phase based on the occupancy

of fermions to the ‘left’ of the creation/annihilation operators – in one dimension. If

we also associate the z-component of spin with the fermionic occupation operator,
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f †j fj = nj , we get the full mapping

Szj = f †j fj −
1

2
(1.21)

S+
j = e+iπ

∑
k<j nkf †j (1.22)

S−j = e−iπ
∑
k<j nkfj . (1.23)

Although the non-local string operators are cumbersome to deal with generally,

for specific versions of Eq. (1.17) these phases cancel and a simple Hubbard-like

model emerges. One such example is the XY-model, which in fact maps to the free,

spin-less version of Eq. (1.16). It is in this sense that the XY-model (and therefore

also the Ising model) is often referred to as not being a true interacting, many-body

model, despite notionally consisting of many interacting particles. With reference to

digital quantum simulation, it is also worth noting that a generalization of the Jordan-

Wigner transformation is what allows fermionic systems to be efficiently simulated

on quantum computers with non fermionic components [52]. In this thesis we do

in fact work mostly with spin chains, but it is important to keep in mind that many

phenomena, such as many-body localization, are just as relevant for Hubbard-like

models.

As hinted at, for both Hubbard-like and Heisenberg-like models, the geometry

and dimension of the underlying lattice plays an very important role in determining

the properties of the system. By introducing varying or random couplings and

interactions per-site, frustrations can emerge in these models which make them

even harder to treat analytically. Both of these facts motivate quantum simulators

as an important tool for exploring their rich behaviour when trying to understand

material-orientated properties.

1.4 Many-Body Quantum Phenomena

Beyond understanding of real materials, there are many fundamental questions that

quantum simulators would likely shed light on [53, 54], and in this section we

briefly summarise three topics that appear throughout the later chapters – quantum
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phase transitions, questions of equilibration and thermalization, and many-body

localization.

1.4.1 Quantum Phase Transitions

The many phases of the Hubbard and Heisenberg models were alluded to, and a

key concept of interest is the nature of quantum phase transitions [55] between

them. Unlike classical phase transitions, these occur at zero temperature, as some

parameter of the Hamiltonian is varied, triggering a sudden change in the character

of the ground-state. Specifically, if a Hamiltonian, H(g), is parametrized by a

scalar g, then we expect its groundstate, |ψ0〉 for some range of g to have similar

entanglement properties. If however we approach some critical point gc, delimiting

two phases, we expect excited states of the Hamiltonian to approach the energy

of the groundstate. At this point one of these excited states might become the

groundstate, or an avoided level crossing might occur. In either case, the nature

of the groundstate’s entanglement structure at that point is drastically changed. A

canonical example is the transverse Ising model as we vary the external transverse

magnetic field Bx. Additionally, the spin-half Heisenberg chain with Jx = Jy = Jz

in fact sits at a critical point.

Mapping where these transitions occur in the parameter space of a model is one

primary aim of quantum simulators. This fact, and that the defining features of a

phase are generally global quantities, drives the statement that quantum simulators

can tolerate a moderate degree of error, since if one were simply identifying phases,

small local errors would probably not be able to drive the system into a different

phase. At the critical point between phases, the state of the system is of particular

interest, with no universal framework for understanding the structure and dynamics

of the system present yet [56]. Specifically, Landau’s theory of symmetry breaking

and universal scaling exponents does not seem to be applicable to all critical points.

Again, it is hoped that analog quantum simulators will allow a deeper exploration of

these systems.
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1.4.2 Equilibration & Thermalization

Another key area of interest is the relationship between initially out of equilibrium

quantum systems and the emergence of statistical mechanics – a process as yet not

completely understood. By inspecting Eq. 1.5, it is clear that globally an initial

state in a closed system undergoes very constrained evolution. Specifically, for

time-evolved state ρ(t) = |ψ(t)〉 〈ψ(t)|, the matrix-elements for two different energy

eigenvectors |i〉 and |j〉 evolve:

〈i| ρ(t) |j〉 = e−i(Ei−Ej)t 〈i| ρ(0) |j〉 (1.24)

but the diagonal populations (i = j) of each are static, since e−i(Ej−Ej)t = 1 and

thus:

〈j| ρ(t) |j〉 = 〈j| ρ(0) |j〉 . (1.25)

The system will also return arbitrarily close to its initial state given a long enough

(albeit likely enormous) amount of time. These facts already hint at the gap between

starting with an arbitrary quantum state and an ‘arrow-of-time’-like decay to the ther-

mal, Boltzmann state that we expect. Work has focussed on considering subsystems

of pure quantum states, such that globally the system can act as its own bath. From

this point a number of questions can be formulated in order to subdivide the problem.

Firstly, do subsystems equilibrate to a particular state and stay there for almost all

time? Substantial progress has been made in showing that this is the case for generic

systems [57, 58, 59, 60]. A second important question is what do the equilibrium

states look like? This is the question of thermalization [61, 62]. Statistical mechanics

tells us that they should lose all information about their initial conditions, instead

taking on solely global thermal properties such as temperature. The perspective of

entanglement here is important, as it offers a way of understanding how this might

happen. Specifically, we can think of entanglement as being information describ-

ing a physical state that is not locally accessible. If entanglement has grown, or

de-localized, to very large scales, as generically happens with interacting many-body

systems, then it has essentially been lost, despite being technically retrievable.
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Another important concept to mention here is the Eigenstate Thermalization

Hypothesis (ETH) [63, 64, 65, 61, 66, 67, 68] - which posits some constraints on the

spectral properties of a Hamiltonian if it is to demonstrate equilibrium properties

given by statistical mechanics. Put most simply, ETH requires that subsystems

of individual eigenstates match thermodynamic quantities. Although it has led to

understanding of what classes of model do thermalize, there are now known several

examples of when if fails. One of these such cases is that of integrable systems.

Although there is some debate as to a precise definition, integrability might loosely

be defined as the appearance in certain models of an extensive number of local

quantities that commute with the Hamiltonian [69]. These conserved quantities

prevent relaxation to a standard thermal state, forcing one instead to introduce a

generalized Gibb’s ensemble [70], that represents the maximum entropy state for

these given symmetry constraints. It should also be noted that weakly perturbed

integrable systems do still in fact thermalize, albeit on a much longer time-scale and

after an initial relaxation to a ‘pre-thermalized’ plateau [71, 72].

1.4.3 Many-Body Localization

A topic that has garnered much interest recently is that of many-body localization

(MBL), which in fact spans particularly the topic of thermalization but also quantum

phase transitions. Broadly speaking, many-body localized systems are interacting

many-body systems with quenched randomness (i.e. inherent to the Hamiltonian)

that robustly resist thermalization – which is to say that even if perturbed, it is

expected that MBL systems will still never thermalize. The dynamical nature of

thermalization implies that MBL is is a feature imprinted across all eigenstates,

which moreover, cannot obey the ETH. What is also unusual is that it seems, by

varying the strength of the quenched randomness, that there is an eigenstate phase

transition from thermalizing to MBL behaviour.

Anderson first proved that randomness could have the effect of localizing

the eigenstates of single particles [73], however it was thought for a long time

that this phenomena could not survive in the presence of interactions. It was not

till much more recently that this thinking was overturned [74]. Evidence then
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emerged that, unlike in the single particle case, there was a transition to this non-

thermalizing case [75] and for one-dimensional systems the phenomena is now

rigorously proved [76, 77]. A recent review can be found in [78].

With reference to the Hubbard and Heisenberg models introduced earlier, MBL

can be induced by including an on-site random energy modified by overall random

‘strength’ h. The critical value of h for MBL to set in is still an open question, but

thought to be in the range hc = 3.7 − 5.0 [79, 2]. Deep in the MBL phase, the

structure of eigenstates is now quite well understood, with the emergence of quasi-

local integrables of motion [80, 81, 82, 83, 84, 85], leading to logarithmically slow

growth of entanglement. However, unlike standard integrable systems, it is not clear

that the generalized Gibb’s state approach is valid for MBL models. Additionally,

the nature and location of the transition, as well as whether MBL survives in higher

dimensions, all remain as significantly open questions.

MBL serves as a very useful probe of how whatever mechanism causes thermal-

ization breaks down, and one that quantum simulators can realize. Moreover there is

a fundamental question about how one engineers the robust ‘insulation’ of quantum

information and whether this can be harnessed practically for quantum memories.

1.5 Entanglement in Classical Simulations - Tensor

Networks
Understanding the entanglement structure of states has also led to huge advances

in numerical techniques for classically simulating many-body systems, the prime

example being tensor network algorithms. We first recall that for most numerical

schemes, just storing the full description of any state requires exponentially many

coefficients. This poses a problem even before one tries to factor in the computational

cost of operations such as diagonalisation However, in recent years, it was realized

that many states satisfy an area law [86, 87, 88, 89, 90, 91, 92]. This posits that

any subsystem of a state has an entropy that scales as its boundary rather than its

volume. Using this assumption allows one to form a compressed representation of

only the ‘natural’ states that satisfy it. The requirements for it to be ‘natural’ are that
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the Hamiltonian is local, as in Eq. 1.8, and for the groundstate to be gapped, which

technically rules out for example, critical systems. An intuitive picture of why area

laws work is that if only local entanglement exists, only a constant depth ring around

the subsystem’s border can be entangled with the outside environment.

The representation that picks out only these states from the whole Hilbert space

is that of tensor networks [93, 94, 95] — in their simplest form for 1D systems matrix

product states (MPS). An important connection to make was that MPS underlie [96]

the enormously successful density matrix renormalization group (DMRG) methods

introduced by Steven White [97, 98]. Subsequent work expanded [99, 100] MPS into

the much more general framework of tensor networks, complete with a very concise

and intuitive graphical representation that we shall introduce later in Chapter 5.

This tensor diagram notation is also notable for naturally encoding many quantum

information identities that are otherwise laborious to work with, a fact we also briefly

demonstrate in Chapter 4.

The key idea of tensor networks is to simply treat a finite wavefunction not as a

vector but as a tensor, with each index specifying a subsystem:

ψi → ψa,b,...,z , (1.26)

and to then make use of various factorizations of this tensor, guided by the expected

entanglement structure.

For example if one partitions these indices into left and right groups, one

can then perform a singular value decomposition (SVD) on the now generically

rectangular matrix. The resulting form is identical to the Schmidt decomposition:

|ψ〉 =
∑
i

λi |Li〉 |Ri〉 (1.27)

with |Li〉 (|Ri〉) forming an orthonormal basis for the left (right) subsystems. This

decomposition is so far exact, but by truncating the sum to a maximum of χ Schmidt

values λi, which represent the entanglement spectrum across the cut, the number

of parameters stored representing the state can be drastically reduced. To see this
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consider that the entanglement entropy of the left or right subsystem is given by

S[ρL] = S[ρR] = −
χ∑
i

λ2
i log2 λ

2
i , (1.28)

which is upper bounded by log2 χ. In the case of gapped one-dimensional systems,

the ‘area’ of a subsystem’s boundary is simply constant, and thus the entanglement

entropy across any cut is also bounded by a constant with respect to system size. The

implication is thus that we can keep χ independent of the size of L or R whilst still

accurately describing the total state.

One can perform this procedure for every local subsystem, yielding a network

of tensors that is not only compact in terms of storage but efficient to calculate,

for example, operator expectation values. Of course, this is usually not the way

one constructs such states since it initially requires a full state — instead the tensor

network structure is used as a variational ansatz with which to optimise for the lowest

energy of a Hamiltonian for example. It is important to note two here distinct aspects

of tensor networks: (i) the ability to efficiently represent quantum states; and (ii) the

ability to efficiently compute quantities such as the energy with said representation.

While in one-dimensional systems both these criteria are generally satisfied, in two

or more dimensional systems the latter criterion is often broken.

Two tensor network algorithms are worth briefly describing in this introduction

due to their widespread usage. Firstly, a one-dimensional groundstate search using

the aforementioned DMRG. Here, each local site is optimized individually, where

the actual Hamiltonian (in matrix product operator form) and the ‘environment’ of

all other sites act together as an effective local Hamiltonian. One then sweeps several

times over all the sites, with this iterative minimization hopefully (and usually)

leading to the groundstate. The second algorithm for a one-dimensional real or

imaginary time evolution is time-evolving-block-decimation (TEBD), introduced

by Vidal [99]. Here one makes use of the exact same Suzuki-Trotter expansion of

Eq. (1.9), where one now only needs to act with the gate on the relevant local tensors

rather than the full state. Additionally, after each application of a gate, the tensor



42 Chapter 1. Introduction

network ansatz must be locally decomposed back into MPS form using the SVD.

Since gates generally introduce entanglement, one must let the bond dimension χ

grow here, and in this way the entanglement explicitly limits the tractable times of

TEBD to O(1).

This promotion of local entanglement to a starting point for states has allowed

not only a swathe of new numerical simulations, but among other things the an-

alytical classification of gapped quantum phases [101]. It has also cemented the

idea that what makes quantum computation powerful is long-range entanglement,

since otherwise it could be efficiently simulated using tensor network algorithms.

Thus, in the context of quantum simulation, this tells us that those states and systems

which are useful to simulate are those which have more than just local entanglement.

Two examples of such systems are those introduced in Sec. 1.4.1 and Sec. 1.4.2,

namely critical systems and out of equilibrium systems. Systems at a critical point

are gapless, and expected to logarithmically violate the area law, this can be seen

partly as a result of the diverging length scale that emerges in such systems. Out

of equilibrium systems, on the other hand, inherently involve many excited states.

In other words, they have significant support on mid spectrum eigenvectors which

in general support a volume law. On top of these cases, two or more dimensional

tensor networks, despite still being relatively compact representations, encounter

problems with scaling when quantities such as expectation values need to be actually

calculated.

To conclude this section, tensor networks represent the state of the art for

classical simulation of states with local entanglement. Using them carefully, nearly

all 1-dimensional equilibrium many-body quantum systems are amenable, however,

this leaves a wide class of systems for which quantum simulation seems to be a

necessity, fundamentally due to long-range entanglement.

1.6 Experimental Realizations

Finally we review the considerable amount of experimental progress in realising

quantum simulators thus far. Optical lattices with ultra cold atoms [102, 103]
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have provided some of the most striking simulations so far and already driven

understanding of several many body systems. Here, a very perfect lattice is created

using counter propagating laser beams, which trap atoms by inducing, and then

interacting with, a periodic dipole moment. The use of lasers allows a great deal of

freedom in choosing the geometry and depth of the lattice potential. Additionally to

being able to tunnel from site to site, many interactions between atoms in the same

and neighbouring sites are possible, and bosonic or fermionic species can be chosen

for a given statistics.

Arguably the first many-body quantum simulation was performed using cold

atoms in optical lattices, exploring the transition between a superfluid and Mott

insulator [104]. More recently, by tuning off the tunnelling, an anti-ferromagnetic

spin chain has been realised [105], and MBL has also been explored [106]. Although

they can scale to hundreds of atoms and enjoy long coherence times, there are a

number of limitations to optical lattice simulations. Firstly, individual measurement

of the atoms is difficult due to the small size of the lattice, governed by the necessarily

small laser wavelength. This limits detection and verification schemes. Secondly,

although a wide number of models are realizable, often the energy ranges that are

required impose very slow dynamics on the system.

Another very successful system for quantum simulations is that of trapped

ions [107, 108, 109]. Here the charged nature of the ions allows very strong, long-

range Coulomb interactions to occur. The ions also exhibit very long coherence times

and these two facts together have produced some of the highest fidelity quantum gate

operations. Disadvantages include the difficulty in scaling to many ions or complex

geometries. On top of this, the long range and strength of the inter-ion interactions

make it hard to simulate models with only nearest neighbour interactions.

Other systems worth mentioning include superconducting circuits [110, 111,

112], and NMR addressed spins [113, 114, 115], both of which naturally simulate

Ising-like models, and photonic systems [116], which however are constrained by

the ability to engineering couplings.

Finally, there are many strong arguments for pushing towards solid-state simula-
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tors, though the noisy nature of such systems has limited progress so far. Specifically,

if one is to simulate electrons as with the Hamiltonian in equation Eq. (1.16), then a

natural choice for the components of your quantum simulator is electrons themselves,

rather than trying to mimic their itinerant, spin-half characteristics artificially. An-

other advantage would be input and technology from the existing and huge industry

in silicon chip manufacturing for example. For these reasons quantum dot arrays are

the starting point for the next chapter.



Chapter 2

Unravelling Quantum Dot Array

Simulators

This chapter is adapted from the publication:

• Johnnie Gray, Abolfazl Bayat, Reuben K Puddy, Charles G Smith, and Sougato

Bose. Unravelling quantum dot array simulators via singlet-triplet measure-

ments. Phys. Rev. B, 94(19):195136, 2016.

2.1 Abstract
Recently, singlet-triplet measurements in double dots have emerged as a powerful

tool in quantum information processing. In parallel, quantum dot arrays are being

envisaged as analog quantum simulators of many-body models. Thus motivated, we

explore the potential of the above singlet-triplet measurements for probing and ex-

ploiting the ground-state of a Heisenberg spin chain in such a quantum simulator. We

formulate an efficient protocol to discriminate the achieved many-body ground-state

with other likely states. Moreover, the transition between quantum phases, arising

from the addition of frustrations in a J1 − J2 model, can be systematically explored

using the same set of measurements. We show that the proposed measurements

have an application in producing long distance heralded entanglement between well

separated quantum dots. Relevant noise sources, such as non-zero temperatures and

nuclear spin interactions, are considered.
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2.2 Introduction

Quantum simulators [117] are one of the hotly pursued topics of current quantum

technology research. Analog quantum simulators directly mimic another physical

quantum system in order to explore its behaviour in greater depth. In doing so, they

provide a wide range of applications, for instance, addressing challenges in smart

material design which could potentially revolutionize medicine and energy provision

in the future. While already accessible, quantum simulators will scale to much larger

sizes in the near future, in doing so becoming a significant technological step on

the path to full quantum computation. A key question for such simulators is the

certification of the states realized within them. For example, simple questions such

as whether the state is a genuinely quantum, pure and entangled many-body state

need to be answered with available measurement schemes. For an experimentalist

who has realised a candidate state it is crucial to discriminate it from the closest

classical counterpart (e.g. the Neel state for antiferromagnets), random, thermal and

energetically proximal quantum states. Here we address the question with respect to

the emerging field of solid state quantum simulators [118, 119, 120, 121, 122, 123].

So far, neutral ultra-cold atoms [103] and trapped ions [108] have been predomi-

nantly exploited for serving as quantum simulators thanks to their high controllability

and long coherence times. Nevertheless, in order to simulate solid state systems, the

presence of both particle hopping and long-range charge interactions are needed, and

these are not not readily available in trapped ion and cold atom systems respectively.

Additionally, the spin exchange couplings realised in these systems tend to be small,

such that any dynamics take place over long (∼ ms) time-scales. It is therefore

timely, thanks to recent advances in fabrication of quantum dot arrays [124], to think

about a real solid state quantum simulator. These advances have largely been fuelled

by seminal work of Loss and DiVincenzo [125], who proposed single electron spins

as qubits. Such quantum dot arrays have also been proposed for quantum state

transfer [120] and adiabatic many-body state preparation [121]. A two-site quantum

Hubbard model has been successfully simulated with dopant atoms in silicon [122],

which are qualitatively equivalent to quantum dot arrays as far as their prospects for
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Figure 2.1: Quantum dot array spin model simulator and triplet profile readout: A
simplified schematic of a quantum dot array simulating a Heisenberg N = 12
closed chain with Singlet-Triplet measurements. Here, grey bars represent
voltage gates, each arrow a single confined electron, and the gold detectors
Singlet Triplet measurements. These are simultaneously performed such that
the total number of triplets present, mt is recorded.

quantum simulations are concerned [123]. Unlike cold atoms and ions, quantum

dot arrays naturally have more types of interaction, such as spin-orbit [126], and

thus can simulate a wider range of interactions. Moreover, their compactness allows

for stronger interactions resulting in faster operations. Nevertheless, there are

still challenges worth mentioning: (i) there are also strong interactions between the

electrons and the environment (such as proximal nuclear spins) which decohere the

simulator, and (ii) the small scale of the fabrication, and the required number of

gates, makes it currently difficult to scale up to complex arrays.

Recently, Singlet-Triplet (ST) measurement in double quantum dots has

emerged as the dominant tool for spin information readout. Originally this was

achieved through charge measurements [127], motivated by decoherence free singlet-

triplet qubits [128]. Radio Frequency (RF) reflectometry has since emerged as the

primary method of accomplishing this [129, 130, 131, 132, 133, 134]. The same
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measurement tool now extends beyond double dot systems to donor-dimers [135].

These measurements discriminate between only the singlet state, and the remaining

Bell-states. Nevertheless, it is known that these measurements, in combination with

particular initial states, are sufficient for universal quantum computation [136]. The

convenience and popularity of the ST-measurements motivate us to investigate their

usefulness as a tool for probing and exploiting the many-body state realized in a

quantum dot array.

Independent of the physical set-up, in order to verify the performance of a

quantum simulator ideally one has to fully characterise the quantum state. The

difficulty here is that by definition, a useful quantum simulator (i.e. with a large

number of qubits) will have no exact, classically computable reference system.

Additionally, full quantum state tomography requires an exponentially large number

of distinct measurements [137, 138]. Recently, there have been proposals [139]

for efficient tomography schemes which are applicable for those states satisfying a

matrix product state ansatz, though one has to be able to perform complex multi-qubit

unitary operations and measurements which are not necessarily available in the lab.

In this chapter, we consider quantum dot arrays simulating the ground-state

of a Heisenberg spin chain. To characterise the state, we rely only on singlet-

triplet measurements performed over nearest neighbour electron pairs, as has been

experimentally demonstrated [129, 130, 131, 132, 133, 127, 140, 141]. This allows

us to build up a probability distribution over outcomes that discriminates between

our target state, i.e. the Heisenberg ground-state, and contaminated versions. In the

presence of next-nearest neighbour interactions, realizable in recently developed

multiplexed dot ladders [124], our setup can capture the quantum phase transition

to a gapped, dimerized phase. Moreover, as another application, we show that

the same set of measurements can be exploited to generate heralded entanglement

between distant qubits. We investigate the performance of both applications under

the influence of likely noise sources such as thermal fluctuations and hyperfine

interactions with nuclear spins in the bulk.

The structure of this chapter is as follows: in Section. 2.3 we introduce the
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model used to describe the system and the triplet profile that one can obtain from

singlet-triplet measurements only. In Section. 2.4 we explore the possibilities of

characterizing states using these measurements only, including a quantification of

how distinguishable various states are from each other. We demonstrate that the

quantum phase transition at J2/J1 ∼ 0.24 for the J1 − J2 Heisenberg chain can be

clearly observed. In Section. 2.6 we explore using singlet-triplet measurements only

to localize entanglement between two ends of an open chain. In Section. 2.7 we

investigate the effect of the two dominant noise sources in quantum dots — non-zero

temperature and hyperfine interactions with proximal nuclei. Finally, in Section. 2.8

we propose a feasible experimental realization that could establish the validity of

these methods.

2.3 Model

A key model in condensed matter physics is the Heisenberg Hamiltonian — used

in many contexts including magnetism [142] and quantum phase transitions [55]. It

describes the interaction between N spin-1/2 particles as

H1 = J1

N∑
i=1

~σi · ~σi+1; (2.1)

where ~σi = (σxi , σ
y
i , σ

z
i ) is a vector of Pauli operators acting on site i, and J1

represents the nearest neighbour spin coupling. We have assumed periodic boundary

conditions, i.e. ~σN+1 = ~σ1, however, our analysis is equally applicable to open chain

where increased dimerization makes the ground-state even more distinct. We set

J1 = 1 throughout the chapter, unless specified, considering it the energy scale of the

system. This anti-ferromagnetic Heisenberg model has a unique SU(2) symmetric

ground-state for even lengths, N , known as a global singlet since it has total spin

S = 0. The lowest lying excitations are three degenerate ‘triplet’ states, with the

energy gap to these closing as 1/N in the limit of large N .

In order to simulate the ground-state of the Heisenberg Hamiltonian in a con-

trolled way we propose a quantum dot array with exactly one electron in each



50 Chapter 2. Unravelling Quantum Dot Array Simulators

quantum dot as schematically shown in FIG. 2.1(a). A similar structure has recently

been realized for multiplexing quantum dots [124]. The spin sector of the interaction

between the electrons is explained by the Hamiltonian (2.1) and the coupling J1 can

be tuned by applying appropriate gate voltages to the gates controlling the potential

barrier between neighbouring electrons. By cooling this quantum system below

its energy gap it can be initialized in its ground-state |ψ0〉. The central object of

interest in this chapter is |ψ0〉 due to its highly entangled and non-trivial structure,

described by a many-body global singlet, as well as its application for practical tasks

in quantum technologies such as quantum state transfer [143, 144]. The first stage

of verifying the operation of a quantum simulator is to characterize and certify its

achieved state — hopefully the ground-state |ψ0〉. Ideally this could be done using

full quantum tomography [145] or other more efficient methods [139, 138] but for

quantum dot arrays a current limitation is that only Singlet-Triplet (ST) measure-

ments on adjacent sites are feasible. The question to be addressed here is to what

extent characterisation and certification of a state is possible under this restriction.

The ST-measurement can be described by the following projectors

Ps = |ψ−〉 〈ψ−| ,

Pt = 1−Ps, (2.2)

where |ψ−〉 = 1√
2

(|↑↓〉 − |↓↑〉) is the singlet with |↑〉 and |↓〉 representing spin up

and down respectively. If the quantum simulator operates perfectly, i.e. initializes in

the ground-state |ψ0〉, then thanks to the SU(2) symmetry of the system the reduced

density operator of any pair spin qubits will be a Werner state [146]

ρ = αPs + (1− α)
Pt

3
, (2.3)

with 0 ≤ α ≤ 1. In this sense ST-measurements are picked out as a preferred ‘basis’

for all SU(2) symmetric states.

Let’s assume that the system is described by the density matrix ρ, ideally

|ψ0〉 〈ψ0|. Performing ST-measurements on all N/2 consecutive pairs of spins, i.e.
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qubits (1, 2), (3, 4), . . . , (N − 1, N), results in 2N/2 different outcomes according

to the singlet or the triplet output of each measurement. For example in a chain

of length N = 4 any of the outcomes ss, st, ts or tt may occur with a certain

probability. For any string of outcomes x = x1x2...xN/2 (with each xi being s or t)

the total projection operator is

Πx =

N/2⊗
i=1

P2i−1,2i
xi

(2.4)

where P2i−1,2i
xi

are the same projectors as in Eq. (2.2) acting on qubits 2i− 1 and 2i.

Thus, the probability of getting the string x as the outcome of the measurements is

Tr(Πxρ). For example the probability of getting the result x = stts for aN = 8 state

is Tr(P12
s P34

t P56
t P78

s ρ). We can further compress the number of outcome results by

grouping together all result strings featuring the same number of measured triplets,

thus creating a triplet profile:

p(mt) =
∑
x∈Xm

Tr(Πxρ) (2.5)

where Xm denotes the set of all result strings with exactly m triplet occurrences.

This yields a concise characterisation of a state that is both easy to measure exper-

imentally and to compute numerically. Performing the sum in Eq. (2.5) loses all

information about how ‘grouped’ triplet excitations are, nevertheless, a surprising

amount information can be gleaned from p(mt), including features heralding many-

body entanglement. For example, one such feature that arises is that p(mt = 1) = 0

for all global singlets. This arises from their spin-0 nature — they can have no

overlap with the spin-1 subspace which includes all configurations of a single triplet.

Indeed, under the reasonable restriction of translational invariance, classical states

can only ever produce a binomial distribution for p(mt), and any deviations such as

oscillations herald entanglement.
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Figure 2.2: Discrimination of the ground, classical, and random states: (a) Triplet prob-
ability profiles for a number of states, namely the anti-ferromagnetic Heisenberg
ring ground-state, ψ0, the classical anti-ferromagnetic Neel state, φN , and the
normalised identity, 1d, all of size N = 24 (thick lines). (b) Scaling of the
triplet profile with N for ψ0.

2.4 Characterization of Simulator

In order to characterize the quantum state of the simulator we first calculate the full

triplet profile p(mt) of the ground-state |ψ0〉 and other likely states which may occur

due to imperfections or malfunctioning of the quantum simulator. In particular, we

consider the classical Neel state φN = |↑↓↑↓↑↓ . . .〉 and the maximally mixed state

1d, which represents an infinite temperature thermal state. In FIG. 2.2(a) we plot

the triplet profile p(mt) as a function of the number of triplet occurrences mt for a

chain of length N = 24 for all the three states. As can be easily calculated, φN and

1d are both characterised by binomial distributions centred on 1
2

and 3
4

respectively,

whereas |ψ0〉 produces a highly non-trivial oscillatory shape. For example, the zero-

probability p(mt = 1) dip is very prominent, and also forms part of an oscillatory

structure between odd and even occurrences of triplets.

The scaling of p(mt) for ψ0 with size of system N is also shown in FIG. 2.2(b)
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Figure 2.3: Comparison of the single shot distinguishability under an optimal mea-
surement vs. triplet profile measurements: Scaling with system size of the
single shot distinguishability between Heisenberg ground-state ψ0, first excited
singlet state ψs∗, and the Neel state φN . Full lines denote distinguishability un-
der triplet profile measurements, whereas dashed lines denote the full quantum
distinguishability Dq

1. Note that Dq
1(ψ0, ψs∗) is not shown since it is always 1 —

the states being orthogonal. Inset: number of repeat measurements, r, required
to distinguish two states with probability (0.9, 0.99) for varying D1.

— one can see that overall the features change slowly, with the average mt increasing

with N under the ‘oscillating’ envelope. As such, although the first ‘fringe’ contrast

decreases with N slightly, the second increases and so on such that they should not

be washed out in the thermodynamic limit.

Full quantum tomography is usually very demanding either in terms of sheer

number of measurements or the complex many-body basis of such operations. In-

stead, we wish quantify the extent to which our ST-measurements can distinguish

between likely quantum states (i.e. selected based on some prior intuition). A fun-

damental quantity here is what we shall call the single-shot-distinguishability, D1,

which quantifies the advantage a single measurement gives when guessing between

two equally probably states such that the overall chance of success is 1
2

(1 +D1).

If D1 = 0 then the measurement yields no information at all about which state is
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present, whereas if D1 = 1 it perfectly discriminates them. If a measurement gives

rise to two possible probability distributions, p1(a) and p2(a), over outcomes a then

D1 is given by [147]:

D1 =
1

2

∑
a

|p1(a)− p2(a)| (2.6)

which essentially formalizes the strategy of guessing whichever state is more likely

to give result ai each time. It has been shown [148] that for two quantum states that

ρ and σ the maximum distinguishability is given by:

Dq
1 =

1

2
‖ρ− σ‖tr , (2.7)

where ‖A‖tr = Tr(
√
AA†) is the trace norm. It is worth mentioning that the optimal

measurement needed to yield Dq
1 is likely to be a globally entangled projective

measurement that is again not feasible.

An important aspect to investigate is whether the triplet profile’s ability to

distinguish scales well with system size. In FIG. 2.3 we present the single shot

distinguishability between two states under both a triplet profile measurement, D1,

and an optimal quantum measurement, Dq
1, as it scales with system size N . First

consider the case of ψ0 and φN — Dq
1 rises to 1 with N while D1 for the triplet

measurement hovers at just under half this, with possibly a slight decrease with

N . In this sense, a value of D1 ∼ 0.45 is decent. As an illustration of two states

that are almost worst-case scenario, we also present the distinguishability of the

ground-state ψ0 and the first excited global singlet, ψs∗, which represents the smallest

energy, symmetry preserving excitation that could occur. Clearly these two states

are orthogonal and thus Dq
1(ψ0, ψs∗) = 1, but in character they are very similar.

Nonetheless the triplet profile produces a non-zero distinguishability, as can be seen

from FIG. 2.3, which also only decreases slowly with N — not surprising since these

two states are becoming closer relatively within the Hilbert space. To give a sense of

what these values of D1 mean in practice, the inset of FIG. 2.3 shows the number

of required measurements, r, in order to achieve a total probability of successfully

distinguishing two states, given the naive strategy of guessing independently which
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Figure 2.4: Observing the J1 − J2 quantum phase transition with the triplet profile:
Triplet profile for the N = 22 Heisenberg ring ground-state, ψJ2 , across the
J1 − J2 phase transition. Inset: normalised probability of measuring three
triplets varying with J2 for variousN . The vertical line denotes the exact critical
point.

state was present each repeat . This sub-optimal scheme casts the overall distin-

guishability as that of between two binomial distributions. For example, if we take

Dq
1(ψ0, φN) ∼ 0.43, then 27 measurements would be required to guess which state

was present with 99% success, as shown in the inset of Fig. 3.

2.5 Quantum Phase Transition in the J1 − J2 Model
In some condensed matter systems long range interactions are not negligible and

play a crucial role in the character of the system. The simplest example is the J1−J2

model with the Hamiltonian

H2 = J1

N∑
i=1

~σi · ~σi+1 + J2

N−1∑
i=1

~σi · ~σi+2, (2.8)

where J2 is the next nearest neighbour coupling strength. This model exhibits a

quantum phase transition from a gap-less Heisenberg phase to a gapped dimer-
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ized phase through increasing J2. This infinite order quantum phase transition, in

the Berezinskii–Kosterlitz–Thouless universality class, happens at J2/J1 ' 0.24.

No standard quantities behave non-analytically across the transition, and instead

properties such as the ground-state ‘fidelity susceptibility’ [149] or excited state

fidelity [150] must be used to locate the critical point. Another interesting point

in the dimerized phase is the Majumdar-Ghosh point at J2/J1 = 0.5. Here the

ground-state is fully dimerized and can be explained as an equal superposition of⊗N/2
i=1 |ψ−〉 and its equivalent, but one site translated, form. The model in Eq. 2.8

could well be realised in future quantum dot arrays via a ‘zig-zag’ ladder geometry.

In FIG. 2.4 we show the triplet profile for the ground-state of H2 for a number

of J2 values across the phase transition. As J2 approaches the Majumdar-Ghosh

point (i.e. J2/J1 = 0.5) the structure of an equal superposition of dimerizations

becomes apparent — half of the state is exactly singlet pairs aligned with the

measurements, and the other half appears as the identity since it is singlet pairs

between the measurements. We note also that the rate and quality of change is

different on either side of the critical point. This is shown more clearly in the inset of

FIG. 2.4, where only the probability of getting three triplets (i.e. mt = 3) is plotted

versus J2. In order to have a better perception of the effect of length N we have

normalized the probabilities to the J2 = 0 case, p′(mt = 3), for various lengths.

Finally, this effect is not limited to p(mt = 3) — other values and combinations

of mt also give the same behaviour. However, due to the continuous nature of the

transition, no such quantities are expected to show very sharp features, especially for

short chain lengths.

2.6 Heralded entanglement of distant spins

We now show a potential quantum information application of using solely singlet

triplet measurements in the form of long-distance entanglement. Generating perfect

entanglement over arbitrary distances will likely be required for many quantum

information tasks. In a many-body system, it has been shown [151, 152], that

performing measurements on part of a system can localize entanglement between
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the remaining, unmeasured parts. This is known as localizable entanglement, and

we demonstrate here that singlet-triplet measurements on the ground-state of the

Heisenberg chain can probabilistically localize entanglement between any two qubits.

For applicability, to a quantum bus for example, we consider now an open chain,

where the first and last quantum dots are desired to be entangled. The nature of global

singlet states guarantee that if all but one pair of spins is measured and found in the

singlet state, the final pair must also be in the singlet state. As previously described,

this follows from the fact that all mt = 1 states have spin-1, and no overlap with the

SU(2) subspace. The generation of a perfectly entangled singlet is therefore reliant

on the probability of finding this all-singlet outcome, q(mt = 0), but is certain to be

there (i.e. heralded) if the measurement succeeds. Note that we use the symbol q(mt)

for the probability of finding mt triplet outcomes in our ST-measurements for the

heralded entanglement scheme, which leaves one pair unmeasured, to discriminate it

from p(mt) in the previous section in which all qubits are measured. Compared to a

dynamic, gate based-scheme, the simultaneous nature of the measurement minimizes

the time required and thus exposure to decoherence.

Since any ground-state with SU(2) symmetry displays this feature, we can also

think about engineering the exchange coupling strengths along the chain to promote

this configuration. One option is to weaken the coupling of just the end spins as

He = Je(~σ1 · ~σ2 + ~σN−1 · ~σN) + J1

N−2∑
i=2

~σi · ~σi+1 (2.9)

where Je is the ending coupling and is smaller than J1. For Je � J1 it is known

that a very high entanglement is established between the outermost spins in the

ground-state of the system [153]. However, this entanglement is thermally unstable

due to a vanishing energy gap. We combine this scheme, using larger values of

Je, and a heralding ST-measurement to achieve perfect entanglement with a higher

rate. As another way to improve the probability q(mt = 0) we may also consider a
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Hamiltonian with alternating couplings as

Ha = J1

N−1∑
i=1

[1− (−1)iδ] ~σi · ~σi+1 (2.10)

where δ is the dimensionless anisotropy parameter.

In FIG. 2.5, we show the probability of an all singlet result, q(mt = 0), for

these three cases, as the length of chain, N , varies for the case of Je = 0.5J1 and

δ = 0.1. Weakening the end-bonds yields a consistent improvement in long-distance

entanglement over the normal Heisenberg chain, but both still decrease exponentially

with length. The heralded nature of the entanglement means that for small enough

chains repetition could still make the procedure viable. Moving to the ground-state

of the Ha, we find that q(mt = 0) becomes almost constant with N at a value of

∼ 0.3. A subtlety here is that engineering a Hamiltonian in this way can reduce the

size of the energy gap, making the ground-state harder to prepare. This is in fact the

case for both He and Ha above. Although this means that reaching the ground-state

via direct cooling becomes more difficult, adiabatic state preparation has been shown

to much alleviate the issue [121].

Finally, we point out that if full Bell-state measurements are possible on nearest

neighbour spins, then perfect entanglement is always achieved between the ends.

The state is not always the singlet Bell-state, but can be identified or corrected simply

by counting the number of each Bell-states found and requiring the whole state to

still be spin-0. This is essentially the same mechanism as addressed in [154].

2.7 Imperfections
The goal of our simulator is to create the ground-state of the Heisenberg Hamiltonian.

In reality, thermal fluctuations spoil the quantum state of the system resulting in a

thermal state

ρth(β) =
e−βH

Tr(e−βH)
(2.11)

where β = 1/kBT and kB denotes the Boltzmann constant. Performing the char-

acterization ST-measurements on a thermal state result in a triplet profile p(mt)
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Figure 2.5: Localizing entanglement to the ends of a chain using singlet-triplet mea-
surements on the middle N −2 qubits: Probability of finding all singlets after
measuring the middle N − 2 spins of the ground-state of an open Heisenberg
chain with various coupling configurations. From this outcome, a perfect singlet
in the remaining two spins at either end is heralded. The three Hamiltonian
configurations are: H0 — constant coupling, He — end couplings weaker by
50%, Ha — alternate couplings weaker by 20%.

which is shown in FIG. 2.6(a). From the figure, we find that up to kBT/J1 = 0.2

(approximately the gap of the Hamiltonian) the observed triplet profile is largely

unchanged. Between kBT/J1 = 0.5 and kBT/J1 = 1 the oscillations suggesting

many-body entanglement die out, and above the state appears largely classical. Since

we know that for temperatures smaller than the energy gap the thermal state has

very close to unit fidelity with the ground-state, what the result in Fig. 2.6(a) shows

is that our singlet-triplet profile is sensitive to any rise in temperature that would

significantly affect the state. Although we can positively identify a departure from the

ground-state in this way, attributing the noise specifically to thermal fluctuations or

identifying the temperature poses a greater challenge, though one worth investigating

in the future.

Another dominant form of noise[155] arises from each electron’s hyperfine
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interaction with proximal nuclei. This manifests as an isotropic, normally distributed

random static magnetic field for each site, which we can model with the Hamiltonian

Hnuc(Bn) = J1

N−1∑
i=1

~σi · ~σi+1 +
N∑
i

Bi · σi (2.12)

where Bi’s are effective magnetic fields with random directions. The amplitude of

these fields are determined by a Gaussian probability distribution as

P (B) =
1

(2πBn)3/2
exp

(
−B ·B

2B2
n

)
(2.13)

where Bn is the variance of the distribution and quantifies the strength of the nuclear

field noise. The noise is quasi-static (changes slowly relative to the electron dynam-

ics) and thus we can think of each experimental run as having a fixed set of random

fields and simply average over many runs until convergence is reached.

In FIG. 2.6(b), we find that the nuclear noise quickly changes the triplet profile

such that Bn < 0.1 would likely be required for a decent characterisation. Above

Bn ∼ 0.3 the oscillations disappear. Actual values for the bare value of Bn/J1

estimate it below 0.1 [127], which hardly affects our triplet profile characterisation.

Moreover, many successful avenues exist for reducing the effect of the nuclear noise,

such as dynamical decoupling [156], and moving to Si/SiGe quantum dots [157],

though these both introduce their own challenges for scaling to dot array simulators.

The effect of noise on long distance entanglement could be two-fold, it could

change the probability of getting an all-singlet measurement, q(mt = 0), and it

could also make the resultant state shared between the end qubits less entangled. In

practice we find that q(mt = 0) is roughly constant across the region of interest for

both temperature variation and hyperfine interaction. So, it suffices to consider only

the remaining entanglement, E, which we characterise with the concurrence [158]

on the reduced density matrix of the ends post-measurement.

In FIG. 2.7(a) we show how this remaining entanglement varies as a function

of temperature. As the figure shows, there is a plateau of low temperature for which

perfect entanglement still remains, though this drops with N and can be again be
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Figure 2.6: Characterising the Heisenberg chain under the influence of temperature
and hyperfine interactions: (a) Triplet profile of the Heisenberg ring (H0)
ground-state for varying temperature T , here for chain length N = 14. (b) The
same but for varying random nuclear field strength Bn, here for chain length
N = 20. It is worth mentioning that a realistic (but pessimistic) estimation of
the hyperfine interaction is Bn/J1 ∼ 0.1 [127]. This will have little effect on
state discrimination.

linked with the Hamiltonian’s gap. Similarly to the case of state characterization,

we find that nuclear noise has a much more immediate effect on the long-distance

entanglement rather than on q(mt). In FIG. 2.7(b) we plot entanglement versus Bn.

As the figure shows for Bn < 0.1J1, which as mentioned is a conservative estimation

based on experiment [127], the entanglement remains high even for chains as long

as N = 20.

Another potential source of error in quantum dot array simulators are fluctua-

tions in the charge potential landscape. The overall effect can be modelled to first

order as a random fluctuation of J1 about its mean value [159]. Since this type of

noise maintains the SU(2) symmetry of the system, the essential arguments regarding

oscillations in the triplet profile and localizing heralded entanglement remain intact.

Indeed, there is evidence that the overall groundstate of a system with moderately
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Figure 2.7: Entanglement localization to the ends of an open chain under the influence
of temperature and hyperfine interactions: (a) Entanglement (as measured
by concurrence) between the two furthest spins after an all-singlet measurement
result on the remaining middle section of the chain, varying with temperature
1/β and length N . (b) The same, but now varying with the strength of the
random nuclear field Bn. It is worth mentioning that a realistic (but pessimistic)
estimation of the hyperfine interaction is Bn/J1 ∼ 0.1 [127]. For all considered
lengths, this yields high entanglement.

random couplings is very similar in terms of character and utility [121, 160, 161]. In

Fig. 2.8 we show the effect of this noise on state characterization as well as the aver-

age fidelity between the ideal ground-state and many realizations of the erroneous

ground-state, f̄(ψ0, ψ
σJ
0 ). One can see that the average fidelity remains above 85%

for σJ < 0.1J1, which is a high level of randomness. The corresponding change

in the triplet profile also becomes noticeable with increasing σJ , and as expected,

p(mt = 1) remains zero throughout. Since even with this noise, the conditions for

entanglement localization using singlet-triplet measurements are met, that scheme

in its basic form is not affected. One observation is that the slight randomization of

J1 actually on average raises the chance of perfect entanglement, q(mt = 0), when

compared to a Heisenberg chain (data not shown).

A final source of potential error worth discussing is the singlet-triplet readout
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Figure 2.8: Effect of random couplings caused by charge fluctuations. (a) Average fi-
delity of the ideal groundstate, ψ0, with many realizations of the erroneous
ground-state generated due to random coupling noise, ψσJ0 , as a function of the
strength of those fluctuations, σJ , for chain length,N = 20. (b) Averaged triplet
profile for the ground-state of a Heisenberg chain with fluctuating couplings,
varying with the strength of that fluctuation, σJ .

fidelity, which for a RF-reflectometry based method reduces to the error in distin-

guishing two levels of capacitance. We have assumed this readout to be perfect

throughout, for two main reasons. Firstly, this measurement is already very sensi-

tive [162] in comparison to the other sources of error. Secondly, our measurement is

single-shot, which means that its sensitivity can be increased simply by extending

the integration time.

2.8 Experimental Realization
In this section, we discuss a potential experimental realisation. A SEM image of a

gate-defined dot array, recently developed in [124], is shown in Fig. 2.9(a) in which

fourteen quantum dots interact in a 2×7 array. Similar structures are being developed

in other groups [163, 164]. The ladder structure, shown in Fig. 2.9(a), is capable

of realizing a N = 14 open chain, but in principle a ring geometry is possible and
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Figure 2.9: A realistic quantum dot array with triplet profile measurement: (a) SEM
image of an example quantum dot array, as realised in [124]. (b) Circuit
schematic of an eight dot device with dispersive gate sensors which forms
a N = 8 open spin chain. The gate sensors are formed by coupling an RF-signal
to gate electrodes via bias tees. Lt are chosen so that a resonant tank circuit is
formed in combination with the dot system and the parasitic capacitance, Cp.
The reflected RF-signal is used to read out the total capacitance of all double
dots in parallel and hence mt. The dashed blue lines denote pairings of the
quantum dots for this ST-measurement.

both yield qualitatively similar results. Although the exchange coupling J1 can be

tuned to very large values, due to the limitations imposed by electronics speeds, a

∼ 1GHz value is preferable. In fact, in Ref. [127] J1 up to 3µeV (0.75GHz) has been

reported. In order to initialize the system in its ground-state solely through cooling,

the energy gap, ∆E, has to be larger than the temperature of the fridge, typically

around T ∼ 50mK (i.e. kBT = 4.3µeV for dilution fridges. This currently limits

direct initialization to short chains (N ∼ 6). However, for longer chains, a series

of double dot singlets can be adiabatically welded to form the ground-state even in

higher temperatures in a time-scale much less than the thermalization time [121].

We now describe how the triplet profile is measured once the target state is

realised in the quantum dot array. We rapidly (with respect to 1/J1) raise voltage

barriers to isolate pairs of quantum double dots, each of which can act (when

connected to an appropriate circuit) as a capacitor, with capacitance dependent on

whether the spin state is a singlet or a triplet. It is important that isolating the pairs is
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rapid in order to avoid any adiabatic evolution towards the new effective Hamiltonian,

which would change the state. When all these capacitors are connected in parallel

in a LC-circuit a single reading of the total capacitance measures their sum, from

which mt can be deduced. Such a circuit is shown in Fig. 2.9(b), which measures

the total capacitance of 4 quantum double dots (N = 8) in a single shot. The set-up

uses dispersive gate sensors coupled to DC gate electrodes via bias tees [134]. The

inductors, together with the parasitic capacitance Cp, form the resonant circuit with

the dot array and thus one can sense the capacitance through the phase and amplitude

of the reflected RF signal.

2.9 Relation to Many-Body Localization
The noise model presented in Eq. (2.12) is strikingly similar to that of the paradig-

matic many-body localized (MBL) spin chain. Specifically, the slow nature of the

average nuclear moment’s movement leads to an effective, quenched disorder per

site. Although the standard MBL model considers disorder in the z-direction only –

and uniformly distributed – we might still expect a transition to MBL behaviour with

the quantum dot array model. A now well known method to identify the transition

point is to use the value of the mean energy level spacing ratios of the Hamiltonian.

A single such ratio is defined as

r = min(
Ek+1 − Ek
Ek − Ek−1

,
Ek − Ek−1

Ek+1 − Ek
) (2.14)

for adjacent energy eigenvalues E{k−1,k,k+1}. Averaging over of many eigenvectors

near energy density ε and many instances of randomness yields a number, 〈rε〉 that

can be related to random matrix theory [165]. It can either display Gaussian statistics,

implying repulsion and thus interaction between eigenvectors, or Poissonian statistics,

implying no repulsion. in Fig .2.10 we show how this value changes across a wide

range of random nuclear fields strengths, for varying chain lengths N .

There is clear evidence of a phase transition that sharpens with increasing

lengths. Since these systems are small, they experience a pseudo-critical point

of randomness, B̃c
n, significantly smaller than the thermodynamic limit case. By
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Figure 2.10: Mean energy level spacing ratio of the Hamiltonian from Eq. 2.12 in the
middle of spectrum 〈r0.5〉, as a function of random nuclear field strength, Bn
for varying chain lengths N . The dashed lines denote the expected values for
Gaussian Unitary Ensemble statistics (upper), which implies ergodic behaviour,
and Poissonian statistics (lower) which implies an MBL phase. For each
Hamiltonian instance, 50 eigenvalues are extracted from the middle of the
spectrum ε = 0.5 from which the statistics are calculated. This is further
average over 1000-200 instances of noise, depending on system size. Inset:
Scaling of the pseudo critical point, B̃c

n, with inverse system size, a rough
extrapolation of this line to infinite size yields Bc

n ≈ 4.5.

extracting the location of the maximum derivative of these lines, one can then

extrapolate roughly the value of the true critical point Bc
n which we find to be ≈ 4.5.

Using other established methods such as the block entropy of bipartition gives similar

values.

There are two important points to be drawn from this. The first is that it may

well be interesting to further investigate different types of random noise in the context

on MBL. Here, in the ergodic (but still random) phase with 0.5 < BN < 2.0, having

noise present in all three directions removes any symmetry from the Hamiltonian,

whereas if the noise is in the z-direction only there remains an abelian Z2 symmetry

– rotation about the z-axis. A result of this is that Gaussian unitary ensemble (GUE)
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statistics are encountered rather than Gaussian orthogonal ensemble. Having such a

physical model that appears very similar to a GUE random matrix might well be a

useful reference point in future.

The second important conclusion to take from this is that quantum dot arrays

could quite possibly act as viable simulators of MBL. Here, though one cannot

directly control the strength the of the random nuclear fields, Bn, one can engineer

the strength of the coupling J1. Since it is only the ratio of these parameters that

matters, one now has an effective MBL model, where the main source of noise has

now itself been harnessed as part of the simulation.

2.10 Conclusions

Motivated by established technology, we have explored the possibility of using solely

singlet-triplet measurements to characterise the achieved ground-states of quantum

dot arrays and found that a measurement of a triplet profile is largely sufficient for

distinguishing the ground-state from other potential candidates. Features of this

quantity can also indicate that the achieved state is highly non-classical. Our inves-

tigation fits with experimental accessibility as we only demand nearest neighbour

measurements, do not demand a full Bell-basis measurement (although this can be

achieved in principle with further single qubit rotations), and motivated by scalability

do not even demand positional information of the outcomes: only mt, as shown in

Fig. 2.1. To demonstrate its utility, we investigated the J1 − J2 phase transition in

the Heisenberg ladder.

Since our method is suitable for any models with isotropic antiferromagnetic

couplings, one could consider in the future investigating 2D arrays and other more

complex geometries. For non-Heisenberg Hamiltonians, such as the Ising model

with transverse field, we expect that singlet-triplet measurements are still useful since

different phases tend to have different local correlations. Another clear direction

would be to consider the extra information currently missed by only recording the

total number of triplets. For example, if information regarding the clustering of the

triplet occurrences was retained, this could serve as a second axis on the probability
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profile. Such an increase in the probability distribution space would clearly aid in

distinguishing quantum states, and would also likely reflect physical traits of the

system such as correlation length.

As well as characterization, we showed that singlet-triplet measurements have a

quantum information processing application in localizing entanglement between the

opposite ends of an open SU(2)-symmetric chain. Engineering the couplings slightly

allows this effect to be amplified, though the effect on the Hamiltonian’s resultant

spectrum must be considered.

Finally, we considered the relevant noise sources for practical application of

these techniques in GaAs quantum dot arrays for example. Interestingly, the nature

of this noise lends quantum dots to potentially be a viable direct quantum simulator

for the phenomenon of many-body localization, and so we have also noted several

possible areas of research in that direction.



Chapter 3

Entanglement & the many-body

localization transition

This chapter is adapted from the publication:

• Johnnie Gray, Sougato Bose, and Abolfazl Bayat. Many-body localization

transition: Schmidt gap, entanglement length, and scaling. Phys. Rev. B,

97(20):201105, 2018.

3.1 Abstract
Many-body localization has become an important phenomenon for illuminating a

potential rift between non-equilibrium quantum systems and statistical mechanics.

However, the nature of the transition between ergodic and localized phases in models

displaying many-body localization is not yet well understood. Assuming that this

is a continuous transition, analytic results show that the length scale should diverge

with a critical exponent ν ≥ 2 in one dimensional systems. Interestingly, this is in

stark contrast with all exact numerical studies which find ν ∼ 1. We introduce the

Schmidt gap, new in this context, which scales near the transition with a exponent

ν > 2 compatible with the analytical bound. We attribute this to an insensitivity to

certain finite size fluctuations, which remain significant in other quantities at the

sizes accessible to exact numerical methods. Additionally, we find that a physical

manifestation of the diverging length scale is apparent in the entanglement length

computed using the logarithmic negativity between disjoint blocks.
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Figure 3.1: Schematic of the two main quantities studied here: a) the Schmidt gap, ∆, across
a bipartition of the system and b) the logarithmic negativity, E , between disjoint
blocks separated by length lG.

3.2 Introduction
It has become apparent that the Anderson Localization [73] of disordered models

can survive in the presence of interactions [74], with rigorous proof now found for

1D systems [76, 77]. This phenomena, known as many-body localization (MBL),

has attracted much interest [166, 167, 81, 168, 169, 75] in fundamental physics due

to the fact that such systems generically break ergodicity and fail to thermalise —

thus lying beyond the scope of statistical mechanics. Additionally, MBL occurs

throughout the energy spectrum, implying that its fingerprint can be observed at

all temperatures. These facts combined have significant practical implications for

quantum transport [74] and information storage [170, 171, 172]. Experimental

advances have allowed the controlled observation of MBL phenomena [106, 173],

further driving interest.

Considerable progress has been made in understanding the strongly localized

phase, particularly in terms of local integrables of motion [80, 81, 82, 83, 84, 85] ,

which permit a MPS description of all eigenstates [174, 175, 176, 177, 178, 179].

However, eigenstates in the ergodic phase generally have volume law entanglement,

restricting one to exact diagonalization techniques and small system sizes (up to∼ 20

spins) — this has constrained the development of a clear picture of the nature of the

transition from ergodic to MBL (the MBLT). For example, questions that still require

attention include: (i) Which quantities can best characterize the transition? (ii) Is

it valid to treat the MBLT using the same framework, based on the emergence of a

diverging length-scale, developed for zero-temperature quantum phase transitions?

(iii) If so, what is the universal critical exponent, ν, governing this length-scale? And
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(iv) what is the physical picture of the said length-scale?

An extensive exact numerical analysis of the MBLT, using a variety of quantities,

can be found in [79], in which finite size scaling analysis throughout the spectrum

allows the observation of a mobility edge. In fact, it is now commonplace to

diagnose the MBLT with the mean energy level statistics and the block entanglement

entropy [75, 167, 79, 180, 181, 182, 183]. These works are largely based on the

assumption that the MBLT is continuous, and their exact numerical analyses have

consistently found ν ∼ 1. This is in striking contrast with analytic results, found

by Chayes-Chayes-Fisher-Spencer [184] and Chandran-Laumann-Oganesyan [185],

which would demand ν ≥ 2/d for system dimension d (the CCFS/CLO bound).

A recent explanation [182] posits that at the finite system sizes available for exact

studies, the fluctuations in these quantities are not yet dominated by the true disorder.

Thus it is highly desirable to use a new quantity better able to capture the real disorder

induced transition properties.

In this chapter, we bring in new tools to understand the nature of the MBLT.

Firstly, the Schmidt gap, which has been successfully employed as an order parameter

in quantum phase transitions [186, 187, 36]. Secondly, an entanglement length

computed from the logarithmic negativity [188, 189, 25, 26, 190], quantifying the

bipartite entanglement between two disjoint blocks [191, 192, 193, 194, 195], which

has been previously used to probe the extension of the Kondo screening cloud [196,

197]. We find that, unlike previously used quantities, the Schmidt gap reveals a

critical exponent ν ≥ 2, consistent with the CCFS/CLO bound, though, curiously as

opposed to previous studies, it does not act as an order parameter. Moreover, we find

that the entanglement length witnesses the emergence of a diverging length scale at

the transition from ergodic to MBL phase.

3.3 Model
We consider a periodic spin-1/2 Heisenberg chain, with random magnetic fields in

the z-direction:

H =
L∑
i=1

(JSi · Si+1 − hiSzi ) , (3.1)
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Figure 3.2: (a) and (b) : The Schmidt gap, ∆, and its derivative as a function of disorder, h,
across the MBLT for varying chain length, L. (c) and (d) : The normalized half
chain entropy, S, and the mean energy level spacing ratio, r, as a function of
disorder for varying L. Error bars shown where visible.

with J the exchange coupling, Si = 1
2

(σxi , σ
y
i , σ

z
i ) a vector of Pauli matrices acting

on spin i and dimensionless parameter hi the random magnetic field at site i drawn

from the flat distribution [−h, h]. We diagonalize the Hamiltonian in either the spin-0

or spin-1
2

subspaces for even and odd L respectively. For each random instance we

extract 50 eigenvectors, {|Ek〉}, in the middle of the energy spectrum [198, 199].

Since there is evidence of a mobility edge in MBL [79], at least for finite sizes,

this targeting sharpens any transition observed. The choice of 50 is a reasonable

compromise on numerical efficiency whilst being statistically representative.

3.4 Characterizing the MBLT
The main quantity we compute, new in the context of MBL, is the Schmidt gap.

For two chain halves (or as close to for odd L), A and B, as shown in Fig. 3.1(a),

an eigenvector’s reduced density matrix is ρA,k = TrB(|Ek〉 〈Ek|) for a particular

sample of the random fields. The disorder-averaged Schmidt gap is then defined
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as ∆ = 〈λk1 − λk2〉k, where λk1, λk2 refer to the largest eigenvalues of the reduced

density matrix ρA,k, 〈·〉k denotes average over eigenstates and · denotes the average

over many samples. The Schmidt gap has previously been shown to act as an order

parameter for quantum phase transitions [186, 36]. We explore the possibility of

using it for characterizing the MBLT. Unlike entanglement entropy, the Schmidt gap

ignores most of the spectrum of ρA,k, describing only the relationship between the

two dominant states across the A − B cut. This is pertinent in light of the recent

finding that while the Schmidt values decay polynomially in the MBL phase [175],

finite size corrections are stronger for small Schmidt values. In the ergodic phase

we expect strong entanglement to produce multiple, equally likely orthogonal states,

thus ∆ ∼ 0. In the MBL phase, however, a single dominant state should appear

on either side of the cut, with ∆ rising towards 1 as h → ∞, implying a tensor

product. This behaviour is shown in Fig. 3.2(a) and becomes becomes sharper with

increasing L. To see this more vividly, we plot the derivative of ∆ with respect

to h in Fig. 3.2(b). The derivative has a peak at h = h̃c, which not only becomes

more pronounced but also shifts to the right with L. We infer this to be the finite

size precursor to the transition point, which suggests that in the thermodynamic

limit, L → ∞, the derivative of the Schmidt gap diverges at the MBLT and h̃c

asymptotically approaches the transition point hc.

For reference, we consider the normalised half chain entropy, widely employed

to herald the MBLT [75, 167, 79, 180, 181, 182]. The von Neumann entropy of

subsystem A is defined as Svn = −Tr(ρA,k log ρA,k). This is normalized by the

Page entropy [200], SP = (1/ log 2)
∑mn

i=n+1
1
i
− m−1

2n
, with m, n the Hilbert space

dimensions of subsystems A and B, yielding the disorder-averaged S = 〈Svn〉k/SP .

SP is the expected entropy for a subsystem of a random pure state; since these

overwhelmingly have entropy that scales as their enclosed volume, S gives a measure

of how far |Ek〉 has departed towards area law behaviour. In Fig. 3.2(c) the behaviour

of S across the MBLT is shown. In the ergodic phase its value approaches 1 (showing

the volume law), whereas in the MBL phase it falls to 0 (representing the area law),

as expected.
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Figure 3.3: (a) Schmidt gap data collapse with fitting parameters as shown. (b) Quality of
data collapse, Q, (lower is better) across the whole parameter space. The dashed
lines denote the minimum point which yields the parameters shown in (a). (c)
Pseudo-critical points h̃c as a function of inverse length 1/L. (d) Schmidt gap
data collapse using h̃c directly, and optimizing for ν only - the value of which is
shown. Error bars shown where visible.

For reference we also compute the mean energy level spacing ratio, r. For

energy eigenvalues Ek, with gaps δk = En − En−1, this is defined as r =

〈min(δk, δn+1)/max(δk, δn+1)〉k. In the ergodic phase, energy level repulsion yields

statistics for r that match those of Gaussian Orthonormal Ensemble (GOE) random

matrices [165] with r = 0.5307(1). In the MBL phase however, the eigenenergies

are no longer correlated, and the energy level are simply spaced according to Poisson

statistics, giving r ≈ 0.38629. In Fig. 3.2(d) the behaviour of r is shown across

the MBLT, clearly varying between these two statistical regimes. For all of these

quantities, we average over between 10000 for L = 10 and 1000 for L = 20 samples

of random fields, and compute errors using statistical bootstrapping across these

samples.

3.5 Scaling
The behaviour in Figs. 3.2(a)-(b) suggests that the MBLT is a continuous transition

in which a diverging length scale ξ ∝ |h − hc|−ν emerges near the transition
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point, consistent with [75]. In order to estimate the exponent ν, finite size scaling

analysis [201] has previously been employed for various quantities, including the

entanglement entropy S. These analyses, based on exact numerical methods, find

ν ∼ 1 [202, 79, 182], contradicting the CCFS/CLO bound. A recently proposed

explanation [182], suggests that there are two universality classes at play here, with

that of inter-sample randomness not yet dominant for the system sizes studied.

In order to estimate ν for both models we consider the following finite size

scaling ansatz,

∆ = f(L1/νx), (3.2)

where f(.) is an unspecified function and x is ideally the scaled coordinate h− hc.

Given the ansatz of Eq. (3.2), one can then find the best fit of hc and ν, using an

objective function quantifying quality. We use such a quality measure, Q, as refined

in [203], which is discussed in Appendix A. In Fig. 3.3(a) we show optimal data

collapse of ∆ for various L, which is found to occur for hc = 5.06± 0.09 and ν =

2.35± 0.21. Remarkably, this value for ν is consistent with the CCFS/CLO bound,

in contrast to finite size scaling analyses for S and r, which previous studies [202,

79, 182] have generally shown to yield values of ν ∼ 1 – a finding also reproduced

in our analyses (data not shown). We show the quality of collapse, Q, for all possible

combinations of hc and ν in Fig. 3.3(b), the minimum point of which defines the

best fit values of ν and hc. To define errors on ν and hc, we perform the scaling with

various subsets of data (see appendix A) and compute the variance among all those

which achieve a good quality.

The critical h we find with ∆ is slightly higher than that generally reported.

One possible explanation is that a lower effective ν fits best with a lower effective hc,

a relation that can be seen in Fig. 3.3(b). Thus it is possible that in other studies using

S and r, where ν ∼ 1, hc is artificially lower due to the finite size effects. We note

that a standard method of extracting hc independently – plotting the pseudo-critical

points against inverse length, shown in Fig. 3.3(c) – does not give a decisive value

for the real critical point. In fact hc ∼ 3.7 would seem to be a lower bound on the
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Figure 3.4: Standard deviation between samples for: (a) the Schmidt gap, σ∆; (b) normal-
ized block entropy; σS ; and (c) mean energy level spacing ratio, σr. Shown as a
function disorder, h, and length, L. Error bars shown where visible.

transition point , with a value between 4.5 and 5.5 more consistent. Additionally, if

one were to identify an intersection point for all lengths in Fig. 3.2 – which should

occur at h = hc as implied by Eq. (3.2) – this would also be at h ∼ 5. In contrast,

the point of intersection for S and r shifts significantly as L increases - implying

a deviation from the finite size ansatz. As a final cross-validation, to estimate ν

independently from hc, we take the pseudo-critical points h̃c directly to define the

scaled coordinate x, and find the best quality of fit, Q, solely as a function of ν. This

approach yields ν = 2.13± 0.15 – in accordance with the first estimate – for which

data collapse is shown in Fig. 3.3. In contrast to previous groundstate quantum phase

transitions[186, 36], here we find that the Schmidt gap is a scaling function rather

than an order parameter. Namely it corresponds to β = 0 if Eq. (3.2) had pre-factor

Lβ/ν .

3.6 Sample Fluctuations
In order to understand why the Schmidt gap is more successful than typical quan-

tities, we study the fluctuation of ∆, S and r between samples. Motivated by

Ref. [182], we consider how the size of these fluctuations scales with L. We de-

fine the standard deviations as σ2
∆ = Var

[
〈λk1 − λk2〉k

]
, σ2

S = Var [〈Svn〉k/SP ] and

σ2
r = Var [〈min(δk, δn+1)/max(δk, δn+1)〉k], with the variance Var[·] taken across
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Figure 3.5: (a) Average logarithmic negativity as a function of the gap between two disjoint
blocks as depicted in Fig. 3.1, the first block being a single spin, the second the
rest of the system. Here, L = 20, which has a pseudo-critical point at h ∼ 3.
(b) Bipartite entanglement length, as computed with Eq. (3.3), across the MBLT
for varying chain length L.

samples. These are shown across the MBLT for various system sizes in Figs. 3.4(a-c).

All three quantities must lie between 0 and 1, thus their standard deviation is capped

at 0.5. As the figures show however, the peaks of σS and σr are both still rising

significantly with L and not yet saturated, whereas the peak of σ∆ is almost constant.

The implication is that for S and r, the effect of the small system sizes is to suppress

the amount of fluctuations driven by the true disorder. On the other hand, changing

the length L seems to have little effect on σ∆ – suggesting that it already experiences

the full, disorder driven, thermodynamic-limit fluctuations. A possible explanation

is that finite size effects are dominantly confined to the smaller Schmidt coefficients,

which still contribute significantly to σS . This could also be phrased in terms of the

presence of various length scales, not yet very small compared to the correlation

length, that the Schmidt gap is largely insensitive to.

3.7 Entanglement length
The nature of the diverging length scale ξ, in the context of MBLT, is mysterious

and a physical picture is lacking. To shed light on this, we introduce an entangle-

ment length, as previously used for detecting the Kondo screening cloud [196, 197].

Specifically, we consider the entanglement between a small subsystem A, here a
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single spin, and an environment E, separated by a gap of length lG, a geometry

shown in Fig. 3.1(b). The reduced state of the two blocks is ρAE,k = TrG(|Ek〉 〈Ek|),

where TrG is removes the 2lG spins not in A or E. We use the logarithmic negativ-

ity [188, 189, 25, 26, 190] to quantify the entanglement between systems A and E,

defining E(lG) =
〈
log ||ρΓ

AE,k||1
〉
k
, with Γ the partial transpose, and || · ||1 the trace

norm. Since we are only concerned with the relative decay of entanglement we also

define the normalized entanglement as Ẽ(lG) = E(lG)/E(0). This naturally gives

information about bipartite entanglement over a range of scales, unlike the two-site

concurrence for example (which quickly goes to zero for large separation), and unlike

the widely used entanglement entropy (which cannot quantify the entanglement of

mixed states – which inevitably arise when looking at two subsystems of a larger

state). In the ergodic phase, due to volume law entanglement, the eigenstates are

highly multipartite entangled between their spins. This implies that any reduced state

of two small blocks is close to the identity and thus very weakly entangled. From

this two features can be inferred: i) Ẽ(lG) is initially expected to decay slowly with

increasing lG, and ii) Ẽ(lG) must go to zero as lG → L/2. Since this precludes a

linear type decay, it is expected that there is a distance at which Ẽ(lG) rapidly decays

- indeed we find this to be the case, with a sharp drop-off when half the system is

traced out, i.e. lG ∼ L/4. In the MBL phase, however, A will be weakly entangled

with only spins close to it, and thus Ẽ(lG) should decay quickly even for small lG. In

Fig. 3.5(a) we plot Ẽ as a function of lG for various disorder strengths h in a chain

of length L = 20. As is clear from the figure the location of the main drop in Ẽ

varies significantly with h. While in the ergodic phase Ẽ this decay is concentrated

at lG ∼ L/4, in the MBL phase it is concentrated at lG ∼ 1. Interestingly, at the

pseudo-critical point, (h̃c ∼ 3 for L = 20, see Fig. 3.2(b)), entanglement decays

close to linearly — each spin lost contributes equally to the entanglement, implying

that the bipartite entanglement is equally spread over many sites. This fits with

a picture of a self-similar structure of entangled clusters [204, 181]. The detailed

behaviour of Ẽ as a function of system size can be found in the appendix A.

To extract a length scale from Ẽ(lG) we define a length, η, from the maximum
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inverse gradient as such:

η =

(
max
lG
|dẼ/dlG|

)−1

. (3.3)

To see why such a function works, first consider exponential decay, as appears in

Fig. 3.5 on the MBL side of the transition. With an ansatz of

ẼMBL(lG) = e−lG/λ (3.4)

for some characteristic decay length λ, we find that∣∣∣∣∣ ẼMBL(lG)

dlG

∣∣∣∣∣ =

∣∣∣∣−1

λ
exp

(
−lG
λ

)∣∣∣∣ (3.5)

which is maximised at lG = 0, for which
∣∣∣ ẼMBL
dlG

∣∣∣ = 1
λ

and thus η = λ as desired. If

instead we take an ansatz of linear decay over some length λ, as observed in Fig. 3.5

at the transition point, we use

Ẽcrit(lG) = 1− lG/λ (3.6)

for which clearly
∣∣∣ Ẽcrit(lG)

dlG

∣∣∣ = 1
λ

everywhere and thus again we find η = λ. Finally, in

the ergodic phase we observe a plateau followed by decay over some length scale, λ,

centered around length lc. One ansatz that qualitatively captures such behaviour is

the function

Ẽerg(lG) =
1

1 + exp
(

4(lG−lc)
λ

) . (3.7)

The absolute derivative of this is∣∣∣∣∣ Ẽerg(lG)

dlG

∣∣∣∣∣ =
4e4(lG−lc)/λ

λ(1 + e4(lG−lc)/λ)2
(3.8)

which is maximised for lG = lc at the value 4/λ22 and so again we find η = λ. As

such, Eq. (3.3) represents a robust way of finding the length over which the disjoint
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entanglement decays for all noise strengths, as opposed to tailoring an ansatz to each.

The behaviour of η as a function of h for varying L is shown in Fig. 3.5(b), in

which it can be seen to sharply peak at h ∼ h̃c for each L across the critical region, –

evidence that the diverging length scale ξ is closely captured by the length η. In the

appendix A we show that taking the initial block as 2 spins yields almost identical

results. A plausible explanation for the increase in η as one approaches the MBLT

from the ergodic side is that proximal spins become off-resonant so that bonding

(bipartite entanglement) takes place at increasingly longer scales – a process that is

not possible if the spins are part of a large multi-partite entangled block. We note

several interesting approaches that made use of the two site concurrence [205, 206]

or mutual information [207], which despite revealing other interesting features, such

as scaling, do not show a divergence in the localization length from both sides of

the transition. An alternative approach to identifying the diverging length scale on

the ergodic side based on the entanglement spectrum has been recently developed

in Ref. [208]. It is an interesting open question whether that length is related to the

entanglement length proposed here.

3.8 Conclusions
In this chapter we have explored the MBLT using the Schmidt gap and the entangle-

ment length. We show that the Schmidt gap not only exhibits scaling at the MBLT,

but does so with a critical exponent ν > 2, compatible with analytic predictions.

This compatibility is absent in all quantities studied with exact numerical methods

thus far, a fact that we attribute to the presence of significant finite size effects which

the Schmidt gap is less sensitive to. We have also considered an entanglement length

computed using the logarithmic negativity across two disjoint blocks, which yields a

diverging length scale at the MBLT.
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121(15):150503, 2018.

4.1 Abstract
Entanglement not only plays a crucial role in quantum technologies, but is key to

our understanding of quantum correlations in many-body systems. However, in an

experiment, the only way of measuring entanglement in a generic mixed state is

through reconstructive quantum tomography, requiring an exponential number of

measurements in the system size. Here, we propose a machine learning assisted

scheme to measure the entanglement between arbitrary subsystems of size NA and

NB , with O(NA +NB) measurements, and without any prior knowledge of the state.

The method exploits a neural network to learn the unknown, non-linear function

relating certain measurable moments and the logarithmic negativity. Our procedure

will allow entanglement measurements in a wide variety of systems, including

strongly interacting many body systems in both equilibrium and non-equilibrium
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regimes.

4.2 Introduction

Entanglement is a key property for many emerging quantum technologies [209, 9,

210, 211, 212, 213], but also is essential for understanding the structure of strongly

correlated many-body systems [214, 93]. Despite its paramount importance, only

for the very limited case of a bipartition of a pure state can the entanglement,

quantified by subsystem entropy, be measured in an efficient and state-independent

way [215]. There are multiple proposals to carry out such a scheme in various

physical systems, such as optical lattices [216, 217], quantum dot arrays [218] and

Gaussian systems [219]. Recently, some of these have also been experimentally

realised in simulated spin chains, for example in cold atoms [220] and photonic

chips [221]. Nonetheless, pure states are very rare: they are not only difficult to

prepare in realistic situations, but also difficult to maintain in the presence of an

environment. For example, just consider the entanglement between: (i) optical

modes traversing fibres, crucial for quantum communication; (ii) spatially separated

parts of an extended many-body pure state, important for characterizing long range

entanglement [222, 196, 223, 2, 224, 225]; (iii) two systems in a thermal state –

in none of the above cases, ironically, can the entanglement entropy quantify the

entanglement. Witnesses do exist for specific forms of entanglement, but these are

state-dependent and provide only a simple yes/no answer [189, 226, 227], or bounds

on the quantity of entanglement [228, 229, 230, 231, 232, 233, 234]. However, the

crucial task of being able to accurately measure entanglement for mixed states in an

experimental setting remains open.

While for pure states bipartite entanglement is uniquely defined by the entropy

of the subsystems, for mixed states the landscape is far more complex [235, 23].

Aside from isolated special cases such as two qubit states [236] and bosonic Gaussian

states [219, 237], only the (logarithmic) negativity [24, 25, 26, 27] is a computation-

ally tractable quantity [28]. It bounds the distillable entanglement and teleportation

capacity [26], and is a pivotally important quantity to estimate for both quantum
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technologies [23, 235, 238] and condensed matter systems [38]. Nonetheless, there is

no state-independent observable that can measure the logarithmic negativity, and thus

its experimental measurement requires full state tomography [137] — demanding,

in general, an exponential number of measurements in the system size. Recently,

polynomial tomography schemes have emerged, such as tensor networks for lowly

entangled states [139, 238], or breakthroughs in neural network state reconstruc-

tion [239, 240]. However, these may be insufficient for estimating entanglement,

since many entanglement measures, such as the logarithmic negativity, are not con-

tinuous [241]. Namely, even if reconstructed state ρr approximates actual state ρ

closely, the two may have significantly different negativities [242].

Here, we put forward a machine learning assisted scheme for accurately es-

timating the logarithmic negativity in a completely general and realistic setting,

using an efficient number of measurements – scaling polynomially with system

size. Our estimator works for a wide range of states, and is remarkably accurate

for highly entangled states. Our method is based on measuring a finite number

of moments of a partially transposed density matrix [243, 244, 245] from which

we extract the entanglement negativity using machine learning. This direct esti-

mation of negativity avoids approximate state reconstruction [139, 238, 239, 240],

and represents a new front in applying classical machine learning to quantum prob-

lems [246, 247, 93, 248, 249]. Moreover, we propose a new method for measuring

those moments, beyond [243, 244, 245], which is experimentally feasible in the

many-body setting, since the individual building blocks have already been demon-

strated in solid state [127] and cold atoms [220].

4.3 Logarithmic Negativity

Logarithmic negativity [24, 25, 26, 27] for a generic mixed state ρAB quantifies the

entanglement between subsystems A and B. It is defined as:

E = log2

∣∣ρTAAB∣∣ = log2

∣∣ρTBAB∣∣ = log2

∑
k

|λk| (4.1)
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Figure 4.1: Schematics: (a) Example measurement set-up for the moments, µm =

Tr
[
(ρTBAB)m

]
, here for m = 3, from which one can extract the logarithmic

negativity E between A and B. The generic mixedness of ρAB could arise from
entanglement with environment C. Here the subsystems contain NA, NB and
NC particles respectively. The scheme involves three copies of the original
system, and two counter propagating sets of measurements on A and B, ordered
by the shown numbers, with direction depicted by the filled arrows. (b) Dia-
grammatic proof (for m = 3) of the equivalence between the moments µm and
expectation of two opposite permutations (decomposed as swaps) on A and B –
from which a measurement scheme can be derived.

with | · | the trace norm, ρTXAB the partial transpose with respect to subsystem X , and

{λk} the eigenvalues of ρTXAB. Because of the non-trivial dependence of E on ρAB,

there is no state-independent observable that can measure it — generally demanding

full state tomography. The {λk} are the roots of the characteristic polynomial,

P (λ)= det(λ − ρTBAB)=
∑

n cnλ
n, where each cn is a polynomial function of the

partially transposed moments:

µm = Tr
[
(ρTBAB)m

]
=
∑
k

λmk . (4.2)

In this way, full information about the spectrum {λk} is contained in {µm}. It is

known that these measuring these moments is technically possible using m copies of

the state and controlled swap operations [243]. However, even if these experimentally

challenging operations were available, the problem of extracting {λk} from the

moments is notoriously ill-conditioned [250], with a closely related problem being

described as numerically catastrophic. Alongside this, an exponential number of

moments respective to the size of AB are needed to exactly solve the equations. On

the other hand, to estimate the logarithmic negativity, a precise knowledge of all
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λk is not required. Since −1
2
≤ λk ≤ 1 for all k [251] and

∑
k λk = 1, generically,

the magnitude of the moments quickly decreases with m, with the first few carrying

the most information. Backing up this intuition, we will show that the moments

required, {µm : m ≤ M}, to accurately estimate the entanglement can number as

few as M = 3. We do this by employing machine learning to directly map moments

to logarithmic negativity, avoiding reconstruction of the spectrum or state. Note

that µ0 is simply the dimension of the systems Hilbert space, while µ1 = 1 in all

cases. Additionally, it can be easily shown that µ2 is equal to the purity of the state

= Tr [ρ2
AB], and as such, M ≥ 3 is needed to extract any information about E . In

this sense our method is optimal in terms of number of copies.

4.4 Measuring the Moments of ρTBAB
The method for measuring the moments proposed in [243] based on 3-body con-

trolled swaps is practically challenging in a many-body set-up where natural in-

teractions are two-body. A simpler protocol, for 4 moments only, was provided

in [245]. Here, we show that any moment in Eq. (4.2) can be measured using only

SWAP-operators between the individual constituents of the m copies of the state

ρAB , namely ρ⊗mAB =
⊗m

c=1 ρAcBc . This general set-up is shown in Fig. 4.1(a), where

the mixedness of ρAB arises from possible entanglement with a third system C, such

that ρAB = TrC |ΨABC〉 〈ΨABC | with |ΨABC〉 being a pure tripartite state. The first

step is to write the matrix power as an expectation of a permutation operator, similar

to Ref. [252, 215], but here on the partially transposed copies:

µm = Tr

[(
m⊗
c=1

ρ
TBc
AcBc

)
Pm
]

= Tr

[(
m⊗
c=1

ρAcBc

)
(Pm)TB

]
, (4.3)

where Pm is any linear combination of cyclic permutation operators of order m and

the second line makes use of the identity Tr(ρTBABO)=Tr(ρABO
TB), valid for any

operatorO. A schematic of the equality in Eq. (4.3) form = 3 is shown in Fig. 4.1(b).

In Appendix B we provide a choice of Pm with a neat operational meaning, both
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for spin and bosonic systems. For spin lattices, our choice of Pm to measure the

moments µm results to the following steps in practice: (i) prepare m copies of the

state ρAB; (ii) sequentially measure a ‘forward’ sequence of adjacent swaps, Sc,c+1
A

between neighbouring copies of system A from c = 1 to m − 1; (iii) sequentially

measure a ‘backward’ sequence of adjacent swaps, Sc,c−1
B between neighbouring

copies of system B from c = m to 2; (iv) repeat these steps in order to yield an

expectation value. This procedure is also depicted for m = 3 in Fig. 4.1(a). For

bosonic lattices, our procedure corresponds to the following steps: (i) prepare m

copies of the state ρAB; (ii) Perform ‘forward’ Fourier transforms between modes

in different copies for each site in A – this can be achieved using a series of beam

splitters [253]; (iii) Perform ‘backwards’ (reverse) Fourier transform between modes

in different copies for each site in B, via reverse beam splitter transformations; (iv)

Measure the boson occupation numbers nj,c on all sites j ∈ {A,B} and all copies c

to compute φ = ei
∑
j∈{A,B},c 2πcnj,c/m. (v) Repeat these steps to obtain the expectation

value µm as an average of φ. Both procedures require O(NA +NB) measurements

for each m between 2 and M , and are explained in detail in Appendix B. This is in

stark contrast to tomography, which generically for qubit systems requires 22(NA+NB)

measurement settings.

It is worth emphasizing the difference between our procedure, and recently

proposed operational methods for measuring Renyi entropies [216, 218, 254]. First

of all, Renyi entropies only quantify entanglement for pure states, and cannot be

used in the more general mixed state scenario. Secondly, while for entropies the

operations are only performed on a single subsystem, here, one performs both

‘forward’ and ‘backward’ operations on two subsystems at once, as explained above.

Remarkably, even though partially transposed density matrices are generically un-

physical, measurement of their moments is possible.

4.5 Machine Learning Entanglement

We focus now on estimating the logarithmic negativity from the information con-

tained in the moments, µm. One approach using only the even moments has been
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proposed in the quantum field theory literature [38, 255] by exploiting numerical ex-

trapolation. However, this method neglects the odd moments and generally requires

a large number of moments and thus copies. We have developed an alternative analyt-

ical method based on Chebyshev functional approximation, detailed in Appendix B,

which takes into account these odd moments. Indeed with the same number of copies

we find it produces more accurate estimates, and thus serves as a reference quantity.

The Chebyshev expansion is analytically tractable, and becomes accurate for large

enough M , as is shown in Appendix B. Nonetheless, this expansion is based on a

linear mapping between the moments and the negativity, despite this relationship

being inherently non-linear. Therefore it is natural to think that a non-linear trans-

formation could be more optimal, and thus more efficient for smaller M – namely

fewer copies.

Machine learning has recently emerged as a key tool for modelling an unknown

non-linear relationship between sets of data. In the supervised learning paradigm,

one trains a model with a set of known inputs and their corresponding outputs. Once

trained, the model can then be used to predict the unknown output of new input

data. Here, we take the moments µm as the input and the logarithmic negativity E

as the output. Training is performed by taking a large set of states for which µm

and E can be computed on a classical computer. This model can then be used to

predict E from a set of experimentally measured moments. The experimental system

under study motivates the choice of which training states to use, so that they share,

for example, similar entanglement features. Among the most successful machine

learning algorithms for non-linear regression are supervised vector machines [256],

random decision forests [257], and deep neural networks [258, 259]. However, we

have found that using the same training set for each, neural networks are superior

when it comes to predicting logarithmic negativity for a wide range of states beyond

the training set. As we show with our numerical results, neural networks provide a

very accurate method for extracting the logarithmic negativity with as few as M = 3

copies. The details of our neural network construction can be found in Appendix B.
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Figure 4.2: Machine learning entanglement. Estimated logarithmic negativity EML
M , using

a machine learning vs. actual logarithmic negativity E , for the same set of
random states described in the main text. Training and prediction is performed
using the moments µm generated from: (a) M = 3 copies; (b) M = 10 copies.
The respective insets show the distribution of error, EML

M − E .

4.6 Training with Random States

In order to train a neural network, a set of suitable training states are required for

which both the moments and logarithmic negativities are known. From an entangle-

ment perspective, relevant states in condensed matter physics can be classified as

either area-law, or volume-law. In the first case, the entanglement of a subsystem

A with the rest is proportional to the number of qubits along their boundary. In the

second, this entanglement is instead proportional to NA, the number of qubits in

A. Area-law states arise as low energy eigenstates of local gapped Hamiltonians,

with logarithmic corrections in critical systems. Volume-law states however, are

associated with the eigenstates found in the mid-spectrum, and as such arise in

non-equilibrium dynamics, e.g. quantum quenches [260, 261].

Rather than concentrate on a training with a specific model system, we initially

consider the very general case of random states. To encompass both area- and

volume-law states, we consider two classes of states |ΨABS〉: (i) random generic

pure states (R-GPS), e.g. sampled from the Haar measure, which typically have
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volume-law entanglement [262, 263]; (ii) random matrix product states (R-MPS)

with fixed bond dimension, which satisfy an area-law by construction [93]. In order

to generate a training set with a wide range of entanglement features, subsystem

sizes, and mixedness, we perform the following procedure: (i) For a fixed number of

qubits N , take either a R-GPS, or R-MPS with bond dimension D. (ii) Take different

tri-partitions such that N = NA + NB + NC , and for each calculate µm and E for

ρAB. (iii) Repeat for different random instances, while separately varying N and D.

Further generation and training are provided in Appendix B.

4.7 Numerical Results for Random States
To check the performance of our neural network estimator, we take the set of random

states described in the previous section and split this data in two, one half for training

the neural network model, and the other as ‘unseen’ test data. In Fig. 4.2(a) we plot

the machine learning model’s predictions, EML
M , for the test data, using only M = 3

copies, in which a high degree of accuracy is achieved. In the inset of Fig. 4.2(a),

we plot a histogram of the errors EML
M − E , which displays a very sharp peak at zero

error with standard deviation ∼ 0.09 A further improvement, particularly in outliers,

is achieved by increasing the number of copies M to 10, see Fig. 4.2(b), where

the error standard deviation decreases to ∼ 0.07 Regardless, the machine learning

method is already very accurate for extracting entanglement using only three copies.

The machine learning approach works particularly well for large bond dimension

and volume-law like states – an important fact given that these are the exact cases

where efficient tomography fails. A more detailed discussion about sensitivity and

ascribing errors to machine learning predictions can be found in Appendix B.

4.8 Numerical Results for Physical Statesb
We now consider the more realistic setting of quench dynamics in a many-body

system. We take a system of N spin-1/2 particles with nearest neighbour Heisenberg

Hamiltonian H = J
∑N−1

i=1 σi · σi+1 with J the interaction strength and σi =

(σxi , σ
y
i , σ

z
i ) the vector of Pauli matrices acting on site i. The system is initialised in

the (separable) Neel-state |Ψ(0)〉 = |↑↓↑ . . .〉. As the chain unitarily evolves in time
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as |Ψ(t)〉 = e−iHt |Ψ(0)〉, it becomes entangled, with an effective MPS description

whose bond dimension increases until the state is essentially volume-law [260, 261].

In Fig. 4.3 we plot the evolution of E and three approximation methods, as

functions of time for three different choices of subsystems. The three methods are

the Chebyshev approximation with M = 10 and M = 20, discussed in Appendix B,

and machine learning with M = 3, with respective approximate entanglements

ECheb
M=10, ECheb

M=20 and EML
M=3. In Fig. 4.3(a) we consider a specific partition with NA = 2,

NB = 2 and NC = 4. Here, EML
M=3 and ECheb

M=20 are comparably accurate. For larger

subsystems, as shown in Fig. 4.3(b) and (c), the machine learning approximation,

using only M = 3 copies, significantly outperforms the Chebyshev approximations,

using either M = 10 or M = 20 copies. It is remarkable that despite being trained

on a arbitrary set of random states with no knowledge of the underlying physical

system, the evolution of E is accurately captured by the neural network estimator for

all partitions and times, with as few as M = 3 copies.

In Appendix B, we explore various other physical situations, including the

groundstate of an XX-chain across its phase transition, the fully symmetric W-state,

and a quench across the critical point of a transverse Ising chain.

4.9 Conclusions

The measurement of logarithmic negativity in generic multi-particle mixed states

(where Renyi entropies are insufficient to quantify entanglement) has so far relied

on the complete reconstruction of a quantum state, which in general requires an

exponential number of measurements, and is thus limited to small system sizes. In

this chapter, we have devised an alternative strategy, based on machine learning,

by which we can extract the entanglement from very few measurements. These

measurements are based on two counter-propagating series of swap operators on

copies of the state – techniques for achieving this have already been demonstrated in

a number of physical set-ups ranging from quantum dot arrays [127, 264] to cold

atoms in optical lattices [265, 220]. Our method is based on learning the functional

relationship between these measurement outcomes — the first few moments of the
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Figure 4.3: Estimating entanglement for physical states. Logarithmic negativity, E , and
its approximations, using machine learning (M = 3) and a Chebyshev expansion
(M = 10, M = 20), as a function of time Jt for the quench dynamics of a
Heisenberg spin-chain initialised in a Neel-state. A variety of system sizes
with different partitions is shown here: (a) N = 8, NA = NB = 2. (b)
N = 11, NA = 3, NB = 5; (c) N = 20, NA = NB = 5.

partially transposed density matrix — and the logarithmic negativity using a neural

network. Remarkably, our method is already very accurate for as few as three copies

– making it very resource efficient and desirable for practical applications – even

for estimating the entanglement of highly entangled physical states, such as those

arising in quantum quenches.





Chapter 5

Fast computation of many-body

entanglement

This chapter is adapted from the preprint:

• Johnnie Gray. Fast computation of many-body entanglement. arXiv preprint

arXiv:1809.01685, 2018.

5.1 Abstract
Mixed state entanglement measures can act as a versatile probes of many-body

systems. However, they are generally hard to compute, often relying on tricky

optimizations. One measure that is straightforward to compute is the logarithmic

negativity, yet done naively even this is still limited to small system sizes. Here,

we introduce a method to compute the logarithmic negativity for arbitrary subsys-

tems of a densely represented state, as well as block subsystems of matrix product

states. The method combines lazily evaluated, tensor network representations of

the partially transposed density matrix with stochastic Lanczos quadrature, and is

easily extendible to other quantities and classes of many-body states. As examples,

we compute the entanglement within random pure states for density matrices of

up to 30 qubits, explore scrambling in a many-body quench, and match the results

of conformal field theory in the ground-state of the Heisenberg model for density

matrices of up to 1000 spins. An implementation of the algorithm has been made

available in the open-source library quimb.
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5.2 Introduction

Entanglement not only plays an essential role across many aspects of quantum

technologies [209, 9, 210, 211, 212, 213], but also in understanding the nature of

many-body quantum systems [214, 93]. A prevalent quantity to study in this context

is the entanglement entropy, either computationally or analytically [38, 266, 37].

However, this is only applicable to bipartitions of pure states: one can only control

the ratio of subsystem sizes and cannot, for example, exclude any sort of environment.

On the other hand, a true mixed-state entanglement measure allows full control over

the sizes of two subsystems at once, and can thus be a much more refined probe

for many phenomena [191, 196, 267, 38, 39, 268, 269, 270, 271, 2]. One drawback

is that most true entanglement measures are inefficient to compute for many-body

systems, even ignoring the exponential scaling of Hilbert space size, d, with system

size, L. One quantity that is efficient [28], in a technical sense, is the logarithmic

negativity [24, 25, 26, 27], though the naive computational effort still scales cubically

with Hilbert space size, limiting practical calculations to . 15 qubits.

Here we demonstrate an efficient method to approximately but accurately com-

pute the logarithmic negativity for subsystems of many-body quantum states. The

method relies on treating the reduced density matrix as an implicit operator de-

fined as a tensor network [93, 94, 95], and then using stochastic Lanczos quadra-

ture [272, 273, 274] to estimate a spectral sum of this operator. We refer to the

whole procedure as tensor network stochastic Lanczos quadrature (TNSLQ). The

logarithmic negativity is a particular instance of the algorithm, which we target here,

but other quantities such as entropy and thus mutual information are even simpler

to compute. There are also many representations of many-body states amenable

to a tensor network description, but we focus here on two key ones: (i) density

operators derived from partially tracing densely represented pure states; and (ii)

‘compressed’ density operators derived from partially tracing matrix product states.

Broadly speaking, the TNSLQ method enables the computation of logarithmic nega-

tivity for density matrices of . 30 qubits, without resorting to supercomputer-level

resources. In terms of matrix product states, the equivalent limit for computing
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entanglement between arbitrarily separated contiguous blocks, with open or periodic

boundary conditions, is that the the bond dimension is initially . 180. Efficient

implementations of the algorithm specifically for both of these classes of states have

been added to the open source library quimb [5], as well as the general capability to

perform TNSLQ for arbitrary tensor networks and quantities.

This chapter is organised as follows: in Sec. 5.3 we introduce the logarithmic

negativity and discuss some details of its naive computation. In Sec. 5.4 we introduce

stochastic Lanczos quadrature as a method to approximately compute the logarithmic

negativity as the spectral sum of a linear operator. In Sec. 5.5 we introduce the

basic diagrammatic notation of tensor networks. In Sec. 5.6 we show how to form

an efficient partially transposed linear operator for two subsystems of an exactly

represented pure state. In Sec. 5.7 we show how to do the same for two block

subsystems of matrix product states, which involves a form of ‘compression’ first. In

Sec. 5.8 we present results of using the above methods as applied to relevant physical

situations. In Sec. 5.9 we analyse the error of the method and show that it is bounded

by the purity of the density operator under consideration. Finally, we discuss the

method’s future applications and conclude in Sec. 5.10.

5.3 Logarithmic Negativity
The logarithmic negativity [24, 25, 26, 27] is an entanglement monotone and upper

bound on the distillable entanglement. For a density matrix, ρAB , of two subsystems

A and B with Hilbert space sizes dA and dB respectively, it is defined as

E(ρAB) = log2

∥∥ρTBAB∥∥Tr (5.1)

with ·TB denoting the partial transpose [275] with respect to subsystem B and ‖ · ‖Tr

the trace norm1. Unlike the mutual information say, the logarithmic negativity

quantifies quantum correlations only - one of the features that mark it out as a refined

probe of many-body quantum phenomena.

We note that even if ρAB is a low-rank operator, the partial transpose operation

1Also known as the nuclear norm.
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generally increases the rank by a factor of min{d2
A, d

2
B}, precluding the use of low-

rank methods for the computation of E . Instead, the trace norm of an operator is

generally computed as the absolute sum of all eigenvalues, and as such, the full

spectrum is required in the exact case. On the other hand, if much of the spectrum

can be essentially described as a continuous distribution, then intuition suggests that

far less information than every single eigenvalue should be required to approximate

its sum. In this case it should also be possible to avoid directly forming the full,

partially transposed, density operator ρTBAB and instead rely only on its action on an

arbitrary vector: ρTBAB |φ〉 → |φ̃〉. We’ll call such an implicit representation simply a

linear operator, X̂ .

5.4 Stochastic Lanczos Quadrature
Let’s assume we have access to ρTBAB as a linear operator, that is, we can use it to

evaluate matrix-vector products. We can also recast Eq. (5.1) as the trace of a matrix

function where we take the function as the absolute function, | · |:

E(ρAB) = log2 Tr
(∣∣ρTBAB∣∣) . (5.2)

For such a spectral sum of a Hermitian linear operator there do indeed exist various

methods to estimate the quantity, including polynomial methods [276] and approx-

imate reconstruction of the spectrum [277] We focus here though on Stochastic

Lanczos Quadrature (SLQ) [274], which is relatively simple to implement but also

exhibits excellent performance. It can be thought of as the combination of three

separate techniques:

1. Hutchinson’s trace method[278], which estimates the trace of an operator,

f(X̂), with N inner product samples of random vectors {|φn〉}:

Tr(f(X̂)) ≈ 1

N

N∑
n=1

〈
φn

∣∣∣ f(X̂)
∣∣∣φn〉 . (5.3)

This approaches the exact value, Tr(f(X̂)), in a unbiased manner as N →∞.

Practically speaking, we generally need N � dAdB in order to estimate the
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trace to reasonable accuracy. For the purpose of the logarithmic negativity we

take f → | · | and X̂ → ρTBAB so that f(X̂)→ |ρTBAB|.

2. Gauss Quadrature, which allows the estimation of the above bi-linear forms,

Gn =
〈
φn

∣∣∣ f(X̂)
∣∣∣φn〉, when transformed into a Riemann–Stieltjes inte-

gral [274]. Note that the vector |ỹ〉 = f(X̂) |φn〉 is not itself directly computed

at any point, which would be expensive.

3. The Lanczos algorithm [272], which iteratively constructs a basis for the

Krylov space span{|φn〉 , X̂1 |φn〉 , X̂2 |φn〉 , . . .} using matrix-vector products

only, from which the nodes and weights of the Gauss quadrature rule can be

directly computed.

Details of each of these three techniques, including error analysis, are extensively

addressed in various other publications [273, 274]. Instead, we simply sketch a full

implementation of the SLQ method in Algorithm 1.
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Algorithm 1 Inputs: linear operator X̂ , scalar function f , target accuracy tol,
target Lanczos accuracy ltol, maximum number of repeats Nmax, maximum Krylov
subspace size Kmax. Outputs: SLQ estimate of Tr(f(X̂))

1: for n = 1 : Nmax do
2: |φ〉 ← zero mean, unit variance, random vector
3: β1 =

√
〈φ|φ〉

4: |φ0〉 ← 0
5: |φ1〉 ← |φ〉 /β1

6: for k = 1 : Kmax do
7: // perform a Lanczos iteration
8: |ṽ〉 = X̂ |φk〉 − βk |φk−1〉
9: αk = 〈ṽ|φk〉

10: |ṽ〉 = |ṽ〉 − αk |φk〉
11: βk+1 =

√
〈ṽ|ṽ〉

12: |φk−1〉 ← |φk〉
13: |φk〉 = |ṽ〉 /βk+1

14: // compute Gauss quadrature weights
15: Tk = tridiag([α1, . . . , αk], [β2, . . . , βk])
16: {θj}, {|wj〉} = eig(Tk)
17: compute τj = 〈e1|wj〉 for each eigenvector |wj〉
18: F̃k =

∑
j τ

2
j f(θj)

19: if lanczos converged([F̃1, . . . , F̃k], ltol) then
20: break
21: end if
22: end for
23: Gn ← lanczos estimate([F̃1, . . . , F̃k])
24: if hutchinson converged([G1, . . . , Gn], tol) then
25: break
26: end if
27: end for
28: return 1/n

∑n
j=1Gj

We note that the SLQ algorithm requires storage of 3 vectors of size dAdB only –

a relatively low memory overhead. For large systems, the computational effort is gen-

erally dominated by the matrix-vector product X̂ |φk〉. There are multiple options for

choosing the Lanczos convergence and estimation functions lanczos converged

and lanczos estimate [279]. We find a practical method is to least-squares fit an

exponential to the values [F̃1, . . . , F̃k]. This yields a value for the equilibrium point,

as well as an uncertainty, which can respectively be taken as an estimate for the bi-

linear form and an error to test convergence against. For hutchinson converged
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Figure 5.1: Tensor diagrams: (a) a vector, matrix and rank-3 tensor in graphical form; (b)
the trace of a matrix; (c) tensor contraction, here matrix multiplication; (d) a
small network of tensors, which could be contracted into a single tensor (e),
itself then decomposed, for example via SVD, into a new network (f). The left
and right indices of (d) could also be used to treat it as a linear operator. For
here it could be iteratively decomposed, directly into (f).

we simply take the error on the mean. The overall procedure not only allows us to

estimate quantities such as the logarithmic negativity, but reliably keep track of the

error as well.

5.5 Tensor Networks & Graphical Notation
The remaining task is to find a linear operator representation of ρTBAB for our target

class of many-body states. We will focus here on using a tensor network to represent

this implicit operator and perform matrix-vector products. As such we’ll first briefly

recap the graphical notation associated with tensor networks – more thorough reviews

can be found in [93, 94, 95, 280]. The essential idea is to treat all quantum objects as

tensors, i.e. n-dimensional objects describing linear mappings between spaces, with

a labelled index for each dimension. For the purpose of finite quantum mechanics,

these tensors are simply numeric arrays, Tij...k

The basic graphical notation is shown in Fig. 5.1. We depict tensors as
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shapes/nodes, with a leg/edge representing each index. Scalars thus have no legs,

vectors one leg, and matrices two legs. A L-body pure quantum state, |ψ〉, we can

view as a rank-L tensor2, ψ1...L. Connecting the legs of tensors implies a combined

summation over that shared index – a contraction, see Figs. 5.1(b), (c). In this way

networks of tensors can be built up, with the number of free legs indicating the rank

of the full, lazily represented object (see Fig. 5.1(d)⇒ (e)). If evaluating a tensor net-

work, it is always most efficient to perform a series of pairwise contractions, the order

of which can massively affect performance. Indices can be arbitrarily grouped into

new, larger indices (or if their dimension factorizes, ungrouped). This ‘vectorization’

allows any tensor contraction to be performed as either a vector-vector, matrix-vector

or matrix-matrix product. Tensors can also be decomposed, for example via singular

value decomposition (SVD), into a new tensor network – see Fig. 5.1(e)⇒ (f).

For any network, or sub-network, we can also mark the open indices as either

‘left’ or ‘right’ and treat the resulting object as a linear operator which maps vector-

ized tensors spanning one set of indices into the other. The key here is that if only

the action of such a linear operator on a vector is required, then the full operator

does not need to be formed, and instead, the vector can be efficiently contracted

into the tensor network. This allows iterative decompositions that directly transform

Fig. 5.1(d) into Fig. 5.1(f), for example. One such useful procedure is the inter-

polative SVD [281, 282, 283], which can be used to estimate the rank of the lazily

represented operator to a certain precision, and then perform the decomposition to

that target rank. And another possible procedure is of course the SLQ algorithm

described above.

The TNSLQ method is thus to take a tensor network, form a lazily represented

linear operator, X , by grouping indices into ‘left’ or ‘right’ sets, then perform

SLQ using the fact the sampling vector (which is really a vectorized tensor) can

efficiently be contracted into the network to estimate quantities of the form Trf(X).

We note that in general, such operators do not have a sparse-matrix linear operator

representation, and might also be full-rank, in the sense that all their singular values

2Here we mean ‘rank’ as the number of indices, or dimensions, of the tensor, rather than number
of non-zero singular values.
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Figure 5.2: Steps to form a tensor network linear operator representation of ρTBAB: (a)→ (b)
– group indices into subsystems A, B or C; (b)→ (c) – form the vector outer
product and trace out system C; (c)→ (d) – exchange the ‘bra’ and ‘ket’ indices
of subsystem B to perform the partial transpose. For both (c) and (d) the linear
operator representation of the operator is taken by grouping the upper and lower
indices respectively.

Figure 5.3: Acting on a vector with the linear operator ρTBAB , formed as in Fig. 5.2: (a) the
full tensor network describing ρTBAB |φ〉; (b) one of three possible intermediate
contractions; and (c) the resulting output vector of this contraction. Note that
although the tensor network in (a) represents a vector, it can not be manipulated
as such until it is contracted down to the form (c), the efficiency of which
drastically depends on which intermediaries are chosen.

are significant. Nonetheless, the TNSLQ method is applicable.

5.6 Partial Trace States
Having briefly introduced SLQ and tensor networks as linear operators, we now

move onto specific instances of many-body quantum states with bipartite density

matrix subsystems that can be described in this way. The first such example we’ll

call partial trace states (PTS). These are not genuine tensor networks in the sense
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that there is no entanglement induced geometry in the initial state, but the graphical

notation is useful nonetheless. The starting point is an exactly represented pure state

vector – with no particular requirements on the subsystem structure. Without loss of

generality we can take the many-body case of a pure L-body wave-function |ψ1...L〉 –

a rank-L tensor (Fig. 5.2(a)). By grouping indices into either subsystem A, B or C

– where we want to trace out C then find the entanglement between A and B – we

get a rank-3 tensor, |ψABC〉, of total size dAdBdC (Fig. 5.2(b)). The next step is to

form an outer product with the conjugated state and lazily trace out subsystem C

to form ρAB (Fig. 5.2(c)). Finally we partially transpose the operator by swapping

the ‘bra’ and ‘ket’ indices of subsystem B to form ρTBAB. The advantage of keeping

this operator represented as a tensor network is that is that the total storage remains

∝ dAdBdC . Whereas clearly any time that dC < dAdB actually performing the

partial trace would increase memory usage, potentially drastically, to d2
Ad

2
B.

Since we want to now perform the SLQ procedure on this lazily represented

tensor network operator we need to inspect how to act with it on a vector, |φ〉,

spanning the Hilbert space of subsystems A and B. In standard tensor notation we

have:

ρTBAB |φ〉 =
∑
a′,b′,c

ψab′cψ
∗
a′bcφa′b′ , (5.4)

for which there are three possible intermediaries: (i)
∑

b′,c ψab′cΥb′bc; (ii)∑
a′,c Υ̃aa′cψ

∗
a′bc; and (iii)

∑
a′,b′ ρab′a′bφa′b′; the last of which is equivalent to

explicitly forming the partially traced, partially transposed density matrix. The

dimensions of the subsystems determine which intermediary is best to form - in

Fig. 5.3 we demonstrate performing the full contraction using the first intermediary

to yield the new vector |φ〉. Equipped with this lazy linear operator representation

of the ρTBAB, we can now apply the SLQ procedure as detailed in Algorithm. 1 to

compute the logarithmic negativity according to Eq. 5.2.

Clearly we are still limited by needing to explicitly represent the full pure

state ψABC (to . 30 qubits on a ‘standard’ desktop computer). However, the need

to explicitly represent the full operator ρTBAB is lifted, allowing the computation of

entanglement for any tri-partition of A, B and C. Take for example the scenario
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Figure 5.4: A L = 6 MPS decomposition of a wavefunction with: (a) open boundary
conditions, where the edge tensors are only rank-2; and (b) periodic boundary
conditions.

where L = 30 and each subsystem consists of 10 qubits. Forming ρTBAB would

require about 16 terabytes of memory, let alone the time to fully diagonalize it, with

the situation becoming even more extreme as we decrease the size of C. On the other

hand, with this lazy TNSLQ method, it is an easily tractable computation without a

super-computer.

5.7 Matrix Product States
In order to move beyond full Hilbert space representations of many-body states we

need a genuine tensor-network decomposition. The most useful and widespread of

these is that of the matrix product state (MPS), which factorizes the wavefunction

into a one-dimensional chain of rank-3 tensors. This ansatz efficiently represents one-

dimensional states with area-law entanglement [284] and is the central representation

in successful algorithms such as density matrix renormalization group (DMRG) [98,

93] and time evolving block decimation [99]. The form can be explicitly defined as

ψabc...z =
∑

α,β,γ,δ...,ζ

AaαβBbβγCcγδ . . . Zzζα (5.5)

for tensors A,B,C, . . . , Z with physical indices a, b, c, . . . , z, but it is generally

more concise to reason with the graphical notation as depicted in Fig. 5.4. For

simplicity we will consider the size of all the physical indices to be p, and the size of

all the virtual indices, α, β, γ, δ . . . , ζ , (the bond dimension) to be the same value, χ.

The index α can be taken as size 1 (and thus ignored) for open boundary conditions -

Fig. 5.4(a) - or χ for periodic boundary conditions - Fig. 5.4(b).

Given an MPS with target subsystemsA andB to find the entanglement between,

is is straightforward to form a tensor network of ρTBAB. The steps as are follows: (i)
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Figure 5.5: (a) Forming the reduced density matrix ρAB from matrix product state ψABC.
Here subsystem A is in green, subsystem B is in yellow, and subsystem C is in
blue. (b) Tensor network representation of acting on a dense vector, |φ〉 (in red),
with ρTBAB derived from the matrix product state ψABC.

form the outer product between a ‘ket’ and ‘bra’ of the state; (ii) perform the partial

trace of environment C by contracting (joining) all physical indices not contained in

subsystems A or B (shown in Fig. 5.5(a)); and (iii) perform the partial transpose by

switching the ‘ket’ indices with the ‘bra’ indices of all the physical sites in either

subsystem A or B. At this point we could directly form a linear operator by grouping

all the ‘ket’ indices and ‘bra’ indices respectively. In this case, to perform the SLQ

procedure we would then need to sample this operator using a dense vector of size

2LAB (for qubits), as shown in Fig. 5.5(b). Here, we are now limited LAB . 30

(rather than total length L in the pure state subsystem case).

The above assumes nothing about the geometry of A and B within the MPS.

However, if we assume that A and B are contiguous blocks (as is often the case),

then we can adapt the method for arbitrarily many sites by compressing each block, a

process sketched in Fig. 5.6. First, a ‘lateral’ compression of A, B, and, if necessary,

any contiguous blocks of C that form the environment. This is the method derived

in [285] in order to efficiently address periodic boundary DMRG in the language of

MPS. Secondly, a ‘vertical’ decomposition of subsystems A and B to reintroduce

new effective physical indices to the density matrix [286, 287]. The details of the

lateral compression as are follows:

1. Form the transfer matrix of a contiguous section to be compressed –

Fig. 5.6(a)⇒(b).

2. Perform a iterative SVD decomposition of the transfer matrix, treating it as
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Figure 5.6: Compressing a MPS section in four steps. (a)⇒ (b): the overlap of the target
section, or transfer matrix, is formed. (b)⇒ (c): this transfer matrix is laterally
compressed using, for example, an iterative SVD algorithm (dotted grey lines
in (b) denote the ‘left’ and ‘right’ groupings of indices). The singular values
(central green tensor in (c)), can be absorbed into the left (yellow) or right (red)
tensors once small values have been trimmed. (c)⇒ (d): this newly compressed
section is vertically decomposed, for example using a Cholesky decomposition
(dotted grey lines in (c) denote the new ‘left’ and ‘right’ groupings of indices).
(d) ⇒ (e): the bond between the new symmetric factors is ‘cut’ in order to
expose the new physical index.

a linear operator with effective dimensions χ2 × χ2 by grouping the left and

right bonds respectively – Fig. 5.6(b)⇒(c). Note that generally, the longer a

section is, the fewer the number of singular values required to represent its

transfer matrix to high precision.

The procedure for the ‘vertical’ compression, which only is performed on subsystems

A and B in order to reintroduce physical indices is as follows:

1. Perform a decomposition of the section, which now might be in SVD form, but

this time grouping the upper and lower bonds respectively – Fig. 5.6(c)⇒(d).

This operator, with effective dimensions χ2 × χ2, is generally full-rank, how-

ever, we note that it is also positive symmetric, and thus the fast (compared to

SVD) Cholesky decomposition can be used.

2. ‘Split’ the bond connecting the two symmetric factors simply by re-indexing

the tensors – Fig. 5.6(d)⇒(e). This re-introduces effective ‘ket’ and ‘bra’
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Figure 5.7: Forming a compressed representation of a partially transposed density matrix,
ρTBAB , derived from a MPS, |ψABC〉, namely, lateral compression of all con-
tiguous sections, followed by vertical decomposition of A and B. (a) and (b):
state and derived operator for PBC and non-zero gap, g, between contiguous
subsystems A and B – the most general geometry. (c) and (d): state and derived
operator for OBC with zero gap between subsystems A and B – a common
geometry. The effective linear operator of ρTBAB is formed by grouping the upper
and lower indices of (b) and (d).

physical indices to the section, with size ≤ χ2 rather than exponential in the

number of sites.

With these two steps we have a method to derive a ‘compressed’ representation

of the partially traced, partially transposed density operator ρTBAB, from a MPS with

A and B contiguous blocks separated with gap g, as shown in Fig. 5.7(a). First

partition the state into A, B, and potentially several C sections, then perform lateral

compression on any of these that are long enough for it to make sense (e.g. χ2 < pLA
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for section A). Next, perform vertical decompositions on subsystems A and B, and

finally swap the ‘ket’ and ‘bra’ indices on subsystem B to effect the partial transpose.

This resulting tensor network, in the most general geometry, is shown in Fig. 5.7(b).

The largest tensor it contains is always of size ≤ χ4.

We note simplifications can be made to the network in several common sce-

narios. If open boundary conditions (OBC) are used, the gauge freedom can be

utilized to eliminate both the left and right environments completely. Similarly, if

either subsystem A or B contains the end of the chain, they can be represented as

two identity tensors. For periodic boundary conditions (PBC), the left and right

environments are the same section, and an effective gauge to eliminate them can

only be introduced if the section’s transfer matrix has a single dominant singular

value – i.e. it is separable. Finally, clearly if A and B are adjacent (g = 0), no

environment is needed separate them. Given this MPS-derived, compressed, tensor

network representation of ρTBAB, we can as before apply the SLQ method to this

operator using a sample vector |φ〉, also of size ≤ χ4, to compute the logarithmic

negativity of arbitrary contiguous sections. As before, being able to contract the

sample vector into the network to yield a new vector, rather than first contracting the

full operator, yields the key efficiency saving. The best contraction order depends

on the various index dimensions, and in practice, we choose the order automatically

using a greedy approach [6]. Bond dimension now becomes the limiting factor of

the algorithm, and if we translate the memory requirement of densely representing

30 qubits into this language, we find that χ . 180 is the equivalent limit.

5.8 Results

We now move on to demonstrating the TNSLQ method in three different scenarios.

The first two results involve ‘partial trace states’ – random pure states and a many-

body quench – for which L ≤ 30 and the entanglement varies from zero to highly-

entangled. The third studies the scaling of entanglement in a large matrix product

state, namely, the ground-state of the Heisenberg Hamiltonian acquired using DMRG,

for which analytic results are available. All computations were performed using the
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Figure 5.8: (a) Logarithmic negativity, E(ρAB), between two equal subsystems of combined
size LAB in a random pure state of total size L. The lines denote the analytical
result, Eq. (5.6), derived in [288] while the crosses show results computed with
TNSLQ. (b) The same but offset by L/2, where we see a clear collapse to
universal behaviour across all lengths L.

open-source library quimb [5], which has implementations of tensor network linear

operators, the SLQ algorithm, and two-site DMRG.

5.8.1 Random pure states

First, we benchmark the TNSLQ method for density matrices derived from random

pure states, in full dense representation, of length up to L = 30 (total Hilbert

space size 230 = 1073741824). Since these states are completely permutationally

symmetric, the only variables are the size of LA, LB and L. We simply take

LA = LB = LAB/2, then compute E for varying LAB and L. For each configuration

we average over 10 different random realizations, though there is very little variance

between them. The analytic result for these states is known [288]:

E(ρAB) = log2

 2

π
sin−1

(
1

R̃

)
+

2
(

1 + 2R̃2
)

3πR̃

√
1− 1

R̃2
,

 (5.6)
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Figure 5.9: The entanglement, E(ρAB), as computed with the TNSLQ method, across a
central cut for a quench in the Heisenberg model as a function of time Jt and
reduced subsystem size LAB The total chain length is L = 24, and we take the
reduced density operator ρAB to be centered around the half way point such that
either side there is environement of length L− LAB/2.

where R̃ = 2
√
dAdB/dC , which we compare to in Fig. 5.8(a). We find very good

accordance with the analytic prediction, and confirm a universal behaviour whereby

the entanglement is zero for LAB < L/2, and rises linear afterwards – see Fig. 5.8(b).

We note that with the standard method of computing E , approximately the right half

of Fig. 5.8(a) (LAB ≥ 15) would not be available.

5.8.2 Scrambling in a Quench

We next move on to applying the TNSLQ method to a more physical example - the

time evolution of a state after a quench with an interacting many-body Hamilto-

nian. We take a system of L spin-1/2 particles with nearest neighbour Heisenberg

Hamiltonian:

Ĥ = J

L−1∑
i=1

σi · σi+1 , (5.7)

where J is the interaction strength and σi = (σxi , σ
y
i , σ

z
i ) the vector of spin oper-

ators matrices acting on site i. The system is initialized in the (separable) Neel-

state |Ψ(0)〉 = |↑↓↑ . . .〉 and evolved using integration according to the equation
∂
∂t
|ψ(t)〉 = −iĤ |ψ(t)〉, where we have set the Planck constant ~ = 1. In terms of
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geometry, we choose A and B as neighbouring blocks of equal length, either side of

a central cut in the chain, of total length LAB. In Fig. 5.9 we plot the logarithmic

negativity, E(ρAB), computed using TNSLQ, for this set-up as a function of time t,

for a chain of total length L = 24. Again, approximately the upper half of this figure

would not be computable using the exact method of calculating E , but for those sizes

that are, we find very good accordance (not shown) within the target precision of 1%

for the TNSLQ method.

In relation to scrambling [289], we expect information describing the initial

system to quickly (Jt . L) de-localize. More specifically, consider a local operator

M0 encoding some initial information such as ‘spin x is up’. Theoretically, at any

later time, the initial expectation value of this might be retrieved by measuring Mt =

U(t)M0U(−t). However, if Mt after some time has significant support on more sites

than is feasible for us to measure, then this information has effectively become lost.

The fact that local measurements can no longer reveal such information implies the

eventual build up of many-body entanglement in large degrees of freedom only. This

also means that for sufficiently short length-scales, the entanglement should grow

and then decrease, as the combined subsystem ρAB becomes increasingly entangled

with C, precluding entanglement between A and B. This is exactly what we see in

Fig. 5.9, entanglement growing and then dying at increasing length-scales, such that

a subsystem of size LAB is ‘scrambled’ after time LAB/2. Eventually the system

‘equilibrates’ with an entanglement structure roughly similar to that of a random

state – zero entanglement if LAB < L/2, then rising roughly linearly as LAB → L.

Note that the model of Eq. (5.7) is in fact integrable which has several im-

portant implications. Firstly, the dynamics here are unusual - we do not expect

normal thermalization and certainly not fast scrambling. Nonetheless we do see

the de-localization of information associated with normal scrambling. Secondly, in

thermodynamic limit, the dynamics of the logarithmic negativity have in fact been

solved analytically [290] including for the initial state chosen here - the Neel-state.

In this case, for large subsystems (which should nonetheless still much smaller than

the full system), ones finds linear growth of the entanglement, followed abruptly by
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Figure 5.10: Logarithmic negativity, E , between two neighbouring contiguous blocks of
total size, LAB , at the center of system of total length L = 1000. Blue markers
show the entanglement computed using the TNSLQ method. The red dashed
line shows a fit (using data where LAB ≤ L/2) to the conformal field theory
prediction as given in Eq. (5.8).

linear decay to zero. A ‘rounded’ version of this behaviour is exactly what we find

in Fig. 5.9 for LAB . 10.

5.8.3 Heisenberg ground-state

Finally, we demonstrate the TNSLQ method for MPS subsystems by studying the

logarithmic negativity for two adjacent blocks in the ground-state of the Heisenberg

model, with Hamiltonian as defined in Eq. (5.7). The analytic form of this has

been derived using conformal field theory and the ‘replica trick’ [37, 38, 39]. The

behaviour, which is universal, is logarithmic scaling of the entanglement with block

size, as given by

E(ρAB) =
c

4
log2 (LAB) +K (5.8)

for central charge c and constant K. We take L = 1000 then generate a MPS

description of the ground-state of Ĥ using two-site DMRG [98, 93]. The state has a

maximum bond dimension of χ = 116 at the center, with χ also remaining above

90 for ∼ 80% of the chain. Since we are using OBC and neighbouring blocks, so

that g = 0, the form of the compressed version of ρTBAB is that of Fig. 5.7(d). The
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TNSLQ computed entanglement, E(ρAB), is shown as a function of LAB in Fig. 5.10.

Also plotted is a fit of Eq. (5.8) – found using 10 ≤ LAB ≤ 500 to avoid as much

as possible the effect of finite size. From this fit of we find c = 1.11 ± 0.01 and

K = 0.05± 0.01. Notably, the analytic result [38] in the thermodynamic limit is in

fact c = 1. While the results in Fig. 5.10 closely match the expected logarithmic form,

there is a small but significant discrepancy in this coefficient. This likely originates

from the fact that for open boundary conditions, there is no exact generalization of

the result in Eq. (5.8) to finite sizes, unlike in the periodic case where one can define

a modified arc length. As such, even for L = 1000, we might be quite far from the

asymptotic behaviour where ideally both L → ∞ and LAB � L. In Ref. [286], a

similar discrepancy was also found specifically for the case of finite open chains.

5.9 Error Analysis

The TNSLQ method is fundamentally a stochastic process and thus comes with a

certain limitation on achieving very high precision estimates. In fact, the effort scales

exponentially with the number of decimal places required [291]. Crucially however,

and as shown by our results above, a constant level of precision of 0.1 - 1% is easily

achievable, and for many simulation purposes, completely sufficient. Moreover, the

error on the estimate is easy to keep track of. To put this on more concrete terms,

consider that the variance of a single estimate, Gn, of operator Ŷ = f(X̂), using

Hutchinson’s trace method is bounded by [278, 291]:

Var(Gn) = 2Tr(Ŷ †Ŷ )− 2
∑
i

Ŷ 2
ii . (5.9)

Ignoring the second term, which is strictly negative and thus beneficial, we can assess

the first for Ŷ → |ρTBAB|. Since ρTBAB is Hermitian it follows that:

Tr(Ŷ †Ŷ ) = Tr(|ρTBAB||ρ
TB
AB|)

= Tr((ρTBAB)2)

= Tr(ρ2
AB) (5.10)
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which is simply the purity of the joint density matrix, whose value lies between

(dAdB)−1 and 1. Interestingly, this implies that the entanglement will be easier to

compute the more mixed a state ρAB is. Even more importantly, the upper limit on the

variance is constant. By substituting Eq. (5.10) into Eq. (5.9) we find Var(Gn) ≤ 2,

and thus there are no hidden costs of scaling to larger system sizes. Additionally,

as one estimates a quantity with TNSLQ, the error on the estimate can be tracked

simply as the standard error on the mean of the N actual estimates computed so far,

{G1, G2, . . . , GN}, yielding estimated error
√

Var({Gi})/N . As such, the TNSLQ

method for quantities based on ρAB yield errors which have the desirable properties

of being both well-controlled and readily accessible.

5.10 Discussion

We have seen that the TNSLQ method enables the fast computation of many-body

entanglement for various states. It involves treating a tensor network representation

of the partially traced, partially transposed density matrix, ρTBAB as a linear operator.

The action of this operator can be efficiently evaluated by contracting the sample

vector into it, allowing one to use the SLQ procedure to compute any quantity of

the form Trf(A). The entanglement negativity is one such quantity when we set

A = ρTBAB and f = abs. We note that since generally these operators do not have

equivalent efficient representations as either sparse matrices or low-rank operators,

both the tensor network description and SLQ procedure seem necessary components.

We have focussed particularly on the entanglement of bipartite density matrices

derived as subsystems of larger, pure states, but we note that the method should be

just as applicable to the situation where one begins with an efficient tensor network

representation of a mixed state.

For pure states represented as vectors in their full Hilbert space, the TNSLQ

method enables the efficient computation of the logarithmic negativity between sub-

systems A and B for any tri-partition of |ψ〉, that is, with any choice of environment

C. Roughly speaking, in many simulations this doubles the size LAB for which it is

tractable to compute E(ρAB). For MPS, we combined a method of efficiently finding
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a compressed form of the bipartite reduced density matrix, ρAB , with the SLQ proce-

dure used to then find the logarithmic negativity. The method is tractable for OBC

or PBC as well as disjoint blocks separated by length g. We note that unlike some

previous studies, at no point do we have to arbitrarily curtail the number of states

kept (which likely introduces a systematic error), as long as the initial bond size,

χ . 180. To move beyond this limit, it might be worth exploring the actual effect of

limiting certain bond sizes, for example in the vertical decomposition of the A and

B subsystem sections into symmetric Cholesky factors. Another interesting avenue

is whether one could store the Lanczos sampling vectors {|φn〉} in an efficient form -

an obvious choice being as MPS. In this case, during the SLQ procedure the bond

dimension would steadily rise, probably requiring the restriction to a fixed bond

size manifold – how this might bias the estimate is not clear. A relevant approach

was taken recently in [292], where both the target operator X is a matrix product

operator (MPO), as well as sampling unitaries used to perform a block Lanczos

procedure. While it is simple to form a MPO representation of ρTBAB from a MPS,

this has an increased storage cost Lp2χ4, and the bond dimension of the sampling

unitaries must also be artificially restricted, making the MPO approach potentially

unsuitable in this particular instance.

The TNSLQ method is easily capable of estimating quantities to the level of 0.1-

1%, but, as a fundamentally stochastic process, it might not be suitable for computing

quantities to many digits of precision. On the other hand, we have shown that the

error for the density operator |ρTBAB|, in terms of the variance of individual estimates,

is both well controlled - being bounded by a system size independent constant - and

easy to keep track of. Moreover, this feature of being an average over many low-

precision estimates, as well as having a low memory-overhead, makes the TNSLQ

method easy to accelerate. Firstly, it is trivial to parallelize the algorithm over

independent random estimates. Secondly, single precision arithmetic can be used, for

which graphical processing units (GPUs) are particularly suited. Implementations

of both of these accelerations have been incorporated into the open-source library

quimb [5].
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Finally, we note that although the logarithmic negativity of ‘partial trace states’

and matrix product states are particular instances of TNSLQ, there are plenty of

other potential candidates for the both the tensor network operator and computed

function Trf(·). For instance, the Von Neumann entropy is given by −Trρ log2 ρ. It

is easy to simplify the PTS and MPS procedures presented above, by removing the

partial transpose and considering a single subsystem only, to compute this and hence,

for example, the mutual information. Other suitable functions include the partition

function, Z = Tr(e−βĤ) for tensor network Hamiltonian Ĥ , and the Frobenius

norm ||X̂||F =

√
Tr(X̂2) for Hermitian tensor network X̂ . In terms of other many-

body quantum states, the TNSLQ method should be trivially applicable to tree

tensor networks [293, 294] and multi-scale entanglement renormalization ansatz

states [295, 296]. Furthermore, state of the art classical simulations of quantum

computation have also recently relied on tensor network descriptions of the full

circuit[297, 298, 299, 300, 301]. Even without developing any compression schemes

specific to these structures, the computation of E(ρAB) for LAB up to ∼ 30 should

now be possible. Needless to say, in all the above cases there are many interesting

questions that might be probed with a genuine, many-body entanglement measure

such as the logarithmic negativity.





Figure 6.1: Sample output from the open-source python library quimb for quantum infor-
mation and many-body calculations including tensor networks.

Chapter 6

quimb - A library for quantum

many-body calculations

In this chapter we introduce quimb , an open-source python library for quantumm

information and many-body calculations written during the course of this thesis. It

contains practical implementations of many parts of the previous chapters and was

used to produce the majority if not all the numerical results. Additionally, it contains
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various novel features and algorithms not found anywhere else, including the TNSLQ

method from chapter 5. Being python, it is very easy to use quimb interactively

in a range of environments. However it can also leverage powerful linear algebra

libraries under the hood that making its performance generally excellent. Moreover,

as a open source project it conforms to many modern scientific software develop-

ment best practices – including unit testing, continuous integration and automatic

documentation. The following resources on quimb are available online:

• Main documentation – https://quimb.readthedocs.io.

• Source code – https://github.com/jcmgray/quimb.

• Short published paper – [5].

A selection of graphs produced by quimb are shown in Fig. 6.1.

Discrete quantum systems are in some ways straightforward to begin to simulate

classically since the essential language of linear algebra has very strong support

across many programming languages. However the curse of dimensionality means

that much care must be taken in terms of performance when trying to scale simu-

lations to many-body systems. quimb approaches this is two ways. Firstly, a core,

‘exact’, module with support for dense and sparse representations of quantum objects

as matrices that can scale to distributed systems. Secondly, a tensor-network module

for simulations of large many-body systems with moderate amounts of entanglement.

In what follows we demonstrate basic usage of both parts, noting design choices

where appropriate.

6.1 The core module

6.1.1 Basic representation and operations

For dense numerical linear algebra python has one stand-out library – numpy [302]

and we use its n-dimensional array as our core object, with column vectors repre-

senting kets, row vectors representing bras, and matrices representing operators:

https://quimb.readthedocs.io
https://github.com/jcmgray/quimb
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>>> import quimb as qu # import the quimb ’namespace’

>>> data = [1 / 2**0.5, -1j / 2**0.5] # data we want in ’quantum’ form

>>> qu.ket(data) # cast the data as a ket

qarray([[ 0.707107+0.j ],

[-0. -0.707107j]])

>>> qu.bra(data) # cast the data as a bra

qarray([[ 0.707107-0.j , -0. +0.707107j]])

>>> qu.dop(data) # cast the data as a density operator

qarray([[ 0.5+0.j , -0. +0.5j],

[ 0. -0.5j, 0.5+0.j ]])

Quantum objects can act on each other with the dot product using the @ symbol

(with the .H attribute performing the conjugate transpose):

>>> psi_1 = qu.rand_ket(7)

>>> psi_2 = qu.rand_ket(7)

>>> (psi_1.H @ psi_2) # state overlap 〈ψ1|ψ2〉

qarray([[0.064982-0.209516j]])

>>> A = qu.rand_herm(7) # a random hermitian matrix

>>> (psi_1.H @ A @ psi_2) # operator expectation 〈ψ1|A|ψ2〉

qarray([[-0.082228+0.150639j]])

States and operators can be tensored together using the & symbol:

>>> X = qu.pauli(’X’)

>>> Z = qu.pauli(’Z’)

>>> XZ = X & Z # like X ⊗ Z

>>> XZ.shape

(4, 4)

There are many other built-in states and operators, most of which can be con-

structed optionally in sparse form. The underlying sparse functionality is provided

by scipy [303]. For performance reasons it is also possible to specify the data-type

of the underlying array:
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>>> # construct a sparse, single precision, random positive matrix

>>> P = qu.rand_pos(100, sparse=True, dtype=’float32’)

>>> P

<100x100 sparse matrix of type ’<class ’numpy.float32’>’

with 307 stored elements in Compressed Sparse Row format>

Even though numpy and scipy are themselves largely written in C and offer

very good performance within their own routines, quimb further accelerates and

parallelizes many functions using numba [304] – including for example random

number generation, a key part of the TNSLQ algorithm.

6.1.2 Multipartite states and partial traces

Partially tracing and various other quantities make used of specified dims – a list of

integers representing the size of each subsystem:

>>> # construct a 12 qubit w-state

>>> psi = qu.w_state(12)

>>> dims = [2] * 12 # [2, 2, 2, ...]

>>> # trace out all but sites (3, 4, 5, 6, 7, 8)

>>> rho_ab = qu.partial_trace(psi, dims, keep=range(3, 9))

>>> rho_ab.shape

(64, 64)

>>> # compute the logarithmic negativity for the remaining qubits

>>> dims_ab = [2] * 6

>>> qu.logarithmic_negativity(rho_ab, dims_ab, sysa=(0, 2, 4))

0.2715533031636124

>>> # OR perform both steps at once

>>> qu.logneg_subsys(psi, dims, sysa=[3, 5, 7], sysb=[4, 6, 8])

0.2715533031636124

6.1.3 Time Evolutions

There is also a convenient interface for managing time evolutions, which can be per-

formed in a number of ways (full diagonalization, integration, or Krylov exponentia-



6.1. The core module 121

tion):

>>> # set up an initial state and hamiltonian

>>> H = qu.ham_heis(18, sparse=True)

>>> psi0 = qu.rand_product_state(18)

>>> # set and and perform an evolution

>>> evo = qu.Evolution(psi0, H, progbar=True)

>>> evo.update_to(5)

100%|##################################| 100/100 [00:04<00:00, 27.55%/s]

>>> # find the overlap between the evolved and initial state

>>> psit = evo.pt # retrieve |ψ(t)〉 = e−iHt |ψ(0)〉

>>> qu.expec(psi0, psit)

1.7917475317189076e-05

This Evolution class can also be used as a generator to yield the time-evolved

state at many times in a memory-efficient manner, or functions can be supplied which

will be automatically computed at each dynamic integration step.

6.1.4 Distributed eigensolving

In terms of distributed calculations, quimb offers two key features. The first is the

ability to use slepc [305, 306] as an eigensolver with the same interface as scipy.

slepc is a massively parallel library that makes use of the fast message passing

interface (MPI) [307]. If it is installed it is straightforward to begin using its more

advanced algorithms:

>>> A = qu.ham_hubbard_hardcore(10, sparse=True)

>>> qu.groundenergy(A, backend=’scipy’)

-7.015446354492036

>>> qu.groundenergy(A, backend=’slepc’)

-7.015446354492048

The second is the ability to only construct certain rows from a sequence of kro-

necker products. Take, for example, the case of forming an operator which acts with

the Pauli-Z on two of many spins. The usual way of doing this is the ikron (identity
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kronecker) function:

>>> Z = qu.pauli(’Z’, sparse=True)

>>> dims = [2] * 10

>>> inds = (4, 5) # act on the 5th and 6th spins only

>>> IIIIZZIIII = qu.ikron(Z, dims, inds)

>>> IIIIZZIIII.shape

(1024, 1024)

As

the total Hilbert space becomes much larger, in general we only want each local MPI

process to construct a small selection of rows. quimb allows this by intelligently slic-

ing the input operators:

>>> IIIIZZIIII_local = qu.ikron(Z, dims, inds, ownership=(300, 350))

>>> IIIIZZIIII_local.shape

(50, 1024)

In

this way any operators, such as Hamiltonians, which are generally constructed as

the sum of many kronecker product sequences can be simultaneously distributed

and parallelized – ready for input to slepc. quimb can be launched in one of three

MPI modes and generally handles all the slicing and communicating of operators

automatically.

These two features combined are crucial when, for example, examining the

mid-spectrum eigenstates of the MBL Hamiltonian, as in chapter 3.

6.1.5 Stochastic Lanczos Quadrature

In terms of the SLQ functionality discussed in chapter 5, this is provided by the func-

tion approx spectral function. Here we compute Tr(
√
A) for a large, random,
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sparse and positive matrixA:

>>> A = qu.rand_pos(2**18, sparse=True)

>>> A

<262144x262144 sparse matrix of type ’<class ’numpy.complex128’>’

with 862615 stored elements in Compressed Sparse Row format>

>>> qu.approx_spectral_function(A, f=qu.sqrt, verbosity=1, tol=0.001)

LANCZOS f(A) CALC: tol=0.001, tau=0.00025, R=1024, bsz=1

k=40: Returning estimate 185713.95980018922.

Repeat 1: estimate is 185713.95980018922

k=40: Returning estimate 185237.39196082807.

Repeat 2: estimate is 185237.39196082807

k=40: Returning estimate 185212.01899937398.

Repeat 3: estimate is 185212.01899937398

Total estimate = 185387.79025346375 +- 133.29239096525717

Repeat 3: converged to tol 0.001

ESTIMATE is 185387.79025346375 +- 133.29239096525717

185387.79025346375

This

function accepts any operator defined as having a linear action – not just a dense or

sparse matrix.

Other features of the core module not demonstrated here include: two or more

dimensional Hilbert space construction, automatic exploiting of symmetries when

eigensolving, fast randomized SVD for linear operators, open system time evolutions,

and numerous non-trivial pure and mixed state quantities.

6.2 The tensor network module

Since, as discussed extensively before, tensor networks have become one of the

most successful approaches to efficiently simulating quantum systems, a tensor

network module has been developed alongside quimb with the same principles -

easy, interactive usage whilst retaining high performance. At its core at two generic

classes, the Tensor and the TensorNetwork, which together allow a concise

framework for any type of tensor network algorithm. From this point special one-

dimensional algorithms in particular are developed, but the core library itself is

totally agnostic to geometry.
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6.2.1 Tensors

The key difference between a n-dimensional array and a tensor in quimb is that

tensors have named dimensions which are propagated through any operations. On

top of this, quimb associates an arbitrary number of ‘tags’ with each tensor, allow it

to be uniquely identified or grouped with other tensors. In this way, shared indices

specifying unperformed contractions completely define the geometry of a network,

while the tags allow you succinctly address particular sections.

We’ll begin by illustrating basic instantiation and contraction of tensors. Imag-

ine we want to compute the dot product between two operators A and B:
>>> # first we import the tensor network ’namespace’

>>> import quimb.tensor as qtn

>>> # create two dummy arrays and label them as tensors

>>> A, B = qu.randn((3, 4)), qu.randn((5, 3))

>>> A

array([[-0.19225872, 0.74364341, 0.2376952 , -1.15387431],

[-0.38995519, 1.4374562 , -0.36928995, 2.24068108],

[-0.72356227, -0.09718222, -0.54441159, 0.87804104]])

>>> B

array([[ 1.61546384, -0.44581857, -1.05435023],

[-0.98493191, 0.20710894, -1.28524228],

[ 1.27386758, -0.03764016, -1.02159698],

[-0.69690787, -1.1528959 , -0.91709318],

[-1.2999978 , 0.43790411, -0.63433899]])

>>> TA = qtn.Tensor(A, inds=[’bond’, ’left’], tags={’A’})

>>> TB = qtn.Tensor(B, inds=[’right’, ’bond’], tags={’B’})

Note

that the dimension labelled ’bond’ occurs on both tensors and has the same

size on each, but the raw arrays are otherwise not aligned. If we dot these to-

gether using the @ symbol this bond is both automatically aligned and contracted:

>>> TA @ TB

Tensor(shape=(4, 5), inds=(’left’, ’right’), tags={’A’, ’B’})
Note

that the tags have been merged as well. This is the fundamental behaviour that
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underpins the rest of the tensor network module.

6.2.2 Tensor networks

If instead of eagerly contracting the two tensors together we merely lazily ‘combine’

them with the & symbol, we get a TensorNetwork:

>>> TN_AB = TA & TB

>>> print(TN_AB)

TensorNetwork([

Tensor(shape=(3, 4), inds=(’bond’, ’left’), tags={’A’}),

Tensor(shape=(5, 3), inds=(’right’, ’bond’), tags={’B’}),

])
This TensorNetwork can efficiently address and retrieve tensors based on their

indices and tags. At this point we could just contract the whole network again using

the shorthand ˆ symbol:
>>> TN_AB ˆ all

Tensor(shape=(4, 5), inds=(’left’, ’right’), tags={’A’, ’B’})
which

produces the same result as before. We could also at this point draw the network:

>>> TN_AB.graph(color=[’A’, ’B’])
left

right

{'A'}

{'B'}
 A
 B

where we can see for the first time the utility of adding tags to the tensors.

6.2.3 One-dimensional tensor networks

quimb has various tensor network classes representing states on a one-dimensional

lattice, the most important of these is probably the MatrixProductState. We’ll

start just be creating a random one:

>>> mps = qtn.MPS_rand_state(10, bond_dim=7)

>>> print(mps)

MatrixProductState([

Tensor(shape=(7, 2), inds=(’_2fe8120000002’, ’k0’), tags={’I0’}),

Tensor(shape=(7, 7, 2), inds=(’_2fe8120000002’, ’_2fe8120000004’, ’k1’), tags={’I1’}),

Tensor(shape=(7, 7, 2), inds=(’_2fe8120000004’, ’_2fe8120000006’, ’k2’), tags={’I2’}),

Tensor(shape=(7, 7, 2), inds=(’_2fe8120000006’, ’_2fe8120000008’, ’k3’), tags={’I3’}),

Tensor(shape=(7, 7, 2), inds=(’_2fe8120000008’, ’_2fe812000000a’, ’k4’), tags={’I4’}),

Tensor(shape=(7, 7, 2), inds=(’_2fe812000000a’, ’_2fe812000000c’, ’k5’), tags={’I5’}),

Tensor(shape=(7, 7, 2), inds=(’_2fe812000000c’, ’_2fe812000000e’, ’k6’), tags={’I6’}),

Tensor(shape=(7, 7, 2), inds=(’_2fe812000000e’, ’_2fe812000000A’, ’k7’), tags={’I7’}),

Tensor(shape=(7, 7, 2), inds=(’_2fe812000000A’, ’_2fe812000000C’, ’k8’), tags={’I8’}),

Tensor(shape=(7, 2), inds=(’_2fe812000000C’, ’k9’), tags={’I9’}),

], structure=’I{}’, nsites=10)

Several

things are notable here: (i) random indices have been generated for the

internal bonds – their exact value is generally never needed; and (ii) the
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tensors have been tagged with a ‘structure’ ’I0’, ’I1’, ’I2’, ... denot-

ing which site is which. This structure allows the tensors to be selected:
>>> mps[5]

Tensor(shape=(7, 7, 2), inds=(’_2fe812000000a’, ’_2fe812000000c’, ’k5’), tags={’I5’})

>>> mps[3:6]

<TensorNetwork(tensors=3, structure=’I{}’, nsites=10)>

Or

we can visualize the indices and tags of the whole matrix product state:

>>> mps.graph([f’I{i}’ for i in range(mps.nsites)])
k0

k1

k2
k3

k4k5k6
k7

k8

k9
{'I0'}

{'I1'}
{'I2'}

{'I3'}{'I4'}{'I5'}{'I6'}
{'I7'}

{'I8'}
{'I9'}

 I0
 I1
 I2
 I3
 I4
 I5
 I6
 I7
 I8
 I9

Two copies of a tensor network naturally share the same external indices and thus con-

tracting them automatically computes the frobenius norm: >>> mps.H @ mps # 〈ψ|ψ〉

1.0
which

nicely mirrors the syntax for dense states. When many tensors are contracted at once

like this, quimb utilizes the library opt einsum [308] to quickly find an efficient

contraction path and then perform the contraction automatically. Identifying the

optimal path is an NP-Hard problem, however in many cases a heuristic approach

works just as well, and there is on-going research into improving the path quality

for trickier cases [297, 301, 309]. As part of this thesis, work on opt einsum has

significantly improved this path-finding time and the quality of contractions found,

though we skip the details of these advancements here.

To demonstrate the geometry agnostic design of quimb , we can also here gener-
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ate and graph a MERA [295, 296] state:
>>> mera = qtn.MERA.rand_invar(64)

>>> mera.graph(color=[f’_LAYER{i}’ for i in range(6)])

Tensors in this MERA are now tagged by which ‘layer’ of unitaries and

isometries they are in, as well which sites they are in the ‘light-cone’ of:

>>> mera.select([’_LAYER0’ , ’I32’], which=’all’)

<TensorNetwork(tensors=3, structure=’I{}’, nsites=64)>
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6.2.4 DMRG

The DMRG implementations are encapsulated in the classes DMRG1 and DMRG2

which are instantiated using a matrix product operator:

>>> # generate a matrix product operator Hamiltonian

>>> H = qtn.MPO_ham_heis(100, S=1 / 2)

>>> # make a two-site DMRG solver and solve to one part in 10000 accuracy

>>> dmrg = qtn.DMRG2(H)

>>> dmrg.solve(tol=1e-4, verbosity=1)

SWEEP-1, direction=R, max_bond=8, cutoff:1e-08

100%|###################################| 99/99 [00:02<00:00, 46.35it/s]

Energy: -43.937109025586565 ... not converged.

SWEEP-2, direction=R, max_bond=16, cutoff:1e-08

100%|##################################| 99/99 [00:00<00:00, 111.67it/s]

Energy: -44.1028154398287 ... not converged.

SWEEP-3, direction=R, max_bond=32, cutoff:1e-08

100%|##################################| 99/99 [00:00<00:00, 148.68it/s]

Energy: -44.12190473574812 ... not converged.

SWEEP-4, direction=R, max_bond=64, cutoff:1e-08

100%|##################################| 99/99 [00:00<00:00, 133.81it/s]

Energy: -44.127003485897276 ... not converged.

SWEEP-5, direction=R, max_bond=128, cutoff:1e-08

100%|##################################| 99/99 [00:00<00:00, 111.84it/s]

Energy: -44.12770555415954 ... not converged.

SWEEP-6, direction=R, max_bond=256, cutoff:1e-08

100%|##################################| 99/99 [00:00<00:00, 114.33it/s]

Energy: -44.1277352910854 ... converged!

True

We

can see for this 100 site, OBC, spin-half Heisenberg chain finding the groundstate

to a reasonable degree of accuracy takes only a few seconds. The optimized

state can be inspected with a schematic of bond sizes shown for the whole chain:



6.2. The tensor network module 129

>>> gs = dmrg.state

>>> gs.show()

2 4 8 16 19 22 24 27 32 29 36 33 38 36 40 38 40 39 42 42 44 4

>->->->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->- ...

| | | | | | | | | | | | | | | | | | | | | |

...

4 45 45 46 46 47 47 48 48 49 49 49 50 50 51 50 52 51 52 52 53

... ->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->--> ...

| | | | | | | | | | | | | | | | | | | | |

...

53 53 53 53 53 54 54 54 54 54 54 54 54 54 53 53 53 53 53 53 52

... -->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-- ...

| | | | | | | | | | | | | | | | | | | |

...

52 51 51 50 50 49 49 49 47 48 47 47 46 46 44 44 42 43 39 40 3

... >-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->-->- ...

| | | | | | | | | | | | | | | | | | | | |

...

8 40 36 38 33 36 29 32 27 24 21 19 16 8 4 2

... ->-->-->-->-->-->-->-->-->-->-->-->-->->->-o

| | | | | | | | | | | | | | | |

Or

we can compute some basic quantities with it:
>>> gs.entropy(41) # entropy of the left 41 spins

1.4112329037142548
Custom,

non-isotropic, non-translationally invariant Hamiltonians can also easily be built

using the SpinHam class.

quimb is also notable for being able to efficiently handle periodic boundary

conditions using transfer matrix compression [285], which is often useful to sup-

press boundary effects. It can also perform DMRG-X [310, 179] to find highly

excited states of matrix product operators with area law eigenstates throughout their

spectrum.

6.2.5 TEBD

In order to enable the time evolution of matrix product states quimb implements

time-evolving-block decimation, encapsulated in the class TEBD. Unlike DMRG,

TEBD must be instantiated with a nearest neighbour interaction hamiltonian – a NNI:
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>>> # use a MBL hamiltonian near the critical point

>>> H = qtn.NNI_ham_mbl(100, dh=5.0)

>>> # start with a computational state

>>> psi0 = qtn.MPS_rand_computational_state(100)

>>> # instantiate the TEBD and evolve

>>> tebd = qtn.TEBD(psi0, H)

>>> tebd.update_to(3, tol=1e-3)

t=3, max-bond=21: 100%|#################| 100/100 [00:08<00:00, 9.46%/s]

We

can then investigate how much entanglement has been generated in the time-evolved

state:

>>> psit = tebd.pt

>>> psit.show()

2 4 7 8 10 10 8 8 8 8 8 7 9 8 11 9 9 10 13 10 9 6 7 5 6 5 4 4

>->->->->-->-->->->->->->->->->-->->->-->-->-->->->->->->->->- ...

| | | | | | | | | | | | | | | | | | | | | | | | | | | |

...

7 11 14 16 8 9 8 7 8 7 6 6 6 7 9 10 8 10 12 11 12 11 11 12 8

... >->-->-->-->->->->->->->->->->->->-->->-->-->-->-->-->-->-->-> ...

| | | | | | | | | | | | | | | | | | | | | | | | | |

...

11 8 11 9 8 8 8 7 8 10 11 10 13 12 10 11 11 10 10 9 9 8 10 10

... -->->-->->->->->->->-->-->-->-->-->-->-->-->-->-->->->->-->--> ...

| | | | | | | | | | | | | | | | | | | | | | | |

...

12 11 13 18 18 21 15 14 16 12 11 10 9 10 9 10 10 11 12 8 4 2

... -->-->-->-->-->-->-->-->-->-->-->-->->-->->-->-->-->-->->->-o

| | | | | | | | | | | | | | | | | | | | | |

The same machinery that allows TEBD can also be used to simulate full quan-

tum circuits, whether in MPS or generic tensor network form. While this allows

the simulation of, for example, 49 qubits to a gate depth of 20 or more (in terms of

single amplitudes), we do not show this here.

6.2.6 TNSLQ

In order to demonstrate the TNSLQ method, we show here how to cast a tensor net-

work describing the subsystem of a periodic MPS as a linear operator. From that point
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the SLQ method can be used to estimate spectral quantities such as its entropy easily.
>>> psi = qtn.MPS_rand_state(60, bond_dim=16, cyclic=True)

>>> # for the density operator by only ’untracing’ the first 20 sites

>>> rho_a = psi.H & psi.reindex_sites(’b{}’, range(0, 20))

>>> # perform an inplace contraction of the remaing, traced sites

>>> rho_a ˆ= slice(20, 60)

>>> rho_a

<TensorNetwork(tensors=41, structure=’I{}’, nsites=60)>

At this point our tensor network density operator looks like so:

with the central rank-4 tensor containing all information regarding the effective

environment. In this picture, the operator we want to define maps states spanning all

of the left hand side indices to states spanning the all of the right hand side indices.
>>> # define ’left’ and ’right’ hand side indices of a linear operator

>>> left_inds = [f’k{i}’ for i in range(20)]

>>> right_inds = [f’b{i}’ for i in range(20)]

>>> rho_a_lo = rho_a.aslinearoperator(left_inds, right_inds)

>>> rho_a_lo

<1048576x1048576 TNLinearOperator with dtype=float64>

>>> # now use SLQ procedure to estimate the entropy: −Tr(ρA log2 ρA)

>>> S_a = - qu.approx_spectral_function(rho_a_lo, f=qu.xlogx, tol=0.05)

>>> S_a

5.787216528009696
Which concludes our demonstration of the capabilities of quimb and it tensor

network module, though there are many more features not shown. One notable such
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feature is the ability to back the tensors with many types of array other than those

of numpy, for example, ‘out-of-core’ arrays or GPU arrays. In particular, the use

of machine learning frameworks such as pytorch [311] mean that tensor-network

derived scalar quantities can be auto-differentiated with respect to every constituent

tensor. This allows the use of modern stochastic gradient descent algorithms to

effectively globally optimize tensor-network states, avoiding reliance on hand-crafted

optimization schemes such as DMRG (which does however likely perform better).

Continuing to develop quimb in a open manner that interfaces with other such

libraries in a modular way should hopefully bring many further rewards into the field

of classical simulation of quantum many-body systems.



Chapter 7

General Conclusions

Quantum simulation of many-body quantum systems is a very promising

prospect for quantum technology – both in the near future and indeed into the

far future. Many important fields such as those involved with the development

of advanced materials and chemicals are significantly constrained by the essential

impossibility of fully simulating large quantum systems classically. In parallel,

entanglement is a key concept for dealing with such many-body systems. This is

not only as an essential ‘ingredient’ for quantum simulations, but as a perspective

for understanding a huge variety of phenomena. The two topics together span a

very wide range of fields, which lends itself to a profitable interplay of ideas. In this

thesis we have made advancements pertinent across several of these fields, including

quantum dot arrays, the many-body localization (MBL) transition, and the practical

quantum measurement and classical computation of many-body entanglement. To

conclude, we briefly recap the the achievements of each chapter and offer some

perspective on possible limitations and extensions.

In Chapter 2, ‘Unravelling Quantum Dot Array Simulators’, we examined the

near-term prospects for quantum dot arrays as simulators given both the limited

availability of measurements, and the noisy environment. Developing solid state

simulators such as quantum dot arrays is potentially important due to fact that their

fundamental components – hopping electrons – naturally correspond to the most

important many-body lattice models, namely, the Fermi-Hubbard model and its

derivatives. On the other hand, quantum dot arrays are quite a fledgling technology
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in comparison to cold atom optical lattice set-ups, for example, and so there is a

need to quickly establish tools to verify their operation. We found that singlet-triplet

measurements, available through the parallel capacitance of the quantum dot system,

were sufficient to identify the groundstate of the expected Heisenberg model with

high certainty. Moreover, due to the symmetry of the underlying model, we showed

that a partial singlet-triplet measurement was sufficient to localize entanglement

to distant ends of a chain, in a heralded fashion. Additionally, we showed that the

effective noise model governing a quantum dot system displays a transition to an

MBL phase, opening up the possibility of using quantum dot arrays as direct simu-

lators of non-thermalizing models. A limitation to our singlet-triplet approach was

the restriction to a single output parameter – the number of triplets found – and the

discrimination of states based on the classical probability distribution this parameter

produced. This was in part due to the fact that the singlet-triplet measurement is

not a complete measurement and cannot thus be used for traditional tomography.

Recent advances make use of machine learning techniques [239] to train an effi-

cient state representation that recreates a measured probability distribution. This

approach would seem a natural approach to explore for singlet-triplet measurements

in quantum dot arrays in the future.

Picking up the thread of MBL, in Chapter 3 we study the transition between

ergodic and non-thermalizing phases using two entanglement related quantities.

The highly unusual nature of MBL and its full-spectrum transition make it highly

desirable to develop a better understanding of it. We advance this area in two ways.

Firstly, by performing a rigorous finite size scaling analysis of the Schmidt gap across

the transition we find a critical exponent in line with theoretical predictions – unlike

all previous studies. Moreover, we rationalize this result by investigating the scaling

of fluctuations across samples with system size, from which we conclude the Schmidt

gap is far less sensitive to certain finite size effects. To match the scaling behaviour

we also probe an entanglement length, and find strong evidence that it diverges at

the critical point. An obvious limitation of this research is the restriction to fairly

short lengths in the context of usual phase transition scaling studies. However, part
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of what makes MBL so interesting is the precise fact there is no established and

effective model of the transition point – meaning that exact diagonalisation must be

used. Moving forward, an interesting avenue of research is whether enough can be

revealed about the entanglement structure at the MBL transition to inform a tensor

network approach beyond matrix product states.

In Chapter 4 we move onto the question of actually measuring many-body

entanglement in a quantum simulator. Although schemes exist for measuring the

entanglement entropy (which is only for pure bipartitions), or for tomographically

reconstructing lowly entangled, many-body states, there has not been a way so far

to measure many-body entanglement in generic, many-body mixed states. Being

able to perform such measurements would give us a much more versatile probe

of entanglement in quantum simulators. We show that this is possible using a

combination of choice measurements on three or more copies of a state along with a

neural network estimator with which to extract the logarithmic negativity. Notably,

the method does not require tomographic reconstruction of the state, and is also

particularly effective for highly entangled states. An essential aspect of this work

was that half of the sample states used to train the network were generated with a

controlled amount of entanglement by utilising a random MPS ansatz. The neural

network otherwise received no ‘physical’ data and yet was able to predict the many-

body entanglement in physical models. A limitation of this method however is

the need to classically train the neural network, with it not being clear how well

the neural network could extrapolate its knowledge beyond the system sizes it has

already seen – though feature scaling may well alleviate this in the future.

Motivated in part by the need to compute the many-body entanglement in

the two earlier chapters, in Chapter 5, we focus on developing efficient ways of

computing the logarithmic negativity in generic many-body states as well as matrix

product states. The first ingredient is a lazy representation of the partially traced,

partially transposed density operator as an uncontracted tensor network. The second

is the stochastic Lanczos quadrature procedure, which the allows the estimation of

spectral quantities of linear operators without assuming said operator is low-rank.
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The combination of these two features – dubbed TNSLQ – allows the tractable

computation of logarithmic negativity in many-body states roughly double the size

(Hilbert space dimension squared) of what was previously possible. TNSLQ is a very

general method that indeed can compute a very wide variety of quantities alongside

the logarithmic negativity and we expect this to be a fruitful line of research in the

future.

Finally, in Chapter 6, we have introduced quimb [5], a open source python

library for quantum information and many-body calculations including general

purpose tensor network support. quimb contains implementations of many of the

ideas discussed in the thesis so far including the TNSLQ algorithm. More than that

however, quimb has been designed with modern scientific software best-practices

in mind, including extensive documentation, unit testing, and usage of other high

quality open-source libraries as its foundation. In part due to these efforts, quimb

has already seen moderate uptake and received minor contributions. It has also been

designed with interactivity and performance in mind, allowing one to use it easily

as a conceptual aid but then also scale calculations to large distributed systems. For

all these reasons we hope and expect that it will be a useful tool for rapid, research

orientated quantum calculations in the future.



Appendix A

Appendix for ‘Entanglement & the

many-body localization transition’

A.1 Quality of Collapse
To find the quality of data collapse of scaled Schmidt data for a given hc and ν we

use the pyfssa program [312]. The underlying procedure, which is based on the

method as refined in [203] is as follows. Assume we have data points yij (e.g the

Schmidt gap, ∆) and their standard errors dyij , where i indexes the lengths Li and

j the disorder strengths hj . Since we assume that there is only a correlation length

exponent, ν, we scale only the disorder strength as such: xij = L
1/ν
i (hj − hc). A

curve is then fitted through the data using least squares which yields the fitted points

Yij and their estimated errors dYij . The quality can then be defined as a χ2 statistic

based on the relative deviation from this fitted curve:

Q =
1

N
∑
i,j

(yij − Yij)2

dy2
ij + dY 2

ij

(A.1)

with normalization N accounting for the number of terms where the fitted curve is

defined. This quantity is minimized when all the actual data lies close to the curve of

best fit. In particular, when the deviations from the fit are approximately equal to the

uncertainty in the fit, Q ∼ 1, which is generally what we find with the Schmidt gap

∆.

Since finite size scaling is only strictly relevant close to the transition, and finite
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size effects may be too strong at very small lengths, there is also some freedom in

how one selects the data to scale. Similarly to [79], we vary the size of the window

around hc to select, the minimum L of which to include data for, and also whether

to include odd as well as even L. The advantage of using Eq. (A.1) is that the

the combinations of the above which give statistically reasonable collapse can be

objectively identified. The minimum L is chosen such that increasing it does not

significantly change the values of ν and hc found. One can then average over all

parametrizations that achieve a ‘good’ value of Q (determined visually to be ∼ 10) –

yielding the plot in Fig. 3(b).

The different parametrizations above, as well as bootstrap sampling over dis-

order realizations, then yields a spread in the locations of hc and ν where the best

value of Q is found. This allows an estimation of the error in hc and ν which takes

into account both the collapse method and the random error.

A.2 Entanglement Length with Larger Block Size
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Figure A.1: (a) Average logarithmic negativity as a function of the gap between two disjoint
blocks, the first block being two spins, the second the rest of the system, for
L = 20, which has a pseudo-critical point at h ∼ 3. (b) Bipartite entanglement
length, as computed with Eq. (3), across the MBLT for varying chain length L.
Error bars shown where visible.

For completeness, we show here the equivalent of Fig. 5 taking instead the size

of the block A to be 2. As can be seen in Fig. A.1, this yields almost exactly the
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same shapes and plots, including a divergence of the length ν at the pseudo-critical

points h̃c, which shift right with length L.

A.3 Detailed Behaviour of the Disjoint Entanglement

vs. L
Finally, in Fig. A.2, we show in detail the behaviour of the normalized disjoint

entanglement as a function of L, which sheds some light on the physical picture of

the entanglement length. In the ergodic phase – left column, h = 0.5 – one can see

that the point of decay for Ẽ shifts linearly to the right with system size L, but the

length scale of the decay (which is what η captures) remains constant. In fact, the

curves collapse onto each other with a shift of −L/4 (not shown). In the localized

phase – right column, h = 6 – the decay of entanglement, and thus η, is practically

identical for all the lengths. At the transition point however – central column, h

taken as pseudo-critical points h̃c – the scale of decay stretches with system size.

Lastly, we note that the difference between the two block sizes tested (upper row 1,

lower row 2) is very minimal.
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Figure A.2: Behaviour of the normalized disjoin block entanglement, Ẽ , as a function of
the gap size lG for varying chain lengths L. The top line of panels corresponds
to an initial blocksize of NA = 1, and the bottom 2. The left column is shows
behaviour deep in the ergodic phase, the middle behaviour at the pseudo-critical
points, and the right behaviour deep in the localized phase. Error bars shown
where visible.
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B.1 Measuring Moments in spin-1/2 Systems

Here we show that the operational procedure described in the main text allows us

to measure the moments µm for spin-1/2 systems. Let Sc,dX be the operator that

swaps copies c and d on subsystem X , which can be written as Sc,dX =
∏

j∈X Ξc,d
j

where Ξc,d
j = (1 + σj,c·σj,d)/2. The projective measurement of Ξc,d

j corresponds to

a singlet triplet measurement (ST-measurement) between spins sitting at the same

site j, but different copies c and d. Indeed, Ξc,d
j has an outcome −1 for the singlet

state and 1 for the triplet states. In view of this we write Sc,dX =Πc,d
+ −Πc,d

− where Πc,d
±

correspond to the eigen-projections with corresponding eigenvalues ±1.

We now consider the case m=3 and then generalise to arbitrary m. We first

perform a sequential set of ST-measurements on copies (1, 2), with outcome β1 and

then do the same measurement on copies (2, 3), with outcome β2. We introduce

the notation S2,3
X ◦ S

1,2
X to describe this process. After the first measurement, the

(non-normalized) state of the system will be Π1,2
β1
ρ⊗3Π1,2

β1
, while after the two sets of
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measurements it is Π2,3
β2

Π1,2
β1
ρ⊗3Π1,2

β1
Π2,3
β2

. Therefore,

〈
S2,3
X ◦ S

1,2
X

〉
=
∑
β2

∑
β1

β1β2Tr
[
Π2,3
β2

Π1,2
β1
ρ⊗3Π1,2

β1
Π2,3
β2

]
=
∑
β1

β1Tr
[
Π1,2
β1
S2,3
X Π1,2

β1
ρ⊗3
]

=
1

2

(
Tr[S1,2

X S2,3
X ρ⊗3] + Tr[S2,3

X S1,2
X ρ⊗3]

)
= Tr(ρ3), (B.1)

where we used the identity Πc,d
± =(1±Sc,dX )/2.

We now generalize the above argument for higher values of m. We apply se-

quential ST-measurements on neighbouring copies, using the notation Sm,m−1
X ◦ · · · ◦

S2,3
X ◦S

1,2
X , meaning that we first perform S1,2

X and so forth. Taking the averages one

then finds that

〈
Sm−1,m
X ◦· · ·◦S1,2

X

〉
=Tr[Pm−1,m[· · · P23[P12[ρ⊗m]]] · · · ],

where Pj,j+1[ρ]=
∑

βj
βjΠ

j,j+1
βj

ρΠj,j+1
βj

. We define the operators Sa,b,c,...X recursively

as: Pj+1,j[Sj,a,b,...X ] = [Sj+1,j,a,...
X +Sj,j+1,a,...

X ]/2. Then, using the cyclic property of

the trace, one finds that
〈
Sm−1,m
X ◦· · ·◦S1,2

A

〉
=22−m∑

κ 〈SκX〉 where the κ are 2m−2

different cyclic permutation of the elements 1, . . . ,m. For instance, for m=3 one

has κ={123, 132}. In view of the above, this sequential set of ST-measurements

corresponds to the measurement of the operator PmX = 22−m∑
κ S

κ
X .

In summary, when X is equal to both A and B, one obtains the operator, Pm

defined in Eq. (B.2). As proven above, such an operator is defined according to

the following recursion relations [218]: Pm =
(
Sm,m−1
A Sm,m−1

B Pm−1 + h.c.
)
/2.

Moreover, the effect of the partial transpose on the recursion relation is as follows:

(Pm)TB =
(
Sm,m−1
A (Pm−1)TBSm,m−1

B + h.c.
)
/2. We take m = 3 as an example:

(P3)TB =
(
S3,2
A S2,1

A ⊗ S
2,1
B S3,2

B + h.c.
)
/2. (B.2)

From which it can be seen, as described in the main text, that the order of measure-
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ments on A and B is reversed. Indeed, for A, the ST-measurement is performed

between copies 1 and 2, then 2 and 3, whereas for B, the ST-measurements is per-

formed for copies 2 and 3, then 1 and 2. Because of the non-commutative nature

of these measurements, this ordering is crucial in order to yield moments of the

partially transposed state as in Eq. (B.2).

From the above derivation we find that µm = Tr
[
ρ⊗mABPm

]
. The variance of

the above measurement can be found using the procedure of (B.1), noting that

Tr
[
Π1,2
β1
S2,3
X Π1,2

β1
ρ⊗3
]

is the provability of getting the outcome sequence β1, β2.

Therefore the variance is

(∆µm)2 =

(∑
βm

· · ·
∑
β1

β2
1 · · · β2

mTr
[
Πm−1,m
βm−1

· · ·Π1,2
β1
ρ⊗mΠ1,2

β1
· · ·Πm−1,m

βm−1

])
− µ2

m =

=

(∑
βm

· · ·
∑
β1

Tr
[
Πm−1,m
βm−1

· · ·Π1,2
β1
ρ⊗mΠ1,2

β1
· · ·Πm−1,m

βm−1

])
− µ2

m =

= 1− µ2
m,

(B.3)

where we used the fact that β2
i = 1 and

∑
βi

(Πi,i+1
βi

)2 =
∑

βi
Πi,i+1
βi

= 1. Repeating

the experiment R times we find the standard deviation

∆µm =

√
1− µ2

m

R
. (B.4)

B.2 Measuring Moments in Bosonic Systems

We show here how to measure the moments as given in Eq. 4.2 for a bosonic system.

Unlike for the case of spin systems, we directly choose the operator Pm as a product

of specific, non-hermitian, permutations, π, such that

PTBm =
⊗
j∈A

Vj,π
⊗
j∈B

V T
j,π (B.5)
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where Vj,π =
∑
{nj,c} |nj,1, . . . , nj,m〉 〈π(nj,1), . . . , π(nj,m)|, and nj,c = 0, . . . ,∞

labels the number of bosons in copy c and physical site j. We can write this operator

in second quantized form as

Vj,π =: e
∑
c a
†
j,caj,π(c)−a

†
j,caj,c : (B.6)

where : O : denotes the normal ordering of the operator O, and aj,c denotes the

annihilation operator acting on site j and copy c. We choose π as the shift permutation

such that π(c) = c + 1. Note that V T
j,π = Vj,π−1 . In order to diagonalise Vj,π we

introduce the Fourier transform, which acts independently on each site j as

ãj,c =
1√
m

m−1∑
c′=0

e+ i2π
m
cc′aj,c′ , for j ∈ A,

ãj,c =
1√
m

m−1∑
c′=0

e−
i2π
m
cc′aj,c′ , for j ∈ B. (B.7)

After such a transformation, both the operators Vj,π for j ∈ A and Vj,π−1 for j ∈ B,

take the form :e
∑
c(e

i2π
m c−1)ã†j,cãj,c :. The normal ordering can be removed by using the

identity [313] :e(eλ−1)a†a: = eλa
†a bringing Eq. (B.5) to the form:

PTBm =
∏

j∈{A,B},c

e
i2πc
m

ã†j,cãj,c . (B.8)

The expectation value in Eq. (4.2) can thus be measured in three steps. First, perform

the Fourier (inverse Fourier) transform between copies at the sites belonging to A

(B), as written in Eq. (B.7). Second, measure the bosonic occupation number with

outcome nj,c at every site and compute the outcome of the permutation operator as

φ = e
∑
j∈{A,B},c

i2πc
m

nj,c . Finally, compute the expectation value as the average over

many repeatations of the above steps: µm = 〈φ〉.

The standard deviation can obtained from the fact that φ∗ = φ. As such

(∆µm)2 = 〈φφ∗〉 − 〈φ〉2 = 1− µ2
m and after R repetitions we find the same result

of Eq. (B.4).
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B.3 Experimental Feasibility.

Our proposal for measuring logarithmic negativity can be realised in different physi-

cal set-ups. In solid state quantum technologies the possibility of obtaining multiple

copies is rapidly emerging. For example, in [124] a system of two parallel quantum

dot arrays, each with 7 sites, was realised in GaAs. Alternatively, in silicon quantum

technologies, recent proposals have put forward schemes for large two-dimensional

arrays of quantum dots exploiting the well-established CMOS technology [314].

Preparing multiple copies of strongly correlated many-body systems in such struc-

tures would be a natural capability. In these quantum dot arrays, singlet-triplet mea-

surements are already well developed [127], using either charge detection through

quantum point contacts, or capacitance measurement through radio-frequency re-

flectometry. Since the singlet and triplet states correspond to the anti-symmetric

and symmetric subspaces respectively, they are the eigenstates of the swap operator

and thus the singlet-triplet measurement outcome can be mapped to the swap mea-

surement outcome . The full details of the above, and its generalization to multiple

consecutive swaps, are available elsewhere in Appendix B.

In optical lattices the situation is currently even more advanced, and multiple

copies of many-body systems can be easily isolated from each other in adjacent

lattice rows. However, the counterpart to the solid state swap measurement in such

systems is destructive. This means that consecutive swaps cannot be measured,

limiting the number of copies to only two. Nonetheless, as explained above, our

procedure is valid for whenever forward-backward measurements that are equivalent

to permutations are available. In the case of optical lattices, the Fourier transform

provides such a capability that has also been experimentally implemented [220].

This is performed by tilting alternating rows of the lattice such that the bosons

undergo a series of effective beam-splitters [216]. In our case, this operation would

need to be performed on two subsystems in forwards and backwards fashion –

the formal equivalence of this to two permutations is also detailed elsewhere in

Appendix B. Combining these above experimental techniques for measuring the

partially transposed moments, with our machine learning method for extracting
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Figure B.1: Estimated logarithmic negativity ECheb
M , using the Chebyshev approximation vs.

actual logarithmic negativity E , for a wide range of random states and partitions.
We use both R-GPS and R-MPS states with varying bond-dimension D, and
various system sizes NA, NB and NC , such that NA +NB ≤ 12 and the total
length N ≤ 24. The Chebyshev approximation is calculated using the moments
µm generated from: (a) M = 10 copies; (b) M = 20 copies. The respective
insets show the distribution of error, ECheb

M − E .

the logarithmic negativity, provides a realistic and complete scheme for accurately

estimating entanglement in general many-body systems.

One potential source of error experimentally is that the copies may not be

perfectly identical. However, it can be shown that small deviations in the fidelity of

copies leads to only small changes in the moments. Since both the Chebyshev and

neural network approaches yield entanglement estimators that are smooth functions

of the moments, the overall error is therefore well controlled.

B.4 Chebyshev Expansion
In this section, we demonstrate an analytical method, based on functional approxi-

mation, for estimating the logarithmic negativity from the information contained in

the moments, µm.

Since logarithmic negativity, E , is a function of the eigenvalues {λk}, one

could try to directly reconstruct the main features of the spectrum {λk} using a

few measured moments {µm} – an approach closely related to general Hausdorff

moments problem in statistics [315]. Nonetheless, it is known from a numerical
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perspective that the Hausdorff problem is unstable [250]. To avoid such instabilities,

we might try an alternative approach based on functional approximation. Considering

that E = log2 Trf(ρTBAB) with f(x) = |x|, if we can find a polynomial expansion

f(x) ≈
∑M

m=0 αmx
m, then by linearity of the trace, E = log2

∑M
m=0 αmµm, with µm

as given in Eq. (4.2). In other words, given a polynomial expansion of the absolute

function, f(x), – i.e. the coefficients αm – one can approximate the entanglement

using a finite number of moments. A naive choice for this would be a Taylor

expansion, but the non-analyticity of f(x) at x = 0 prevents convergence. On

the other hand, a nearly optimal choice for approximating a function throughout

an interval rather than around a point, is a Chebyshev expansion [276]. On the

interval [−1, 1], this yields f(x) ≈
∑M

m=0 tmTm(x) where the M + 1 Chebyshev

polynomials Tm(x) are known m-th order polynomials. The coefficients tm are

given, via the orthogonality of Tm(x), as tm = 2−δm0

n+1

∑M
j=0 f(xj)Tm(xj), where

xj = cos [π(j+1/2)/(M+1)] are the Chebyshev nodes. When f is defined on

a different interval, one can simply linearly transform the Chebyshev points and

polynomials. Although in principle the spectrum of a generic state ρTBAB lies between

−1/2 and 1, in practice it is often much more tightly clustered. Decreasing the

window size significantly improves the approximation for a fixed M . Therefore, we

need to find the minimal sized window such that all of the spectrum of a given ρTBAB is

contained. A tight guess for such a window can be found since µm =
∑

k λ
m ≥ λmmax

when m is even, with λmax being the eigenvalue with largest absolute value. Thus in

our numerics, we define the window as [−a, a], with a = µ
1/M
M . The quality of the

Chebyshev approximation rapidly increases with M and becomes exact in the limit

M →∞.

In Fig. B.1(a) we plot the relationship between the real logarithmic negativity,

E , and the approximated value, ECheb
M , calculated using the Chebyshev expansion

for M = 10 copies. The random states tested are the same as those considered in

the main numerical results text. As the figure shows, ECheb
M typically underestimates

E , especially for MPS states. As we discuss in the next section, we attribute this

to the fact that the distribution of λk is peaked around zero, particularly for MPS,
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where the Chebyshev approximation error is always negative. In the inset we plot

a histogram of the errors ECheb
M − E which clearly shows this negative bias. As

shown in Fig. B.1(b) and its inset, by doubling the number of copies to M = 20, the

accuracy of this method is significantly improved. While M = 20 is a significant

experimental requirement, we emphasize that the Chebyshev approach provides

an analytical tool for estimating E from a known expression of the moments. In

particular, when the moments can be expressed in compact form, such as for free

fermionic systems [316, 194], then the Chebyshev expansion can provide an analytic

formula for E .

B.5 Generation of random states
Random generic pure states (R-GPS) have been obtained by generating random

vectors with complex elements distributed according to the normal distribution.

R-GPS obtained by sampling from the Haar measure have also been considered,

though they are numerically more demanding. Nonetheless, they provide the same

results. Random Matrix Product States, R-MPS, have been obtained by writing

|ψ〉 =
∑
{ij}Tr[A(1),i1A(2),i2 . . . A(N),iN ] |i1, i2, . . . , iN〉 for random tensors A(j),i

kl ,

where j = 1, . . . , N , i = 0, 1, and k, l = 1, . . . , D, being D the bond dimension,

with complex elements drawn from a normal distribution.

B.6 Chebyshev Approximation Error Analysis
In this section we study in detail where the error in the Chebyshev approximation

stems from and how it is related to the spectral properties of ρTBAB. It is convenient

to consider the thermodynamic limit (NA, NB � 1), where one can describe the

spectrum of ρTBAB as a probability density function, ω(λ), and write the logarithmic

negativity of Eq. (4.1) as

E = log2

∫
|λ|ω(λ)dλ. (B.9)

Therefore, this underlying function ω(λ) determines E , though it is not directly

accessible from measurements of the moments µm. Nonetheless, from a theoretical
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Figure B.2: Accuracy of the Chebyshev approximation. Distribution of the eigenvalues
{λk} of ρTBAB for (a) R-GPS and (b) R-MPS with D = 32 with NA = 5,
NB = 5 and NC = 5. The dashed lines show |λ| while the solid lines show
its Chebyshev approximation for M = 10. Vertical dotted lines denote the
estimated bounds on the spectrum calculated as ±µ1/M

M .

perspective, the study of ω(λ) for certain classes of states yields insight into the

performance of the Chebyshev approximation and machine learning approaches.

For R-GPS, |ΨABC〉, as proven in [317, 318], the spectral distribution ω(λ)

tends towards a shifted Wigner semi-circle law in the limit of large NA, NB and NC .

This is described by the continuous distribution ωSC(λ) = d2

2πσ2

√
4σ2 − (dλ− 1)2

where d = 2NA+NB and σ2 = 2NA+NB−NC , and |dλ − 1| < 2σ. An instance of

the spectral distribution ω(λ) is shown in Fig. B.2(a) for finite values of NA, NB

and NC , where one can already see a clear semi-circular shape. As is also evident

from the figure, the support of the distribution is far smaller than the theoretical

interval λk ∈ [−1/2, 1], yet the bound established above as |λk| ≤ µ
1/M
M quite tightly

captures the real interval.

On the other hand, random states constructed using a MPS ansatz [93] with

fixed bond dimensionD � 2NA+NB+NC – which inherently obey an area-law – show

a significantly different distribution ω(λ), with a high concentration around 0 but

long tails on either side. This can be seen in Fig. B.2(b) for a single R-MPS instance

of ψABC . Nonetheless, the support of this type of distribution is even more tightly

bounded by |λk| ≤ µ
1/M
M .
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In this thermodynamic limit the Chebyshev approximation can be understood

from Eq. (B.9), as |λ| → f(λ). The support of ω(λ) for the two classes of states

discussed above is typically very different, being much wider for R-MPS. The

effect of this wider range can be seen if we consider the error in the Chebyshev

approximation, f(λ)− |λ|, as a function of λ. By construction this error is spread

roughly throughout the interval, with alternating sign. In the case of ω(λ) for R-

MPS, the peak at zero, together with the large support, concentrate a large number of

eigenvalues into a small region with the same signed error. This gives a negative bias

that does not exist when ω(λ) is more even throughout the interval, as for random

pure states. Therefore, Chebyshev methods are expected to have a larger error for

area law states.

B.7 Neural Network Details

In deep neural networks, the unknown function f mapping inputs to outputs is

approximated with a directed graph organized in layers, where the first layer is the

input data and the last one is the output. In our case, the input data consists of the

numbers (NA, NB, µ2, . . . , µM), namely, the number of spins in each subsystem

and the non-trivial moments. The value s(`)
k of the k-th node in layer ` is updated

via the equation s(`)
k =A`

[∑
j w

(`−1)
kj s

(`−1)
j

]
, where A` is an appropriate (typically

non-linear) activation function and w(`−1)
kj is the weight between node k in layer `

and node j in `−1. The training procedure consists in finding the optimal weights w

by minimizing a suitable cost function.

In our numerical investigations, we use the Hyperopt [319] and Keras [320]

packages to find the optimal network structure, including the number of hidden

layers. For example, for M = 3, the resulting network consists of two hidden layers,

both with rectified linear unit (ReLU) activation functions, with 100 and 56 neurons

respectively. For M = 10 however, the resulting network consists of three hidden

layers, with exponential linear unit (ELU), ReLU and linear activation functions,

with 61, 87 and 47 neurons respectively.
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B.8 Neural Network Error Analysis

We have seen that neural networks can provide very accurate predictions for the

logarithmic negativity given only a few moments. However, in a experimental setting

it is also important to be aware of the effective size of any error bars. We note first of

all, that the question of neural networks themselves providing error estimates is an

important yet open problem. On the other hand, broad values for the error can be

inferred statistically from the training process. For example, the standard deviation

in the error of the neural networks predictions for unseen test data is a good guide

— and this is exactly the standard deviation of the distributions plotted in the insets

of Fig. 2. One could also calculate the standard deviation as a function of E (i.e.

windowed between E−δ, E+δ, for a small value δ) to give a more dynamic estimate.

As this data has never been used to optimise the neural network, there is every reason

to associate similar error bounds for any new experimental data use to predict E , as

long it is qualitatively similar. This similarity, in the example of the quantum quench

shown in Fig. 3, is achieved by training with both area- and volume-law entangled

random states, yielding errors that roughly match those of the test data.

Another area of concern might be the effect of supplying slightly inaccurate

moments, {µm}, (due to imperfect copies or measurement error for example) to the

neural network. We note however that since the neural networks produce smooth

functions of their variables, any errors are well controlled – small errors will only

produce small changes in the estimate.

B.9 Neural Network Sensitivity

Although the neural network produces a smooth output, there is the question of

how much the predicted logarithmic negativity changes if the measured moments

are imprecise. We have shown very few moments are required to estimate the

entanglement accurately, and these can be measured with an effort that scales linearly

with the subsystem sizes. However, to be scalable, it is necessary that the number of

repeat measurements, R, which sets the standard error ∆µm via (B.4), also scales

efficiently, i.e., sub-exponentially.
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Figure B.3: Entanglement as a function of µ2 and µ3 for the random set of density matrices
with NA = NB = 5. The green points represent the real logarithmic negativ-
ities, while the surface shows the neural network’s predictions for the whole
space.

To give a feeling for the dependence of the logarithmic negativity estimator on

the the moments µm, in Fig. B.3 we show a plot of EML
M=3 as a function of µ2 and µ3

(for fixed NA and NB which are also inputs to the neural network). In this plot, the

scatter points are real data from the random training set, while the surface is effective

function of the neural network. As can be seen, the neural network is smooth (apart

from the enforced lower bound of 0), with the vast majority of data overlaying areas

with reasonable gradient.

The error in the entanglement estimation is given by the gradient of the neural

network estimator with respect to the set of input moments {µm}, multiplied by the

measurement error, namely:

∆E ≈
∑
m

∆µm∂E/∂µm, (B.10)

where the partial derivative denotes the neural network sensitivity. Since ∆µm ∝

R−1/2, as NA+B increases, it is required that the ratio of the sensitivity to R remains
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Figure B.4: Typical gradient of the neural network estimator with respect to the measured
moments µ2 and µ3.

manageable. Specifically, this requires that the sensitivity does not diverge as the

subsystem sizes grow. To probe this, we take the set of random data and compute

the gradient of EML
M=3 with respect to mu2 and mu3 for each data point in the set. In

figure B.4 we plot the typical gradient, the median, as a function of total system size

NA+B. As is shown, there is a roughly linear increase in sensitivity with respect to

both moments, with the absolute value in the manageable range < 30, and more

accuracy required for µ3. This confirms that the number of required measurements,

R does not scale exponentially with the system sizes.

B.10 Comparison with approximate state reconstruc-

tion methods
Unlike our method, approximate polynomial state reconstruction schemes, e.g. based

tensor networks [139, 238] or neural network states [239, 240], are normally fo-

cused on finding an approximate representation of a state that accurately reproduces

experimental observables. Let ρr be the experimentally reconstructed state from

a polynomial number of measurements and suppose that the expectation values

predicted by this state are “close enough” to those predicted by the true state ρ. This

means that Tr[ρrA] ≈ Tr[ρA], for any observable A. Alternatively we may ask that

Tr[ρrMi] ≈ Tr[ρMi], for any positive operator valued measurement (POVM) Mi.
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Because of Helstrom’s theorem [241] the maximal distance between the distributions

obtained from the true and reconstructed state is given by the trace distance

D(ρr, ρ) =
1

2
‖ρ− ρr‖1 =

1

2
max
{M}

∑
i

Tr[Mi(ρ− ρr)] . (B.11)

Therefore, if the states ρ and ρr are close with respect to the trace distance, any

expectation value obtained from the reconstructed state is close to the true value. We

may therefore assume that a “good reconstruction” has D(ρ, ρr) ≈ 0. Although this

is true for any expectation value, entanglement measures are non-analytic functions

of expectation values and, as such, may display a higher sensitivity to small errors in

the reconstruction. Indeed, many entanglement measures are not continuous, so

D(ρ, σ)→ 0, does not imply |E(ρ)− E(σ)| → 0. (B.12)

In fact, the entanglement negativity does not even satisfy the requirement of asymp-

totic continuity (see table 15.2 in [241]). Consider two N qubit states ρ and σ

such that ‖ρ− σ‖ → 0 for large N (many particles). A measure if asymptotically

continuous if ‖ρ− σ‖1 → 0 implies |E(ρ)− E(σ)|/ log(dN)→ 0 where dN = 2N

is the Hilbert space dimension. Since the negativity does not satisfy asymptotic

continuity the difference between the entanglement of two ‘close’ many-body state

can diverge faster than O(log(dN)) ' O(N) for large N . Because of this important

point, the negativity obtained from states reconstructed with a polynomial number of

measurements can not be considered a valid approximation of the true negativity.

In contrast, our method avoids the intermediate step of reconstructing the

quantum state and uses a polynomial number of measurements for the sole purpose

of reconstructing the negativity. As shown in the previous section, this has the

advantage that the prediction is accurate and the error is well controlled.

B.11 Additional Numerical Results
In this section we further demonstrate the ability of the neural network, trained only

with random states, to accurately predict the logarithmic negativity in several different
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classes of physical states. These include states likely to be the most challenging for

the neural network due to their high degree of symmetry, which is not enforced in

the random training set. We note that it is highly likely that these results could be

improved even further with the adoption of specialized training sets, chosen to match

the model under study. However, for the sake of generality, we focus here on training

only with a set of random states with no underlying physical assumptions.

B.12 Ground-states through a quantum phase transi-

tion

Quantum phase transitions are a topic of interest for various fields of physics, noted

for their display of various entanglement structures. Here we study the XX-model

with transverse field:

HXX =
L−1∑
i=1

(
σXi σ

X
i+1 + σYi σ

Y
i+1

)
+BZ

L∑
i=1

σZi , (B.13)

where BZ denotes the magnetic field. This system undergoes a quantum phase

transition at BZ = 1, above which the system enters a phase with a separable

ground-state.

In Fig. B.5 we show the logarithmic negativity, exact and predicted from mo-

ments using the neural network, for a variety of sizes of two adjacent blocks of spins

within the groundstate of HXX across the transition. The spin chain is divided into

three blocks, of size NA, NB and NC . System C is traced out, then the entanglement

is found between A and B. This state is generally mixed as long as NC > 0. The

neural network is exactly as defined in the main text — trained solely with random

states — and we show results for using 3 and 6 moments (copies). As can be seen

from the figure, the key features of the transition are well reproduced in both cases,

with the critical point (BZ = 1) clearly defined. While there are some fluctuations in

the quantitative estimate of E for 3 copies, these are significantly suppressed by rais-

ing the number of moments used to 6 copies. It is remarkable that the neural network

can capture the entanglement properties of these highly symmetric ground-states
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Figure B.5: Entanglement estimation in the ground-state of the XX-model phase across the
phase transition driven by transverse field, BZ . The groundstate, of total length
L = 20 is tri-partitioned, with two adjacent subsystems of size NA = NB and
environment size NC = L−NA +NB . The entanglement between A and B
is then computed and estimated from ρAB . The blue, orange and green lines
show the true logarithmic negativity, the neural network estimated quantity with
3 copies, and the neural network estimated quantity with 6 copies respectively.

despite having only been trained with random states.

B.13 W-state
Our training set is composed of random states with no imposed symmetry, in which

highly entangled states represent the largest class. As such, low-entangled, highly

symmetric states should generally pose the greatest challenge. Here we study the

paradigmatic example of the W-state, which is defined as:

|WL〉 =
1√
L

(|100 · · · 0〉+ |010 · · · 0〉+ · · ·+ |000 · · · 1〉) (B.14)

for L qubits. This state has a MPS representation with bond-dimension 2, making it

one of the lowest possible entangled many-body states. Among other symmetries, it

is also fully permutationally symmetric, making it highly distinct from the random

training set. As in the previous sub-section, the W-state is divided into three blocks,
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Figure B.6: Entanglement estimation in the W-state. We show here a representative sample
of the entanglement estimation in the W-state for various lengths (L = NA+B +
NC) and partitions, as a function of subsystemA size,NA. The blue, orange and
green lines show the true logarithmic negativity, the neural network estimated
quantity with 3 copies, and the neural network estimated quantity with 6 copies
respectively.

of size NA, NB and NC . System C is traced out, then the entanglement is found

between A and B. This state is generally mixed as long as NC > 0. The choice

of partitions is irrelevant due to the permutation symmetry. In Fig. B.6 we plot

the real logarithmic negativity and the neural network predictions using 3 and 6

copies respectively, trained as before solely with random states. We show a few

representative combinations of NA, NB and NC . Although the overall trend is well

captured by both the 3-copy and 6-copy neural network, the absolute accuracy is

only reasonable for the 6-copy scheme. Given the atypicality of the W-state with

respect to the training set, it is expected that this requirement for extra resources

could be alleviated by training with more specialized states such as those with high

degree of symmetry. We also note our protocol works best for highly entangled state

(> 1 ebit of entanglement unlike the W-state here). Nonetheless neural network is
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Figure B.7: Estimated entanglement when quenching across the Ising phase transition at
BX = 0.5. The initial state is the groundstate at BX = 0.5 + ∆, dynamics
are generated by quenching with the Hamiltonian at 0.5−∆, taking ∆ = 0.1.
The total size is L = 20 and the tri-partition is chosen so that subsystems A
and B are adjacent and of equal size. The blue and orange lines show the true
logarithmic negativity and the neural network estimated quantity with 3 copies
respectively.

easily capable of identifying when the entanglement is relatively low (< 1 ebit of

entanglement). In these cases, instead of resorting to more copies, it would also be

feasible to switch to MPS-tomography [238], which is efficient for low levels of

entanglement.

B.14 Quench across a phase transition

In the main text we quench from the Neel-state (which can be thought of as the

ground-states of the XXZ-model with infinite anisotropy) to the isotropic Heisenberg

point, which is the location of a Kosterlitz-Thouless phase transition. This type of

quench quickly generates volume-law entanglement, and this is accurately captured

by our neural network approach, as show in Fig. 3 of the main text. One might

also consider a different quench, across a different type of quantum phase transition.
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Here, we take the paradigmatic example of the transverse field Ising model:

HIsing(BX) =
L−1∑
i=1

σZi σ
Z
i+1 +BX

L∑
i=1

σXi , (B.15)

where BX is the magnetic field, which induces a second order phase at the critical

point BX = 0.5.

In Fig. B.7 we show the logarithmic negativity as a function of time, exact

and predicted from moments using the neural network, for a variety of sizes of two

adjacent blocks of spins during a quench across this phase transition. Specifically,

we take the initial state as the ground-state of HIsing(1 + δ), and evolve it with

HIsing(1− δ). As before, the spin chain is divided into three blocks, of size NA, NB

and NC . System C is traced out, then the entanglement is found between A and B.

This state is generally mixed as long as NC > 0. The neural network is also the same

as before, and we only show results for 3 moments (copies) since this is already

sufficient for good accuracy. This further confirms that the training set chosen is

particularly suitable for highly entangled states such as those generated in quenches.
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[26] Guifré Vidal and Reinhard F Werner. Computable measure of entanglement.

Phys. Rev. A, 65(3):032314, February 2002.

[27] Martin B Plenio. Logarithmic negativity: a full entanglement monotone that

is not convex. Phys. Rev. Lett., 95(9):090503, 2005.

[28] Yichen Huang. Computing quantum discord is np-complete. New J. Phys.,

16(3):033027, 2014.

[29] Lluı́s Masanes. All bipartite entangled states are useful for information

processing. Physical Review Letters, 96(15):150501, 2006.



164 Bibliography

[30] Gerardo Adesso and Fabrizio Illuminati. Strong monogamy of bipartite and

genuine multipartite entanglement: the gaussian case. Physical review letters,

99(15):150501, 2007.

[31] Hui Li and F. D. M. Haldane. Entanglement spectrum as a generalization

of entanglement entropy: Identification of topological order in non-abelian

fractional quantum hall effect states. Phys. Rev. Lett., 101:010504, Jul 2008.

[32] K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner. Entanglement

properties of the harmonic chain. Phys. Rev. A, 66:042327, Oct 2002.

[33] Tobias J. Osborne and Michael A. Nielsen. Entanglement in a simple quantum

phase transition. Phys. Rev. A, 66:032110, Sep 2002.

[34] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in quantum

critical phenomena. Phys. Rev. Lett., 90:227902, Jun 2003.

[35] Raoul Dillenschneider. Quantum discord and quantum phase transition in

spin chains. Phys. Rev. B, 78:224413, Dec 2008.

[36] Abolfazl Bayat, Henrik Johannesson, Sougato Bose, and Pasquale Sodano. An

order parameter for impurity systems at quantum criticality. Nat. Commun., 5,

May 2014.

[37] Pasquale Calabrese and John Cardy. Entanglement entropy and conformal

field theory. J. Phys. A, 42(50):504005, 2009.

[38] Pasquale Calabrese, John Cardy, and Erik Tonni. Entanglement negativity in

quantum field theory. Phys. Rev. Lett., 109(13):130502, 2012.

[39] Pasquale Calabrese, John Cardy, and Erik Tonni. Entanglement negativity

in extended systems: a field theoretical approach. Journal of Statistical

Mechanics: Theory and Experiment, 2013(02):P02008, 2013.

[40] A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of

Physics, 303(1):2 – 30, 2003.



Bibliography 165

[41] Fabian HL Essler, Holger Frahm, Frank Göhmann, Andreas Klümper, and
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Immanuel Bloch. Quantum phase transition from a superfluid to a Mott

insulator in a gas of ultracold atoms. Nature, 415(6867):39–44, January 2002.

[105] Jonathan Simon, Waseem S. Bakr, Ruichao Ma, M. Eric Tai, Philipp M. Preiss,

and Markus Greiner. Quantum simulation of antiferromagnetic spin chains in

an optical lattice. Nature, 472(7343):307–312, April 2011. 00475.

[106] Michael Schreiber, Sean S. Hodgman, Pranjal Bordia, Henrik P. Lüschen,
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