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ABSTRACT

Energy storage offers the flexibility needed to integrate renewable generation into electricity systems. One de-
centralized option is to install battery packs in homes and offices. Yet storage owners might operate their device
autonomously to minimize their own electricity costs, but this could be inefficient from a wider electricity
system perspective. Using a novel agent-based power system model, ESMA, we explore the economic trade-offs
of aggregator-led (centralized) and consumer-led (decentralized) coordination in the UK over the period
2015-2040. We consider the deployment of storage in the domestic, commercial and industrial sectors.
Centralized scheduling leads to the lowest power system cost, reducing mean electricity prices by up to 7%
relative to decentralized scheduling. This could avoid annual bill increases of up to 407 £m/year and could
decrease electricity price volatility by up to 60%, depending on the installed storage capacity on the grid. We
show that aggregators could reduce the disparity between private and system value by financially incentivizing
consumers to give up control of their storage resource in order to use it more efficiently for the benefit of the

wider electricity system.

1. Introduction

The proportion of electricity generated from uncontrollable re-
newables (wind and solar) and inflexible nuclear plants is rising rapidly
in many countries. This increases the need for flexible technologies to
ensure electricity security and affordability, and options include flex-
ible generation, energy storage and demand-side response (shifting
supply or demand in time), and reinforced networks and interconnec-
tions (shifting supply across space).

Energy storage can store excess renewable generation and provide
electricity in periods of high demand. While some storage technologies
have strong economies of scale (e.g. compressed air), battery electro-
chemical storage ranges from large grid-scale plants to small in-house
battery packs. Control of energy storage could be centralized (sched-
uled by the System Operator) or decentralized (scheduled by the con-
sumer for small, privately owned storage) (Rahbari-Asr et al., 2015).
Centralized resources would likely compete in wholesale electricity
markets via aggregators by offering balancing services to the electricity
system. In contrast, decentralized resources would charge and dis-
charge without consideration of the wider needs of the electricity
system, and the system operator would see only a change in overall
demand.

Small-scale electricity storage is typically paired with renewables
(e.g. rooftop solar) to maximize self-consumption of variable renewable

energy (Borenstein, 2017). Options include both dedicated in-house
devices and vehicle-to-grid storage using the batteries of an electric
vehicle (BEV) (Putrus et al., 2009). As the prices of solar PV and electric
batteries fall, more consumers are expected to adopt these technologies
(DECC, 2016b).

This paper investigates how centralized and decentralized co-
ordination of consumers’ generation and storage resources might affect
electricity prices, in terms of both the average price and its volatility.
We use these insights to propose a financial incentive that would en-
courage consumers to give control of their storage technology to ag-
gregators, who could reduce power costs for the whole electricity
system.

1.1. Consumer scheduling of electricity storage

Consumers are likely to choose to operate their energy storage de-
vice according to their objectives. Some contend that consumers would
operate decentralized resources in a way that minimized their own bills
(Borenstein, 2017; Hoppmann et al., 2014; Rodrigues et al., 2016). Yet
retail electricity prices per kWh of supplied electricity are normally
fixed, so the consumer cannot necessarily benefit from arbitrage in the
same way as an aggregator.

For consumers with onsite generation (e.g. solar PV), the consumer
could benefit from storage by minimizing overall -electricity
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consumption from the grid, but only if the cost of importing electricity
from the grid were higher than the income from exporting electricity to
the grid during peak onsite generation. If most consumers were to
generate at off-peak periods, when the wholesale price is low, then
export prices would likely be lower. In the UK, solar PV generation
occurs during daytime, while peak demand (and cost) is on an evening,
and the current export price floor of ~£0.05/kWh is substantially
lower than the retail price of ~£0.13/kWh. For this reason, here we
assume that consumers would aim to minimize their electricity con-
sumption for the grid, which would also minimize their total cost of
electricity.

Another objective, for consumers seeking to maximize energy se-
curity, would be to keep the energy storage permanently charged in
case of grid outages. This use of energy storage is not considered in this
paper.

The deployment of generation and storage resources by consumers
could influence the wholesale electricity market (Carbon Trust, 2016).
A lack of coordination could lead to consumers charging instead of
discharging their storage devices during high demand periods, causing
higher electricity demand and price peaks. On the other hand, if con-
sumer storage charging and discharging were strategically coordinated,
it could substantially cut peak electricity demand and lower electricity
prices (Acha et al., 2012).

1.2. Value to the electricity system of coordinating small-scale energy
storage

The value of energy storage in balancing the electricity system de-
pends on how it is operated to meet electricity demand. The roles and
value of grid-scale energy storage to the energy system have been
widely studied (Baker, 2008; Barbour et al., 2016; Denholm and
Margolis, 2007; Denholm and Sioshansi, 2009; Greenblatt et al., 2007;
Schmidt et al., 2017; Sioshansi et al., 2009; Staffell and Rustomji, 2016;
Wade et al., 2010; Walawalkar et al., 2007). Centrally-controlled sto-
rage could generate large cost reductions in power systems with no
flexible generation (Carbon Trust, 2012, 2016; Pudjianto et al., 2014).

Yet the value of aggregating small-scale storage compared to it
being operated independently remains unclear. Aggregators can reduce
transaction costs for small market agents due to their economies of scale
in managing information and their marketplace centrality (Codognet,
2004). Aggregators offer value by making the system more flexible and
enabling cost reductions when serving peak demand (Aghaei and
Alizadeh, 2013; Basak et al., 2012; Basu et al., 2011; Marzband et al.,
2013). By aggregating supplies (and demands), aggregators could
provide a host of balancing and ancillary services, reviewed in Ofgem
(2016). Aggregators could evolve into platforms through which even
small agents provide and procure services such as operating reserves or
voltage control (Burger et al., 2017).

A previous review of the literature and pilot projects by Niesten and
Alkemade (2016) suggested that aggregation creates value only when
performed at a large scale. In contrast, Calvillo et al. (2016) concluded
that there is value in relatively small aggregations, with minor actions
taken in response to aggregation signals by many distributed agents
providing a substantial electricity system service. Studies of two US
demand response companies indicate that aggregation could induce US
$2-8/month in savings per customer, or a minimum saving from peak
reduction of 4.5 GW (Burger et al., 2017; Opower, 2016). The value an
aggregator may provide increases as more consumer resources are ag-
gregated and may exhibit network effects (Katz and Shapiro, 1985).
Centralized operation increases social welfare and lowers the cost of
electricity, compared to decentralized operation (He et al., 2012; Jia
and Tong, 2016).

1.3. Aims and structure of this paper

We have identified two gaps in the literature considering the impact
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of energy storage aggregation on the operational cost of electricity.

First, economic research does not account for potential future
changes in electricity demands and supplies (He et al., 2012; Jia and
Tong, 2016), which could greatly affect electricity prices.

Second, no previous study accounts for the load profiles of different
types of electricity customers, nor uses these to define financial in-
centives that could induce a system-optimal use of consumers’ storage
and generation resources. Given the diverse load profiles of domestic,
commercial and industrial electricity consumers, the value to each of
privately operating storage is likely to vary.

Our work aims to address these gaps. Using a novel bottom-up
power system management model we account for the behavior of do-
mestic, commercial and industrial consumers, and consider different
evolutions of the GB electricity system for the period 2015-2040. As
market structures are key to this analysis, we also consider how retail
price formation affects savings from consumer resources.

The remainder of this paper is structured as follows. Section 2 de-
scribes the methodology, focusing on the coordination of decentralized
renewable and energy storage resources, and the design of a financial
incentive to reward consumers for increasing system flexibility. De-
tailed information about the underlying methods are included in sev-
eral appendices in the Supporting information. Section 3 reports our
main results, which are discussed in Section 4. Concluding remarks are
in Section 5.

2. Methods

We use a novel electricity system management model, ESMA
(‘Electricity System Management using an Agent-based approach’), to
study the role of aggregators in coordinating consumer renewable and
energy storage resources in Great Britain. We focus on the long-term
evolution of the British electricity system in four scenarios that vary
according to national economic prosperity and green ambition.

We specify the demand and supply sides in the wholesale electricity
market, which the System Operator (SO) balances at each hour (see
Appendix A). We consider flexible demand resources and renewable
generation on the demand and supply sides, and account for three types
of consumers: domestic, commercial, and industrial (see Section 2.1.4).
The transport sector is included in the national scenarios since BEVs
would increase system demand peaks if no control were used.

The model has an hourly temporal resolution and optimizes day-
ahead scheduling of all resources. The indices ¢ and d represent hour
and day counters, wheret =1, ...,T=24 andd = 1, ...,D = 365. Fig. 1
provides a simplified representation of the British electricity system. We
model a set of consumer agents A = {a!, a?, @’} where each a € A re-
presents a pool of consumers from each of the three sectors. Each
consumer a has daily non-deferrable electricity and heat profiles,
1%(t, d) and q°(t, d), representing activities which cannot be shifted in
time, such as cooking. Consumers have access to flexible demand re-
sources, including: electricity storage, heat pumps, and thermal energy
storage (see Appendices B-E in the Supporting information), whilst a
fraction of consumers generate PV electricity (Anon, 2016), storing any
excess in an in-house battery modelled as Tesla's Powerwalll, due to its
commercial availability (Tesla, 2017). The residual, or net, demand
which consumers must purchase from the retail market is given by:

1L, (t, d) = 19(t, d) — ro(t, d) + 1%9(t, d) — 19998, d) + I&p(t, d), ¥ ¢
e[1,T], V a€A, 1)

where 19(t, d)is non-deferrable consumer demand; I (¢, d), 194(t, d)
are consumer charge and discharge profiles (shown in Appendix G);
Ifip(t, d) is electricity demand from a heat pump and, r%(t, d) is elec-
tricity generation from a 4-kW solar PV polycrystalline system (DECC,
2013). Consumers are assumed to be able to sell any excess electricity
generated through an aggregator in the market at the wholesale price.
We do not model district heating, electricity trading, or ancillary
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Fig. 1. ESMA's representation of the GB power system.

service markets, which could lead to us underestimating the centralized
(but not decentralized) value of storage assets.

The market is modelled as a set of generators, s = {s,..,s™}, where
each s € S represents a group of electricity generation technologies of
the same type. Generation from renewable resources R(t, d) is modelled
based on a historical generation profile from 2015, which is scaled in
line with the installed capacity in the system. The SO stacks up avail-
able generator capacities, K5(t, d), offered at short-run marginal cost,
Piene (6> d), and arranges them into a merit order. The electricity price
p(t, d) is determined as the demand-weighted price for a unit of elec-
tricity required to fulfil residual system demand (see Appendix F.1)
including the operation of storage (Appendices A and E.3):

Lo (8, d) = L(t, d) — R(Z, d). (2

As wholesale costs comprise ~35% of consumer bills (Ofgem,
2017), retail tariffs 7(t, d) are uplifted from p(t, d) depending on the
type of consumer a. Efficient pricing in a deregulated retail market
generates prices that closely reflect the wholesale cost of electricity.
Given the lack of information about the dependency of retail prices on
wholesale market fundamentals, we consider three increasing degrees
of co-variation between the retail uplift (mark-up) and wholesale de-
mand and supply (see methods M1-M3 in Appendix F.2). M1 assumes a
constant mark-up to wholesale prices per MWh; M2 assumes a mark-up
that is dependent on demand and wholesale prices; whilst M3 assumes a
mark-up that multiplies wholesale prices by a constant. M1 involves the
lowest dependency on market fundamentals while M3 considers the
largest degree of dependency, with M2 in-between. This methodology
enables us to understand how retail price regulation can help realize the
value of energy storage to the electricity system.

2.1. Demand-side resource coordination

Since electricity prices are set centrally, electricity cost-minimizing
consumers would shift electricity demand to the same periods of low
electricity prices, leading to ‘consumer herding’ and electricity price
peaks. Previous scheduling algorithms (Gan et al., 2013; Ghasemi et al.,
2016; Papadaskalopoulos and Strbac, 2016; Ramchurn et al., 2011)
have been shown to overcome this problem by pooling consumers and
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allowing the aggregator to negotiate consumer demand curves by
sending a signal. Yet effective implementation of aggregator-led sche-
duling requires participation from consumers and communication in-
frastructures that allow the aggregator to send that signal. An alter-
native approach to avoid herding is to allow the consumer to perform
its own scheduling, but with the objective of smoothing demand rather
than minimizing costs. This ensures that new demand peaks do not
appear, whilst preserving full consumer autonomy. However, the net
benefit of one approach over the other is uncertain.

2.1.1. Centralized coordination

In this paper, centralized coordination refers to the situation where
consumer flexible resources are scheduled through an aggregator. We
have identified three main approaches for performing this type of
scheduling indirectly, or without an aggregator's control of consumer
resources: randomization, market-based control and iterative coordination
of consumer response.

Randomized control can be achieved in two ways: (i) consumers react
differently to the same signal; or, (ii) react in the same way to different
signals. For (i), stochastic load response can be deployed for the pur-
poses of frequency control with a fleet of flexible resources such as
electric vehicles (Ma et al., 2013; Meyn et al., 2015; Zhou and Cai,
2014) or thermostatically controlled loads (Hao et al., 2014; Tindemans
et al., 2015). This approach is most appropriate for managing a fleet of
similar flexible resources that can be stochastically switched on and off
or react very quickly. It is not suitable for more complex demand
scheduling. For (ii), the aggregator calculates different signals for each
consumer, which allows its application to coordinating a pool of con-
sumers (Boait et al., 2007; Mohsenian-Rad et al., 2010) or more generic
flexible loads (Papadaskalopoulos and Strbac, 2016). However, the
necessity of having a central entity that can calculate different signals
introduces the issue of scalability as the number of consumers increases.

Market-based coordination allows consumption and generation
agents to negotiate settlement through interactive bidding into the
market, which is overseen by a third party (an auctioneer) which de-
termines equilibrium prices and ensures network balance (Ghijsen and
D'hulst, 2011; Kok et al., 2005).

Iterative coordination assumes an aggregator negotiating the demand
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profiles with a pool of consumers (or flexible demand units) over a
number of iterations until the system converges. Convergence is
achieved by either consumers or the aggregator adjusting (or learning)
the strategy over the course of the negotiations. For example, in two
studies (Voice et al., 2011; Vytelingum et al., 2010) the authors propose
an algorithm in which consumers schedule demand based on the real
time price in order to minimize costs. In order to avoid large swings in
system demand, consumer response is suppressed through a damping
term which penalizes them for shifting demand too much from the
previous schedule. As a result of this algorithm, consumers slowly adapt
to the market and reach a Nash equilibrium. Gan et al. (2013) applies
iterative coordination for scheduling BEVs, but in contrast to another
study (Ramchurn et al., 2011), where each iteration represents a day,
all negotiations between BEVs and the aggregator take place during the
day-ahead scheduling.

Whereas randomization and market-based coordination result in con-
sumers reacting differently to the signal, iterative scheduling ensures the
same ability for consumers to achieve cost reductions. Moreover, it
represents a very flexible and adaptable approach which can easily be
scaled and help integrate multiple flexible technologies. Hence, we
chose the algorithm in Gan et al. (2013) for modelling centralized in-
direct coordination.

We assume that the aggregator negotiates consumer demand pro-
files over a number of iterations by sending them information about the
average consumer load in a specific hour, which acts as a proxy for
price. The algorithm works by suppressing consumer reaction to the
projected wholesale prices of electricity and ensures convergence of the
aggregate demand profile as shown on the left panel of Fig. 2. The re-
sulting effect is smoothing consumer load rather than minimizing cost
directly. For simplicity, we only consider one aggregator, so smoothing
corresponds to the system residual load Ly (t, d) calculated in Eq. (2).
This also represents a case where the aggregator's interests are more
closely aligned with the interests of the SO. An important consideration
of the algorithm is that the aggregator does not need to know the re-
sources to which consumers have access, preserving consumer privacy
(see Algorithm 1, Appendix E.2, for details).

2.1.2. Decentralized coordination

Decentralized coordination mimics the behavior of consumers who
individually schedule their flexible resources to reduce the cost of
electricity (see Appendix E.1). The objective of the algorithm is to
smooth demand rather than actively minimize cost, as this ensures that
consumers do not herd towards the same periods of low electricity
prices. Excluding wholesale prices from the scheduling methodology
also means that consumers do not require a smart home metering de-
vice and communication with the aggregator. The objective function is
calculated to minimize the variance of the consumer's residual demand
calculated in Eq. (1):

Centralized Distributed

35 4

0 T

1357 911131517192123 1357 911131517192123

—before coordination - iteration 1-10 —after coordination

Fig. 2. Electricity demand under both coordination modes.
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Each consumer schedules its flexible resources to solve Eq. (3)
subject to the technology constraints presented in Appendices B and C.

Fig. 2 shows electricity system demand before and after centralized
and decentralized coordination, highlighting the improved ability of
the SO to minimize the system's total cost when it also coordinates
consumer resources. Following consumer demand scheduling, the SO
deploys pumped storage to smooth arising system demand peaks (see
Appendix D).

3

2.2. Data and experimental scenarios

We consider four plausible evolutions of the UK electricity system
based on National Grid's Future Energy Scenarios (FES) (National Grid,
2016). These scenarios represent the trade-off between future UK eco-
nomic prosperity and green ambition and are: (i) No Progression; (ii)
Slow Progression; (iii) Gone Green; and (iv) Consumer Power. Gone
Green has the largest generation share from renewables and storage
capacity, and the lowest fossil generation and carbon intensity. No
Progression is most similar to the existing energy system, lying at the
opposite end of the spectrum in all these areas. Gone Green meets de-
mand by 2040 with a 34% renewable share due to the growth of wind,
bioenergy and PV. The slower progress in the building and transport
sectors means the scenarios reach the UK's overall target of 15% re-
newable energy later than the EU-agreed 2020 deadline, ranging be-
tween 2022 in Gone Green and 2029 in No Progression. The key sta-
tistics for each of these scenarios in 2030 are reported in Table 1. More
detail on generation capacities and demand growth by scenario are in
Appendix A.

We use electricity generation capacity by technology, electricity
demand, fuel and carbon prices from National Grid (2016), and gen-
eration costs from the UK TIMES model (UKTM) (Daly et al., 2015; Fais
et al., 2016), which is an energy system optimization model used by the
UK Government (DECC, 2016a; HM Government, 2017).

To isolate the impact of storage, we decouple the national scenarios
into system parameters and storage parameters. FES provides values for
electricity and pumped storage technologies but not for thermal energy
storage, which is set as described in Appendix 1. Transport storage ca-
pacity is dependent on the expected growth of BEVs in the UK (National
Grid, 2016). Table 1 reports the installed electric storage capacity for
each of the four scenarios. The total number of consumers and their
capacities are aligned with the UK's aggregate values for 2015 con-
sumption (see Appendix G for data sources and related information).
We considered 12 scenarios in total: 4 FES scenarios, each with 3 retail
price specifications (M1-M3), which involve the 3 types of consumer
cost optimizations (commercial, industrial, domestic).

2.3. Financial incentive to consumers for centralized coordination

If the System Operator could dispatch consumers’ flexible resources
to balance the system, it would be able to reduce electricity costs for all
consumers in the system (Jia and Tong, 2016). Aggregators could profit
from buying/selling electricity on wholesale markets to charge/dis-
charge consumer storage (Rodrigues et al., 2016). Competitive ag-
gregators would ideally share these profits with the consumers whose
resources it aggregated for the benefit of the wider system. Aggregators
should therefore be prepared to pay back each consumer for co-
ordinating their flexible resources in light of the likely costs incurred by
users by foregoing private cost optimization (Castagneto Gissey et al.,
2017b). The maximum average amount that the aggregator should be
willing to offer, ignoring capital, network, transaction and management
costs, is equal to the excess operational system savings under cen-
tralized over decentralized coordination, at each hour, (i.e. the amount
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Table 1
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Key electricity statistics relative to each of the four FES scenarios in 2030 (National Grid, 2016).

Gone green Slow progression No progression Consumer power
Annual demand (TWh) 346 318 322 331
Peak demand (GW) 67 59 61 63
Total installed capacity (GW) 165 131 114 157
Low carbon capacity (GW) 103 78 53 87
Interconnector capacity (GW) 23 15 11 23
Electricity storage capacity (GW) 12 5 3 17
Fossil fuel capacity (GW) 20 31 47 33
Renewable energy (%) 31 27 21 23
Reduction in carbon emissions (%) 58 53 48 49

the system would save due to efficient coordination).

This incentive depends on the electricity system savings contributed
by each consumer based on the different load profiles of domestic,
commercial and industrial users, which imply diverse marginal con-
tributions to system savings so are indicated as i = 1, ...,3. The max-
imum payment which consumers could expect from the aggregator for
coordinating their resources is the disparity between system and private
benefits from resource balancing w, (i) = ¢ (i) — A2(i), where 1% and A¢
are the total electricity system savings (see Appendix A, Eq. A6) in
British pounds in the decentralized and centralized systems. The
amount w, should ideally be redistributed to consumers based on their
potential to improve system flexibility, which we define as the ability to
store and release previously-generated electricity, S, a function of their
load profile (see Appendix B). Then, L(i) = [;’[’8)) represents the ag-
gregator's hourly compensation to consumer i for allowing use of their
flexible resources to reduce system costs. Appendix J presents further
information on this approach.

3. Results

We estimate the electricity system operational savings deriving from
consumers’ flexible resources and show how these are related to the
electricity system-wide use of energy storage (Section 3.1). We then
explore the impact of storage aggregation on wholesale electricity
prices and their variability (Section 3.2). Section 3.3 reports the esti-
mated aggregator's payments to coordinate consumers’ resources when
these are used to benefit the wider electricity system.

3.1. Electricity affordability: consumer savings per unit of storage output

Demand-side electricity generation and heat require storage to
minimize consumer bills. Yet a suboptimal storage operation could
unnecessarily increase system costs without contributing toward system
savings from demand-side flexibility. Table 2 reports the estimated
electricity system savings as a result of deploying demand-side flex-
ibility, per unit of storage output (MWhy) for each of the four national
scenarios.

Table 2 implies that, when economic prosperity and green ambition
are the largest (Gone Green), savings are on average 40 £m/MWh; (per
MWh storage output) under decentralized coordination, or 59%
(24 £m/MWhy) larger compared to centralized coordination. Gone

Table 2

Green is the only scenario where decentralized coordination yields
greater savings per unit of storage relative to centralized coordination
since it has the largest renewable capacity on both the demand and
supply sides, leading to lower prices. The benefit from maximizing self-
utilization of cheap power from renewables under decentralized co-
ordination outweighs the savings obtained from peak shaving under
centralized coordination across retail prices M1-M3, explaining the
greater savings.

Centralized control generally enables greater system-wide savings
from storage. In the Slow Progression scenario, savings from flexible
resources are only 1.6 £m/MWHh larger in the centralized case relative
to those under decentralized coordination because the level of system
flexibility is low due to low prosperity against the backdrop of low
electricity prices, in turn due to high installed renewable capacity. In
contrast, Consumer Power is associated with substantial storage capa-
city which generates large savings when it is aggregated.

Centralized coordination enables lower integration of storage re-
sources than decentralized coordination when there is a lot of dis-
patchable capacity (e.g. gas) available relative to storage. In all other
situations, it implies greater savings than decentralized coordination as
more storage per unit of gas means greater savings per storage output.
Under centralized coordination, domestic users contribute the largest
savings (11 £m/MWh,) relative to other users, but only if the retail
price mark-up is constant. As the mark-up becomes more sensitive to
demand, commercial users display the greatest savings. Domestic users
achieve the largest savings when supported by decentralized co-
ordination and highly variable mark-ups (95 £m/MWhy), but these fall
to zero under a constant mark-up. Autonomous behavior induces
herding, so greater price peaks, and a mark-up that is sensitive to
market fundamentals leads to more price volatility, increasing the uti-
lity of storage.

As the mark-up becomes more responsive to electricity demand,
consumer savings from flexible resources generally increase, under both
coordination modes. If the mark-up is constant, consumers display the
lowest savings per unit of storage (0.6-33.9 £m/MWHh). As the mark-up
becomes more sensitive to market fundamentals, savings notably in-
crease. With a mark-up only dependent on system demand, savings rise
to 2.9-38.3 £m/MWHh, and to 0.7-70.9 £m/MWHhj if it also depends on
system supply. This suggests the disparity between system and private
value is likely to become more pronounced as retail prices more closely
follow wholesale fundamentals. Mark-ups less responsive to demand

Operational savings per unit of electricity storage output (£/MWhy) by type of coordination. Total installed electricity storage capacity is reported in

Table 1. Average value for the period 2015-2040 are reported.

Retail price Commercial Industrial Domestic
mark-up "
sensitivity to cs:rI:inn‘:::gn Gone Slow Consumer Gone Slow Consumer Gone Slow Consumer
wholesale market Green Progression Power Green Progression Power Green Progression Power
fundamentals
Low (M1) Centralized 4.9 0.7 9 4.1 0.6 7.5 5.9 0.8 11.0
Decentralized 18.4 0.1 1.1 5.3 0.1 1.2 33.9 0.0 0.0
- Centralized 12.6 2.9 21.5 9.7 2.2 16.6 12.1 33 20.1
(mM2)
Decentralized 38.3 0.8 7.2 22.4 0.9 5.9 61.7 0.5 0.7
. Centralized 39.7 6.6 70.9 30.5 4.7 54.8 28.6 6.7 49.1
High (M3)
9 Decentralized 49.0 4.4 52.1 39.8 3.3 aeLd 94.9 4.0 35.3

689



G. Castagneto Gissey et al.

Table 3
Mean wholesale electricity price by scheduling coordination of demand-side
resources between 2015 and 2040.

Balancing Mean electricity price (£/MWh)
coordination
No progression Gone Slow Consumer
green progression power
Centralized 34 24.7 34.2 22.7
Decentralized 26.4 35.5 23.9

likely decrease the gap between system and private benefits from
consumer resources. Unless the retail price mark-up is highly dependent
on wholesale prices, centralized scheduling always favors storage-led
savings more than decentralized scheduling. Further, a balanced ratio
between renewables and aggregated storage capacity implies greater
savings from volatile prices, as storage gains system utility.

3.2. Wholesale electricity prices by coordination regime

Table 3 reports the estimated electricity prices prevailing under
centralized and decentralized coordination of demand-side storage re-
sources. Decentralized coordination always leads to greater mean prices
compared to centralized coordination, ranging between 25 and 34 £/
MWh. Centralized coordination benefits from more resources devolved
to smoothing system demand and may lower electricity prices by 4-7%,
subject to total storage capacity.

As shown in Table 3, the lowest electricity prices occur under
Consumer Power as the system displays the largest storage capacity and
a substantial renewable capacity, especially under centralized co-
ordination (22.7 £/MWh). On the other hand, the highest electricity
prices occur under Slow Progression, which has high renewables but
low storage capacity, implying greater pressure on prices, particularly
under decentralized coordination (36 £/MWh). Prices drop sub-
stantially relative to the No Progression scenario, mainly when there is
substantial renewable capacity (22-27%, Gone Green; 33-42%, Con-
sumer Power), depending on the coordination modality. Even with little
storage capacity, prices fall substantially due to aggregation.

3.3. Security: electricity price variability

Centralized coordination not only leads to lower prices but also to
lower price volatility than decentralized coordination. This occurs be-
cause more storage enters the electricity supply after aggregation,
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reducing both the system's renewables to storage capacity ratio and
renewable supply variability. Volatility under decentralized coordina-
tion is larger by at least 2-3% under decentralized relative to cen-
tralized coordination, as the SO is unable to maximize the integration of
consumer storage. Fig. 3 illustrates the standard deviation of wholesale
prices during 2015-2050 to assess volatility using an interpretable
measurement unit (£/MWh). Consumer Power scenarios have the
greatest storage capacity, so price volatility is larger in the decen-
tralized case by a substantial 63%. Over the entire 35-year period, the
average difference in standard deviation between the two coordination
scenarios is 6 £ /MWh.

3.4. Aggregator's willingness to pay to coordinate consumers’ flexibility

Table 4 shows the aggregator's maximum willingness to pay to co-
ordinate consumers’ flexible resource capacity. Excess savings in the
decentralized over the centralized coordination regime are the largest
for domestic users, explaining the greater payment relative to other
user types. This results from domestic users’ spiky load, particularly at
times of peak demand, which favors savings from storage. Industrial
users, whose demand is relatively flat, are unable to substantially
contribute toward system-level savings on the margin, whilst com-
mercial users lie in between. Excess savings are the largest under Gone
Green due to a large renewables-to-storage capacity ratio, which
widens the gap between system and private benefits from energy sto-
rage.

Table 4 shows that mean hourly excess savings from centralized
over decentralized coordination are on average £ 127k, £218k, and
£181k, for domestic, commercial, and industrial users, respectively,
across the national scenarios. Yet the system value of each unit of
storage implies maximum payments by the aggregator of 121 £ /MWh,
13 £ /MWh, and 7 £ /MWhj, respectively. Domestic users require larger
payments to be nudged into providing system benefits through ag-
gregation, as their load profile is better suited to contribute toward
electricity balancing at times of system stress. The greater spikiness of
domestic loads induces greater private savings per unit of storage via
individual operation relative to other users, explaining their larger re-
servation price.

4. Discussion
Our results suggest that centralized coordination of small-scale

storage through aggregators could reduce wholesale electricity prices,
and their volatility, compared to decentralized coordination. Yet

s N
o N

Electricity price

st. dev. (£/MWh)

Centralized Distributed
No Progression

Gone Green

Centralized Distributed

Centralized Distributed
Slow Progression

Centralized Distributed
Consumer Power

Fig. 3. Electricity price standard deviation by coordination and National Grid FES scenario, with a 40% renewable share.
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Table 4

Energy Policy 128 (2019) 685-696

Mean nominal excess savings per hour (£/h) and aggregator's maximum average willingness to pay per MWh of storage output (£/MWhy) to coordinate consumers’

energy storage devices, by consumer and scenario.

Consumer type Gone Green Slow Progression Consumer Power Mean
Nominal excess savings Domestic 23,984 172,869 183,785 126,879
Aggregator max. payment 20 311 31 121
Nominal excess savings Commercial 393,834 167,894 91,901 217,876
Aggregator max. payment 14 16 11 13
Nominal excess savings Industrial 310,970 122,828 109,679 181,159
Aggregator max. payment 8 6 7 7

consumers would likely prefer operating storage autonomously in order
to reduce their own bills. Because storage has a high capital cost, it is
unlikely for consumers to use their devices to benefit the system. We
therefore propose a financial incentive that an aggregator could offer to
consumers to reflect the potential value of their storage devices to the
electricity system.

4.1. Aggregator's flexibility payments reduce prices and improve security

Switching from private decentralized coordination of consumer
storage to centralized coordination could decrease mean wholesale
electricity prices in the UK, by up to 7%, or 1 £ /MWh. Under cen-
tralized coordination, the system minimizes costs more efficiently than
the combination of many individual consumers who schedule their
resources for their own benefit. The latter also causes simultaneous
charging during peak demand periods, which inflates prices, whereas a
centralized approach provides lower electricity prices under all ex-
amined evolutions of the UK electricity system. The value of aggrega-
tion in reducing price volatility is particularly large when there are
many renewables, but storage capacity is relatively low.

If aggregation reduces total system costs more than decentralized
coordination, it means there is a disparity between system and private
benefits from storage. The income from centralized coordination would
be shared between the aggregator and the consumer. Market structures
would have to be designed so the aggregator's payment to the consumer
would be larger than the consumer would receive from decentralized
coordination (i.e. so the export price for consumers using decentralized
coordination would be chosen to reflect its lower value to the wider
electricity system).

If consumers were willing to allow aggregation they would likely
enable a lower electricity price for all consumers, but their technology's
private value would reduce. Our analysis suggests that load-reflective
payments directed from the aggregator to each consumer, which con-
siders individuals’ utilization of storage, could be sufficient to nudge
consumers into maximizing system rather than private benefits, and
will depend on how costs are allocated through tariffs. This framework
could provide a foundation for subsidies targeting storage, at least in-
itially, which may facilitate the removal of market barriers (Castagneto
Gissey et al., 2017a) that impede storage deployments in the electricity
system.

In a competitive market with full cost pass-through to the 27.6 m UK
customers (BEIS, 2017), assuming evenly distributed electricity bills
around a mean of £554 (Ofgem, 2017), the electricity system could
expect to lose up to 407 £m/year in the absence of centralized co-
ordination of consumers’ energy storage. Our work confirms and ex-
tends the findings in Jia and Tong (2016), who found welfare-enhan-
cing benefits of centralizing demand-side scheduling, and those of He
et al. (2012), who found that centralized coordination leads to lower
supply costs than private operation. It enhances the literature by

quantifying the impact of coordination on electricity price levels and
variability using a whole-systems approach, which is necessary to ad-
dress these questions.

Market structures are a key component of our model. Arguably, if
market structures were optimal, then minimizing consumer costs would
maximize the contribution of storage to the system. Our study found
that the disparity between system and private value from storage and
consumers’ decentralized energy resources is likely to become more
pronounced as the retail price becomes more responsive to the whole-
sale price. We showed that regulating the retail price mark-up over
wholesale costs in a way that it becomes more responsive to wholesale
demand and supply could increase the differential between peak and
off-peak dynamic tariffs and improve the contribution of storage toward
system savings. This could be done by either imposing a degree of
sensitivity of electricity tariffs to wholesale market fundamentals, or by
improving the flow of information relative to electricity demands and
supplies from wholesale producers to retailers, for example by estab-
lishing a transparency platform in the form of a dedicated software.

Our work also showed how electricity systems generate electricity
prices under centralized and decentralized scheduling when there are
different types of consumers. Flexible resources of domestic users have
the greatest value due to the users’ spiky evening demand profiles, by
assumption of the underlying operational costs for generating power.
Commercial users display lower load variability, explaining the lower
system savings they produce. On the other hand, industrial users typi-
cally have flat demands so the contribution of their storage resources
toward system savings is much lower. These insights could be used to
design compensation mechanisms rewarding users for the flexibility
they can offer to the wider electricity system.

Yet how consumers can be incentivized to allow system-optimal
aggregation, rather than maximizing their private benefit, is a key
question. One option would be for aggregators to offer a flexibility
payment in exchange for the right to coordinate consumers’ flexible
resources. These would be similar in nature to air conditioner use mi-
tigation policies in Florida. Similar programs depend on the introduc-
tion of advanced metering infrastructure and are designed to help
electricity providers save money through reductions in peak demand
and wholesale prices.

4.2. Value of consumer storage resources to the electricity system

The utility of storage to the electricity system could depend on ag-
gregators’ ability to entice consumers with different load profiles in
foregoing control of their technology to benefit the system. Our work
suggests that it is possible to design payments for consumers to access
these benefits, and that, if appropriately designed, they could help re-
duce electricity operational costs to all consumers. Such activities ne-
cessitate substantial control of consumer assets by aggregators and will
likely require new market mechanisms that incentivize these resources
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to participate more freely in markets for flexibility services, including
but not limited to arbitrage. Moreover, a market structure that values
the flexibility offered by consumers’ flexible resources, viewing them as
complementing rather than competing with network and generation
assets, would also be required to realize the value of decentralized
flexible resources to the electricity system (Castagneto Gissey et al.,
2017a).

As a sector, domestic users gain the largest savings from storage
coordination. This comes as a result of a higher peak-to-trough ratio as
compared to the commercial and industrial sectors. We also observe
that with demand-dependent retail price mark-ups (M2 and M3), the
domestic sector experiences greater savings (Table 2). This was ex-
pected since the objective of storage coordination is to ensure load
smoothing. It might suggest that domestic storage brings more value to
the system. But considering that the size of storage is negatively cor-
related with its capital cost, it would make more economic sense to
install storage in the non-domestic sectors to achieve higher system
savings. However, the fact that system demand peaks are currently
correlated with the domestic demand peaks means that effective de-
mand smoothing cannot be accomplished without engaging the do-
mestic sector. One way to do so is to use real-time information (e.g.
from smart meters), such as time of electricity use and storage charge
level. This could establish sharp ad-hoc signals and enable a more ef-
ficient operation of resources from the residential sector.

4.3. Regulating the price mark-up to reduce externalities

Efficient pricing structures could make retail tariffs more closely
follow wholesale costs. We considered for the first time the disparity
between private and system benefits from consumers’ storage resources
(a negative system externality) and showed that it is likely to widen as
the sensitivity of retail tariffs to wholesale prices increases. A mark-up
that is less responsive to changes in wholesale fundamentals could
tighten the gap between system and private benefits from consumers’
storage resources. This would likely increase the peak to off-peak price
differential, improving storage-led arbitrage savings.

Regulating the mark-up's sensitivity could both improve savings
from storage and increase the disparity between system and private
benefits. While retailers already have the incentive to fully reflect
wholesale costs into retail tariffs, which is likely to facilitate the ac-
cumulation of savings by storage technologies with time-of-use tariffs,
simultaneous policies intended to induce a more equitable distribution
of cost savings to consumers could be required. This could be achieved
by imposing that redistributed savings for each consumer be reflective
of the consumer's load and the decreased cost to the electricity system
because of that consumer, whilst ensuring traceability and efficiency.
With smart meters, consumers’ time-of-use and load could be used to
derive an associated system-based compensation to be paid back to the
consumer in a similar fashion to the way in which ex-post cash-out
payments are made to generators in the Balancing Mechanism.

4.4. Evaluation, limitations and future work

An evaluation of our model, provided by the sensitivities reported in
Appendix I, confirms the robustness of our results to changes in various
parameters. We only considered extreme cases of completely co-
ordinated or uncoordinated scheduling, but partial coordination could
be the most appropriate aggregation strategy to maximize the utility of
storage, which could be programmed to meet both system and private
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needs. We simplified each consumer type by assuming a single load
profile, so accounting for the variation within each user category would
improve our modelling work. Generation costs were specified as re-
lating to short-run operations, hence balancing and additional costs
related to physical grid constraints might improve the accuracy of re-
sults. While we considered the impact of coordination on wholesale
prices, that on delivered prices should be made to depend on capital,
fuel and networks costs incurred by each consumer in the system. In
this work, the degradation of consumer storage has been considered
implicitly, as described in Appendix G. The objective of this study was
to demonstrate the trade-off between centralized and distributed co-
ordination and discuss the potential implication of these findings on the
value of storage.

5. Conclusions and policy implications

As consumers increase their holdings of renewables and energy
storage, it will be crucial to ensure that their operation does not in-
crease electricity prices. We studied how consumer-led (decentralized)
and aggregator-led (centralized) coordination affects the level and vo-
latility of electricity prices.

The ability of consumers to control their technologies is shown to be
undesirable from a system perspective even with the objective of de-
mand smoothing, leading to 4-7% greater electricity prices. This occurs
because of the smaller portfolio of aggregated flexible resources at the
disposal of the System Operator under decentralized coordination,
which limits its ability to smooth system demand. Electricity price vo-
latility under centralized coordination is typically lower by 2-3% but
could be up to 60% lower depending on the ratio of renewables to
aggregated storage capacity.

It is unlikely that consumers will allow a system-optimal operation
of their technologies unless they are paid a financial incentive that is
sufficient to at least equalize the private and system benefits from their
technology. We demonstrated that domestic users would require
greater payments than industrial and commercial users as system de-
mand peaks are currently correlated with domestic demand peaks. It
would make more economic sense to install storage in the non-domestic
sector due to economies of scale, but effective demand smoothing
cannot be accomplished without engaging the domestic sector.
Providing financial incentives to consumers for the flexibility they can
offer to the system could largely contribute toward the realization of
system value from consumers’ storage resources.

Our analysis also showed that the disparity between system and
private benefits from decentralized energy resources will likely increase
as efficient pricing structures improve the sensitivity of retail tariffs to
wholesale fundamentals, implying that tariff regulation could help re-
duce this disparity, thereby potentially leading to a greater system
utility from private technology.
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Appendix

See Figs. A1-A4 and Tables A1-A3
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Table Al
Model components by type of data used, source of the data, and applied manipulations.

Model component Data used and source

Data manipulation

Consumer demand profiles — Daily demand profiles (half-hourly resolution) [9]

- Annual energy consumption by sector up to 2040 [1]

— Hourly heat demand profiles for domestic sector taken
from [10]

— Vehicle traffic data [11]

Generation — Installed generation capacities up to 2040 [1]

- Fuel and carbon prices up to 2040 [1]

- Renewable generation profile [12, 13]

— Generator costs provided by UK TIMES-MARKAL-UCL
(UKTM-UCL) [14]

Consumer technology and — Installed storage capacities for pump and consumer

storage electrical storage up to 2040 [1]
- Heat pumps capacities [1, 15] are assumed to increase at
the same rate as in the domestic sector as stated in the FES
[1]
Prices — Consumer retail prices [7]
- Non-domestic electricity prices [8]
Environment - External temperature [5]

— Daily profiles were aggregated into yearly profiles for different sector and
scaled according to annual energy consumption data per sector.

— Thermal electricity profiles are calculated by taking the difference between
seasonal electricity demand profiles assuming that no heating occurred in the
summer.

— Number of consumers was calculated to add up to aggregate historical energy
consumption values [10]

- For transportation demand profile is based on the traffic activity data assuming
that if the vehicle is stationary it is charging. This is combined with the data for
EV numbers from FES.

— Dispatchable generators — SRMC were calculated for each type of electricity
generator according to Eq. A4 and stacked into a merit on hourly basis

— Renewable generators — historical generation profiles were scaled according to
installed capacities [1]

- Solar PV installations were split between sectors according to current shares [4]

— Thermal storage capacity was based on domestic values for 2015 and scaled in
line with electrical storage for all sectors [3]

- Capacities of heat pump, storage and electric vehicles were adjusted in order to
add up to aggregate energy consumption values published in FES [1]

— Retail price uplift was calibrated against historical retail prices [7, 8]

— Used for COP calculations in Eq. A8

Table A2
Technical model details and data used in this study’s modelling exercise.

Model parameter

Value

Number of consumers in 2015: domestic, commercial, industrial
Efficiencies: 7gg, Nrgs, Mgy, Mup

Minimum power operation capacity: [fii", 17", IFi", 1%,
Minimum storage state of charge: Efi", Efii#, Efr, Eﬁ,’hp

Maximum storage state of charge: Efs™, ¥, Efi, Eni:

‘pump
Heat pump capacity across sectors: domestic, commercial, transport

25378 thousand, 4699 thousand, 809 thousand
0.8,0.8,0.8,0.8, 0.4
0 for all

0% for all
100%
431MWh, 639MWh,668MWh
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Table A3
Sensitivity analysis. Impact of key variables on electricity system savings.
Coordination Distributed Centralized
Variable Change in electricity system Change in electricity system Change in electricity system Change in electricity system

savings per unit of storage
capacity (%) for a 33% increase

in variable in variable

savings per unit of storage
capacity (%) for a 33% decrease

savings per unit of storage
capacity (%) for a 33% increase
in variable

savings per unit of storage
capacity (%) for a 33% decrease
in variable

Default savings 403 [£ /MWh/year] 403 [£ /MWh/year]

Demand 1310.95% — 156.79%
Gas price — 2.38% 87.66%
Gas capacity — 152.15% 712.74%
Coal price 31.96% — 21.05%
Coal capacity —102.07% 193.04%
EV capacity — 18.00% 10.14%
Wind capacity — 40.28% 67.36%
Solar capacity — 0.83% 2.71%
Thermal storage 7.44% — 21.26%
capacity
HP capacity 327.86% - 134.71%
Consumer electric —10.25% 0.69%
storage capacity
System storage —14.49% 15.64%
Carbon price 44.91% —11.92%

3832 [£ /MWh/year] 3832 [£ /MWh/year]

306.06% — 30.60%
14.86% — 3.68%
— 28.03% 152.26%
7.26% — 5.19%
— 18.37% 38.92%
0.04% — 0.04%
- 7.19% 11.97%

— 1.44% 2.36%

— 18.36% 30.25%
86.59% — 46.95%
— 0.68% 0.69%

— 5.53% 5.99%
13.41% - 9.93%

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.enpol.2019.01.037
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