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A statistical description of 
scattering at the quantum level
G. Laricchia1, P. Van Reeth1, S. E. Fayer1,2, S. J. Brawley1, R. Kadokura1, A. Loreti1 & 
M. Shipman1

Quantum physics is undoubtedly the most successful theory of the microscopic world, yet the 
complexities which arise in applying it even to simple atomic and molecular systems render the 
description of basic collision probabilities a formidable task. For this reason, approximations are often 
employed, the validity of which may be restricted to given energy regimes and/or targets and/or 
projectiles. Now we have found that the lognormal function, widely used for the probability distribution 
of macroscopic stochastic events (as diverse as periods of incubation of and recovery from diseases, 
size of grains, abundance of species, fluctuations in economic quantities, etc.) may also be employed 
to describe the energy dependence of inelastic collisions at the quantum level (including ionization, 
electron capture and excitation by electrons, positrons, protons, antiprotons, etc.), by allowing for the 
relevant threshold energy. A physical interpretation is discussed in this article by analogy with the heat 
capacity of few-level systems in solid state physics. We find the generality of the analysis to extend also 
to nuclear reactions. As well as aiding the description of collision probabilities for quantum systems, 
this finding is expected to impact also on the fundamental understanding of the interface between the 
classical and quantum domains.

Ionization, excitation and electron capture are elementary processes in atomic and molecular collisions, also 
important in applications ranging from the modelling of the propagation of fast charged particles through mat-
ter (such as in plasmas and the atmosphere) to damage-control in medical dosimetry. The description of their 
energy dependence using quantum, classical and semi-classical approaches remains challenging, even in the 
case of simple atomic targets and structureless projectiles (e.g.1–3). Difficulties increase further in the case of 
higher-order processes (e.g. multiple ionization by multiply-charged projectiles) such that searches for empirical 
and semi-empirical scaling laws have been pursued over the past several decades (e.g.4–8).

Now we have found that the lognormal distribution, extensively employed in economics, industry, biology, 
ecology, geology, astrophysics (e.g.9–11), may also provide, to a good level of accuracy, the energy dependence 
of the probability for collision processes on the quantum scale for a variety of targets and projectiles, including 
electrons, positrons, protons and antiprotons. Examples are presented in this article and in the associated Online 
Supplementary Information (OSI). A physical interpretation of its significance in quantum systems is discussed 
and its applicability found to extend into the realms of nuclear reactions and solid state physics.

Results and Discussion
The lognormal distribution is the continuous maximum-entropy probability distribution of a random positive 
variable whose logarithm is normally distributed. The probability density function is given by
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For the description of quantum scattering examined in this work, we define x to be equal to the reduced resid-
ual kinetic energy after a collision, namely = − = ′x E E E E E( )/ /j j j where E is the projectile incident energy and 
Ej the threshold energy (Eth) for a specific process j, for example ionization, electron capture, excitation, etc. (it 
should be noted that equally good fits are obtained if x is defined as equal to E′ but the above definition makes x 
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dimensionless and consistent with the ln and exp functions in Eq. 1); a, b and xo are fitting parameters with b2 
being the variance of the corresponding normal distribution in (ln x) and xo the median of f(x). The parameters 
give the maximum value of f(x) according to f(xmax) = a exp(b2/2)/xo where xmax = exp(lnxo − b2).

In this article, we make use of the extensive availability of experimental data for electron-impact collisions 
and provide examples from ionization, excitation and molecular dissociation. We also include examples from 
positron-impact ionization and positronium formation as well as nuclear reactions induced by neutron- and 
proton- impact. Further examples (including ionization by protons and antiprotons as well as ionization and 
electron capture by multiply charged projectiles) are presented in the OSI. To avoid ambiguities, we present log-
normal fits performed in all cases to experimental data only.

As a first case, we consider the single ionization cross-section by electron impact, the cross-section for a given 
process being a measure of the probability of that process resulting from a collision. Specifically in Fig. 1a, the 

Figure 1.  Ionization, excitation and dissociation by electron impact: comparison of measurements with 
lognormal fits (R2 values in the legends). (a) Ionization: inert (He, Ne, Ar, Kr, Xe)12 and 2nd row atoms (C, N, O13; 
F14); (b) Excitation: H16 and Ne17; (c) Dissociation of H2O into O(1S)18 and OH(X)19 fragments. The cross section 
for O(1S) has been multiplied by a factor of 100 to aid comparison.
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results for the inert (He, Ne, Ar, Kr, Xe)12 and for second row atoms (C, N, O13; F14) are shown fitted to lognormals 
fits, yielding R2 > 0.990 in all cases except for argon which shows a slightly poorer fit (R2 > 0.988) due to a double 
peak structure apparent, to a lesser extent, also in krypton and xenon. (It is noted that structure around 10–20 eV 
also appears in the total cross-section for these atoms and is attributed to a d-wave shape resonance15). In Fig. 1b, 
examples from electron-impact excitation are presented. Specifically, the recommended values of the (1s-2p) 
cross-section for atomic hydrogen16 are displayed together with a lognormal fit (R2 > 0.996) as well as measure-
ments17 for excitation out of the neon P2

3  metastable level (R2 > 0.96). Examples of molecular dissociation into 
neutral metastable fragments are illustrated in Fig. 1c where the absolute cross-sections are shown for the produc-
tion of O(1S)18 and OH(X)19 following electron impact on water. In both cases, lognormal fits to the data yield 
R2 > 0.99.

Figure 2.  Ionization and electron capture by positron impact: comparison of measurements with lognormal fits 
(R2 values in the legends). (a) Single ionization for the inert atoms20,21; (b) Positronium formation cross sections 
for H22, He20 and the alkali metals23–26. The cross section for He has been multiplied by a factor of 2 to aid visual 
inspection.
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In Fig. 2a, the analysis is extended to positron-impact single ionization cross-sections for the inert atoms 
where the data of20,21 are compared with lognormals (R2 > 0.93). We have found that the lognormal distribu-
tion also describes the energy dependence of rearrangement processes. In these cases, the projectile (e.g. a pos-
itron) can capture a target electron and form a bound state (e.g. positronium). Integral positronium formation 
cross-sections are shown in Fig. 2b. Results for e+  + H 22 and e+  + He 20 yield lognormal fits with R2 > 0.95. 
Determinations for the alkali metals23–26 are also consistent with lognormals (R2 > 0.92). It should be noted that 
Ps formation for these atoms is exothermic (i.e. Eth < 0) and the plots are thus shown versus (E′/|Eth|).

Overall, we find the lognormal to describe with good accuracy the energy dependence of a variety of inelastic 
collisions over a broad energy range, e.g. for the electron impact excitation data in Fig. 1b from close to threshold 
to around E′/Ej ~100.

Interpretation
As mentioned earlier, a multitude of macroscopic phenomena in nature may be described by lognormal distribu-
tions, including also the concentration of elements and their radioactivity in the Earth’s crust, size of raindrops 
and clouds, age of marriage, the galaxy mass density field, etc. (see e.g.9–11,27,28). What many of these phenomena 
may share is their genesis as the product of many independent random effects so that the use of the central-limit 
theorem applied to the logdata provides a justification for the use of statistical methods based on the normal 
distribution. That the energy dependence of quantum collision probabilities for a diversity of processes resulting 
from the impact of different projectiles on various targets may also be described by a lognormal distribution 
points to a plausible link, e.g. via correlations and collective effects which require treatments of electronic dynam-
ics beyond the single active electron approach. Indeed these effects are known to be fundamental in atomic and 
molecular physics and pose a significant challenge to theoretical approaches1–3.

The energy dependence of the cross-sections considered is reminiscent of that for the heat capacity of a 
few-level system in solid state physics (e.g. for paramagnetic salts)29. This dependence displays the so-called 
Schottky anomaly which, as illustrated in Fig. 3, may also be described by Eq. 1. (R2 > 0.982). The fundamental 
assumption in statistical thermodynamics favours that energy sharing which maximizes the number of accessible 
microconfigurations (Ω, or distinguishable divisions of its energy content), so that physical systems tend to move 
towards maximal entropy (S) configurations over time, S being proportional to ln Ω. With reference to Fig. 3, 
initially with increasing energy, the entropy increases rapidly because the energy can be arranged in more ways 
over the microscopic degrees of freedom of the system. Above the maximum, where the accessible states are uni-
formly populated, the changes in entropy are small and consequently the heat capacity ( ≡ ∂ ∂C T T( S/ )V ) 
decreases.

By analogy, during a collision when the atom is not in a stationary state, we may consider the atom (domi-
nantly the electrons in the relevant atomic shell characterized by the threshold energy Ej for a specific process j) 
to be in thermal contact with the energy reservoir provided by the projectile kinetic energy, E. The atomic elec-
trons are initially in the ground state (or some other eigenstate, as for excited neon in Fig. 1b). As the projectile 
approaches, it interacts with one (or more) electron(s) which can absorb energy through virtual excitations before 
relaxing into the final (eigen- or continuum-) state (e.g. excited, ionized, etc.). Each specific outcome into a final 
state j is then fully specified by the total system energy, E′, in the sense that at each E′ there is a definite value of the 
cross-section for the process j (whether endothermic or exothermic).

Thus the lognormal may be considered as providing the energy dependence of the “background” cross-section 
which dominantly describes the energy exchange that results in the final state j. Of course, the cross-section may 
be modulated by quantum effects such as resonant or interference phenomena, examples of which were displayed 

Figure 3.  Heat capacity and entropy of a two-state system as a function of the energy kT and the energy gap (ε) 
between the two states (e.g.29). Also shown is a lognormal fit to Cv.
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in Fig. 1a and Figs S1 and S2. The generality of this interpretation, namely its independence from the details of the 
interactions at play, is reinforced by its applicability also to e.g. non-resonant nuclear reactions (see illustrations 
in Fig. 430) and to the stopping of particles in matter (e.g.31).

As well as its intrinsic descriptive/predictive utility, the present finding is expected to impact also on the fun-
damental issue of the interface between the classical and quantum domains.
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