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EULER SYSTEMS WITH LOCAL CONDITIONS

DAVID LOEFFLER AND SARAH LIVIA ZERBES

Abstract. Euler systems are certain compatible families of cohomology classes, which play a key role
in studying the arithmetic of Galois representations. We briefly survey the known Euler systems, and
recall a standard conjecture of Perrin-Riou predicting what kind of Euler system one should expect for

a general Galois representation. Surprisingly, several recent constructions of Euler systems do not seem
to fit the predictions of this conjecture, and we formulate a more general conjecture which explains
these extra objects. The novel aspect of our conjecture is that it predicts that there should often be
Euler systems of several different ranks associated to a given Galois representation, and we describe
how we expect these objects to be related.
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1. Cohomology of Galois representations

The representations of Galois groups of number fields play a central role in number theory. For
instance, if K is a number field and E/K is an elliptic curve, one can consider its Tate module

Tp(E) := lim
←−
n

E[pn],

for a prime p; this is a free rank 2 Zp-module, with a continuous action of the group GK := Gal(K/K).
The representation Tp(E) contains much useful arithmetic data about E; for instance, E has good
reduction at a prime ℓ 6= p if and only if the inertia group Iℓ acts trivially on Tp(E) (the “Nerón–Ogg–
Shafarevich criterion”).

Deeper properties of E are encoded in the (continuous) Galois cohomology groups Hi(GK , Tp(E)),
which we shall abbreviate as Hi(K,Tp(E)) henceforth. There is a natural injective map, the Kummer
map,

κ : E(K)⊗ Zp → H1(K,Tp(E)),

and many of the deepest results we have concerning the Mordell–Weil groups of elliptic curves – no-
tably Kolyvagin’s theorem that if E is an elliptic curve over Q and ords=1L(E, s) ≤ 1, then the Tate–
Shafarevich group of E is finite and the Birch–Swinnerton-Dyer conjecture holds for E – have been proved
by studying the image of E(K) inH1(K,Tp(E)), using sophisticated techniques in Galois cohomology. So
describing and controlling the cohomology of Galois representations is a deep and fundamental problem.

One of the few tools available for controlling global cohomology groups is the theory of Euler systems,
and in this article we shall introduce the theory of Euler systems, and formulate a new conjecture
predicting what sort of Euler systems one might expect for general Galois representations.

2. Euler systems

The definition of an Euler system comes in several slightly different flavours. We shall follow the
standard reference, which is [Rub00]. As above, we fix a number field K, a prime p > 2, and a finite
extension L/Qp with ring of integers O.

Definition 2.1. For an integral ideal m of K, we write K(m) for the maximal extension of K of p-power
degree contained the ray class field of K modulo m.
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Let T be a finite-rank free O-module with a continuous action of GK , unramified at almost all primes.
We write T ∗(1) for the Tate dual Hom(T,O(1)), and if q is a finite prime of K at which T is unramified,
we define a local Euler factor Pq ∈ O[X ] by

Pq(X) := detO
(

1−X Frob−1
q : T ∗(1)

)

.

We fix an ideal N of K, divisible by p and by all primes at which T is ramified; and an infinite
abelian extension K of K which contains K(q), for every prime q ∤ N , and the cyclotomic Zp-extension
K∞ ⊂ K(p∞).

Definition 2.2 ([Rub00, Definition 2.1.1]). An Euler system for (T,K,N ) is a collection of cohomology
classes

c = {cF ∈ H1(F, T ) : K ⊆f F ⊂ K},

(where the notation K ⊆f F ⊂ K signifies that F runs over the finite extensions of K contained in K),
satisfying the following relation: if K ⊆f F ⊆f F

′ ⊂ K, then

(⋆) coresF
′

F (cF ′) =





∏

q∈Σ(F ′/F )

Pq

(

σ−1
q

)



 cF

where Σ(F ′/F ) is the set of (finite) primes of K not dividing N which ramify in F ′ but not in F , and
σq is the image of Frobq in Gal(F/K).

Note that only the local Euler factors at unramified primes appear in the definition; the Euler factors
at the bad primes play no direct role.

Remark 2.3. As noted in [Rub00, §9.4], Kolyvagin’s Euler system of Heegner points does not actually fit
into the definition 2.2, since Heegner points are always defined over abelian extensions of an imaginary
quadratic field K which are anticyclotomic – one cannot find Heegner points defined over all the fields
K(q) in such a way that the Euler system norm relations are satisfied. There are other examples of
anticyclotomic Euler systems, but we shall not discuss them further in this survey, for reasons of space.

The basic function of Euler systems is to bound Selmer groups, which are subgroups of H1(K,T )
defined by local conditions.

Definition 2.4.

(i) If v ∤ p is a (finite) prime of K, we define

H1
f (Kv, T ) := ker

(

H1(Kv, T )→ H1(Knr
v , T ⊗Qp)

)

where Knr
v is the maximal unramified extension of Kv.

(ii) We define the relaxed Selmer group, H1
rel(K,T ), as

{

x ∈ H1(K,T ) : locv(x) ∈ H1
f (Kv, T ) for all v ∤ p

}

.

(iii) We define the strict Selmer group, H1
str(K,T ), as

{

x ∈ H1(K,T ) :
locv(x) ∈ H1

f (Kv, T ) for all v ∤ p,
locv(x) = 0 for all v | p.

}

Theorem 2.5 (Rubin, cf. [Rub00, Theorem 2.2.3]). Suppose c is an Euler system for (T,K,N ), and
cK is non-torsion in H1(K,T ); and suppose that T satisfies a mild “large image” hypothesis. Then the
group H1

str(K,T ∗(1)) is finite.

Remark 2.6. Rubin states his theorem in a somewhat different form, involving the finiteness of the
strict Selmer group of the p-torsion representation T ∗(1) ⊗Qp/Zp, but this is equivalent to the above
statement.

The Poitou–Tate global duality theorem for Galois cohomology, combined with Tate’s Euler charac-
teristic formula, shows that the finiteness of the strict Selmer group of T ∗(1) implies a bound for the
cohomology of T . This bound involves the following important numerical invariant:

Definition 2.7. We define

d−(T ) :=
∑

v|∞
v real

rankO
(

T σv=−1
)

+
∑

v|∞
v complex

rankO (T ) ,

where σv denotes complex conjugation at v.
2



Let us write hi(−) for the rank of the cohomology group Hi(−) as an O-module.

Proposition 2.8. Suppose H0(K,T ) = H0(K,T ∗(1)) = 0, and H0(Kv, T
∗(1)) = 0 for all primes v | p.

Then we have

h1
rel(K,T ) ≥ d−(T ),

with equality if and only if H1
str(K,T ∗(1)) = 0.

So, by Rubin’s theorem, the existence of a non-trivial Euler system forces H1
rel(K,T ) to have the

minimal possible rank.

Proof. Let V := T ⊗O L, let S be the set of primes dividing N∞, and let GK,S be the Galois group of
the maximal extension of K unramified outside S. Then, for any T unramified outside S, Poitou–Tate
duality gives an exact sequence of finite-dimensional L-vector spaces

0→ H1
rel(K,V )→ H1(GK,S , V )→

⊕

v∈S
v∤p

H1
s (Kv, V )→ H1

str(K,V ∗(1))∗

→ H2(GK,S , V )→
⊕

v∈S

H2(Kv, V )→ H0(K,V ∗(1))∗ → 0.

Here H1
s (Kv, V ) = H1(Kv, V )/H1

f (Kv, V ) = H1
f (Kv, V

∗(1))∗.
We now count dimensions. We have h2(Kv, V ) = h1

s (Kv, V ) for v ∤ p, so the local terms for v ∤ p
cancel out; and h0(GK,S , V )−h1(GK,S , V )+h2(GK,S , V ) = −d−(T ) by Tate’s global Euler characteristic
formula. Finally, local Tate duality gives h2(Kv, V ) = h0(Kv, V

∗(1)). Collecting terms therefore gives

h1
rel(K,T )− h0(K,T ) = h1

str(K,T ∗(1))− h0(K,T ∗(1))

+ d−(T ) +
∑

v|p

h0(Kv, T
∗(1)).

Under our simplifying hypotheses, most of these terms are zero and the formula simplifies to

h1
rel(K,T ) = d−(T ) + h1

str(K,T ∗(1)).

So h1
rel(K,T ) ≥ d−(T ), with equality if and only if h1

str(K,T ∗(1)) = 0. �

3. The case d−(T ) = 1

One can check that classes forming an Euler system always lie in H1
rel. Hence, if d−(T ) = 1 and c is

an Euler system for T with cK non-torsion, then one has a rather precise picture of the cohomology of
T , at least after inverting p; the space H1

rel(K,T )⊗L is one-dimensional, and cK is an L-basis vector of
this space.

This situation, where d−(T ) = 1, may seem rather special, but it in fact covers several of the most
familiar Euler systems:

• The Euler system of cyclotomic units : here K = Q and T = Zp(1).
• The Euler system of elliptic units : here K is imaginary quadratic and T is again Zp(1).
• The Euler system of Beilinson–Kato elements : here K = Q and T = T ∗

f (1) where Tf is the
representation attached to a modular form of weight ≥ 2, so that T has rank 2 and σ∞ acts via
a matrix conjugate to

(

−1 0
0 1

)

.

However, there are not many more examples beyond these. The problem is that in practice “most”
representations T have approximately the same number of +1 and −1 eigenvalues for complex conjuga-
tion; so d− is usually about 1

2 [K : Q] rankO(T ), which will be much larger than 1 unless K and T are
both small.

In practice, one is usually interested in Selmer groups with more sophisticated local conditions at
p, rather than the (rather crude) strict and relaxed local conditions. The “right” local condition was
defined by Bloch and Kato, using p-adic Hodge theory. We impose the assumption that T is de Rham
at the places above p (which is automatically satisfied for all representations arising from geometry, by
deep comparison theorems due to Faltings and Tsuji).

Definition 3.1 ([BK90, §3.7]). For v | p, define submodules H1
f (Kv, T ) ⊆ H1

g (Kv, T ) ⊆ H1(Kv, T ) by

H1
f (Kv, T ) = ker

(

H1(Kv, T )→ H1(Kv, T ⊗Bcris)
)

H1
g (Kv, T ) = ker

(

H1(Kv, T )→ H1(Kv, T ⊗BdR)
)

3



where Bcris and BdR are Fontaine’s p-adic period rings. Define the global Bloch–Kato Selmer group by

H1
f (K,T ) = {x ∈ H1(K,T ) : locv(x) ∈ H1

f (Kv, T ) for all v}.

From the theorems above, we see that if d−(T ) = 1 and an Euler system c exists for T with cK non-
torsion, then H1

f (K,T ) has dimension either 1 or 0, depending on whether or not locv(cK) ∈ H1
f (Kv, T )

for all primes v | p.
If V has all Hodge–Tate weights1 ≥ 1 at some prime v | p, then H1

g (Kv, T ) = H1(Kv, T ) [Ber03,

Lemma 6.5]; if we suppose also that H0(Kv, T
∗(1)) = 0, as in Proposition 2.8, then we even have

H1
f (Kv, T ) = H1(Kv, T ), so the condition locv(cK) ∈ H1

f (Kv, T ) is automatically satisfied. For instance,
this applies to the Euler system of Beilinson–Kato elements if the modular form f has level coprime to
p.

On the other hand, if the Hodge–Tate weights are not all ≥ 1 at v, one expects that locv(cK)
should only be in H1

f (Kv, T ) if some “unlikely coincidence” occurs. For instance, in the setting of the
Beilinson–Flach elements one can use a twisting construction to produce an Euler system c′ for T = T ∗

f

(without the twist 1). It follows from Kato’s explicit reciprocity law that this twisted Euler system has
locp(c

′
Q) ∈ H1

f (Qp, T
∗
f ) if and only if L(f, 1) = 0.

4. Higher rank Euler systems

If d−(T ) > 1, what should one expect? Naively, one might guess that it would be easier to build
Euler systems in this context, since H1

rel is forced to be large by Proposition 2.8. However, this doesn’t
seem to be the case: when d− is large it seems to be hard to construct elements.

An intuitive explanation of this comes from the following observation: systematic constructions of
elements in global cohomology groups only seem to work well when those groups are 1-dimensional,
because otherwise the class “doesn’t know where to go” within the space, and collapses to zero. (We
shall call this Gross’ trap, since the observation was apparently first made by Dick Gross in the analogous
setting of Heegner points on elliptic curves of analytic rank > 1.)

One suggestion for resolving this problem, due to Perrin-Riou [PR98], is that the “correct” object to
associate to a general T is not a collection of classes in H1(F, T ), but rather classes in exterior powers
of these modules. She defined a rank r Euler system, for r ≥ 1, to be a collection of classes

cF ∈
r
∧

O[∆F ]

H1(F, T ) for K ⊆f F ⊂ K,

where ∆F = Gal(F/K), satisfying the Euler system norm relations (⋆).
For simplicity, we shall state Perrin-Riou’s conjecture under an auxiliary assumption: that either

d−(T ) = d+(T ), or every real place of K remains real in K. (For example, we could take K = Q and
K =

⋃

m Q(µm)+, where Q(µm)+ is the totally-real subfield of Q(µm).) This avoids complications with
ranks varying between different complex-conjugation eigenspaces.

Conjecture 4.1 (Perrin-Riou). For any global Galois representation T arising in geometry, there ex-
ists an Euler system of rank d−(T ) for T , satisfying a precise relation to the values of the L-function
L(T ∗(1), χ, s) for finite-order characters χ of Gal(K/K).

Remark 4.2. The exact relation to L-values is somewhat technical to state; see Perrin-Riou’s monograph
[PR95], or the overview in [Rub00, Chapter 8].

This notion of higher-rank Euler systems has been extensively studied since, but it has proved to be
rather thorny to work with, for two reasons.

Firstly, there are serious technical difficulties arising from the complicated algebra of wedge powers
of modules over O[∆F ]. This makes it difficult to prove an analogue of Theorem 2.5 for Euler systems
of rank > 1. Recent work of Burns–Sano [BS16] strongly suggests that a better theory may be obtained
by replacing the wedge power

∧r
O[∆F ] H

1(F, T ) with
⋂r

O[∆F ] H
1(F, T ), where

⋂r denotes the “exterior

bi-dual” functor, defined for modules M over a ring R by
r
⋂

R

M = HomR

(

r
∧

R

HomR(M,R), R

)

.

1Our conventions are that the Hodge–Tate weight of the cyclotomic character is +1. The Hodge–Tate weights of the
representation Tf attached to a weight k modular form f are 0 and 1 − k, so the representation T ∗

f
(1) appearing in the

Beilinson–Kato Euler system has weights 1 and k.
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However, another (possibly more serious) stumbling block is that there are very few interesting exam-
ples of rank r Euler systems known for r > 1 (in particular, none which are known to be related to values
of L-functions). In particular, it is not expected that the Euler systems predicted by Perrin-Riou’s con-
jecture should be constructed by building r invidual elements in some canonical way, and then wedging
them together (except in special cases, such as when T is a direct sum of smaller representations); such
an approach would fall into Gross’ trap.

Remark 4.3. One exception to this gloomy outlook is provided by ongoing work of Nekovář and Scholl
(surveyed in [NS16]). Assuming a certain conjecture, the plectic conjecture, their method gives a construc-
tion of Euler systems of rank [F : Q] for certain Galois representations arising in the étale cohomology of
Shimura varieties associated to reductive groups over totally real fields F . However, the plectic conjecture
is currently wide open.

Another, unrelated approach is due to Urban, who has devised a method of constructing higher-rank
Euler systems via Eisenstein congruences; but this approach (as presently formulated) requires one to
assume bounds on congruence ideals as input to the method, and these congruence ideals are closely
related to Selmer groups, so using these classes as input to a version of Theorem 2.5 would result in a
circular argument.

5. Euler systems with local conditions

In 2014, in joint work with Lei, we discovered a new example of an Euler system:

Theorem 5.1 ([LLZ14, Corollary 6.4.5]). Let f, g be two modular forms of weight 2 and prime-to-p
level, and let

T = (Tf ⊗ Tg)
∗,

where Tf and Tg are the Galois representations attached to f and g. Then there exists a collection of
classes cQ(µm) ∈ H1(Q(µm), T ) satisfying compatibility relations close to (⋆).

Remark 5.2. This theorem is, of course, vacuous as stated, since the cQ(µm) could all be 0; but we can
also show in many cases that cQ is non-torsion.

There are several curious features of the Euler system of Beilinson–Flach elements. Firstly, it has the
“wrong” rank: T is 4-dimensional and odd, so d−(T ) = 2. Thus Conjecture 4.1 would predict a rank 2
Euler system, not a rank 1 Euler system.

Secondly, the norm-compatibility relations satsified by the Beilinson–Flach elements for ℓ = p are not
the expected ones. If we write Qr = Q(µpr ), then we obtain formulae of the form

cores
Qr+1

Qr
(cQr+1

) = (αfαg) · cQr
,

where αf and αg are some choices of roots of the Hecke polynomials of f and g at p. If f and g are ordinary,
we may choose αf and αg to be p-adic units; then we can re-normalise by setting c′Qr

= (αfαg)
−rcQr

to obtain the expected Euler system relation. However, if αf and αg are not p-adic units, then there is
no way to re-normalise the elements cQr

to be norm-compatible without introducing denominators.
It turns out that these distorted norm-compatibility relations at p are unavoidable. The Beilinson–

Flach classes are automatically in H1
g , since they are constructed geometrically; and T has Hodge–Tate

weights {0, 1, 1, 2}, which are not all ≥ 1. This means there is a local obstruction to having norm-
compatible classes, because of the following theorem of Berger:

Theorem 5.3 ([Ber05, Theorem A]). Let T be an irreducible O-linear de Rham representation of GKv

of dimension > 1, for Kv a p-adic field, and suppose we are given classes xn ∈ H1
g (Kv(µpn), T ) for all

n ≥ 1 which are compatible under corestriction.
Then either T has all Hodge–Tate weights ≥ 1, or xn = 0 for all n.

So if T |GQp
is irreducible (which can occur) then any collection of norm-compatible classes lying in

H1
f at p would either have to localise to 0 at p (which is unlikely, because we expect the strict Selmer

group to be generically 0); or it would have to have a denominator growing in the cyclotomic tower, at
a certain minimum rate determined by the valuation of αfαg. This is exactly the behaviour one sees for
the Beilinson–Flach classes.

Fortunately, for the machinery of Kolyvagin derivatives, one is mainly interested in classes overQ(µm)
where m is a squarefree product of primes coprime to p, so this “distortion” of the p-direction norm
relations does not rule out applications to Selmer groups. One can use this to show (under the usual
auxillary “big image” hypotheses) that when cQ is non-torsion, the group H1

str(Q, T ∗(1)) is finite, and
H1

f (Q, T ) is of rank 1 and is spanned by cQ after inverting p.
5



Remark 5.4. In the three classical examples of Euler systems listed in the previous section, the coho-
mology classes are also constructed geometrically, so they likewise lie in H1

g ; but in these examples the

Hodge–Tate weights are all ≥ 1, so H1
g is the whole of the local cohomology at p and Berger’s theorem is

no obstruction. The novel feature of the Beilinson–Flach classes is that they are in H1
g at p in a situation

where this is a nontrivial condition.

6. A conjecture

These properties of the Beilinson–Flach elements suggests that Perrin-Riou’s conjecture 4.1 is not the
whole story. This motivates a more general Euler system conjecture, which we explain below.

For technical reasons, the conjecture is simplest to state if we abandon the assumption that the
coefficient field L is a finite extension ofQp, and instead assume that it is a finite extension of FracW (Fp),
where W (−) denotes Witt vectors. (This base-extension is not needed if K = Q.) As before, we write
O for the ring of integers of L.

Let K, K and T be as in §2 above, and write V = T ⊗O L. We assume V is unramified al-
most everywhere and de Rham at the places above p. We also assume that V is irreducible and that
H0(K,V ) = H0(K,V ∗(1)) = 0.

Definition 6.1. We define

r0(T ) := d−(T )−
∑

v|p

dimL Fil0 DdR(Kv, V ),

r(T ) := max (0, r0(T )) .

One checks easily2 that r0(T
∗(1)) = −r0(T ), so for any T , at least one of r(T ) and r(T ∗(1)) is zero.

An application of Poitou–Tate duality gives the following relation:

Proposition 6.2. We have

h1
f (K,T )− r(T ) = h1

f (K,T ∗(1))− r(T ∗(1)).

In particular, if r(T ∗(1)) = 0, then we have

h1
f (K,T ) ≥ r(T ),

with equality if and only if h1
f (K,T ∗(1)) = 0. �

The significance of r(T ) is as follows. The Bloch–Kato conjecture predicts that we should have

h1
f (K,T ) = ords=0L(T

∗(1), s).

On the other hand, Deligne has defined an archimedean L-factor L∞(T ∗(1), s), which is a product of
Γ-functions depending on the Hodge–Tate weights of T and the action of complex conjugation on it.
Deligne’s conjectures predict that (under our hypotheses on T ) the function

Λ(T ∗(1), s) := L(T ∗(1), s)L∞(T ∗(1), s)

should be meromorphic on C, and holomorphic at s = 0. The archimedean factor L∞(T ∗(1), s) has no
zeroes, but it does have poles, and r(T ) is exactly the order of the pole of L∞(T ∗(1), s) at s = 0. Hence,
if Λ(T ∗(1), s) is to be holomorphic at s = 0, the function L(T ∗(1), s) must vanish there to order at least
r(T ). In other words, r(T ) is the “Archimedean contribution” to the order of vanishing of L(T ∗(1), s).

Remark 6.3. It is expected that for almost all values of s (whenever T does not have “motivic weight
−1”) the functional equation will force Λ(T ∗(1), s) to be non-vanishing at s = 0; so this Archimedean
contribution should actually completely determine the order of vanishing.

Definition 6.4. For an integer r ≥ 0, we say T is r-critical if r(T ) = r and r(T ∗(1)) = 0.

The second condition is, of course, redundant if r > 0; it is included only in order to ensure that
0-critical agrees with the usual notion of critical, which is that neither L∞(T, s) nor L∞(T ∗(1), s) has a
pole at s = 0.

We can now formulate our first conjecture on the existence of Euler systems. We first consider only
fields unramified above p, postponing discussion of the “p-direction” until later.

2One has d−(T ) + d−(T ∗(1)) = d−(T ) + d+(T ) = [K : Q] dimV ; while for each v | p, there is a perfect pairing
DdR(Kv, V ) × DdR(Kv, V ∗(1)) → L, and the two Fil0’s are orthogonal complements, so their dimensions sum to [Kv :
Qp] dimV .

6



Conjecture 6.5 (rough form). If T is r-critical, there exists a collection of cohomology classes

cF ∈
r
∧

H1
f (F, T ),

where F varies over finite extensions of K inside K that are unramified above p, satisfying the Euler
system compatibility relation (⋆); and the bottom class cK is non-zero if and only if L(r)(T ∗(1), 0) 6= 0.

Remark 6.6. This conjecture is not precise, since we have not attempted to formulate a relation to
L-functions. This should be roughly as follows: suppose T is the p-adic realisation of a motive. Then
Beilinson’s conjecture predicts that L(r)(T ∗(1), 0) should be given by Beilinson’s regulator map applied
to an element in the r-th wedge power of a motivic cohomology group, and it is natural to expect that
cK should be the p-adic realisation of this motivic element.

It is also very possible that the conjecture may need some modification to account for denomina-
tors, replacing

∧r
H1

f (F, T ) with some larger lattice in
∧r

H1
f (F, V ), such as the exterior bi-dual lattice

⋂r
H1

f (F, T ), as in the work of Burns–Sano cited above. However, we shall not pursue this here, since
we want to focus primarily on cases where r(T ) = 1; in this case the “naturally occurring” elements do
indeed seem to lie in H1

f (F, T ).

For instance, if f, g are weight 2 modular forms, then we have

r((Tf ⊗ Tg)
∗(m)) =











2 if m ≥ 1

1 if m = 0

0 if m ≤ −1.

Thus our conjecture predicts that there should be Euler systems of multiple ranks attached to different
twists of T = (Tf ⊗ Tg)

∗. There should be Euler systems of rank 2 attached to T (m) for each m ≥ 1,
which are the objects predicted by Perrin-Riou’s conjecture; but there should also be a rank 1 Euler
system for T itself, which is the Euler system of Beilinson–Flach elements. We shall consider this example
in more detail below.

It is important to note that this conjecture is not, in itself, particularly novel; for instance, one can
deduce it from Perrin-Riou’s Conjecture 4.1, by applying various linear functionals to the conjectural
rank d− Euler system to move it down to rank 1, as we shall describe in a later section. The reason
why we feel that Conjecture 6.5 is interesting is that it may be more approachable than Conjecture
4.1. We optimistically hope that when our conjecture predicts a rank 1 Euler system (i.e. when we
have a geometric Galois representation with r(T ) = 1) then one can reasonably expect to construct the
necessary cohomology classes directly.

Moreover, the lower-rank Euler systems predicted by Conjecture 6.5 still have powerful arithmetic
applications. Although they have lower ranks than those predicted by Perrin-Riou, this is “compensated
for” by their additional local property at p – namely, they lie in H1

f . As shown in [LLZ15, Appendix B],
when r(T ) = 1 one can adapt the proof of Theorem 2.5 to make use of this additional information:

Proposition 6.7. Suppose r(T ) = 1 and there exists a rank 1 Euler system for T such that cF ∈
H1

f (F, T ) for all F and cK is non-torsion. Under some auxilliary technical hypotheses, then H1
f (K,T ∗(1))

is finite, H1
f (K,T ) has rank 1 and is spanned by cK , and H1(K,T ) has rank d−(V ).

The case r = 0 of Conjecture 6.5 is not at all trivial. It predicts the existence of collections of
elements of the group rings O[∆F ] satisfying some norm-compatibility properties; and the expected
relation to L-values simplifies greatly in this case, predicting that the image of the element cF ∈ O[∆F ]
under evaluation at a character χ of ∆F should give the critical L-value L(T ∗(1), χ, 0) divided by an
appropriate period.

There are several naturally-occurring examples of such elements: for instance, one has the Stickelberger
elements attached to T = O(χ), where χ is a Dirichlet character with χ(−1) = 1, and the Mazur–Tate
elements for T = Tf (1) where f is a weight 2 modular form.

7. Ordinarity conditions at p

We now consider the question of norm relations in the p-direction. If r(T ) < d−(T ), so that our
conjecture predicts Euler systems of “non-optimal” rank, then there must be at least one prime above
p at which V has a Hodge–Tate weight ≤ 0. So Berger’s theorem shows that there is an obstruction to
having norm-compatible systems of geometric classes over the p-cyclotomic tower. In other words, we
should not expect to have such an interpolation unless the local representations are reducible.

In fact, it turns out that we need subrepresentations of a very specific kind:
7



Definition 7.1. Let v be a prime above p. A Panchishkin subrepresentation of V at v is a subspace
V +
v ⊆ V such that

• V +
v is stable under GKv

,
• V +

v has all Hodge–Tate weights ≥ 1,
• V/V +

v has all weights ≤ 0.

Note that V +
v is unique if it exists. If such a V +

v exists, then (up to minor grains of salt), one sees
that H1

f (Kv, V ) is simply the image of the natural map H1(Kv, V
+
v )→ H1(Kv, V ).

Definition 7.2. We say V satisfies the rank r Panchishkin condition if r(V ) = r, r(V ∗(1)) = 0,
and Panchishkin subrepresentations V +

v exist for all v | p.

Note that if this holds, we must necessarily have
∑

v|p[Kv : Qp] dimL(V
+
v ) = d+(V ) + r.

This condition was introduced in the case r = 0 by Panchishkin, who suggested that the rank 0
Panchishkin condition was the “correct” condition for a (bounded) p-adic L-function to exist – in other
words, for rank 0 Euler systems to interpolate in the p-cyclotomic tower.

Remark 7.3. The Panchishkin condition is closely related to the notion of ordinarity. This has various
formulations, but one flavour is to require that V |GKv

have a decreasing filtration by subrepresentations

V
(i)
v such that each quotient V

(i)
v /V

(i+1)
v has all Hodge–Tate weights equal to i. Thus V is ordinary at

some prime v | p if and only if all its Tate twists V (j) have Panchishkin subrepresentations. However,
full ordinarity of this kind is a rather restrictive condition, and (as we shall see later) it is interesting
and instructive to see how much of this condition is actually relevant in specific situations.

Conjecture 7.4. If T is r-critical and satisfies the rank r Panchishkin condition, then there should
be a collection of classes cF ∈

∧r
H1(F, T ) as in Conjecture 6.5 for all K ⊆f F ⊂ K (not just those

unramified above p).

Notice that if r = d−(V ), then the rank r Panchishkin condition is trivially satisfied (since we can take
V +
v = V for every v | p). This is why ordinarity plays no role in the Euler system of Kato, for instance;

but for Euler systems of non-optimal rank, the Panchishkin condition is a non-trivial restriction.

7.1. Example A: Rankin–Selberg convolutions. Consider the representations T = (Tf ⊗ Tg)
∗(m)

introduced in Theorem 5.1, for f, g modular forms of weights k + 2, ℓ + 2, with k, ℓ ≥ 0. Note that
d−(T ) = 2. We assume k ≥ ℓ without loss of generality.

• When m ≥ 1, the representation T is 2-critical; so Conjecture 6.5 predicts a rank 2 Euler
system, and the Panchishkin condition is automatic, so this Euler system should extend up the
p-cyclotomic tower without further hypotheses.
• When 0 ≥ m ≥ −ℓ, the representation is 1-critical; in this case, we need to take V +

v to be a
3-dimensional subrepresentation of V |GQp

, i.e. the orthogonal complement of a 1-dimensional
subrepresentation of Vf ⊗ Vg of Hodge–Tate weight 0.

If we assume f and g are both ordinary, then Vf and Vg both have one-dimensional subrep-

resentations V +
f and V +

g (each of which is unramified, with Hodge–Tate weight 0) and we can

take the 1-dimensional sub to be V +
f ⊗ V +

g .
• When −1 − ℓ ≥ m ≥ −k, the representation is 0-critical. Hence, in order to find a rank 0
Euler system in the p-direction – that is, a p-adic L-function – we require the existence of a
2-dimensional subrepresentation of Vf ⊗ Vg accounting for the two highest Hodge–Tate weights
{0,−1− ℓ}. Such a subrepresentation exists when f has strictly larger weight, i.e. k > ℓ, and f
is ordinary: we can take V +

f ⊗Vg. Note that we do not need to assume any ordinarity condition
on g here.

(We do not need to consider m ≤ −1 − k, since then r(T ∗(1)) is no longer zero and our conjecture
does not apply.)

So we should expect a rank 1 Euler system in the p-direction when both f and g are ordinary; but
to form a p-adic L-function, we only need to assume ordinarity for whichever of the two forms has the
highest weight. This matches exactly the behaviour one observes for Beilinson–Flach elements and the
Panchishkin–Hida p-adic Rankin–Selberg L-function.

7.2. Example B: The spin representation for GSp(4). We now consider a more sophisticated ex-
ample. We take F a cuspidal Siegel modular eigenform of genus 2 and weight 3. By work of Taylor and
Weissauer [Wei05], this gives rise to a Galois representation

ρF : GQ → GSp4(Qp).
8



Composing this with the canonical inclusion of GSp4 into GL4 gives a 4-dimensional representation of
GQ, which we denote by VF .

Remark 7.5. This representation is called the spin representation, for reasons which only become obvious
when one considers more general symplectic groups GSp2g. The Langlands dual of GSp2g is the spin
similitude group GSpin2g+1, which acts naturally on a 2g-dimensional space of “spinors”. However,
for g = 2 there is an exceptional isomorphism GSpin5

∼= GSp4, and the spinor space is simply the
4-dimensional defining representation of GSp4.

The spin Galois representation should not be confused with the standard representation, given by
composing ρF with the 5-dimensional defining representation of SO5

∼= PGSp4.

If p does not divide the level of F , the local behaviour of ρF at p is determined by the Hecke eigenvalues
of F at p. The Hecke algebra has two generators, corresponding to the double cosets

T (p) =

[(

1
1
p
p

)]

and T1(p
2) =

[(

1
p
p

p2

)]

.

These correspond, respectively, to the two maximal proper parabolic subgroups of GSp4: the Siegel
and Klingen parabolics. We say F is Siegel-ordinary if T (p) acts as a p-adic unit, and Klingen-ordinary
if T1(p

2) does so.

Theorem 7.6 ([Urb05, Corollary 1]).

(i) If F is Siegel-ordinary, then ρF (GQp
) stabilises a line in VF .

(ii) If F is Klingen-ordinary, then ρF(GQp
) stabilises a plane in VF .

Remark 7.7. Urban proves (ii) under an additional technical condition, that the automorphic representa-
tion Π generated by F be “stable at ∞” (see Remark (i) loc.cit.). This hypothesis can now be removed,
as a consequence of Arthur’s classification of cuspidal automorphic representations of GSp4, announced
in [Art04] and proved in [GT18].

What does our conjecture say in this case? The representation VF has d−(V ) = 2, and Hodge–Tate
weights {0,−1,−2,−3}. Setting V = V ∗

F (−j), we expect that:

• when j ≤ −1, V is 2-critical, and we expect a rank 2 Euler system in the p-direction without
any ordinarity conditions;
• when j = 0, V is 1-critical, so we expect a rank 1 Euler system, and if we wish to extend this in
the p-direction, we need to assume F is Siegel-ordinary;
• when j = 1, V is 0-critical (i.e. critical in the sense of Deligne), so we expect a rank 0 Euler
system; and the condition required to interpolate this into a p-adic L-function is that F should
be Klingen-ordinary.

More generally, this analysis goes over to Siegel modular forms of any cohomological weight, and one
again finds that Siegel-ordinarity is the condition for a rank 1 Euler system, and Klingen-ordinarity the
right condition for a p-adic L-function. This is exactly what one sees in two recent papers: our work
with Skinner on the construction of a (rank 1) Euler system for these representations [LSZ17]; and work
of Dimitrov, Januszweski and Raghuram on the construction of a p-adic L-function [DJR18].

8. Iwasawa theory and Greenberg Selmer groups

Let F∞ =
⋃

n≥1 Fn be a Zm
p -extension of K contained in K, for some m ≥ 1. We assume F∞ contains

the cyclotomic Zp-extension K∞/K. Let Γ = Gal(F∞/K), and let Λ(Γ) be the Iwasawa algebra of Γ
with coefficients in O.

8.1. The rank 0 case. For representations V satisfying the rank 0 Panchishkin condition, we expect
that there should be a p-adic L-function, which should be an element of Λ(Γ) interpolating L-values
L(V ∗(1), χ, 0)/(period) as χ varies over finite-order characters of Γ.

In a ground-breaking paper [Gre89] in Iwasawa’s 70th birthday proceedings, Greenberg showed how
define a Selmer group associated to V over F∞, and thus formulate an Iwasawa main conjecture. He
introduced the following two objects, known as “Greenberg Selmer groups”:

• a subgroup H1
Gr(F∞, T ) of H1

Iw(F∞, T ) = lim
←−n

H1(Fn, T ) defined by local conditions, in which

the local condition at v | p is the image of the cohomology H1
Iw(F∞,v, T ∩ V +

v ) where V +
v is the

Panchishkin subrepresentation;
9



• a subgroup H1
Gr(F∞, T∨(1)) of H1(F∞, T∨(1)), where T∨ = Hom(T,Qp/Zp), defined similarly

using the orthogonal complement of T ∩ V +
v in T∨.

The compact Greenberg Selmer group H1
Gr(F∞, T ) is a finitely-generated Λ(Γ)-module, and the dis-

crete version H1
Gr(F∞, T∨(1)) is a co-finitely-generated one (i.e. its Pontryagin dual X(F∞, T ) is finitely

generated). Moreover, the ranks of H1
Gr(F∞, T ) and X(F∞, T ) are the same, by a Poitou–Tate dual-

ity computation. Greenberg’s main conjecture is that these modules are both torsion, and that the
characteristic ideal of X(F∞, T ) is generated by the p-adic L-function.

8.2. Higher ranks. How should this look for r-critical representations, when r > 0? If the rank r
Panchishkin condition holds, the definitions of the two Greenberg Selmer groups still make sense; but
one finds that their ranks differ by r. Moreover, if conjecture 7.4 holds, then the Euler system classes
cFn

for n ≥ 1 define an element cF∞
of
∧r H1

Gr(F∞, T ). The natural conjecture appears to be that the
quotient

∧r
H1

Gr(F∞, T )

Λ(Γ) · cF∞

should be torsion as a Λ-module, and that its characteristic ideal should coincide with that of X(F∞, T ).
When r = d−(T ), so that the local conditions in the Greenberg Selmer groups are the trivial ones, this
conjecture has already been formulated by Perrin-Riou; see chapter 8 of [Rub00]. However, as explained
above, we feel that settings with r = 1 may be more approachable.

9. Rank-lowering operators and reciprocity laws

There exist “twisting” operators for Euler systems (of any rank): if χ is a continuous character of
Gal(K/K) unramified outside N , then there is a canonical bijection between Euler systems for T and
for T (χ). See e.g. [Rub00, §6.3]. In particular, if K contains the p-power cyclotomic extension K(µp∞),
then an Euler system for T is also an Euler system for all of its Tate twists T (n).

How do these twisting maps interact with the predictions of Conjecture 7.4? Let us suppose that T is
r-critical, and T (χ) is s-critical for some integers r ≥ s; we would like to compare the conjectured Euler
systems for T and for T (χ). Let us write T+

v for the Panchishkin subrepresentations for T , and T++
v for

those3 of T (χ).
Our assumptions imply that

∑

v|p

[Kv : Qp] rank(T
++
v ) ≤

∑

v|p

[Kv : Qp] rank(T
+
v ),

and it seems reasonable to expect a relation whenever T++
v ⊆ T+

v for all v | p.

9.1. The equal-rank case. If r = s, then this condition will force T+
v = T++

v for all v; and one can
reasonably expect that the rank r Euler systems associated to these two representations by 7.4 should
coincide under twisting. This gives the following refinement of Conjecture 7.4:

Conjecture 9.1. Suppose we are given a collection P of local subrepresentations T+
v ⊆ T |GKv

for

all v | p, with r(P) = −d+(T ) +
∑

v[Kv : Qp] rankT
+
v ≥ 0. Let Σ(P) be the set of characters χ :

Gal(K/K) → L
×
, unramified outside N and de Rham above p, such that T (χ) is r-critical and T+

v (χ)
is a Panchishkin subrepresentation of T (χ)|GKv

for all v | p.
If Σ(P) is non-empty, there exists an Euler system c(P) for T of rank r = r(P) such that for every

χ ∈ Σ(P) and every field F with K ⊃ F ⊇f K, the image of c(P) in
∧r H1(F, T (χ)) is the class cF

predicted by Conjecture 7.4 applied to T (χ).

In other words, the Euler system depends not on the specific twist χ that we choose, but only on
which local subrepresentations are the Panchishkin subrepresentations for χ.

For r = 0, this is a familiar property of p-adic L-functions – that a single p-adic L-function will often
interpolate critical values of twists with a range of infinity-types, as long as these twists are all critical
“in the same way”, i.e. they all admit the same Panchishkin subrepresentation. For r = 1, the refined
conjecture implies compatibilities under twisting between cohomology classes arising from very different
geometric constructions. In the case of the Beilinson–Flach elements, this compatibility does indeed hold
[KLZ17, Theorem 6.3.4], but it is far from easy to show; it seems to be a rather deep result, requiring
the full force of Kings’ theory of p-adic interpolation of Eisenstein classes.

3More precisely, T++
v is the subrepresentation of T such that T++

v (χ) is the Panchishkin subrepresentation of T (χ) at
v.
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9.2. Rank-lowering. We now suppose that T++
v ⊆ T+

v for all v and that we have strict inequality
r > s. Let t = r − s, and for each v set T ♯

v = T+
v /T++

v . We have
∑

v[Kv : Qp] rank(T
♯
v) = t > 0, so at

least one of the T ♯
v is non-zero. Let F∞ be a p-adic Lie extension of K inside K, chosen such that F∞

contains the cyclotomic Zp-extension K∞, and χ factors through Gal(F∞/K). Write H1
+(F∞, T ) for the

kernel of the map H1
Iw(F∞, T ) →

⊕

v|p H
1
Iw(F∞,v, T/T

+
v ), and similary H1

++(F∞, T ). Then there is an
exact sequence

0→ H1
++(F∞, T )→ H1

+(F∞, T )→
⊕

v|p

H1
Iw(F∞,v, T

♯
v).

The final group in this sequence, however, is rather simpler than the previous ones, since it depends
only on local information at p; in particular its rank over the Iwasawa algebra Λ is known – it is exactly
t. Moreover, the local epsilon-isomorphism conjecture of Fukaya and Kato [FK06, Conjecture 3.4.3]

predicts that its top wedge power should be canonically identified with I ⊗
∧t

O(
⊕

v T
♯
v), where I is a

certain explicit fractional ideal in Λ(Γ) (which is the unit ideal unless one of the local L-factors associated
to the T ♯

v has an exceptional zero). Note that our assumption that O contain W (Fp) is essential here.
Sadly, for general T ♯

v and F∞ this local conjecture appears to be out of reach; but it is known in
the important special case when Kv is unramified over Qp, the local extension F∞,v is abelian over Qp,
and T ♯

v is crystalline (see [BB08] or [LVZ15]). In this case, the required trivialisation is given by the
determinant of Perrin-Riou’s regulator map

LV : H1
Iw(F∞,v, T

♯)→ H(Γ)⊗Dcris(Kv, V ),

where H(Γ) is the algebra of locally-analytic distributions on Γ = Gal(F∞,v/Kv).
In cases when we can establish the local ε-isomorphism conjecture, we obtain a supply of linear

functionals
∧t

H1
+(F∞,v, T ) → Λ. Recalling that t = r − s, these functionals can be regarded as linear

maps
r
∧

H1
+(F∞,v, T )→

s
∧

H1
+(F∞,v, T ),

whose image is actually contained in
∧s

H1
++(F∞,v, T ).

Allowing the field F∞ to vary over p-adic Lie extensions of F inside K, we obtain a map from Euler
systems of rank r for T with local conditions given by T+

v , to Euler systems of rank s for T (χ) with local
conditions given by T++

v . We can now make the (rather optimistic) conjecture that the Euler systems
predicted by Conjecture 7.4 should be compatible under these “rank-lowering operators”.

The case s = 0. Let us now home in on the case s = 0 for a moment. We have already noted that
our rank 0 Euler systems for T (χ) should be families of elements of group rings O[∆F ], interpolating
the critical values L(T ∗(1)(χ−1), τ, 0) as τ varies over finite-order characters of ∆F . Compatible systems
of such objects, as F varies over subfields of F∞, can thus be regarded as p-adic L-functions. So our
“rank-lowering” conjecture predicts that a map from rank r Euler systems to rank 0 Euler systems, given
(essentially) by the r-th wedge power of the Perrin-Riou regulator map, should send the rank r Euler
systems predicted by Conjecture 7.4 to p-adic L-functions interpolating the critical values of twists of T .

Results of this kind – relating Euler systems to critical L-values – are generally known as “explicit
reciprocity laws”, such as Kato’s explicit reciprocity law for the Beilinson–Kato elements [Kat04, The-
orem 16.6], and the explicit reciprocity law of [KLZ17, Theorem B] for Beilinson–Flach elements. The
conjectures of the preceding paragraphs suggest, at least to the present authors, that one should interpret
any result comparing Euler systems of different ranks as an explicit reciprocity law.

10. Modular forms over an imaginary quadratic field

We now give an extended example showing some of the phenomena predicted by the conjectures of
the previous sections. Many of the most interesting consequences only appear in situations where K
contains a p-adic Lie extension of dimension > 1; this can only occur, of course, when K 6= Q (and,
subject to Leopoldt’s conjecture, if K is not totally real).

We shall take K to be an imaginary quadratic field with p = p1p2 split in K, and suppose that K
includes the unique Z2

p-extension F∞ of K. We take T = (T ∗
f )|GK

, where Tf is the representation of GQ

associated to a weight 2 modular eigenform f .
If χ is a character of Gal(F∞/K) which is de Rham above p (and hence corresponds to an algebraic

Grössencharacter of K), then χ has two Hodge–Tate weights (a, b). In Figure 1 on the following page
(adapted from Figure 1 of [LLZ15]), the shaded areas are the regions of the (a, b) plane for which T (χ−1)
is r-critical for some r ≥ 0. Assuming f is ordinary at p, so there is a 1-dimensional subrepresentation
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T+ of T ∗
f at p, we can describe Panchishkin subrepresentations for each of these regions as in the

accompanying table.

Figure 1. Panchishkin subrepresentations for twists of T

a

b

1

1

2

2

3

3

-1

-1

-2

-2

Σ(4)

Σ(2)

Σ(2′)

Σ(3)

Σ(3′)

Σ(1)

Region Critical? T+
p1

T+
p2

Σ(1) 0-crit T+ T+

Σ(2) 0-crit T 0

Σ(2′) 0-crit 0 T

Σ(3) 1-crit T+ T

Σ(3′) 1-crit T T+

Σ(4) 2-crit T T

So Conjecture 9.1 predicts that we should have six Euler systems in this setting, one for each region
in the diagram: one of rank 2, two of rank 1, and three of rank 0. Moreover, these should be connected
by explicit reciprocity laws corresponding to the the arrows in Figure 2.

At present, the bottom half of Figure 2 (the part drawn in solid ink) is firmly established. The
three rank 0 Euler systems – or at least their p-parts, which are measures on Gal(F∞/K) – are familiar
objects: they are the three p-adic L-functions described in [LLZ15, Theorem 6.1.3]. The two rank 1 Euler
systems can be constructed using Beilinson–Flach elements associated to CM families of modular forms;

Figure 2. Euler systems and explicit reciprocity laws for T

Σ(4)

Σ(3) Σ(3′)

Σ(2) Σ(1) Σ(2′)

rank 2

rank 1

rank 0
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the construction of the CM family relies on a choice of prime above p, so one obtains two Euler systems
corresponding to the regions Σ(3) and Σ(3′). The four arrows linking these to the p-adic L-functions are
all instances of the explicit reciprocity law of [KLZ17, Theorem B]. However, the top, dotted half of the
diagram is more mysterious, since we know of no plausible geometric approach to constructing a rank 2
Euler system for the twists in Σ(4).

Remark 10.1.

(1) The p-adic L-function associated to Σ(1) can actually be defined over a finite extension of Qp

(instead of the rather large, but still discretely-valued, extension L). However, those for Σ(2) and

Σ(2′) do not descend in any canonical way. More subtly, the base extension to L is also needed in
order to define the rank 1 Euler systems for Σ(3) and Σ(3′): the Beilinson–Flach elements a priori
take values in V ∗

f ⊗ V ∗
g where g is an auxiliary CM Hida family induced from K. To identify

them with classes in V ∗
f alone, we need to find a basis of V ∗

g in which GK acts diagonally. There
is no canonical choice of such a basis over Qp, but after base-extending to L we can obtain a
canonical basis from Ohta’s Λ-adic comparison isomorphism.

(2) We can obtain a Panchishkin subrepresentation for twists in Σ(1) without assuming that p is
split, but the assumption that f be ordinary is essential. On the other hand, for Σ(2) and its
mirror-image Σ(2′), the ordinarity of f is not needed, but the splitting of p is essential; and both
conditions are needed simultaneously for Σ(3) or for Σ(3′). These are, of course, special cases
of the remarks about Rankin–Selberg convolutions in section 7.1 above, since the L-function
L(f/K, χ, s) can also be described as the Rankin–Selberg convolution of f with a CM form
induced from χ.

(3) As sketched in §8.2 above, for each node in Figure 2 we can formulate an Iwasawa main conjecture
of Greenberg type for T over F∞. These conjectures are not independent of each other: an
argument using Poitou–Tate duality shows that whenever two nodes are related by an explicit
reciprocity law, the corresponding main conjectures are equivalent. It follows, for instance,
that the Greenberg–Iwasawa main conjectures for Σ(1) and Σ(2) are equivalent to each other.
Although there is no direct link between the p-adic L-functions concerned, they are tied together
by the explicit reciprocity laws relating both of them to the rank 1 Euler system associated to
Σ(3). This observation is due to Xin Wan, and its generalisations play a prominent role in recent
work of Wan and his coauthors on the cyclotomic Iwasawa main conjecture and BSD leading
term formula for supersingular elliptic curves over Q [Wan15, JSW17].

(4) The representation Tf |GK
is the Galois representation attached to the base-change of f to K,

which is a cohomological automorphic form for the group GL2 /K. The conjectural picture of
Euler systems for T that we describe here would apply equally to the GK-representation attached
to any cohomological eigenform F for GL2 /K, whether or not it arises from base-change, as long
as F is ordinary at p1 and p2. However, in the non-base-change setting we can prove much less;
for instance, we know of no way of p-adically interpolating the values L(F/K, χ, 0) for χ ∈ Σ(2)

if F is a non-base-change form.

11. The non-ordinary case

Greenberg’s formulation of Iwasawa theory relies on the existence of Panchkishkin subrepresentations,
but in many interesting cases these do not exist. A more flexible theory has been developed by Pottharst
[Pot13], based on the observation that for each v | p one can attach to V |GKv

a semilinear algebra

object known as a (ϕ,Γ)-module, denoted D†
rig(Kv, V ); and there may be interesting subobjects of

D†
rig(Kv, V ) which do not come from subrepresentations of V . For instance, if f is a modular form,

one may attach a rank-1 submodule of D†
rig(Qp, Vf ) to any non-zero root α of the Hecke polynomial

X2 − ap(f)X + pk−1εf(p), while this submodule only comes from a subrepresentation if α is a p-adic
unit.

The downside of working with these objects is that one has to give away some control of denominators:
the “analytic Iwasawa cohomology” modules appearing in Pottharst’s theory are not modules over the
Iwasawa algebra Λ(Γ), but over the larger algebra H(Γ) of locally analytic distributions on Γ, which is a
Qp-algebra having no natural Zp-lattice. So, in translating from the classical language to the new one,
we lose control of the µ-invariants of Selmer groups.

Subject to this caveat, one can generalise the entire conjectural picture of Euler systems described

above assuming only that one has a “Panchishkin submodule” of D†
rig(Kv, V ) for each v | p, i.e. a
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subobject which precisely accounts for all the positive Hodge–Tate weights. When this occurs, we
should expect to be able to extend the cohomology classes of Conjecture 6.5 to elements of Pottharst’s
analytic cohomology modules in the p-direction, and these Euler systems should satisfy main conjectures,
formulated in terms of equalities of characteristic ideals over H(Γ).

Remark 11.1. One new phenomenon that occurs when one recasts the theory in Pottharst’s setting
is that Panchishkin submodules are no longer unique. Hence one should formulate Conjecture 7.4 as
associating a family of elements of the r-th powers of Pottharst’s analytic cohomology modules to an
r-critical GK -representation together with a choice of Panchishkin submodule at each v | p (which should
be understood as a “p-stabilisation”). For instance, the non-ordinary analogue of Figure 2 consists of
11 objects (one Euler system of rank 2, four of rank 1, and six of rank 0), with 16 potential explicit
reciprocity laws connecting them. Many, but not all, of these can be constructed using the techniques
of [LZ16].
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