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ABSTRACT
We apply two compression methods to the galaxy power spectrum monopole/quadrupole and
bispectrum monopole measurements from the Baryon Oscillation Spectroscopic Survey DR12
CMASS sample. Both methods reduce the dimension of the original data vector to the number
of cosmological parameters considered, using the Karhunen–Loève (KL) algorithm with an
analytic covariance model. In the first case, we infer the posterior through Markov chain
Monte Carlo (MCMC) sampling from the likelihood of the compressed data vector (MC–
KL). The second, faster option, works by first Gaussianizing and then orthogonalizing the
parameter space before the compression; in this option (G-PCA) we only need to run a low-
resolution preliminary MCMC sample for the Gaussianization to compute our posterior. Both
compression methods accurately reproduce the posterior distributions obtained by standard
MCMC sampling on the CMASS data set for a k-space range of 0.03–0.12 h Mpc−1. The
compression enables us to increase the number of bispectrum measurements by a factor of ∼23
over the standard binning (from 116 to 2734 triangle bins used), which is otherwise limited by
the number of mock catalogues available. This reduces the 68 per cent credible intervals for the
parameters (b1, b2, f, σ 8) by (−24.8 per cent,−52.8 per cent,−26.4 per cent,−21 per cent),
respectively. Using these methods for future redshift surveys such as DESI, Euclid, and PFS
will drastically reduce the number of simulations needed to compute accurate covariance
matrices and will facilitate tighter constraints on cosmological parameters.

Key words: methods: analytical – cosmological parameters – large-scale structure of Uni-
verse.

1 IN T RO D U C T I O N

Large data sets have recently become available from current
cosmological surveys (Planck,1 Ade et al. 2014; Sloan Digital Sky
Survey,2 Eisenstein et al. 2011; KiDS de Jong et al. 2013; DES,
Dark Energy Survey Collaboration 20163) and even larger ones will

� E-mail: davide.gualdi.14@ucl.ac.uk
1http://sci.esa.int/planck/
2http://www.sdss3.org/surveys/boss.php
3https://www.darkenergysurvey.org

be provided in future (DESI,4 Levi et al. 2013; Euclid,5 Laureijs
et al. 2011; PFS,6 Takada et al. 2014; the LSST,7 LSST Science
Collaboration 2009). In order to exploit their full potential, it is
desirable to go beyond standard two-points (2pt) statistics.

Three-points (3pt) statistics are a complementary probe that is
possible to investigate both in configuration and Fourier space and
have been used extensively in galaxy clustering analyses (Groth &
Peebles 1977; Fry 1984; Fry & Gaztanaga 1993; Frieman &

4http://desi.lbl.gov
5http://sci.esa.int/euclid/
6http://pfs.ipmu.jp
7https://www.lsst.org/
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Gaztanaga 1994; Matarrese, Verde & Heavens 1997; Heavens,
Matarrese & Verde 1998; Verde et al. 1998; Scoccimarro et al.
1998a; Scoccimarro 2000; Sefusatti et al. 2006). Deviations from
General Relativity (Borisov & Jain 2009; Bernardeau & Brax 2011;
Gil-Marı́n et al. 2011) and primordial non-Gaussianities (Fry &
Scherrer 1994; Gangui et al. 1994; Verde et al. 2000; Liguori
et al. 2010; Tellarini et al. 2016) have been investigated using
3pt statistics. Their potential in lifting degeneracies present at
2pt level has been shown by the most recent measurement on
the Baryon Oscillation Spectroscopic Survey (BOSS) data set,
for the bispectrum by Gil-Marı́n et al. (2017) and for the 3pt
correlation function by Slepian et al. (2017a). Baryonic acoustic
oscillations have also been measured using the 3pt correlation
function by Slepian et al. (2017b) and detected using the bispectrum
by Pearson & Samushia (2017).

Recently, 3pt statistics have been studied in the case of 21cm
emission lines by Hoffmann et al. (2018). For what concerns weak
lensing, its effect on 3pt galaxy clustering have been studied by
Schmidt et al. (2008). Moreover, the weak-lensing bispectrum has
been an object of several studies in recent years (Takada & Jain
2004; Joachimi, Shi & Schneider 2009; Kayo & Takada 2013;
Kayo, Takada & Jain 2013). The skewness of mass aperture statistic
was considered by Jarvis, Bernstein & Jain (2004), while the 3pt
correlation function of cosmic shear was analysed by Schneider,
Kilbinger & Lombardi (2005) and Kilbinger & Schneider (2005).
Higher order statistics such as the bispectrum via gravitational
lensing have been investigated also by Simon et al. (2013), Fu et al.
(2014), Simon et al. (2015), and Pyne, Joachimi & Peiris (2017).

Besides being computationally more expensive than 2pt statis-
tics, 3pt statistics present the drawback to be described by very
large data vectors, which in turn require a high number of sim-
ulations to accurately estimate their covariance matrix (Hartlap,
Simon & Schneider 2007). In Gualdi et al. (2018), Paper I from
now on, we presented two methods to compress the redshift-
space galaxy bispectrum, namely MC–KL (MCMC sampling +
Karhunen–Loève/MOPED compression) and PCA + KL (principal
component analysis transformation + Karhunen–Loève/MOPED
compression). The MOPED algorithm was introduced in Heavens,
Jimenez & Lahav (2000) and it achieves maximal compression of
the original datas-vector by extending to the multiple parameter
case the Karhunen-Loève method introduced in Tegmark, Taylor &
Heavens (1997).

MC–KL consists in sampling via MCMC the compressed data
vector’s likelihood. PCA + KL reconstructs the multidimen-
sional physical posterior distribution from the 1D posterior of
orthogonalized parameters obtained by diagonalizing the Fisher
information matrix. Modifications/improvements of the MOPED
algorithm were introduced also recently by Heavens et al. (2017),
Alsing & Wandelt (2018), and Alsing, Wandelt & Feeney (2018)
also with the target of data compression.

In this work, we apply our compression methods to both the power
spectrum monopole/quadrupole and to te bispectrum monopole
measurements from the CMASS sample of BOSS DR12. While the
MC–KL is more flexible than the PCA + KL method since it doesn’t
require the multidimensional Gaussian posterior assumption, the
PCA + KL is much faster in terms of computational time and
requires far fewer computational resources (it can be run on standard
laptop). We compare both methods and test their convergence in
terms of deriving equivalent posterior distributions.

In order to make the PCA + KL method applicable also to
parameter spaces with strong degeneracies, for which the posterior
Gaussianity approximation is no longer valid, we introduce a

pre-Gaussianization step based on the algorithm developed by
Schuhmann, Joachimi & Peiris (2016).

We measure the bispectrum monopole using the same code used
for the BOSS DR12 analysis done by Gil-Marı́n et al. (2017). We
vary the size of the triangle vectors by changing the bin size �k
for k, which returns different number of triangular shapes given the
minimum and maximum scales. For the same number of triangle
bins, the compression returns posterior distributions slightly larger
than the MCMC counterparts. However, when compressing a much
larger number of triangle bins (which cannot be done for the
MCMC on the full data vector because of the limited number
of mocks available constraint), the posterior distribution becomes
more Gaussian and narrow. It eventually returns tighter constraints
than the ones obtained by the standard analysis.

In Section 2, we present the analytical model used for the data
vector considered and the analytical expression of the covariance
matrix used to derive the weights for the compression. In Section 3,
we describe the data set and the galaxy mocks used to estimate
the covariance matrix together with the settings of our analysis.
In Section 4, we recap the compression methods applied including
the Gaussianization extension for the original PCA + KL method.
We report the performance of the compression methods compared
to the MCMC sampling for the cases in which it is possible to
run it on the full data vector in Section 5. We describe the gain
in parameter constraints as a function of the number of triangle
bins used in the bispectrum monopole data vector component in
Section 6. We test the flexibility and accuracy of the compression
methods presented in Section 7. Finally, we conclude summarizing
our results in Section 8. In Appendix A, we report the full derivation
of all the analytic expressions used in the analysis. In Appendix B,
additional validation tests are presented.

2 DATA V E C TO R A N D C OVA R I A N C E M AT R I X

In order to measure the power spectrum and bispectrum from the
data and the mocks catalogues, we use the estimators described in
Gil-Marı́n et al. (2016a,b). These are based on the weighted field of
density fluctuations (Feldman, Kaiser & Peacock 1994):

Fλ(r) = wFKP(r)

I
1/2
λ

[wc(r)n(r) − αnsyn(r)], (1)

where wc is the weight taking into account all the measurement
systematics (redshift failure, fiber collision, and target density vari-
ations), wFKP (Feldman, Kaiser, and Peacock) ensures the condition
of minimum variance, n is the observed number density of galaxies,
nsyn is the number density of objects in a synthetic catalogue, and Iλ
is the normalization of the amplitude of the observed power (λ = 2,
3 for power spectrum and bispectrum, respectively). α is the ratio
between weighted number of observed galaxies over the weighted
number of objects in the synthetic catalogues.

2.1 Power spectrum monopole and quadrupole

The redshift-space galaxy power spectrum model adopted in this
work is a linear one including redshift-space distortions (RSDs)
plus a damping function taking into account the Finger-of-God
(FoG) effect:

Ps
g (k, μ) = DP

FoG

(
k, μ, σ P

FoG[z]
)

Zs
1 (k)2 Plin.

m (k) , (2)

where k is the module of the wave vector k, and μ is the cosine of the
angle between the wave vector and the line of sight. The standard
RSD kernels Zs

i are reported in the Appendix of Gil-Marı́n et al.
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(2014) together with the FoG damping function expression. σ P
FoG[z]

is the FoG free parameter for the power spectrum. For the range of
scales considered in this work, the linear RSD model has been tested
on N-body simulations and proved to be a good approximation
(Taruya, Nishimichi & Saito 2010, fig. 2). The redshift-space galaxy
power spectrum can be expanded in terms of Legendre polynomials
using its dependence on μ:

Ps
g (k, μ) =

∞∑
�=0

P(�)
g (k) L� (μ) , (3)

where L�(μ) is the �-order Legendre polynomial. Almost all the
signal is contained in the first two even multipoles, the monopole,
and the quadrupole (� = 0, 2). These can be found by inverting the
above expression:

P(�)
g (k) = 2� + 1

2

∫ +1

−1
dμ Ps

g (k, μ) L� (μ) . (4)

2.2 Analytical expression for P(0,2)
g covariance matrices

Defining an estimator as in Appendix A1, it is possible to derive the
expression for the Gaussian term of the power spectrum monopole
and quadrupole covariance matrices (Appendix A2):

C
P(�)

g P(�)
g

G (k1; k2) =
(

2� + 1

2

)2 2δK
12

Np (k1)
P(�)

g (k1)2 , (5)

where δK
12 is the Kronecker delta between k1 and k2, while Np(k1) is

the number of pairs of grid points inside the estimator integration
volume in Fourier space Vk = 4πk2�k (Scoccimarro et al. 1998b),
and it is proportional to an effective survey volume Ve. The Ve

normalization is used to obtain a closer match between the analytic
and mocks covariance matrices (please refer to equations A2
and A11 for more details). We set the cross-covariance between
power spectrum monopole and quadrupole to zero since it is
negligible with respect to the other terms, as can be seen from
fig. 3 in Gil-Marı́n et al. (2017).

2.3 Bispectrum monopole

For the redshift-space galaxy bispectrum, we adopt the effective
model presented in Gil-Marı́n et al. (2014), which modifies the
RSD kernels derived from perturbations theory in order to better fit
the data at non-linear scales (see the Appendix of the paper above for
the full expressions). This effective model includes 18 parameters
that have been calibrated using simulations (Gil-Marı́n et al. 2012,
2014). The model has been applied to both BOSS DR11 and DR12
data sets (Gil-Marı́n et al. 2015, 2017). The tree level has also been
corrected to take into account the FoG damping effect:

Bs
g (k1, k2, k3) = DB

FoG

(
k1, k2, k3, σ

B
FoG[z]

)
× [

Zs
1 (k1) Zs

1 (k2) Zs
2,eff. [k1, k2] Plin.

m (k1) Plin.
m (k2) + cyc.

]
, (6)

where σ B
FoG[z] is the FoG free parameter for the bispectrum. The

monopole of the bispectrum corresponds to the average of all the
possible orientations of a certain triangle, given by three wave-
vectors’ moduli, with respect to the line of sight. It can therefore be
obtained by integrating over two angular coordinates:

B(0)
g (k1, k2, k3) = 1

4

∫ 1
−1 dμ1

∫ 1
−1 dμ2 Bs

g (k1, k2, k3)

= 1

4π

∫ 1
−1 dμ1

∫ 2π

0 dφ Bs
g (k1, k2, k3) , (7)

where μi is the cosine of the angle between the ki vec-
tor and the line of sight. The angle φ is defined as μ2 ≡
μ1x12 −

√
1 − μ2

1

√
1 − x2

12 cos φ and where x12 is the cosine
of the angle between k1 and k2. More details are given in
Appendix A.

2.4 Analytical expression for B(0)
g covariance matrix

In order to apply the compression methods presented in Paper I,
we need an analytical expression for the bispectrum monopole
covariance matrix. This allows us to compress a data vector with
an arbitrarily large number of triangle bins, which on the contrary
wouldn’t be possible using a covariance matrix estimated from
the galaxy mock catalogues. That is because in order to obtain an
accurate numerical estimate of the covariance matrix, the number
of simulations used must be much greater than the data vector’s
dimension (Hartlap et al. 2007; Percival et al. 2014).

As it has been shown in Paper I, compressing the power spectrum
together with the bispectrum, or leaving it uncompressed, does not
make any substantial difference in terms of recovered parameter
constraints. However, it makes a huge difference in terms of com-
plexity of the covariance matrix that one has to model analytically in
order to compress the data vector. Compressing the power spectrum
as well (monopole and quadrupole) also requires modelling their
covariance matrices together with the cross-covariance with the
bispectrum monopole. Leaving them uncompressed just requires to
model the bispectrum monopole covariance matrix.

The covariance terms for the bispectrum monopole below re-
ported are original of this work. Expressions for the matter bis-
pectrum were derived also by Scoccimarro et al. (1998b), Sefusatti
et al. (2006), and Chan & Blot (2017), however, in order to compute
covariance matrix we proceed similar to what done in Kayo et al.
(2013).

The expression for the Gaussian term of CB0
gB0

g is derived in
Appendix A3 and reads

C
B0

gB0
g

G (k1, k2, k3; k4, k5, k6) =
= D123456

16π2

Ve

Nt (k1, k2, k3)
P(0)

g (k1) P(0)
g (k2) P(0)

g (k3) , (8)

where D123456 stands for all the possible permutations for which
each side of the first triangle is equal to a side of the second one;
it has the values 6, 2, and 1, respectively, for equilateral, isosceles,
and scalene triangles. Nt(k1, k2, k3) is the number of independent
triplets of grid points in the integration volume in Fourier space
Vk123 � 8π2k1k2k3�k1�k2�k3. For the values of the effective
survey volume and the average galaxy density number used in com-
puting the analytical covariance matrix, we adopt the values Ve =
2.43 × 109 Mpc3 and n̄g = 1.14 × 10−4 Mpc−3 used by Slepian
et al. (2017a) for both power spectrum monopole/quadrupole and
bispectrum monopole analytical covariance matrices. In practice,
we use the analytic expression of the covariance matrix only to
determine the weights for the compression. Since all the terms
considered scale as V −1

e , the effective volume acts only as a scaling
factor not affecting the compression performance.

In order to describe the correlation between different triangle bins
in our analytical model of the covariance matrix, we include also a
non-Gaussian term of the bispectrum monopole covariance matrix.
In the expansion of the bispectrum covariance matrix presented
in the Appendix of Paper I, for the bispectrum monopole this
corresponds to a term proportional to the product of two bispectra
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3716 D. Gualdi et al.

monopoles as shown in Appendix A4:

C
B0

gB0
g

NG (k1, k2, k3; k4, k5, k6) =

= δK
34

16π2

k3
f

4πk2
3�k3

B(0)
g (k1, k2, k3) B(0)

g (k3, k5, k6) + 8 perm.

(9)

It is important to include a term modelling the correlation between
different triangle bins since the number of possible configurations
increases very quickly as the bin size decreases. For simplicity,
we only used this term to model the correlation between different
triangle bins. However, it is important to notice that a better
approximation of the analytical covariance matrix can be obtained
by including the expressions corresponding to all the terms present
in the expansion given in the Appendix of Paper I.

We do not include a corresponding non-Gaussian term into
the power spectrum monopole and quadrupole covariances since
the number of data points considered is relatively low, thus the
separation between the k modules values is more than sufficient to
assume that the correlation between two different modes ki and kj

is negligible with respect to their variance (approximated by the
Gaussian term on the diagonal of the covariance matrix). From fig.
3 in Gil-Marı́n et al. (2017), it can be seen that the cross-covariance
between different data points for the monopole and quadrupole of
the power spectrum is much weaker than their variance.

2.5 Analytical expression for
[
P(0,2)

g , B(0)
g

]
cross-covariance

matrix

Finally we also model the cross-covariance between power spec-
trum multipoles and bispectrum monopole as described in Ap-
pendix A5:

CP(�)
g B0

g (k1; k2, k3, k4) =
= 1

2π

(
2� + 1

2

)
δK

12

Np (k2)
P(�)

g (k2) B(0)
g (k2, k3, k4) + 2 perm..

(10)

As done in Paper I, we made the assumption that the shot noise is
well approximated by a Gaussian distribution (which is reasonable
if the galaxy number density is fairly high). Therefore, we just
modify the galaxy power spectrum expressions by adding a n̄−1

g
term. We did not take into account the effect of the survey geometry
in the theoretical covariance matrix expression, which would affect
the large scales inducing an extra correlation among the modes. We
leave the inclusion of this correction for future work. Please refer
to Howlett & Percival (2017) for a more detailed study on how to
include this effect in the covariance matrix.

3 DATA , M O C K S , A N D A NA LY S I S

3.1 DR12 BOSS data and mocks catalogues

In this paper, we use the CMASS galaxy sample (0.43 ≤ z ≤ 0.70) of
the BOSS (Dawson et al. 2013), which is part of the Sloan Digital
Sky Survey III (Eisenstein et al. 2011). In the final data release
DR12, the CMASS sample contains the spectroscopic redshift of
777202 galaxies (see Gil-Marı́n et al. 2017 and Alam et al. 2017 for
more details).

In order to accurately numerically estimate the covariance matrix,
it is necessary to employ a large suite of mock galaxy catalogues.
These are different realizations of the same region of the Universe

based on methods such as second-order Lagrangian perturbation
theory (Scoccimarro & Sheth 2002; Manera et al. 2013) or aug-
mented Lagrangian perturbation theory as described in Kitaura &
Heß (2013). By measuring the data vector of interest on each one
of these catalogues, we can numerically estimate the covariance
matrix, which will be used in the likelihood evaluation. In this
work, we use subsets of the 2048 realizations of the Multidark
Patchy BOSS DR12 mocks by Kitaura et al. (2016). This set of
mocks has been run using the underlying cosmology: �� = 0.693,
�m(z = 0) = 0.307, �b(z = 0) = 0.048, σ 8(z = 0) = 0.829, ns =
0.96, and h0 = 0.678.

3.2 Analysis settings

For the power spectrum monopole and quadrupole, the bin size
was fixed to �k = 0.01h Mpc−1. We measured the bispectrum
monopole from both data and mocks using different multiples of
the fundamental frequency defined as k3

f = (2π)3

Vs
, where Vs is the

survey volume that in this case was the cubic box volume Vs = L3
b =

(3500 Mpc/h)3 used to analyse the galaxy mocks. In particular, the
considered bin sizes for the bispectrum are �k = (6, 5, 4, 2) × kf ,
respectively, corresponding to 116, 195, 404, and 2734 triangle
bins used between 0.02 < ki (h Mpc−1]) < 0.12. For every �ki

bin size, all the measured triangle bins bispectra, which depends on
the chosen bin size, are regrouped in the number of triangle bins
above specified. The largest bin size �k = 6 × kf corresponds to
the one used in the BOSS collaboration analysis done by Gil-Marı́n
et al. (2017). For the k-range considered in the BOSS analysis,
the �k6 (�k = 6 × kf) binning case corresponded to 825 triangle
bins (triplets of wave-vector’s modulus), while �k2 would have
corresponded to more than ∼7000 triangle bins.

In all the parameter estimation analyses that we are going to
perform, we use the covariance matrix derived from the galaxy
catalogues described above (see Section 3.1). In particular, we use
1400 mocks to estimate the covariance matrix when running the
MCMC sampling on the full data vector. We use 700 when the
analysis is performed using the compressed data vector.

The largest scales considered in this work are kmin =
0.03 h Mpc−1 for both power spectrum monopole and quadrupole
and kmin = 0.02 h Mpc−1 for the bispectrum monopole. The choice
of kmin = 0.03 h Mpc−1 reduces the impact of the large-scale sys-
tematic errors on the analysis (Gil-Marı́n et al. 2016a). In the case
of the bispectrum, since the model is more accurate and very similar
to the one that it has been already applied and tested on data in the
BOSS analysis, we preferred to use a lower kmin in order to be able
to use a wider range of triangle bins.

The smallest scales considered are kmax = 0.09 h Mpc−1

and kmax = 0.12 h Mpc−1 for power spectrum (monopole and
quadrupole) and bispectrum monopole, respectively. The lower kmax

used for the power spectrum is due to the fact that we did not include
1-loop corrections for it, hence we consider only scales belonging to
the quasi-linear regime. We chose a higher kmax for the bispectrum
since we implemented the effective model developed by Gil-Marı́n
et al. (2014), which works up to non-linear scales.

The fiducial cosmology chosen for the analysis corresponds to a
flat-�CDM model close to the one reported in Planck Collaboration
XIII (2016). In particular, we set �m(z = 0) = 0.31, �b(z = 0) =
0.049, As = 2.21 × 10−9, ns = 0.9624, and h0 = 0.6711. In order
to compute the covariance terms and the derivatives of the model
necessary for the compression, we fix the fiducial value of the galaxy
bias model parameters, the growth rate, and the amplitude of dark
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Compression on BOSS measurements 3717

matter fluctuations to the ones obtained by running a preliminary
low-resolution MCMC (b1 = 2.5478, b2 = 1.2127, f = 0.7202,
σ 8 = 0.4722). The FoG parameters for both power spectrum, σ P

FoG,
and bispectrum, σ B

FoG, have been set to zero after checking that
for the range of scales considered (quasi-linear regime) they were
compatible with zero. In Section 7, we check that the choice of
fiducial Parameters used to compute the derivatives of the mean
of the data vector and the analytical covariance matrix does not
significantly influence the results of the compression.

4 C OM P R ESSION METHODS

In Paper I, we presented two compression methods and applied them
to the galaxy bispectrum and power spectrum: MC–KL and PCA
+ KL. Both methods rely on the MOPED presented in Heavens,
Jimenez & Lahav (2000) which achieves maximal compression by
extending to the multiple parameters case the algorithm introduced
in cosmology by Tegmark, Taylor & Heavens (1997). Using this
MOPED/KL compression, it is possible to shrink an arbitrarily
large data vector x to a compressed one y having dimension equal
to the number of model parameters considered preserving Fisher
information. This is obtained by deriving a set of weights for the
full data vector for each model parameter. Taking the scalar product
between the weighting vectors and the original full data vector x
gives the elements yi of the compressed data vector. Here, we report
only the main equations, please refer to Paper I for more details.
The weighting vector for each parameter θ i is given by

bi = Cov−1
x 〈x〉,i , (11)

where Cov−1 is the inverse of the original full data vector covariance
matrix, and 〈x〉,i is the derivative with respect to the model
parameter θ i of the mean of the modelled data vector x, computed at
a fiducial parameter vector θfid. . In our case, the fiducial values are
reported in Section 3.2. Therefore, the elements of the compressed
data vector y are given by

yi = 〈x〉ᵀ,i Cov−1
x x ≡ bᵀ x. (12)

In the MC–KL method, an MCMC sampling algorithm using y as
data vector is ran after compression. An estimate of the compressed
covariance matrix from the mock catalogues can be obtained as
shown in the Appendix of Paper I:

Cov y,ij = Cov
[
yi, yj

] = bᵀ
i · Covx · bj , (13)

where Covx is the original covariance matrix.

4.1 PCA + KL

As described in Paper I, instead of orthogonalizing the weights as
in Zablocki & Dodelson (2016), we perform a PCA transformation
of our parameter space before applying the KL compression. This
is done by diagonalizing the Fisher information matrix using the
eigenvalue decomposition:

Fθphys. = P FθPCA Pᵀ , where θPCA = Pᵀ θphys. (14)

and P is the linear transformation matrix. After having diagonalized
the Fisher matrix, we compress the data vector with respect to this
new set of parameters θPCA. The effect of a PCA decomposition
is to rotate the parameter space to the axes corresponding to the
degeneracies between the original set of parameters. Therefore,
taking the outer product of the 1D posteriors of the parameters θPCA

in order to get the multidimensional posterior distribution should

return a good approximation to the one sampled by the MCMC
code.

Since the θPCA are uncorrelated, one can randomly sample the
1D posteriors and then rotate the resulting parameter vector using
P back into the physical space. Doing this avoids the use of the
MCMC sampling altogether.

As shown in Paper I, this works only for those parameter
sets that have a sufficiently low degree of degeneracy such that
the approximation of Gaussianity for the multidimensional pos-
terior can be assumed to be valid (no or very weak ‘banana-
shaped’ contours). Since this is not always the case, as for our
choice of parameters, an additional Gaussianization pre-step is
required.

4.2 Gaussianization pre-step

In Paper I, the PCA + KL method assumed that it was possible
to rotate through a linear transformation the physical parameter
space into a new one where the new parameters are orthogo-
nal/uncorrelated between each other. In order to be able to deal
with distributions containing non-linear degeneracies (e.g. ‘banana-
shaped’ contours), we add a pre-Gaussianization transformation of
the parameter space using the procedure described in Schuhmann
et al. (2016). In their work, they introduced an extension of the
Box–Cox transformations, which are functions of two parameters
(a, λ):

θ̃ i = BC(a,λ)(θ
i) =

{
λ−1[(θ i + a)λ − 1] (λ 
= 0)
log(θ i + a) (λ = 0)

, (15)

where θ̃ i is the transformed ith model parameter, while θ i is the
original ith model parameter. Their method was labelled Arcsinh–
Box–Cox transformation (ABC). For each of the model parameters,
a set of three ABC transformation parameters (a, λ, t) is computed
by the algorithm that are then used in the following way:

θ i
Gauss. = ABC(θ i

phys.) =
⎧⎨
⎩

t−1 sinh[t BC(a,λ)(θ i
phys.)] (t > 0)

BC(a,λ)(θ i
phys.) (t = 0)

t−1arcsinh[t BC(a,λ)(θ i
phys.)] (t < 0)

,

(16)

where θ i
Gauss. is the Gaussianized ith model parameter, while θ i

phys.

is the original ith physical model parameter. We then relabel this
compression as G-PCA. In order to obtain the transformation pa-
rameters of the Gaussianizing transformations, it is necessary to run
a preliminary MCMC sampling using the full data vector. What we
want to prove is that once the transformation parameters have been
obtained for the standard number of triangle bins corresponding to
the �k6 binning case, these are valid also for a higher number of
triangle bins included in the bispectrum.

4.3 Analytical covariance matrix: usage

In the following analysis, we are going to use two different options
for the analytical covariance matrices. For the MC–KL method, we
compress only the bispectrum monopole part of the data vector.
To derive the weights in equation (11), we use the analytical
covariance matrix of the bispectrum monopole given by the sum
of the Gaussian term in equation (8) and the non-Gaussian one
given in equation (9). For the G-PCA method, the full data vector
needs to be compressed since the computation of the 1D posteriors
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of the θPCA parameters requires each data vector element to be
sensitive to the variation of just one θPCA parameter, as explained in
Paper I. Therefore, for the power spectrum monopole/quadrupole
we use equation (5) as our analytical covariance matrix; simi-
larly for the bispectrum monopole we use equation (8) for the
covariance matrix (the same as the one we used for the MC–KL
case), and finally, we use equation (10) for our cross-covariance
matrix.

5 R E C OV ER M C MC-DERIVED POSTERIOR
DISTR IBU TION

For MCMC sampling, we use EMCEE8 (Foreman-Mackey et al.
2013). All the likelihoods have been corrected as suggested by
Sellentin & Heavens (2016) in order to take into account the bias
induced by estimating the inverse of the real covariance matrix
from a limited number of mocks. In order to check whether our
analytical estimate of the covariance matrix is good enough to be
used for deriving the weights as explained in Section 4, we compare
to the full MCMC 1D posterior distributions in the left-hand panels
of Figs 1 and 2 with results from the MCMC + MC–KL and G-PCA
methods, respectively.

The violin plots include the standard binning case �k6 (116
triangle bins) and the �k5 case (195 triangle bins). For these
two cases, we compare the MCMC (grey and purple) with the
compression results (cyan and orange). From each point, we subtract
the mean of the model parameters obtained using the MCMC. This
makes it easier to check that the shift in the mean of the compression
results with respect to the MCMC ones is small when compared to
the size of the inner quartiles of the distribution. This concept is
also quantified in the bottom half of Table 1, which shows that
the shifts in the mean values are relative to the 1D 68 per cent
credible intervals. In the top half of Table 1, we report the precise
values of both the means and the 68 per cent credible intervals
for all model parameters. Additionally, Fig. B1 in Appendix B
shows the comparison between the 2D MCMC posterior distribu-
tions and the MC–KL and G-PCA ones for both �k6 and �k5

cases. We conclude that even if a small part of the constraining
power is lost (see the �k6 columns in Table 2 for details), both
compression methods return posterior distributions that well agree
with the MCMC distribution for all model parameters under
consideration.

6 IN F O R M AT I O N C O N T E N T A N D N U M B E R O F
T R I A N G L E B I N S

The right-hand panels of Figs 1 and 2 show how using a ∼23 times
larger number of triangle bins tightens the posterior contours of
the four model parameters considered and reduces the degeneracies
between them. At the same time, the maxima of the 2D posterior
distributions converge to the same values for each compression
method as the number of triangle bins is increased.

Note that the shift in the posterior distribution between binning
cases is not an artefact of the compression: It is also present when
we fit using the standard MCMC method. This can be seen when
comparing the location and shape of the 2D contour regions in
Figs B1 and B2 in Appendix B for the �k6 and �k5 binning cases.
Quantitatively, it can be observed by comparing means and standard

8We use 192 walkers, 1100 burn-in steps, and 1700 steps. For the low-
resolution MCMC, we use half of the previous quantities.

deviations in Table 1. Thus, both compression algorithms reproduce
posterior distributions very similar to the ones derived via MCMC
sampling for the relevant binning cases �k6 and �k5. The observed
shift between binning cases is due to the strong degeneracy between
the model parameters. In particular, the shift happens along the
degeneration direction of b1, b2, and f with σ 8. It may have a
statistical origin. Further checks on this effect may be performed
using the galaxy mocks, for example, by fitting several different
realizations for both the �k6 and �k5 binning cases using the G-
PCA method (which would be much faster than doing parameter
estimation via MCMC or MC–KL). We reserve to do these tests
in future work. Additionally, the practically identical (compared to
the error bars amplitude) residuals plots for the different models
in Fig. 4 show that the shifts in the best-fitting parameters as a
function of the number of triangle bins used are an effect of the
strong degeneracy present in the parameter space. Even if employing
more triangle bins partially lifts this, the degree of how well the
models for the different number of triangle bins fit the data does not
change.

The main result of this paper is that the variance of the
parameters is substantially reduced when the number of triangle
bins used is increased up to ∼23 times the original number.
In terms of percentages of the original 1D 68 per cent credible
intervals obtained running an MCMC on the full data vector
for the parameters (b1, b2, f, σ 8) in the BOSS �k6 case, the
�k2 MC–KL and G-PCA analyses obtain tighter constraints by
(−35 per cent, −45.3 per cent, −22.6 per cent, −22.6 per cent)
and (−24.8 per cent, −52.8 per cent, −26.4 per cent,−21 per cent),
respectively. These optimal constraints as obtained by the
compression methods are also shown in summary in Fig. 5. The
gain in parameter constraints is due to the fact that when we
increase the number of triangle bins, by decreasing the k-bins size,
the information is less ‘washed out’ than when using larger k-bins.

For future surveys, the compression can be then used to maximize
the constraining power of the main analysis and also to find out the
minimum number of triangle bins for a given k-range needed to fully
capture the non-Gaussian information contained in 3pt statistics
such as the bispectrum. The later will indicate how many mock
catalogues/simulations are required in order to accurately estimate
the covariance matrix. In our analysis, the saturation seems to be
reached already for the �k4 binning case (404 triangle bins).

For what concerns �k2, the smallest k-bin size considered (2734
triangle bins), Tables 1 and 2 show that the �k2 posterior distribution
is very similar to the �k4 case.

The trend in the information content in terms of the 1D 68 per cent
credible intervals as a function of the triangle number used is shown
in the left-hand panel of Fig. 3, and the improvement quantified
in Table 2. From Fig. 3, it appears that the parameters constraint
improvement as a function of the number of triangle bins reaches
the saturation already for the �k4 case. For the chosen k-range, the
additional triangle bins (and bispectra) included in the �k2 with
respect to the �k4 one do not substantially add new features to
the bispectrum data vector therefore the constraining power results
weakly improved.

7 C ONSI STENCY CHECK

In order to test the validity of our analysis, we compute the reduced
χ2 and corresponding p-value for each set of parameters obtained
using either the MCMC sampling or the compression methods.
For all parameter vectors (compressed and uncompressed), this has
been done using the data vector corresponding to the standard �k6
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Figure 1. Joint data vector
[

P(0)
g , P(2)

g , B(0)
g

]
posteriors: MC–KL four-parameter case. (a) The violin plots show for two test cases (�k6 and �k5 binning) the

comparison between the 1D posterior densities obtained via MCMC and MC–KL for all parameters. The vertical lines represent the 25 per cent, 50 per cent,
and 75 per cent quartiles. All distributions have been centred by subtracting the mean value obtained from the MCMC analysis, and they have been normalized
by dividing by the maximum difference between the parameter value of each sample and the mean of the distribution. Even if the 1D distributions are not
Gaussian, the agreement between MCMC and MC–KL results is qualitatively good. For a quantitative comparison, see Table 1 and additionally Figs B1
and B2 in Appendix B. (b) The 2D 68 per cent and 95 per cent credible regions are shown in order to highlight the improved constraints and reduced parameter
degeneracies obtained by employing a higher number of triangle bins in the data vector because of the compression with respect to the standard MCMC for
the full data vector. In particular, the grey contours correspond to the standard binning �k6 used to run the MCMC for the full data vector. The orange and
green contours correspond to the distributions for the compressed data vector for the binnings �k5 and �k4 (which corresponds to Ntriangles = 195, 404, the
number of triangle bins increases as the k-bin size approaches the fundamental frequency). See also Table 2.

Figure 2. Joint data vector
[

P(0)
g , P(2)

g , B(0)
g

]
posteriors: G-PCA four-parameters case. Same as Fig. 1 but for the G-PCA method.
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3720 D. Gualdi et al.

Figure 3. (a) The 1D 68 per cent credible intervals as a function of the number of triangle bins used in the bispectrum monopole data vector. Continuous
lines represent the MC–KL results, while the dashed ones are given by the G-PCA compression method. (b) The compression results for the MC–KL and
G-PCA cases when the fiducial parameter set used to compute the analytical covariance matrix and the derivatives of the mean are shifted by ±1σ credible
intervals. The violin plots show, for the test case of the �k6-binning, the comparison between the 1D posterior distributions for all parameters, using shifts by
+1σ (red/grey) and −1σ (blue/pink) for the MC–KL / G-PCA methods. The vertical lines represent the 25 per cent, 50 per cent, and 75 per cent quartiles. All
distributions are mean-subtracted using the fiducial parameter set for the compression, and they have been normalized by the maximum difference between
the parameter value of each sample and the mean of the distribution. Even if the 1D distributions are not Gaussian, the effect of compressing with respect to
a shifted cosmology is qualitatively negligible for the MC–KL method, while it affects the G-PCA performance more. Nevertheless, the modifications to the
fiducial parameter sets are substantial (∼10–40 per cent varations) given the broad posteriors due to the strong degeneracy in the parameter set.

Table 1. Four-parameter case, check consistency. Upper half: Mean values of the posterior distributions and 68 per cent credible intervals for the MCMC and
the MC–KL / G-PCA compression methods. We report the values for a range of k-binnings. From the largest bin �k6, the size used in the BOSS analysis,
corresponding to the lowest number of triangle bins (116), to the thinnest binning �k2 corresponding to the highest number of triangle bins (2734). The
observed shift in the mean values as a function of the number of triangle bins considered is due to the strong degeneracy present between the model parameters.
As can be seen in Fig. 4, the shift does not have any effect on the goodness of fit. Lower half: In the compression columns, we report the relative difference
between the posterior modes obtained via MCMC and the ones obtained via compression (MC–KL or G-PCA). In the MCMC columns, the relative size of the
68 per cent credible intervals obtained via MCMC sampling is shown. Comparing the MCMC columns to the compression ones, the difference between the
mean parameter values obtained via MCMC and the ones obtained via compression (MC–KL or G-PCA) is evidently within the 68 per cent credible intervals
given by the MCMC on the full data vector.

�k6 �k5 �k4 �k2

MCMC MC–KL G-PCA MCMC MC–KL G-PCA MC–KL G-PCA MC–KL G-PCA

b1 2.41 ± 0.22 2.41 ± 0.23 2.49 ± 0.27 2.34 ± 0.17 2.38 ± 0.18 2.42 ± 0.17 2.27 ± 0.14 2.38 ± 0.16 2.28 ± 0.14 2.31 ± 0.17

b2 1.00 ± 0.40 1.04 ± 0.42 1.08 ± 0.47 0.82 ± 0.26 0.83 ± 0.29 0.85 ± 0.26 0.79 ± 0.23 0.81 ± 0.22 0.68 ± 0.22 0.77 ± 0.19

f 0.69 ± 0.08 0.72 ± 0.09 0.72 ± 0.09 0.67 ± 0.07 0.67 ± 0.07 0.70 ± 0.07 0.65 ± 0.06 0.68 ± 0.06 0.68 ± 0.06 0.67 ± 0.06

σ 8 0.50 ± 0.04 0.48 ± 0.05 0.48 ± 0.05 0.51 ± 0.04 0.50 ± 0.04 0.49 ± 0.03 0.53 ± 0.03 0.51 ± 0.03 0.52 ± 0.03 0.51 ± 0.03
�θmc

�k6

θmc
�k6

[%]
θ comp. − θmc

�k6

θmc
�k6

[%]
�θmc

�k5

θmc
�k5

[%]
θ comp. − θmc

�k5

θmc
�k5

[%]
θ comp. − θmc

�k5

θmc
�k5

[%]
θ comp. − θmc

�k5

θmc
�k5

[%]

b1 9.2 −0.3 3.3 7.3 1.9 3.5 −2.7 1.9 -2.7 −1.1
b2 40.3 3.5 7.5 32.2 1.9 4.4 −3.6 −1.2 -16.5 −5.7
f 12.1 4.4 4.4 10.1 −1.3 3.8 −3.3 0.2 0.5 −1.1
σ 8 8.5 −5.1 −5.5 7.3 −1.1 −3.6 4 −0.3 2.2 −1.2

binning. The results can be seen in Fig. 4. This test proves that
the shift observed in the parameters as the number of triangle
bins is increased is simply due to the strong degeneracy present
between b1, b2, f, and σ 8. Indeed both the reduced χ2 and p-values
show that all these models fit the data very well. In Fig. 4, we

did not show the lines and statistics for the �k5 cases just for the
sake of clarity and because the results are equivalent to those of
the other binnings. From the same figure, it can also be noticed
that the tightest error bars are those from the power spectrum
case.
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Compression on BOSS measurements 3721

Table 2. Four-parameter case, constraints improvement. Below are shown the relative variations in percentage of the size of the
68 per cent credible intervals as a function of the k-binning considered (number of triangle bins used for the bispectrum monopole).
In orange and green are highlighted, respectively, the improvements achieved via compression for the �k5 and at the saturation level
(404 triangle bins – �k4) of the bispectrum monopole constraining power case for the considered set of parameters (e.g. left-hand
panel of Fig. 3). Finally, in blue and red are highlighted the improvements obtained via compression for the highest number of
triangle bins considered (2734 triangle bins – �k2 binning) for MC–KL and G-PCA, respectively.

�k6 �k5 �k4 �k2

�θmc
�k6

�θ comp. − �θmc
�k6

�θmc
�k6

[%] �θmc
�k5

�θ comp. − �θmc
�k6

�θmc
�k6

[%]
�θ comp. − �θmc

�k6

�θmc
�k6

[%]
�θ comp. − �θmc

�k6

�θmc
�k6

[%]

MCMC MC–KL G-PCA MCMC MC–KL G-PCA MC–KL G-PCA MC–KL G-PCA

�b1 0.22 4.4 18.8 0.17 − 21.3 − 22.0 − 35.3 − 30.0 − 35.3 − 24.8

�b2 0.40 2.9 16.2 0.26 − 28.9 − 35.0 − 42.6 − 46.0 − 45.3 − 52.8

�f 0.08 3.7 7.0 0.07 − 16.5 − 18.5 − 24.7 − 25.1 − 22.6 − 26.4

�σ 8 0.04 6.5 10.0 0.04 − 11.3 − 18.7 − 22.3 − 24.5 − 22.6 − 21.0

Figure 4. Reduced χ2 and p-values for the best-fitting models obtained using the MCMC, MC–KL, and G-PCA compression methods. The k-binnings shown
are, respectively, the standard �k6 (navy), an intermediate size �k4 (green), and the smallest one �k2 (pink for MC–KL and red for G-PCA) corresponding
to the highest number of triangle used in the bispectrum monopole. The two upper panels are for the power spectrum monopole (left) and quadrupole (right),
while the bottom panel refers to the bispectrum monopole. The lower part of each panel shows the relative difference between the data measurements and the
different models. Even if for example b1 and σ 8 values are shifted between the cases of �k6 and �k2, the strong degeneracy has the result of making the two
models practically identical.

To demonstrate the flexibility of the compression methods, we
check their performance when the fiducial parameter set is shifted by
±1σ credible intervals in the �k6 case. The effect of this is shown
in the right-hand panel of Fig. 3. For this plot, we centre each
1D distribution by subtracting the mean obtained by running the
compression pipelines using the fiducial parameters values. In this
way, it is possible to observe by how much the posterior distributions
derived via MC–KL or G-PCA shift as a function of the chosen
fiducial parameter set. In Appendix B, the precise numbers are
reported in Table B1.

MC–KL appears to be more stable than the G-PCA when the
fiducial parameter set is shifted. The explanation of this could be the
fact that G-PCA involves several transformations of the parameter
space, including a diagonalization of the Fisher information matrix
that is computed from the analytical model of the covariance matrix.

Nevertheless, it should be noted that we are testing the perfor-
mances of the compression in a regime of strong degeneracy of
the parameter space and therefore shifting the fiducial parameter
set by ±1σ credible intervals actually means increasing/reducing
the individual values by ∼10–40 per cent (second panel Table 1).
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3722 D. Gualdi et al.

Figure 5. MCMC versus MC–KL versus G-PCA. 2D 68 per cent and 95 per cent credible contours are shown, respectively, for the �k6 MCMC (grey), �k2

MC–KL (blue), and �k2 G-PCA (red) cases. It is possible to observe the substantial improvement in parameter constraints through applying either compression
method to a data vector containing approximately ∼23 times more triangle bins than the one used for the MCMC sampling case. The agreement between the
MC–KL and G-PCA posterior distributions is remarkable. Using more triangle bins helps with lifting the strong degeneracy between the model parameters, as
can be seen from the shrinkage of the 2D contours along the degeneracy directions.

Therefore, running a preliminary low-resolution MCMC sampling
on the full data vector (which can be shorter than the one that will
be later compressed, as we have done in our analysis) is an efficient
solution to determine a reasonable fiducial model for deriving the
compression.

7.1 Comparison with BOSS DR12 bias constraints

BOSS galaxy sample results from the bispectrum are reported by
Gil-Marı́n et al. (2017; in table 3 at p. 18) from the same CMASS
sample data set, at the same redshift, for the following parameter
combinations: b1σ 8 = 1.2479 ± 0.0072, b2σ8 = 0.641 ± 0.066,
and fσ 8 = 0.432 ± 0.018.9 If we recast our results obtained using
the MCMC for the �k6 case in terms of the same parameter com-
binations, these are b1σ 8 = 1.203 ± 0.008, b2σ 8 = 0.557 ± 0.140,
and fσ 8 = 0.339 ± 0.019.

In the BOSS analysis, a larger range of scales has been con-
sidered. In particular, BOSS analysis goes up to k ∼ 0.2h Mpc−1

for both power spectrum monopole/quadrupole and bispec-
trum monopole while we stop at k ∼ 0.09h Mpc−1 and k ∼

9We compare our results with the BOSS analysis standard deviation
values obtained considering only the statistical contributions and not the
systematics ones.

0.12h Mpc−1, respectively. This could explain the larger value we
obtained for b2σ 8. A more complex model for the power spectrum
was used in the BOSS analysis, including loop corrections beyond
the tree-level approximation. Moreover, the BOSS analysis also
modelled the effect of the survey window function for both power
spectrum and bispectrum.

As we saw from Fig. 4, the power spectrum monopole is the most
constraining part of the full data vector, having error bars of less
than 5 per cent. Therefore, it is possible that our simple tree-level
approximation for the power spectrum, besides limiting the k-range
analysed, could be the cause of the discrepancy between the BOSS
results with respect to the relative lower values obtained for the
combined parameters b1σ 8, b2σ 8, and fσ 8 in this work.

Moreover, in the BOSS analysis the FoG parameters σ B
FoG and

σ P
FoG were left free to vary in order to better model the non-linear

regime and were detected with high significance (σ B
FoG = 7.54 ±

0.70 and σ P
FoG = 3.50 ± 0.14). The BOSS model also included a

noise amplitude parameter Anoise, which modelled divergence from
Poissonian shot noise. In our model, we had included Anoise initially,
however, we set it to zero after having checked that, if let free
to vary, its posterior distribution was compatible with zero for
the k-range considered. These differences in the modelling and
scales considered could explain the discrepancy in the best-fitting
parameters.
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Compression on BOSS measurements 3723

In Appendix B and in particular Fig. B3, we show how to test
the limitation to the data vector constraining power, implied by
our choice of k-range, by running an MCMC sampling for two-
parameter sets: (b1, b2, f, σ 8) and (b1, b2, f). In the second case,
by fixing σ 8 to its fiducial value, we recover maximum likelihood
values for (b1, b2, f) very different from the ones corresponding
to the four-parameter case reported in Table 1 (1.98 ± 0.01,
0.39 ± 0.06, 0.53 ± 0.03). However, this discrepancy is not reflected
in the reduced χ2 values for the two different sets of best-fitting
parameters: for the (b1, b2, f, σ 8) case χ2

red = 0.98, while for the set
(b1, b2, f) χ2

red = 1.05. The fact that both best-fitting parameter sets
very well fit the data implies that the constraining power of the data
vector on the data in the four-parameter case is not sufficient to lift
the degeneracies present in the parameter space. Therefore, in order
to lift the degeneracies and to avoid a shift in the inferred parameters
when σ 8 is also fitted, a more accurate model for the power spectrum
monopole and quadrupole including loop correction is needed.

7.2 Difference in time and computer resources needed

There is no significant difference between MCMC and MC–KL in
terms of time taken for the pipeline to run or computing resources
needed. For the parameter set (b1, b2, f, σ 8), the running time varied
between 20 min for 116 triangle bins to ∼10 h for 2734 triangle bins
on 14 2.2 GHz Intel i7 cores. G-PCA proved to be faster when many
triangle bins are used. Considering ∼30 min for the preliminary
MCMC with 116 triangle bins and ∼ 2 h for the Gaussianization
part, it took between ∼5 min (116 triangle bins) and ∼30 min
(2734 triangle bins) using only one 2.2 GHz Intel i7 core for the
compression plus posterior evaluation to run. Therefore, by running
once the preliminary MCMC and Gaussianization algorithm, we
were able to run the PCA part for all the binning cases considered
in less than total ∼ 3 h wall clock time.

We used CAMB (Lewis, Challinor & Lasenby 2000) to compute
the linear matter power spectrum. The time difference between
MCMC/MC–KL and G-PCA would have been much more signifi-
cant in the case of a parameter set for which the linear matter power
spectrum needs to be recomputed for every model realization.

8 C O N C L U S I O N S

In this paper, we have shown the results of applying both compres-
sion methods for the galaxy redshift-space bispectrum, presented
in Paper I, to the measurements from the SDSS-III BOSS DR12
CMASS sample (Gil-Marı́n et al. 2017). We considered as original
data vector the combination of the power spectrum monopole and
quadrupole with the bispectrum monopole, which are obtained by
averaging over the angles describing the orientation with respect to
the line of sight. The first method called MC–KL consists of running
an MCMC sampling on the compressed data vector obtained by
taking the scalar product between the original data vector and a set
of weights derived as first shown by Tegmark et al. (1997). The
second method, which we denoted as G-PCA, is the modification
of the PCA + KL method presented in Paper I obtained by adding
a Gaussianization transformation of the parameter set (Schuhmann
et al. 2016) before rotating it using a PCA transformation followed
by the KL compression. By transforming the physical parameter
space into an orthogonal one, it is possible to just randomly sample
1D posterior distributions, avoid altogether the need of running an
MCMC routine.

In order to derive the posterior distributions for the set of
parameters considered, the galaxy bias parameters b1 and b2, the

growth rate f, and the normalization of the dark matter perturbations
amplitude σ 8, we numerically estimated the covariance matrix using
1400 and 700 galaxy mocks catalogues for the full data vector and
compressed data vector cases, respectively.

The following points represent the main conclusions of our
analysis:

(i) In order to obtain the weights for the compression methods,
we derived an analytic approximation of the leading terms of the
covariance matrix relative to the considered data vector. The final
expressions of these computations are reported in Section 2, while
the full derivations are shown in Appendix A.

(ii) In Section 5, we have shown that both compression methods
recover the posterior distributions obtained via MCMC using the
full data vector with little loss of information (∼4 per cent and
∼13 per cent larger 68 per cent credible intervals than the MCMC
ones on average for MC–KL and G-PCA, respectively). More
importantly, even if slightly broader, the posterior distributions
recovered through compression have the same shape and modes
as the MCMC counterparts.

(iii) Adding a pre-Gaussianization step removes the PCA + KL
limitation linked to a strongly degenerate parameter space described
in Paper I. It is, however, necessary to run a preliminary MCMC
in order to derive the Gaussianization transformation parameters.
Nevertheless, once these parameters have been derived for a number
of triangle bins case for which it is possible to run an MCMC
on the full data vector, they can then be used to compress a data
vector with an arbitrary number of triangle bins. The decrease in the
compression performances shown in Fig. 3 due to a far from optimal
choice of fiducial model parameters is also solved by rerunning the
compression using as fiducial model the parameters inferred in the
first run.

(iv) In Section 6, we show the main result of this work, namely
the substantial improvement in parameter constraints obtained by
compressing a much larger number of triangle bins with respect to
standard MCMC data vector. For the uncompressed data vector, the
number of triangle bins is limited by the number of mock catalogues
available to estimate the covariance matrix. For both compression
methods and for any number of triangle configuration considered,
the dimension of the compressed data vector is always equal to the
number of model parameters constrained.
For the highest number of triangle bins considered, this leads to
an improvement in terms of the 68 per cent 1D credible inter-
vals by (−35 per cent, −45 per cent, −23 per cent,−23 per cent)
and (−25 per cent, −53 per cent,−26 per cent, −21 per cent) for
the MC–KL and G-PCA methods, respectively.

(v) By way of summary, in Fig. 5 we show the results for both
MC–KL and G-PCA methods using 2734 triangle bins and for the
MCMC on the uncompressed data vector containing 116 triangle
bins. The two compression methods agree well and produce sub-
stantially tighter and less-degenerate constraints. Furthermore, the
G-PCA approach allowed for a computational speed up, requiring
only approximately a third of the time taken by the MCMC and MC–
KL methods, including also the low-resolution MCMC necessary
for the Gaussianization transformation. Considering only the PCA
part, the speed up factor rises to ∼20−100 times depending on the
parameter set considered.

(vi) Finally, we would like to point out that the compressing
methods used in this work represent a straightforward approach
to include higher order statistics such as the trispectrum or the
tetraspectrum in the analysis of current and future data sets. This is
due to the fact that the number of elements of the data vector, after
the maximal compression, corresponds exactly to the number of
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model parameters. Both MC–KL and G-PCA have the potential to
fully exploit the constraining power of higher order statistics applied
to data sets from future surveys such as DESI, EUCLID, and PFS.
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A P P E N D I X A : ES T I M ATO R S A N D C OVA R I A N C E T E R M S

A1 Power spectrum monopole/quadrupole and bispectrum monopole estimators

The computations for the power spectrum and bispectrum multipoles reported next are original of this work. Expressions for the matter power
spectrum and bispectrum were derived also by Scoccimarro et al. (1998b) and Sefusatti et al. (2006), however, in this work we proceed similar
to what is done by Kayo et al. (2013).

The analytical model for the redshift-space galaxy power spectrum monopole and quadrupole is given by equation (4).
It is therefore natural to define the estimator as

P̂(�)
g (k) =

(
2� + 1

2

)
1

(2π )3Np(k)

∫
V p

∫
Vq

d3 pd3q L� (μ) δD (q + p) δs
g (q) δs

g ( p) , (A1)

where V p,q are the spherical shell volumes characterized by k − �k/2 ≤ q ,p ≤ k + �k/2. μ is the cosine of the angle with respect to the line
of sight of the q wave vector, and L�(μ) is the Legendre polynomial of order �. δD is the 3D Dirac delta. Np is the number of grid point pairs
in the integration volume in Fourier space and can be computed as

Np(k) = Vk

k3
f

= k−3
f

∫
V p

∫
Vq

d3 pd3qδD (q + p) � 4πk2�k

k3
f

, (A2)

where Vk � 4πk2�k is the spherical integration shell defined by k − �k/2 ≤ q, p ≤ k + �k/2 as defined in Scoccimarro et al. (1998b). kf is

the fundamental frequency defined in terms of the survey volume Ve as k3
f = (2π )3

Ve
. We check that the estimator defined in equation (A1) is

unbiased:

〈P̂(�)
g (k)〉 =

(
2� + 1

2

)
1

(2π )3Np(k)

∫
V p

∫
Vq

d3 pd3q L� (μ) δD (q + p) 〈δs
g (q) δs

g ( p)〉

=
(

2� + 1

2

)
1

(2π )3Np(k)

∫
V p

∫
Vq

d3 pd3q L� (μ) δD (q + p)2 (2π )3Ps
g( p)

=
(

2� + 1

2

)
1

(2π )3Np(k)

∫
V p

∫
Vq

d3 pd3q L� (μ) δD (q + p) Ve Ps
g( p)

=
(

2� + 1

2

)
1

VeVk

∫
V p

∫
Vq

d3 pd3q L� (μ) δD (q + p) Ve Ps
g( p)

=
(

2� + 1

2

)
1

Vk

∫
V p

∫
Vq

d3 pd3q L� (μ) δD (q + p) Ps
g( p)

≈
(

2� + 1

2

)∫ +1

−1
dμ Ps

g (k, μ) L� (μ) , (A3)

where we used the approximation made in Joachimi et al. (2009) that δ2
D ≈ Ve

(2π )3
δD = k−3

f δD. In the last step, it has been made the common

approximation that p and q are very close to k in module for thin enough shells (small �k). The standard definition of the redshift galaxy
power spectrum has also been used:

〈δs
g (q) δs

g ( p)〉 = (2π )3δD (q + p) Ps
g( p). (A4)

The redshift-space galaxy bispectrum is defined as

〈δs
g (q1) δs

g (q2) δs
g (q3)〉 = (2π )3δD (q1 + q2 + q3) Bs

g(q1, q2, q3). (A5)

The analytical expression for the bispectrum monopole model was given in equation (7). Analogously to the power spectrum multipoles, the
estimator for the bispectrum monopole can be defined as

B̂(0)
g (k1, k2, k3) = 1

4π

Ve(2π )−6

Nt(k1, k2, k3)

3∏
i=1

∫
Vqi

d3qi δD (q1 + q2 + q3) δs
g (q1) δs

g (q2) δs
g (q3) , (A6)

where Nt(k1, k2, k3) is the number of independent grid points triplets inside the integration volume in Fourier space. As shown in the
weak-lensing 2D case by Kayo et al. (2013), this is computed as

Nt(k1, k2, k3) = Vk123

k6
f

= k−6
f

∫
Vq1

∫
Vq2

∫
Vq3

d3q1d
3q2d

3q3 δD (q1 + q2 + q3) � 8π2k1k2k3�k1�k2�k3

k6
f

. (A7)
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Figure A1. Computation of the integration volume in Fourier space in the case of the bispectrum monopole. Once the side k1 of the triangle is fixed, the
other two sides are free to vary in the intersection given by two sphere of radius k2 − �k2/2 ≤ r2 ≤ k2 + �k2/2 and k3 − �k3/2 ≤ r3 ≤ k3 + �k3/2,
respectively. In the figure above, the 2D projection of the annuli of thickness �k2 (blue) and �k2 (red) is shown. The angle φ corresponds to the angle φ12 in the
text.

It is important to notice that the result of the above integral must be symmetric in the k-vectors arguments. Therefore, the best way to
derive the integral results is through geometrical considerations. Starting from q1, this can be chosen in a spherical shell with volume
Vk1 � 4πk2

1�k. Once q1 is fixed, considering the plane in which both q2 and q3 lie, they must connect to each other inside the 2D intersection
formed by the two annuli defined by k2 − �k2/2 ≤ q2 ≤ k2 + �k2/2 and k3 − �k3/2 ≤ q3 ≤ k3 + �k3/2. This has approximately an
area equal to Ak23 � k2�φ12�k2. From Fig. A1, it is possible to see that �φ12 is defined by varying k3 by �k3. φ12 can be obtained
from

cos φ12 = k2
1 + k2

2 − k2
3

2k1k2
, (A8)

and therefore �φ12 can be found differentiating with respect to k3:

d cos φ12

dk3
= −dφ12

dk3
sin φ12 = − k3

k1k2
=⇒ �φ12 = �k3k3

k1k2
(sin φ12)−1 . (A9)

Finally, the volume of the intersection between k2 and k3 is obtained by rotating the area just found around the axis defined by k1:

Vk23 = 2πAk23 (k2 sin φ12) , (A10)

which allows to compute Vk123 = Vk1Vk23 in equation (A7).

A2 Power spectrum monopole and quadrupole covariance matrix: Gaussian term

Following the Appendix of Gualdi et al. (2018), we can check that also the bispectrum monopole estimator defined in equation (A6) is
unbiased. Moreover, it is possible to compute the Gaussian term of the covariance for the power spectrum monopole and quadrupole as
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follows:

C
P(�)

g P(�)
g

G (k1; k2) =
(

2� + 1

2

)2 (2π )−6

Np (k1) Np (k2)

∫
Vq1

∫
Vq2

∫
V p1

∫
V p2

d3q1d
3q2d

3 p1d
3 p2L� (μ1) L� (μ2) δD (q1 + p1) δD (q2 + p2)
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g ( p2)
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(
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2

)2 2
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∫
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=
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3q2L� (μ1) L� (μ2) δD (q1 + q2) Ps
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≈
(
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2

)2 2k−3
f

Np (k1) Np (k2)
P(�)

g (k1) P(�)
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∫
Vq1

∫
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d3q1d
3q2δD (q1 + q2)

=
(
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2

)2 2δK
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Np (k1)
P(�)

g (k1)2 , (A11)

where again we used the approximation made in Joachimi et al. (2009) that δ2
D ≈ Ve

(2π )3
δD = k−3

f δD. δK
12 is the Kronecker delta indicating that

the vectors q1 and q2 are identical (in the second step, trivial δK has been omitted in order to avoid making the notation heavier by adding
also the wave-vector letter). In the last steps, we made the approximation that the power spectrum monopole and quadrupoles do not vary
significantly when integrated over the bin in Fourier space.

A3 Bispectrum monopole covariance matrix: Gaussian term

Analogously to the above, we now compute the diagonal term of the bispectrum monopole covariance matrix:

C
B0

gB0
g

G (k1, k2, k3; k4, k5, k6) =

= 1

16π2

(2πkf )−6

Nt (k1, k2, k3) Nt (k4, k5, k6)

6∏
i=1

∫
Vqi

d3qi δD (q1 + q2 + q3) δD (q4 + q5 + q6)

×(2π )9δD (q1 + q4) δD (q2 + q5) δD (q3 + q6) Ps
g (q1) Ps

g ( p2) Ps
g (q3) + 5 perm.

= D123456

16π2

(2π )3k−6
f

Nt (k1, k2, k3)2

3∏
i=1

∫
Vqi

d3qi δD (q1 + q2 + q3)2 Ps
g (q1) Ps

g ( p2) Ps
g (q3)

= D123456

16π2

Vek
−6
f

Nt (k1, k2, k3)2

3∏
i=1

∫
Vqi

d3qi δD (q1 + q2 + q3) Ps
g (q1) Ps

g ( p2) Ps
g (q3)

≈ D123456

16π2

Vek
−6
f

Nt (k1, k2, k3)2 P(0)
g (k1) P(0)

g (k2) P(0)
g (k3)

3∏
i=1

∫
Vqi

d3qi δD (q1 + q2 + q3)

= D123456

16π2

Ve

Nt (k1, k2, k3)
P(0)

g (k1) P(0)
g (k2) P(0)

g (k3) , (A12)

where D123456 stands for all the possible permutations and has values 6, 2, and 1, respectively, for equilateral, isosceles, and scalene triangles.
Again, it has been assumed that the power spectrum monopole does not vary significantly inside the integration volume.

A4 Bispectrum monopole covariance matrix: non-Gaussian term

In this work, we use only one of the non-Gaussian terms of the bispectrum monopole covariance matrix. This is because we just need to
model the covariance matrix analytically in order to derive the weights for the compression. This additional term allows to better capture the
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correlation between different triangle bins. We leave to future work the analytic computation of the remaining terms:

C
B0

gB0
g

NG (k1, k2, k3; k4, k5, k6) =

= 1

16π2

(2πkf )−6

Nt (k1, k2, k3) Nt (k4, k5, k6)

6∏
i=1

∫
Vqi

d3qi δD (q1 + q2 + q3) δD (q4 + q5 + q6)

×(2π )6δD (q1 + q2 + q4) δD (q3 + q5 + q6) Bs
g (q1, q2, q4) Bs

g (q3, q5, q6) + 8 perm.

= 1

16π2

k−6
f δK

34

Nt (k1, k2, k3) Nt (k3, k5, k6)

∫
Vq1

∫
Vq2

∫
Vq3

∫
Vq5

∫
Vq6

d3q1d
3q2d

3q3d
3q5d

3q6 δD (q1 + q2 + q3)

×δD (q3 + q5 + q6)2 Bs
g (q1, q2, −q3) Bs

g (q3, q5, q6) + 8 perm.

= 1

16π2

k−9
f δK

34

Nt (k1, k2, k3) Nt (k3, k5, k6)

∫
Vq1

∫
Vq2

∫
Vq3

∫
Vq5

∫
Vq6

d3q1d
3q2d

3q3d
3q5d

3q6 δD (q1 + q2 + q3)

×δD (q3 + q5 + q6) Bs
g (q1, q2,−q3) Bs

g (q3, q5, q6) + 8 perm.

≈ 1

16π2

k−3
f δK

34

Nt (k3, k5, k6)
B(0)

g (k1, k2, k3) B(0)
g (k3, k5, k6)

∫
Vqi

d3q5d
3q6 δD (q3 + q5 + q6) + 8 perm.

= δK
34

16π2

k3
f

4πk2
3�k3

B(0)
g (k1, k2, k3) B(0)

g (k3, k5, k6) + 8 perm., (A13)

where the usual approximations have been used together with equation (A10) that in the last step has been used to simplify the integration
over the volume in Fourier space once one of the k-vectors is fixed.

A5 cross-covariance term

For what concerns the cross-covariance term between power spectrum (monopole/quadrupole) and bispectrum monopole, we use only the
first leading term in our model:

CP(�)
g B0

g (k1; k2, k3, k4) =

= 1

4π

(
2� + 1

2

)
(2π )−6k−3

f

Np (k1) Nt (k2, k3, k4)

∫
Vq1

∫
V p1

d3q1d
3 p1

4∏
i=2

∫
Vqi

d3qi δD (q1 + p1) δD (q2 + q3 + q4) L� (μ1)

×2(2π )6δD (q1 + q2) δD ( p1 + q3 + q4) Ps
g (q2) Bs

g (q2, q3, q4) + 2 perm.

= 1

2π

(
2� + 1

2

)
k−3

f

Np (k1) Nt (k2, k3, k4)

4∏
i=1

∫
Vqi

d3qi L� (μ1) δD (q1 + q2) δD (q2 + q3 + q4)2 Ps
g (q2) Bs

g (q2, q3, q4) + 2 perm.

= 1

2π

(
2� + 1

2

)
k−6

f δK
12

Np (k2) Nt (k2, k3, k4)

4∏
i=2

∫
Vqi

d3qi L� (μ2) δD (q2 + q3 + q4) Ps
g (q2) Bs

g (q2, q3, q4) + 2 perm.

≈ 1

2π

(
2� + 1

2

)
δK

12

Np (k2)
P(�)

g (k2) B(0)
g (k2, k3, k4) + 2 perm., (A14)

where once more we have used the same approximation of the power spectrum multipoles and bispectrum monopole not varying significantly
inside the integration volume.

APPENDIX B: VALIDATION TESTS

In Table B1, we report the results obtained compressing the bispectrum with respect to the shifted fiducial parameter sets. This is to test
whether the performance of the compression is affected by the choice of fiducial set of parameter values. In particular, we consider two cases
by varying the fiducial cosmology by adding/subtracting 1σ 1D credible intervals (derived from the MCMC) to all the parameters. The table
quantifies that the shifts in the means of the 1D posterior distributions produced by considering a non-optimal fiducial cosmology are small
compared to the 1σ 1D credible intervals of the MCMC results.

In Figs B1 and B2, the 1D and 2D posterior distributions obtained via MCMC/MC–KL/G-PCA for the test cases relative to the �k6 and
�k5 binning cases are shown. MC–KL recovers with very good approximation the 1D and 2D posterior distributions derived by the MCMC.
G-PCA shows a slightly greater loss of information for the �k6 case. However, this is noticeably closer to the MCMC/MC–KL result when
the number of triangle bins used is increased (�k5 case).

In Fig. B3, we compare the best-fitting model obtained by varying four parameters (b1, b2, f, and σ 8) with the best-fitting model corresponding
to a fit done via standard MCMC sampling with only three parameters varied, (b1, b2, and f), with σ8 = σ fid.

8 . For the three-parameter case,
we find running the MCMC: b1 = 1.98 ± 0.01, b2 = 0.39 ± 0.06, and f(zCMASS) = 0.52 ± 0.03 with σ fid.

8 (zCMASS) = 0.61.
Thereby, we show that the discrepancy between the results of this paper and the ones presented in the BOSS collaboration analysis

Gil-Marı́n et al. (2017) is, together with the different model used for the power spectrum monopole and quadrupole, probably due to the
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Figure B1. Joint data vector
[

P(0)
g , P(2)

g , B(0)
g

]
posteriors: MC–KL and G-PCA four-parameter �k6 case. (a) 2D 68 per cent and 95 per cent credible regions

are shown in order to compare the MC–KL (cyan) performance to one of the standard MCMC (grey) for the full data vector. The difference between MC–KL
and MCMC contours is quantified in Table 1. (b) The same as (a) but for the G-PCA method.

Figure B2. Joint data vector
[

P(0)
g , P(2)

g , B(0)
g

]
posteriors: MC–KL and G-PCA four-parameter �k5 case. Both (a) and (b) are the same as for Fig. B1 for the

�k5 case.

different range of scales considered. Indeed, by limiting our analysis to a smaller range of scales in k-space, the degeneracy between the
amplitude-like parameters b1 and σ 8 is much stronger. That is visible in Fig. B3, where the models given by sets of parameters with very
different b1, b2, and σ 8 parameters produce very similar predictions of the signals all with good χ2

red. and p-values.
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Table B1. Four-parameter case, checking consistency for shifted fiducial cosmology. Upper half: Mean values of the posterior
distributions and 68 per cent credible intervals for the MCMC and the MC–KL / G-PCA compression methods. We report the values
for the �k6 binning case for both compression methods in three cases consisting in using for the compression: the fiducial cosmology,
the fiducial cosmology shifted by +1 σ , and the fiducial cosmology shifted by −1 σ . Lower half: In the compression columns, we
report the relative difference between the posterior modes obtained via MCMC and the ones obtained via compression (MC–KL or
G-PCA). In the MCMC columns, the relative size of the 68 per cent credible intervals obtained via MCMC sampling is shown. By
comparing the MCMC columns to the compression ones, it is clear that the difference between the mean parameter values obtained
via MCMC and the ones obtained via compression (MC–KL or G-PCA) is evidently within the 68 per cent credible intervals given
by the MCMC on the full data vector.

�k6 �k6 + 1σ �k6 − 1σ

MCMC MC–KL G-PCA MC–KL G-PCA MC–KL G-PCA

b1 2.41 ± 0.22 2.41 ± 0.23 2.49 ± 0.27 2.47 ± 0.23 2.41 ± 0.12 2.54 ± 0.24 2.34 ± 0.37
b2 1.00 ± 0.40 1.04 ± 0.42 1.08 ± 0.47 1.04 ± 0.40 1.29 ± 0.25 1.03 ± 0.44 0.93 ± 0.67
f 0.69 ± 0.08 0.72 ± 0.09 0.72 ± 0.09 0.70 ± 0.08 0.69 ± 0.05 0.72 ± 0.09 0.68 ± 0.12
σ 8 0.50 ± 0.04 0.48 ± 0.05 0.48 ± 0.05 0.49 ± 0.04 0.49 ± 0.03 0.46 ± 0.05 0.50 ± 0.07

�θmc

θmc [%]
θ comp. − θmc

θmc [%]
θ comp. − θmc

θmc [%]
θ comp. − θmc

θmc [%]

b1 9.2 −0.3 3.3 2.15 −0.26 8.57 0.31
b2 40.3 3.5 7.5 3.47 28.68 25.29 13.26
f 12.1 4.4 4.4 0.84 0.51 6.96 0.26
σ 8 8.5 −5.1 −5.5 −3.25 −2.91 −8.94 −1.39

Figure B3. Reduced χ2 and p-values for the best-fitting parameters obtained using the MCMC/MC–KL methods with varying σ 8 and for the MCMC leaving
σ8 = σ fid.

8 fixed. The k-binnings shown for the four-parameter case (b1, b2, f, and σ 8) are, respectively, the standard �k6 (navy) for the MCMC and the �k2

(pink) for the MC + KL. The line corresponding to the fit obtained by letting free to vary only the parameters (b1, b2, f) is shown in green. The two upper
panels are for the power spectrum monopole (left) and quadrupole (right), while the bottom panel refers to the bispectrum monopole. The lower part of each
panel shows the relative difference between the data measurements and the different models. Even if, for example, b1 and σ 8 values are shifted in the cases of
�k6 and �k2, this is due to the strong degeneracy between them, and both models are practically identical to the one given by the three-parameters fit (b1, b2,
and f) with σ8 = σ fid.

8 . The only way to converge to the results obtained by the BOSS collaboration is to consider a larger range of scales (as they have done)
for both power spectrum and bispectrum that, however, involves a more complex modelling of the data vector.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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