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Abstract

Path Collective Variables (PCVs) are a set of path-like variables that have been

successfully used to investigate complex chemical and biological processes and compute

their associated free energy surfaces and kinetics. Their current implementation relies

on general, but at times inefficient, metrics (such as RMSD or DRMSD) to evaluate

the distance between the instantaneous conformational state during the simulation and

the reference coordinates defining the path. In this work, we present a new algorithm

to construct optimal PCVs metrics as linear combinations of different CVs weighted

through a spectral gap optimization procedure. The method was tested first on a

simple model, trialanine peptide in vacuo and then on a more complex path of an

anticancer inhibitor binding to its pharmacological target. We also compared the

results to those obtained with other path-based algorithms. We find that not only our

proposed approach is able to automatically select relevant CVs for the PCVs metric,

but also that the resulting PCVs allow to reconstruct the associated free energy very
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efficiently. What is more, at difference with other path-based methods, our algorithm

is able to explore non-locally the reaction path space.

1 Introduction

Atomistic molecular dynamics simulations (MD) are a powerful technique whose success in

investigating complex physical, chemical, and biological systems increased in parallel with

advances in computing power1–4 and force field accuracy.5–7 Many events of interest, however,

have characteristic timescales that are much longer than those accessible by unbiased MD,

even when running on specialized supercomputers. To address this limitation, over the

years a number of algorithms have been developed to enhance the sampling and reconstruct

the associated free energy landscape.8,9 Two families of algorithms have been particularly

successful: one is based on the definition of a path connecting the two end states of a

biological process of interest (e.g. bound and unbound states of a ligand to its target);10,11

while the other relies on a set of explicit descriptors that approximate the reaction coordinate,

known as collective variables (or CVs).12–17

Path-based methods, like Transition Path Sampling,10 Discrete Path Sampling,18 Mile-

stoning,11 Nudged Elastic Band19 and the Finite Temperature String method,20 require some

knowledge of the endpoint states and often also an initial guess path. Methods based on CVs,

like Umbrella Sampling13 or Metadynamics,14,21,22 can instead evolve spontaneously to the

end state(s) when an optimal set of CVs approximating the reaction coordinate is provided.

The Path Collective Variables (PCVs)23 combine various aspects of both these approaches;

they describe the progression along (s) and the distance from (z) an initial (guess) path in

the free energy space, by means of two functions mathematically defined as:

s =

∑N
i=1 i exp(−λR[X −Xi])∑N
i=1 exp(−λR[X −Xi])

, (1)
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z = −1

λ
ln

[
N∑
i=1

exp(−λR[X −Xi])

]
. (2)

In the original implementation, the path was defined in terms of a series of sequential

structures (snapshots) of the system under investigation describing the transition of interest

and extracted from preliminary simulations. In the above equations, X represents the atomic

coordinates at the current simulation time-step, while Xi denotes those of the i-th snapshot.

The function R represents here a chosen metric, which measures the distance between con-

figuration states. The λ parameter serves to smooth the variation of the s variable. With

this definition, s takes values between 1 and N , where N is the total number of snapshots,

but it can be easily normalized to a 〈0, 1〉 range. The range of z depends on the choice of the

metric, but it can easily be seen that its value falls to 0 when the system exactly matches

a snapshot, while it increases monotonically as the system moves away from the reference

path.

PCVs can be used with well-tempered Metadynamics (MetaD)14,24 to enhance the sampling

and allow for a non-local exploration of the free energy surface, including optimal (low free

energy) paths that might be far from the initial guess path and inaccessible to many other

path-based approaches. In this sense, PCVs and the more recent Path-Metadynamics25

combine the advantages of path-based methods with those of CVs. The knowledge of end

states is still required, but for many interesting systems they are known, as in the case of

the binding of ligands to their pharmacological targets.

Indeed path-based methodologies are inherently suitable for investigating ligand binding

events as these can be naturally described by paths connecting the bound and a set of un-

bound states. Metadynamics with PCVs has been successfully employed to determine the

free energy landscape of binding in a number of interesting cases, such as protein kinases

CDK2,26 p3827 and c-Src Kinase,28 the β2-adrenergic receptor,29 and cyclooxygenase en-

zymes COX1 and COX2.30,31 Often, when a family of compounds has to be tested against

a single target protein, the same path can be used as a reference for all ligands, allowing for
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an efficient comparison of binding free energies.26 In this context, PCVs outperforms many

other geometry-based CVs when used with Metadynamics to predict the binding energies,

as they focus the exploration on relevant regions of the free energy landscape.26,27 In the

past, our group has also combined PCVs with a transition-path-sampling approach, partial

path transition interface sampling (PPTIS), to obtain a unified framework (TS-PPTIS) and

compute both the kinetics and the thermodynamics associated with complex events such as

protein folding and ligand binding.32

As discussed above, the definition of PCVs requires a metric to quantify the progression

along the path and the distance from it, for instance by measuring the instantaneous dif-

ference from reference snapshots. In the original implementation, the Root Mean Square

Deviation (RMSD) was the metric of choice, requiring the alignment of structures to the

reference, mainly performed using the Kearsley algorithm.33 Since several structures need

to be aligned at each time-step (one for each reference snapshot), the computational cost of

this approach can be significant and the risk of misaligning structures makes it unreliable.

A more serious limitation of an RMSD metric stems from its difficulty in distinguishing

conformations that are similarly “faraway” or dissimilar from the reference structure. This

makes the exploration of low free energy regions far from the initial guess path more prob-

lematic. As an alternative to RMSD, the distance-RMSD, or DRMSD, which measures the

differences between atomic distances within structures, or a contact map matrix34 were also

implemented in the popular plug-in for free energy calculations PLUMED.35 These metrics

do not require alignment but are also affected by the inability to fully resolve the conforma-

tional degeneracy arising when leaving the reference snapshot. Moreover, the corresponding

z variables are of difficult interpretation, at variance from RMSD, where the distance from

the snapshots is in units of length (typically Angstroms). Other metrics, such as one based

on chirality,36 are more situational and suitable for specific systems.

For a number of years, it has been clear that redefining the PCVs with a metric that itself

combines a number of different CVs would be highly desirable, as it would allow to directly
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capture more complex motions and possibly solve the degeneracy problem at high z. How-

ever, it is still not clear how such CVs could be chosen and how to identify the correct

weights.

In this work, we present an approach inspired by the spectral gap optimization (or SGOOP)

recently proposed by Tiwary et al.,37 that allows to define the metric as a linear combination

of CVs selected from a pool of possible variables. We have called this method COMet-Path

(Coefficients Optimization of a Metric for Path Collective Variables).

SGOOP allows to identify an optimal set of CVs by selecting those maximizing the

spectral gap between fast and slow eigenvalues in the transition probability matrix. The

spectral gap contains information on the timescale separation between fast and slow dynamics

and allows the identification of variables that drive the biologically relevant dynamics.38,39

For a more detailed description see Ref. 37. Here, we build on this approach, but instead

of trying to explore the space of possible CVs directly, we adopt the Path-CVs and use the

spectral gap maximization to optimize their metric.

We start from a metric comprised of a set of simple collective variables xj with different

coefficients (or weights) cj, defined as:

R[X −Xi] =
M∑
j=1

c2j(xj − xi,j)2. (3)

The set can include a large and differentiated pool of basic CVs relevant to the process

under study (that might be distances, contact maps, angles, etc...).

Given an initial, potentially large, set of variables, one needs to determine which ones to

use in the final PCV metric and what are their optimal coefficients. A way of doing this was

presented by Dixit et al.40 and is described in detail in the Supporting Information. Briefly,

this approach allows us to relate the transition rates between basins to their stationary

populations. From these rates, the degree of separation between the slow and fast degrees

of freedom can be estimated, and the best set of variables can thus be identified.

We start from a discretized Markovian random walker on a directed network with nodes
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V = {a, b, · · · } and edges E, and assume the probabilities are normalized and stationary.

One can then obtain the transition rate between two edge node states, a and b of the network,

as:

ωab = µ

√
pb
pa
, if(a, b) ∈ E. (4)

pa and pb are the probabilities of visiting the two states and the parameter µ is related to

the Lagrange multiplier for the normalization condition γ via the following relation: µδt =

e−γ. The values of ωab are the elements of the transition matrix Ω.

Now consider the ordered eigenvalues λ of the transition probability matrix Ω: λ0 ≡ 1 > λ1 ≥

λ2.... If there are s barriers apparent from the free energy projection estimate reweighted

as a function of the chosen CVs and their weights,41 the spectral gap is simply defined as

λs − λs+1. The slowest eigenvalues correspond to the slowest changes in the system and

represent the transition over the main barriers in the free energy surface. By maximizing the

spectral gap we are thus increasing the separation between these and the fast eigenvalues.

The energy threshold for the barriers can be tuned by the user. This choice is responsible

for the separation between slow and fast processes, so it’s sensible to keep it in the order of

kBT , since barriers less then this threshold can be easily crossed by an unbiased system at

room temperature, categorizing them as fast processes.

The derivation of Eq. 4 assumes equilibrium between all the nodes of the network. It also

uses only the first two terms of the Taylor expansion of the transition matrix k , which is

valid for small values of ∆t. We also assume that there are no jumps in the transitions of

the s variable, i.e. that the rate of the transitions between non-adjacent states is zero.

Our method employs an iterative optimization procedure, as illustrated schematically in

Fig. 1: first, a trial Metadynamics run is performed with a simple combination of collective

variables in order to get a crude estimate of the stationary probabilities in each basin; then,
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a subset of CVs to be optimized is chosen. A large set of sequential frames is generated from

the trajectory, typically starting from a small group of chosen ”landmark” states. Then, the

space of the coefficients is explored through cycles of simulated annealing, starting from equal

initial values. At each step, a series of frames is chosen from the larger set describing the

path, while imposing equal spacing between them. The perturbations made to the coefficients

are small, and the negative of the spectral gap in the path collective variable s is used as

an energy function. The convergence of the simulated annealing process is determined by

tracking the best spectral gap. The cycles are then terminated when this reaches a set

threshold obtained by counting the number of barriers in the free energy surface which are

higher than an adjustable value (around 1 kT).

The computational cost of the optimization process depends on the extent of the initial

simulation and the number of CVs under consideration. In our case, using a sequential

C++ code running on a Intel® CoreTM i5-5200U processor, we were able to test a single

combination of variables on the results of a 200 ns initial simulation in less than 1s. Screening

tens of thousands of combination might take several hours on a similar hardware, making

it orders of magnitude less computationally demanding than typical MD simulations on

complex systems.

An added bonus of our approach is that one could use different coefficients in different

sections of the path where the corresponding slow variables might differ.42,43

Here, we tested our method against two different exemplary problems: first to sample the

free energy landscape of the trialanine peptide as a function of a path defined by its dihedral

angles, and second to characterize the binding of Dasatinib to the c-Src kinase; the former

was chosen for its simplicity and its free energy landscape, whose shape is well known, while

the latter allowed us to test the capabilities of our method against a known real case scenario.
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2 Results and Discussion

Trialanine. As a first simple test case, trialanine (Ace-Ala3-Nme) in vacuo was investigated.

The molecule is typically chosen to test free energy methods for its small size, thus requiring

less computational resources, and its characteristic free energy surface (FES), which has

several minima separated by relatively high barriers. Trialanine represents a substantially

more complex test case than the commonly employed alanine dipeptide and it was also

chosen as a test system for SGOOP,37 making it ideal for a direct comparison.

Trialanine has six backbone dihedral angles (three Φ and three Ψ). In Ref. 37, it was

suggested that the Φ angles have more impact in the free energy shape. Therefore, we run a

preliminary MetaD to reconstruct the FES as a function of these three variables. In Fig. 3A

the projection onto the first two angles (here labeled Φ1 and Φ2), and the paths used to test

our method are shown. These paths were chosen in such a way that the third Φ angle, not

shown in the figure, could be neglected with no major consequences. Only one angle at a

time (Φ1 and Φ2, respectively) are needed to move along paths 1 and 2, while both of them

are needed for a proper description of paths 3 and 4.

The paths were built automatically through a Monte Carlo procedure that first randomly

selects a group of reference frames along the path and then iteratively optimizes this choice

to assure uniformity in the distance between neighboring frames.

The results of our COMet-Path algorithm are shown in Fig. 3 B. For each path, the highest

coefficients (highlighted in bold) correspond to the most important variables for the given

transition. As expected, the algorithm is able to correctly identify which angles are crucial

for each respective path, Φ1 for path 1, which is weighted at 0.82, Φ2 in path 2, weighted 0.77

and both Phi1 and Phi2 with approximatively equal weights in the last two cases. Relatively

little weight is assigned to the unimportant angle Φ3.

It also is interesting to note that while in the case of the first three paths, the number of

barriers identified corresponds to the number of free energy barriers on the initial path, this

is not the case for the fourth path. This last path was intentionally chosen to be far from
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ideal and passing through a local maximum, however, the reweighting procedure was able

to correctly count the two barriers on the lowest energy path connecting A to B.

Since the first two paths refer to the same system, use the same input data and have the

same endpoints, their spectral gaps values are directly comparable. Both are lower than that

of the third path, and so is their separation of the slow and fast degrees of freedom. Similarly,

the fourth path has a lower spectral gap when compared to the third path, suggesting that

the latter would perform better.

To compare the performance of COMet-Path to that of PCVs with an RMSD-based

metric, two simulations (with the two metrics) were run on snapshots taken from path 3.

The results can be seen in Fig. 4. The free energy surfaces reweighted as a function of

the first two φ angles are qualitatively similar, but COMet-Path (panel A) samples more

the relevant states, including the region of the transition states, resulting overall in a much

better defined free energy landscape. The evolution of the 1D free energy estimates along the

s variable is also shown for the three minima. The estimates converge very quickly, within

100ns, to the reference values when using COMet-Path (panel C) while RMSD estimates for

the minimum C fail to properly converge to the expected value even after twice the same

simulation time (panel D).

Dasatinib binding to c-Src. As a second, more complex and realistic test case, we

investigated the binding of an anticancer inhibitor Dasatinib to the c-Src kinase. This system

has been previously studied in our group by means of PCVs with an RMSD metric and in

combination with parallel tempering.28 The problem of determining the binding energy of

ligands where the binding pose is known is indeed well suited for path-based methods. The

initial path estimate can be obtained from a short biased unbinding simulation which doesn’t

necessarily need to converge the free energy. In the case of COMet-Path selected PCV, the

data from this simulation can then be used also during the optimization stage.

In this case, we have chosen a small set of possible variables which we believed to be rel-

evant to the problem; given their simplicity, they wouldn’t be able to describe the transition
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when taken alone. The variables along with their optimized coefficients values can be seen

in Table 2 in Supplementary Information.

We have then performed a 1 µs MD simulation using COMet-Path with weak harmonic

restraints on the z variable and without volume restraints or parallel tempering. Interest-

ingly, during the Metadynamics run, several recrossing were observed, which normally would

have required multiple replicas in a combined parallel tempering Metadynamics simulation

to be used when employing simple geometric variables.

The resulting free energy surface is shown in Fig. 3 C. As expected, the range of values

explored along the z variable is limited in the bound state, while in the unbound state the

system can easily visit configurations far from the reference snapshots. The exploration of

the unbound states could be limited with stricter restraints to speed up the convergence of

the free energy, but we chose here not to apply any external bias.

In this case, the values at high s correspond to the unbound state and we had little interest

in distinguishing them, however, it is possible to include more variables to detect either

internal changes within Dasatinib or the interaction with protein surface regions outside the

binding site. The final free energy surface obtained with COMet-Path is shown in Fig. 3 C,

while details on the convergence of this simulation are found in the SI.

To evaluate the accuracy of our results, we can compare the free energy profile along the

s variable for the COMet-Path and the equivalent on the RMSD Path (in Fig. 3 D). It is

important to clarify that similar values of s in the two profiles do not necessarily correspond

to the same conformation, given that the snapshots were chosen in such a way to be equally

spaced in different metrics. However, the path explored is the same as far as endpoints and

progression are concerned. Looking at the plot, we can observe that there is a reasonable

degree of similarity; in light of how much less expensive the simulation with COMet-Path

was with respect to the RMSD Path with parallel tempering or funnel restraints, this result

is very interesting. Our simulation was a 1 µs run with a single replica, whereas the RMSD

Path was converged using five replicas running for 1 µ each . The difference between the two
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approaches can be quantified by estimating the value of the binding free energy of Dasatinib.

The result for the unbinding energy is between 28 and 29 kJ/mol using the RMSD Path,

as compared to 25 kJ/mol using COMet-Path. The small discrepancy is due to the tight

restraint on the distance from the path used in the RMSD Path simulations (More details

can be found in the Supporting Information).

The COMet-Path optimized PCV free energy reweighted onto the RMSD PCVs (Fig.

3 panel F) allows for a direct visual comparison of the free energy surface with respect to

the original RMSD PCVS result (Fig. 3 panel E). To facilitate the juxtaposition between

the two free energy surfaces, we imposed a cutoff on the conformations in the reweighted

map (panel F) to mimic the funnel-shaped restraining potential used in the work of Ref. 28.

As before, the two surfaces are very similar, the main differences being limited to unbound

states at higher values of s. However, these can be explained by the absence of strict

constraints on the COMet-Path z variables, which allowed for the exploration of numerous

conformations far from the reference snapshots, which were then cut off when imposing the

funnel-restraint mimic. This limits the sampling of the unbound region in our reweighted

map and increases its free energy value considerably. Nevertheless, the general shape of the

map is well conserved, especially closer to minimum free energy basins, where most of the

sampling is concentrated.

Comparison with other methods. It is also interesting to compare the performance

of our method with alternative approaches. A widely used path-based approach for this

kind of simulations is the Finite Temperature String method.20 In a way similar to other

path-based methods, it works with a set of states that define the transition path. These are

then iteratively optimized starting from an initial guess, based on the drift observed during

short restrained MD runs. We have applied this method to try and refine both paths 3

and 4. The results can be seen in Fig. 5 A and B. In the case of path 3, the optimization

proceeds smoothly, at variance from path 4, which was chosen to be far from the optimal

low-free-energy path. As expected, the local optimization used by the String method causes
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it to fail to find the faraway optimal path. On the other hand, Path CVs can cope with it

due to the inclusion of the z variable, which allows for nonlocal exploration. This advantage

is compounded by the use of Metadynamics.

Of great interest is also the comparison with SGOOP.37 Our method is inspired by it and

shares many similarities; Trialanine was used as a test system for both methods. As expected,

SGOOP works very well on trialanine, as it can be seen in Fig. 5 C and D. The free energy

surface is almost identical to the one obtained using COMet-Path or simple Metadynamics.

However, simple CVs or their combination will struggle with complex, winding paths, as

it is the case in many ligand binding or conformational changes studies. In these cases,

the important variables for the various transitions might change along the path, favoring

the use of path-based approaches such as COMet-Path. To show this, we have divided our

Dasatinib / c-Src path into two halves. The spectral gap optimization results show that

different sets of variables would describe the two sections appropriately (SI Fig. 1). A path

with a sufficiently wide metric will work much better in these cases since it would guide the

simulation to explore the whole transition. Furthermore, in very complex cases COMet-Path

could devise a changing metric along the path, where a global metric is not optimal for all

its regions.

3 Conclusions

We have presented here an efficient and automatic method for selecting an optimal metric for

Path Collective Variables. The method, named COMet-Path, is inspired by the spectral gap

maximization approach developed by Tiwary et al.;37 it combines simple collective variables

to bypass the computational cost and alignment issues arising from the use of RMSD as

a metric and to possibly extend the applicability of the PCVs to more complex biological

processes, difficult to capture with RMSD only.

We have successfully tested this method on two systems. The first, a simple trialanine
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peptide in vacuo, was chosen as a toy model for which ideal CVs, three Φ angles, are known.

Testing a number of paths interconnecting different minimum free energy basins, we observed

that COMet-Path correctly identifies the appropriate angle CVs, by increasing their weight

coefficients according to their respective significance in driving the dynamics. What is more,

its non-local exploration properties (shared with the original PathCV) allows it to find an

optimal low-free-energy path even when starting from a sub-optimal path.

When applying our method to the realistic and significantly more challenging case of

Dasatinib binding to the c-Src kinase, we were able to efficiently achieve results comparable

to those reported in the literature, without the need to employ computationally expensive

techniques such as multiple replica parallel tempering Metadynamics. A single replica sim-

ulation and an harmonic wall on the z variable to improve convergence were employed, and

we observed a notable reduction of computational time needed to achieve a reasonable free

energy convergence.

These results show indeed that COMet-Path is a significant improvement to the RMSD

metric typically used with PCvs. The clear advantage with respect to the original RMSD (or

DRMSD) PCV implementation is that by including all the order parameters necessary for

a complete description of the path, the algorithm can clearly distinguish the value of differ-

ent paths and different metastable states on-path, revealing more details of the underlying

mechanisms. Moreover, once the combination of CVs to be used for the metric in a specific

system is clear, the same optimal path can be re-used to compute the free energy landscape

associated with similar systems; for instance, it could be used for other ligands binding to

the same protein or for targets harboring different mutations. Furthermore, the choice of

CVs that can be included in COMet-Path is not limited and the coefficients can be changed

along the path. As an example, variables describing the degree of protein or ligand solvation

or similar complex and non-geometrical properties, that would be otherwise impossible to

capture with a simple RMSD metric, could be chosen and their relative coefficients might

be increased where needed. We believe that our method is thus suitable for many systems
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of biological and pharmacological interest characterized by rough free energy minima and

amenable to a path description.
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Figure 1: Schematic representation of the typical COMet-Path workflow. After an initial ex-
ploration of the FES with MetaD simulations (in orange), the optimisation of the coefficients
is performed iteratively in postprocessing (in blue).
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Figure 2: A. A trialanine peptide with the Φ angles labeled explicitly. B. Dasatinib binding
to a c-Src kinase. Three representative structures of the unbinding path are shown for the
ligand (from red to yellow).
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Figure 3: A. The four proposed paths (in black) on the 2D projection of the free energy
surface of trialanine. B. A table summarizing the optimized coefficients for the paths shown
in panel A and the corresponding numbers of barriers and spectral gaps values. Lower panels:
The free energy surface of the Dasatinib / c-Src system as obtained using COMet-Path (panel
C), using RMSD path with funnel-like restraints (E) and the same free energy obtained with
COMet-Path and reweighted against the RMSD path with funnel-like restraints (F). In
panel D, the 1D projections of these three free energies are compared in blue, red and green
respectively).
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Figure 4: A. The reweighted free energy surface obtained from a COMet-Path simulation
on path 3. B. The equivalent reweighted free energy surface obtained using RMSD path
instead. The time evolution of the free energy estimates for the three minima is shown in
panels C and D for the COMet-Path and RMSD path simulations respectively. The energies
are shown relative to the central minimum (labeled B in Fig. 3 A and shown as a red line
here). The green solid line corresponds to the minimum A, while a blue solid line is used
for the minimum C. Dashed lines of the same colors show reference values obtained directly
from the 2D Metadynamics on the two angles.
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Figure 5: A. The evolution of the optimal path using the Finite Temperature String method,
starting from path 3. All six torsional angles were optimized. Red marks correspond to
the starting points, green marks correspond to the endpoints. The underlying free energy
projection is the same as in Fig. 3. B. The equivalent evolution of the optimal path starting
from path 4 instead. C. The projection of the free energy surface of trialanine obtained
by reweighting the results of a SGOOP simulation. D. The free energy estimates for the
different minima over the course of the SGOOP simulation, presented in the same way as in
Fig. 4.
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