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Abstract 
 
Rheumatoid arthritis (RA) is a multifactorial disease associated with failure of 

immune tolerance. B cells play a prominent role in the pathogenesis of this disease, 

via the production of auto-antibodies, pro-inflammatory cytokines, and an impaired 

regulatory B cell (Breg) response.  

 

Biologic drugs have significantly advanced the treatment of RA but are not always 

effective and indeed the development of anti-drug antibodies (ADA) has been 

associated with a poorer clinical outcome. Here I set out, firstly, to identify a 

predictive biomarker that discriminates RA patients who are more likely to develop 

ADA in response to adalimumab, a human monoclonal antibody against tumor 

necrosis factor (TNF)α. By taking advantage of an immune-phenotyping platform, 

LEGENDScreenTM, I measured the expression of 332 cell surface markers on B and 

T cells in a cross-sectional adalimumab-treated RA patient cohort with a defined 

ADA response. The analysis revealed seven differentially expressed markers 

between the ADA+ and ADA- patients. Validation of the differentially expressed 

markers in an independent prospective European cohort of adalimumab treated RA 

patients, revealed a significant and consistent reduced frequency of signal regulatory 

protein (SIRP)α/β-expressing memory B cells in ADA+ versus ADA- RA patients. I 

also assessed the predictive value of SIRPα/β expression in a longitudinal RA cohort 

prior to the initiation of adalimumab treatment. I showed that a frequency of less 

than 9.4% of SIRPα/β-expressing memory B cells predicts patients that will develop 

ADA, and consequentially fail to respond to treatment, with a receiver operating 

characteristic (ROC) area under the curve (AUC) score of 0.92. Thus, measuring the 

frequency of SIRPα/β-expressing memory B cells in patients prior to adalimumab 

treatment may be clinically useful to identify a subgroup of active RA patients who 

are going to develop an ADA response and not gain substantial clinical benefit from 

this treatment.  

 

Secondly, further mining of the results from the LEGENDScreenTM has allowed me 

to identify a signature of RA. Comparison of HCs to RA patients identified 16 

differentially expressed markers associated with RA, and not with disease activity or 

treatment. Validation in an independent cohort determined that the combined 
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expression of CD97, CD170 and CD11c on B cells may identify individuals that are 

at risk of developing RA. 

 

Thirdly, I have identified a novel marker of Bregs. Here I show that CD19hiCD170hi 

B cells capture the majority of IL-10 producing B cells. This subset and not its 

negative counterpart (CD19+CD170int/low) suppress IFNγ and IL-17 production by 

CD4+ T cells, in an IL-10 and CD170 dependent manner. CD19hiCD170hi B cells are 

numerically reduced and functionally defective in RA patients. Preliminary data 

suggests that the aberrant production of IL-10 by Bregs in RA patients could be 

attributed to a defect in CD170 recycling. I propose CD170 may aid future 

immunological studies of Bregs, and that targeting CD170 therapeutically could 

improve disease in RA.  
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Impact Statement 

 

The work presented in this thesis constitutes three main findings which have 

implications both for research in the lab, and in the clinic. Firstly, I have identified a 

novel predictor of anti-drug antibody (ADA) development in response to 

adalimumab treatment in RA. The development of ADA has been found to be 

associated with poorer clinical outcomes and failure of treatment. Therefore, the 

ability to predict ADA development within the clinic could inform treatment 

decisions, for example by not administering a drug where there is a high risk of 

developing ADA for a given individual. This would contribute to a more 

personalised approached to medicine; an important goal for conditions that require 

long-term management with drugs. Furthermore, immunogenicity i.e. the 

development of ADA, is often a neglected field for both basic immunologists as well 

as clinical scientists. The work presented in this thesis looking at ADA forms part of 

a wider project called ABIRISK (Anti-Biopharmaceutical Immunization: prediction 

and analysis of clinical relevance to minimize the RISK). ABIRISK is a consortium 

of scientists and clinicians working collaboratively to address the issue of 

immunogenicity. What’s more, the platform (LEGENDScreenTM) and the strategy 

for identification of the predictive markers is novel and could inform future 

investigations into protein cell-surface biomarkers, and compliment other “-omics” 

techniques such as genomics and metabolomics. 

 

Our second finding is a “signature of RA”. This signature has three potential uses; 1. 

enhancing our understanding of the role of B cells in the fields of immunology and 

rheumatology; 2. providing novel candidate therapeutic drug targets; 3. predicting 

onset of RA in at-risk individuals. While these points have not been investigated to 

any great extent within the scope of this thesis, future investigations would aim to 

better address these points. Of note, the extensive amount of data obtained as part of 

this thesis provides the option for further investigations, with data on T cells, B cells 

and their subsets, in healthy individuals, and RA patients treated with numerous 

drugs. 
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Finally, I propose a novel marker of Bregs. There is currently no universal marker of 

Bregs and the classification of Bregs by the production of the cytokine IL-10 

increases the complexity of their investigation in the lab. A novel marker of Bregs 

could help facilitate the progression of the field of Breg biology and could provide a 

novel drug target in patients with diseases in which a dysregulation of Bregs has 

been demonstrated. 
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1. Introduction 
 

1.1. Rheumatoid arthritis 

 

Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to destruction 

of cartilage and bone erosion, and manifests as pain, swelling and stiffness of the 

joints (1). This occurs as a result of inflammation of the synovial membrane called 

synovitis (Figure 1.1). According to most epidemiological studies, RA affects 0.5-

1% of the adult population, with women at greater risk than males, and an average 

age of onset typically between 30-50 years (2-4). Disability associated with joint 

damage in RA reduces quality of life and leads to a significant socio-economic 

burden (3). In addition to joint inflammation, patients with RA may also develop 

systemic complications including cardiovascular, pulmonary, psychological and 

skeletal disorders (5). Individuals with RA have a 1.5 fold greater risk of 

cardiovascular diseases (6). If left untreated or poorly managed, RA is associated 

with increased mortality as a result of both the disease itself but also from the 

associated co-morbidities (7).  

 

Classification of RA is defined based on the revised American College of 

Rheumatology (ACR)/ European League Against Rheumatism (EULAR) 

classification (revised 2010, 1992 original) (Table 1.1) (8). The diagnosis of RA 

combines several factors including: presence of clinical synovitis; involvement of 

two or more joints; confirmed presence of serological and inflammatory markers; 

and duration of symptoms. Auto-antibodies against citrullinated proteins (anti-CCP) 

and the Fc portion of IgG known as rheumatoid factor (RF), are found in patients 

with RA and are used as a diagnostic to confirm disease. However, it is noteworthy 

that RF and anti-CCP are not present in all RA cases, with around 31% of RA 

patients reported to be sero-negative for RF (9). In addition to RF and anti-CCP, 

autoantibodies against citrullinated fibrinogen (10) and carbamylated proteins (anti-

CarP) (11) are also associated with RA. C-reactive protein (CRP) levels and 

erythrocyte sedimentation rate (ESR) are used both in diagnosis and to monitor 

disease activity in RA. Both CRP and ESR are indicators of inflammation.  
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Disease activity in RA is measured by the disease activity score (DAS)28. This score 

is calculated based on: the number of tender and swollen joints out of a possible 28 

joints, a global health assessment (gVAS), and either raised levels of ESR or CRP.  
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Table 1.1. American College of Rheumatology (ACR)/ European League 
Against Rheumatism (EULAR) classification of RA (revised 2010, 1992 
original)  

 Score 
Target population (who should be tested?): patients who 
 1) have at least one joint with definite clinical synovitis (swelling)* 
 2) with the synovitis not better explained by another disease† 
Classification criteria for RA (score-based algorithm: add score of categories A–D a score of 
≥6/10 is needed for classification of a patient as having definite RA)‡ 
 A. Joint involvement§ 
  1 large joint¶ 0 
  2−10 large joints 1 
  1−3 small joints (with or without involvement of large joints)** 2 
  4−10 small joints (with or without involvement of large joints) 3 
  >10 joints (at least one small joint)†† 5 
 B. Serology (at least 1 test result is needed for classification)‡‡ 
  Negative RF and negative ACPA 0 
  Low-positive RF or low-positive ACPA 2 
  High-positive RF or high-positive ACPA 3 
 C. Acute-phase reactants (at least one test result is needed for classification)§§ 
  Normal CRP and normal ESR 0 0 
  Abnormal CRP or normal ESR 1 1 
 D. Duration of symptoms¶¶ 
  <6 weeks 0 
  ≥6 weeks 1 
* The criteria are aimed at classification of newly presenting patients. In addition, patients with erosive disease 
typical of rheumatoid arthritis (RA) with a history compatible with prior fulfilment of the 2010 criteria should be 
classified as having RA. Patients with long-standing disease, including those whose disease is inactive (with or 
without treatment) who, based on retrospectively available data, have previously fulfilled the 2010 criteria should be 
classified as having RA.  
† Differential diagnoses differ in patients with different presentations, but may include conditions such as systemic 
lupus erythematosus, psoriatic arthritis and gout. If it is unclear about the relevant differential diagnoses to consider, 
an expert rheumatologist should be consulted.  
‡ Although patients with a score of less than 6/10 are not classifiable as having RA, their status can be reassessed 
and the criteria might be fulfilled cumulatively over time.  
§ Joint involvement refers to any swollen or tender joint on examination, which may be confirmed by imaging 
evidence of synovitis. Distal interphalangeal joints, first carpometacarpal joints and first metatarsophalangeal joints 
are excluded from assessment. Categories of joint distribution are classified according to the location and number of 
involved joints, with placement into the highest category possible based on the pattern of joint involvement.  
¶ 'Large joints' refers to shoulders, elbows, hips, knees and ankles.  

 ** 'Small joints' refers to the metacarpophalangeal joints, proximal interphalangeal joints, second to fifth 
metatarsophalangeal joints, thumb interphalangeal joints and wrists.  
†† In this category, at least one of the involved joints must be a small joint; the other joints can include any 
combination of large and additional small joints, as well as other joints not specifically listed elsewhere (eg, 
temporomandibular, acromioclavicular, sternoclavicular, etc.).  
‡‡ Negative refers to international unit (IU) values that are less than or equal to the upper limit of normal (ULN) for 
the laboratory and assay; low-positive refers to IU values that are higher than the ULN but three of less times the 
ULN for the laboratory and assay; high-positive refers to IU values that are more than three times the ULN for the 
laboratory and assay. When rheumatoid factor (RF) information is only available as positive or negative, a positive 
result should be scored as low-positive for RF.  
§§ Normal/abnormal is determined by local laboratory standards.  

 ¶¶ Duration of symptoms refers to patient self-report of the duration of signs or symptoms of synovitis (eg, pain, 
swelling, tenderness) of joints that are clinically involved at the time of assessment, regardless of treatment status.  
ACPA, anti-citrullinated protein antibody; CRP, C-reactive protein; ESR, erythrocyte sedimentation 
rate. 
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Figure 1.1 Joint damage in rheumatoid arthritis. 
Normal healthy joint, and joint in rheumatoid arthritis, showing immune cell 
infiltrate and degradation of bone and cartilage (12). 
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1.1.1. Risk factors for RA development 

 
Several genetic and environmental factors have been associated with an increased 

risk of rheumatoid arthritis (RA). Amongst these the strongest associations have 

been identified with gender, genetic susceptibility, exposure to external 

environmental factors and composition of mucosa-microbiota.  

 

1.1.1.1. Genetic risk factors 
 

The genetics of RA have been extensively investigated by both conventional and 

genome-wide approaches, with considerable evidence in support of a genetic 

association, and heritability estimated to be around 60% (13). Hundreds of single 

nucleotide polymorphisms (SNPs) have been identified to be associated with RA, 

many of which have been ascribed with immune effector or regulatory functions 

(14). Prominent amongst these genetic associations is the Human Leukocyte Antigen 

(HLA)-DR gene, in particular HLA-DRB1 (15). This association has suggested a role 

for antigen presenting cells (APCs) governing T cell repertoire selection as well as 

their hyper-activation in RA pathogenesis, for example by increasing presentation of 

altered peptides including citrullinated proteins (16). Protein tyrosine phosphatase 

non- receptor 22 (PTPN22), which acts to regulate TCR signalling and is thought to 

lead to a decreased threshold for immune activation of T cells (17), has been shown 

to be highly associated with RA and is associated particularly with RF+ patients 

(18). Additional associations have been identified with genes that are involved in 

inflammatory pathways, or in the dysregulation of these pathways, in RA. These 

include CTLA-4, the inhibitory receptor expressed on T cells (19), REL, which 

encodes c-Rel a NF-κB family transcription factor, and is involved in cell signalling 

(20), STAT4, a transcription factor involved in the differentiation and proliferation 

of T cells (21), and IL6ST, which encodes the IL-6 transducer protein (22). Despite 

our identification of many genetic factors associated with RA, their functional role, 

and impact on the development and their contribution in the pathology of RA 

remains unclear.  
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1.1.1.2. Environmental risk factors 
 

Several environmental factors, including smoking, dietary and other lifestyle factors 

have been associated to RA (23). One of the most well documented environmental 

risk factors for RA is exposure to tobacco. Several studies have identified a 

consistent association with RA and reported that smoking may lead to a 2-fold 

increase risk of developing disease (24, 25). Smoking is thought to induce tissue 

stress at the lung mucosa leading to an increase in post-translation modifications of 

peptides, including citrullination, and consequently the generation of anti-CCP 

antibodies (26-28). Interestingly, a link between smoking, RA, and an increased 

prevalence of periodontitis has been also been reported (29, 30). Smoking however, 

is not the only “environmental-culprit”, with occupational exposure to silica dust 

also having been associated with an increased incidence of RA (31).  

 

There has been a long-standing interest with respect to the role that infections may 

play in the development to RA. Molecular mimicry, whereby peptides share similar 

amino acid sequence or structure with auto-antigens, leads to loss of tolerance, and 

production of autoantibodies (32). Thus, molecular mimicry between pathogen-

proteins and self-antigens provides a possible model for disease induction. Amongst 

many pathogens, RA patients have increased titres of Epstein-Barr virus antibodies 

in the serum as well as an increase in EBV-infected B cells compared to healthy 

controls (33, 34). In addition to a possible role that viral infections play in the 

induction of disease, in the last ten years there has been an increased interest in the 

role that microbes play in the pathogenesis of RA, in particular those colonising the 

mucosa. In individuals at risk of developing RA, those that go on to develop RA had 

higher levels of mucosal-associated immunoglobulin A (IgA)- antibodies in their 

blood prior to onset of RA (35). This supports the current working hypothesis that 

exposure to microbiota or microbial components in the mucosa, potentially together 

with other environmental factors in genetically susceptible individuals, leads to 

mucosal inflammation and the break of tolerance necessary for the initiation of RA 

(35). The majority of the interactions between a host and its commensal microbiota 

are symbiotic. However, several studies have found that the composition of intestinal 

microbials is altered in patients with RA (36). A pioneering study shows that 

Prevotella copri, a commensal bacteria resident in human gut, was found to be 
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strongly correlate with new-onset untreated RA, with an over-expansion of P. Copri 

present in the stool of new-onset compared to in chronic RA patients, psoriatic 

arthritis patients, and HCs (37). Two further studies provide support for this finding 

identifying increased P. Copri in a third stool samples from recent onset RA patients, 

and elevated levels of P. Copri in stool samples from patients during the first year of 

disease (38). Changes in oral microbiota composition, in addition to the involvement 

of gut-dysbiosis, have also been associated with changes in immunological responses 

at the mucosa, with a high prevalence of periodontitis observed in new-onset RA 

patients (39). 

 

There are no definitive studies yet in humans confirming the role of microbial 

dysbiosis in RA, and indeed the majority of conclusive studies are from experimental 

mouse models of arthritis, where more evidence in support of a role for microbiota in 

the pathogenesis of arthritis have been found. For example, it has been shown that 

germ-free mice reconstituted with microbiota from collagen induced arthritis (CIA)-

susceptible mice resulted in an increased susceptibility to arthritis, compared to 

germ-free mice reconstituted with microbiome from CIA-resistant mice (40). In 

addition colonisation of SKG mice (an animal model that spontaneously develops 

arthritis), with fecal samples from RA patients where Prevotella copri is dominant, 

develop exacerbated arthritis compared to fecal microbiota from HCs, and exhibited 

an increase in Th17 cells (41). Furthermore, Prevotella histicola has also been 

proposed to play a protective role in arthritis, with treatment of arthritis-susceptible 

HLA-DQ8 mice with Prevotella histicola isolated from the human gut, resulting in a 

decreased incidence and severity of arthritis compared to controls (42). 

 

Many of the environmental risk factors for RA are events that occur at the interface 

between the external and the immune system, such as in the lungs, the oral mucosa 

and the gastrointestinal tract. However, the full extent of the role environmental 

factors play in RA is yet to be fully elucidated, with a combination of multiple 

genetic and environmental risk factors at play. 
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1.1.2. The immune-pathogenesis of rheumatoid arthritis  
 

1.1.2.1. The breaking of immune tolerance and auto-antibodies in 
rheumatoid arthritis 

 

RA arises as a result of failure of immune tolerance. Tolerance is the mechanisms 

whereby the immune system distinguishes self from non-self, leading to the removal 

or control of potentially harmful, auto-reactive immune cells. This occurs firstly 

during development of either B cells in the bone marrow or T cells in the thymus 

through a process called central tolerance. In the thymus the gene AIRE regulates the 

expression of tissue-specific proteins by thymic medullary cells, resulting in the 

deletion of tissue-reactive T cells (43). However, not all self-reactive lymphocytes 

are removed at this stage with a proportion escaping into the periphery. Here there is 

a second checkpoint of immune tolerance called peripheral tolerance, which keeps in 

check self-reactive cells via mechanisms including anergy, control by regulatory 

cells, and clonal deletion (described in more detail in Chapter 1.3). Immune 

tolerance strikes a balance between preventing autoimmunity whilst not impairing 

the immune defence. A breakdown in immune tolerance can occur as a result of the 

environmental and genetic risk factors described above, ultimately leading to altered 

post-transcriptional regulation of self-proteins. These altered self-proteins are 

subsequently recognised by autoreactive T and B cells that have escaped tolerance 

mechanisms, and thus a breakdown in tolerance occurs and leads to the production 

of auto-antibodies by plasma cells (44). Findings have shown that auto-antibodies, 

produced by self-reactive B cells, are present prior to onset joint inflammation, 

suggesting that the breaking of tolerance and activation of immune responses that 

lead to the development of RA occur well before the onset of clinical symptoms 

(57). 

 

One post-translational modification that is thought to play a major role in the onset 

of RA is citrullination. This is the process whereby an arginine residue is converted 

to a citrulline, and leads to novel peptide-MHC interactions that may drive auto-

antibody production (45). Citrullination is catalysed by the calcium-dependent 

enzyme protein arginine deiminase (PAD), and its expression by neutrophils, 

monocytes and macrophages is thought to play a role in RA (46, 47). Notably 
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citrullinated proteins are not inherently immunogenic and the process of 

citrullination has several roles including regulation of gene expression, terminal 

differentiation of epithelial cells, protein demethylation, and apoptosis (48). None-

the-less, citrillunation is thought to increase the affinity of a peptide to particular 

MHC II molecules (e.g. HLA-DRB1) and hence increases the chance of self-peptide 

recognition and presentation by an MHC, and therefore activation of auto-reactive T 

cells (49). Auto-antibodies against citrullinated proteins (anti-CCP), as mentioned 

are one of the hallmarks of disease, however not all individuals with RA are found to 

have anti-CCP antibodies, with higher serum levels thought to predict greater 

severity of disease (50). 

 

In addition to anti-CCP antibodies, the autoantibody RF, is present in an estimated 

80% of RA patients. However, it needs to be noted that RF antibodies are also 

present in around 1-30% of healthy individuals dependent upon ethnic background 

(51). RF, typically a pentameric IgM antibody, is able to bind the Fc portion of an 

IgG, and is produced in response to polyclonal activation of B cells and exposure to 

antigen-antibody complexes such as occurs in response to citrullinated proteins and 

anti-CCP development (52, 53). RF also contributes to the formation of large 

immune complexes, which can activate complement as well as trigger neutrophils to 

produce degradative enzymes which can lead to tissue damage (54).  

 

Alongside RF and anti-CCP there is a growing list of other autoantibodies found to 

be associated with RA, including anti-carbamylated proteins (anti-CarP) (11), anti-

type II collagen antibodies (55) and anti-alpha-enolase antibodies (56). It is 

interesting to note that these antibodies target proteins that are distributed throughout 

the whole body and are not joint specific, and it remains unclear exactly how a 

systemic loss of tolerance leads to arthritis within the joints.  

 

1.1.2.2. From systemic loss of tolerance to joint specific disease 

 

RA is characterised by the development of synovitis, a term which refers to the 

thickening of the synovial lining, infiltration of immune cells including monocytes, 

macrophages, dendritic cells (DCs), natural killer cells (NKs), innate like lymphoid 



 29 

cells (ILCs), B cells, T cells and plasma cells (the roles of these various cell types 

are explored in more detail below), neovascularization and lympho-angiogenesis. It 

is thought that anti-CCP antibodies may directly contribute to joint damaged via the 

activation of osteoclasts, and consequential induction of pain, inflammation, and 

bone loss (58, 59), and therefore may in part explain the involvement of the joints in 

RA. Notably, studies of synovial fluid from RA patients show a greater abundance of 

citrullinated antigens in the joints compared to in the serum (60, 61). A more recent 

study has identified two auto-antigens, N-acetylglucosamine-6-sulfatase (GNS) and 

filamin A (FLNA), which are highly expressed in the synovium of RA patients and 

have high sequence homology with gut commensal bacteria (62). This may indicate 

a link between events at the gut mucosa and joint inflammation in RA. It is also 

possible that trauma events within the joints could contribute to the onset of RA by 

initiating joint localised inflammation, post-translational modifications, and antigen 

recognition by circulating auto-antibodies (63).  

 

While no specific link has been identified, DCs are good candidate cells for drivers 

of progression to RA (64). Abundant frequencies of DCs are present in the synovium 

of RA patients, and they are able to present auto-antigen and drive inflammatory T 

cell progression (65). Furthermore, intra-articular injection of inflammatory, 

collagen-pulsed DCs was sufficient to initiate arthritis in DBA/1 mice, a collagen-

induced model of arthritis (66). 

 

The development of auto-antigens and the breaking of immune tolerance leads to the 

activation of resident cells within the joint and subsequently a cascade of 

inflammatory immune events and the development of synovitis, cartilage damage 

and bone destruction; the hallmarks of RA. Fibroblast-like synoviocytes (FLSs) 

within the joint are thought to be important contributors to early initial inflammation 

within the joints (67), although the complete mechanism remains unclear. By taking 

advantage of imaging techniques such as ultrasound and MRI, abnormalities in the 

joints are reported prior to clinically apparent arthritis. (68, 69). More work needs to 

be done to better understand the onset of chronic joint inflammation associated with 

RA, which may lead to novel therapeutic strategies for the treatment of this disease. 
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1.1.2.3. Inflammation in the joint 
 

The activation of resident cells within the joint by inflammatory mediators, leads to 

the recruitment of both innate and adaptive cells to the joint, fueling the 

inflammation, and thus creating a positive feedback loop (12). Cytokines and 

chemokines within the synovial compartment regulate inflammation, attracting 

immune cells to the joints as well as activating tissue resident cells. In addition to 

their articular effects, pro-inflammatory cytokines promote the development of 

systemic effects, including production of acute-phase proteins (such as CRP) (70), 

anemia (71), cardiovascular disease (72, 73), and osteoporosis (74), and may affect 

the hypothalamic–pituitary–adrenal axis, resulting in fatigue and depression (75). 

 

Recruitment of innate cells, in particular neutrophils, characterises the early stage of 

RA. Neutrophils resident within the joints secrete proteases, prostaglandins and 

reactive oxygen intermediates, which contributes to tissue damage within this organ 

(1, 54). Neutrophils also secrete chemokines CCL2 and CXCL8, responsible for 

further recruitment of monocytes and neutrophils respectively (54). Both joint 

resident and monocyte-derived macrophages recruited by neutrophils in the 

synovium produce several cytokines including TNFα, IL-1 and IL-6 (76). TNFα and 

IL-1 drive the production of pro-inflammatory cytokines and chemokines, and the 

up-regulation of adhesion molecules on vascular endothelial cells and fibroblast-like 

synoviocytes (FLSs) within the synovium that leads to the recruitment and retention 

of circulating leukocytes (77). Whereas, IL-6 is a growth factor and promotes B cell 

differentiation and production of auto-antibodies (78). Furthermore, joint resident 

DCs as well as contributing to local inflammation and the recruitment of leukocytes 

via cytokine production, also present autoantigens to autoreactive T cells (79). 

 

In response to inflammatory stimuli, joint endothelial cells upregulate adhesion 

molecules, integrins and selectins, thus facilitating the recruitment of circulating 

adaptive immune cells from the blood to the joint (1, 77). Selectins mediate the 

initial adhesion of leukocytes to the endothelium and integrins facilitate leukocyte 

arrest that leads to the transmigration of cells into the joint (77).  

FLS, are specialised cells within the joint tissue that have been shown to play 

a role in RA via the production of cytokines and chemokines, that lead to the 
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recruitment, retention and activation of leukocytes (67, 80). At least in the early 

stage of disease the main role of FLS is the production matrix metalloproteinases 

(MMPs), enzymes that degrade the matrix, driving bone erosion and cartilage 

damage (81). FLS also promote the activation of chondrocytes, cells responsible for 

the maintenance of cartilage matrix, but in RA lead to joint damage (82).  

Differentiation of autoreactive T cells plays a major role in driving RA, 

forming part of the adaptive immune response that leads to disease (83). Following 

their migration to the joint, directed by cytokines from tissue resident and infiltrated 

cells, T cells in response to auto-antigen presented by dendritic cells (DCs), 

macrophages and other antigen presenting cells, will differentiate into T helper 1 

(Th1) and T helper 17 (Th17) cells, which produce IFNγ and IL-17 respectively and 

contribute to inflammation and tissue damage (84). In particular, IL-17 produced by 

Th17 cells has been shown to activate synovial fibroblasts, chondrocytes, and 

osteoclasts, resulting in cartilage degradation and bone erosion (85, 86). In turn, 

Th17 cells drive activation and differentiation of B cells into plasma cells via the 

production of IL-21 (87). In addition to the recruitment of pro-inflammatory cells, a 

failure of suppression by regulatory T cells (Tregs) has been reported in RA. Tregs 

are important in the maintenance of tolerance, and in RA it has been demonstrated 

that they are unable to suppress TNFα and IFNγ production from T cells (88). The 

function of Tregs has been shown to be restored after infliximab treatment, 

suggesting that the latter may work via restoration of the tolerogenic activity of these 

cells (89). 

 

B cells contribute to the pathogenesis of RA via antigen presentation (90), 

autoantibody production (91) and secretion of pro-inflammatory cytokines (91). The 

accumulation of activated T cells and B cells within the lymph nodes leads to the 

formation of germinal centres. Here, mature B cells go through somatic hyper-

mutation and produce autoantibodies (92). Autoantibodies drive bone erosion and 

osteoclastogenesis; anti-CCP positive patients have more pronounced bone 

erosions than anti-CCP negative RA patients (93, 94). The formation immune 

complexes by autoantibodies drives synovitis via the activation of macrophages, 

and enhances osteoclastogenesis by activating osteoclasts via Fc binding (93). In 

the joint, B cell survival and proliferation is maintained by the abundant quantities of 
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BAFF, APRIL and IL-6 produced by joint resident FLS, macrophages and stromal 

cells, in addition to infiltrating lymphocytes, monocytes and dendritic cells (67, 95, 

96). More recently a role for B cells that exert regulatory function via the secretion 

of the anti-inflammatory cytokine IL-10 (regulatory B cells, Bregs) has been 

described (97). Bregs are fewer in number in RA, and produce overall less IL-10 

than B cells from healthy individuals (98); the role of Bregs in RA is described in 

more detail in Chapter 1.4.  

  

1.1.3. Treatment of RA, cDMARDs and biological therapies 

 

RA is typically treated with conventional disease modifying anti-rheumatic drugs 

(cDMARDs) and/or biologics. cDMARDs act directly on the immune cells leading 

to a reduction in swelling and stiffness of joints over periods of weeks or months. 

The most commonly used cDMARDs in RA include methotrexate (MTX), 

prednisolone, sulfasalazine and hydroxychloroquine, with MTX usually being the 

first therapeutic choice. MTX is a folate analogue known to inhibit the metabolism 

of folic acid (99). The rational for the use of MTX for the treatment of RA was based 

on it’s ability to reduce cell proliferation including immune cells involved in the 

autoimmune inflammatory response. However, other mechanisms are likely 

responsible for MTXs capacity to specifically reduce inflammation (100).  

 

Often a combination of cDMARDs and MTX is required. In some cases, sufficient 

control is not achieved with these drugs. In patients with severe, active and 

progressive disease and where treatment with cDMARDS has failed, biologics are 

used. In the UK, choice of biologic is defined by the National Institute for Health 

and Care Excellence (NICE) guidelines (Rheumatoid arthritis in adults: 

management, NICE guidelines [CG79] February 2009).  
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Table 1.2. Biological therapies commonly used to treat RA. 
 
Name Target Antibody 

construct 
Action Administration 

Etanercept 
(trade name: 
Enbrel) 

TNFα Receptor-
construct 
fusion 
protein 

TNFα inhibition 
by acting as a 
decoy receptor 

Subcutaneous 
injection weekly 

Adalimumab 
(trade name: 
Humira)  

TNFα Human 
mAb 

Binds soluble, 
transmembrane 
and receptor 
bound. 
Neutralising Ab 

Every 2 weeks, given 
by subcutaneous 
injection 

Infliximab 
(trade names: 
Remicade, 
Inflectra or 
Remsima) 

TNFα Chimeric 
mAb  

Binds soluble, 
transmembrane 
and receptor 
bound. 
Neutralising Ab 

Intravenous infusion 
about every 8 weeks 

Rituximab 
(trade name: 
Rituxan, 
MabThera) 

CD20  Chimeric 
mAb 

B cell depletion IV Infusion - two 
infusions are given 2 
weeks apart, which is 
repeated when the 
improvement is 
wearing off 
(generally 6 months 
to 3 years later) 

Tocilizumab 
(trade name: 
RoActemra) 

IL-6R Humanised 
mAb 

Binds soluble and 
membrane bound 
IL-6 receptors 
reducing IL-6 
inflammatory 
responses 

Once every 4 weeks 
by intravenous 
infusion, or weekly 
by subcutaneous 
injection 

Abatacept 
(trade name: 
Orencia)  

CD80 
and 
CD86 

CTLA-4 
based 
fusion 
protein 

Blocks 
interactions 
between B and T 
cells 

Once every 4 weeks 
by intravenous 
infusion, or weekly 
by subcutaneous 
injection 
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The first biological drug to be licensed for treatment in RA was the TNF inhibitor 

(TNFi) infliximab (101). TNFα, an inflammatory cytokine, has a major role in RA in 

driving inflammation and promoting disease, thus providing an attractive target for 

targeted monoclonal antibody therapy. Since the discovery of infliximab, further 

biologics have been developed also targeting TNFα or it’s receptor, and 

consequently TNF inhibitors are the most commonly used first line biologic 

treatments for RA (101). Infliximab is a chimeric antibody, generated by combining 

mouse heavy and light chain variable regions with the constant region of a human 

antibody (101). Subsequently, advances in technology lead to the development of the 

fully human anti-TNF mAb treatment, adalimumab, which is a completely human 

derived recombinant antibody, and thus reducing the inherent immunogenicity 

associated with a chimeric antibody (102). Both infliximab and adalimumab bind 

soluble, trans-membrane and receptor bound TNFα acting to neutralise its effects, 

but each drug has it’s own specific TNFα epitope target (103). Another TNFi used to 

treat RA is etanercept, a receptor construct fusion protein that acts as a decoy 

receptor for TNFα (101). Thus, all three drugs reduce excessive inflammation in RA 

by blocking the inflammatory effects of TNFα.  

 

An alternative to the anti-TNFα-based therapeutics, that has also shown success in 

the treatment of RA, is rituximab, a chimeric antibody (104). Rituximab targets 

CD20, which is expressed on B cells from early stages of development, on pre-B 

cells to mature B cells, but it is not expressed on plasma cells. Rituximab treatment 

results in the depletion of the majority of B cells in circulation, but not plasma cells, 

with levels of autoantibodies often remaining unchanged (104, 105). The success of 

rituximab in RA supports the notion that B cells play a pathogenic role in RA 

beyond antibody production. Rituximab is often used in patients following failure of 

TNF inhibitors or as first line therapy when TNF inhibitors are not suitable.  

 

As previously described IL-6 is an important driver of inflammation in RA, 

tocilizumab is a humanized anti-IL-6 receptor antibody (IL-6R) (106). IL-6 promotes 

the activation of leukocytes and osteoclasts, therefore targeting IL-6 not only acts to 

reduce bone erosion but also prevents inflammatory effects due to B cell activation, 

including auto-antibody production (78). Due to the success in controlling 

inflammation newer guidance from NICE now allows the use of tocilizumab as a 
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first biologic (2016 NICE technology appraisal guidance 375). A more recent study 

has shown that tocilizumab is more successful than anti-TNFs when used as a first 

line therapy after cDMARD failure (107). 

 

CD80 and CD86 are constitutively expressed on all antigen presenting cells (APCs) 

including activated B cells and monocytes, and provide a co-stimulatory signal 

required for the activation and differentiation of autoreactive T cells (108). 

Abatacept is a CTLA-4 based fusion protein that binds CD80 and CD86, and thus 

inhibits the activation of autoreactive T helper cells, and has shown to improve 

symptoms in RA (101, 109).  

 

Janus kinases (JAK) are part of the JAK-STAT signaling pathway which is involved 

in development and homeostasis, and can lead to the transcription of a wide array of 

cytokines and growth factors (110). This pathway is continuously activated in RA 

and for example promotes the production of inflammatory cytokines and an 

overexpression of MMPs (111). Small molecule inhibitors targeting JAK, including 

tofacitinib (112) and baricitinib (113), have shown efficacy in RA.  

 

IL-17 is enriched in the synovium of RA patients and activates synovial fibroblasts, 

chondrocytes, and osteoclasts (114, 115). Drugs targeting IL-17 have been approved 

for the treatment of active psoriatic arthritis and ankylosing spondylitis 

(secukinumab), and psoriasis (ixekizumab) (116). While there has been some limited 

success in targeting IL-17 in RA patients, these treatments have not been licensed for 

the treatment of RA patients (117, 118). Similarly, levels of the inflammatory 

cytokine IL-1β are elevated in RA (119, 120). The drug anakinra targets IL-1β and is 

licensed for the treatment of RA, however, it shows lower efficacy and a higher 

withdrawal rate than other RA biologics (121, 122). 
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1.2. Immunogenicity and anti-drug antibodies (ADA) 

 

Despite biologics having improved patient care for RA patients on the whole (123), 

not every patient responds to treatment. Immunogenicity is an immune response 

against a biological drug that results in infusion reactions (124), hypersensitivity 

reactions and loss of efficacy of the drug (125). ADA can form immune complexes 

that block the drug from interacting with its target and increase its clearance. This 

results in lower blood drug levels and therefore reduces treatment efficacy (126, 

127). Multiple observational clinical studies have shown the development of ADA 

against adalimumab occurs in up to around a third of adalimumab treated patients 

(128, 129); ADA have been reported to occur in as high as 63% of infliximab treated 

RA patients (124, 130, 131); ADA against rituximab in up to 11% of patients (132, 

133); and ADA against tocilizumab up to 8% of patients (134, 135). Some studies 

have identified ADA against etanercept (136, 137), however, the results are 

inconclusive with other studies detecting no ADA at all (137). RA patients with 

ADA typically have a worse clinical outcome and are more likely to fail the drug 

(124, 137, 138). Indeed, lower drug levels and ADA presence at 3 months was 

shown to predict lack of response to the drug at 12 months (139).  

 

1.2.1. Risk factors contributing to ADA development 

 

Despite the association of ADA with loss of response to treatment, there have been 

very few investigations into the immunological mechanisms that drive ADA 

development and/or what may predispose a patient to develop ADA. Not all 

individuals develop ADA, making it likely there are specific predisposing risk 

factors. Therefore, there is a need to identify predictive biomarkers to define 

individuals at risk of developing ADA, and to improve the clinical management of 

RA to prevent unnecessary treatment of patients that may not respond to a particular 

therapy. 

 

The development of ADA has been broadly attributed to factors relating to the 

patient, the drug, and the course of treatment (140). RA patients with ADA, have 

been observed to have higher baseline disease activity (141). Furthermore, patients 

who have developed ADA against one anti-TNFα are more likely to develop ADA 
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against a second anti-TNFα drug (142, 143). In addition, patients that were 

homozygous for the same IgG allotype as adalimumab (G1m17) were more likely to 

develop ADA (41%), and those homozygous for G1m3 had the lowest frequency of 

ADA+ individuals (10%) (144). In MS (multiple sclerosis), which is commonly 

treated with and antibody therapy against interferon-β, ADA development against 

the drug was associated with HLA-DR4 (145).  

Anti-drug antibodies, like all antibodies can be neutralising or non-

neutralizing (140). Neutralizing antibodies will directly interfere with the activity of 

the drug by blocking binding of the drug-antibody to its target e.g. TNFα. Non-

neutralizing antibodies cause the formation of immune complexes (127) that mediate 

the clearance of the drug from the system, thus reducing its half-life. Immune 

complexes facilitate faster clearance of the drug, and hence explain why lower serum 

drug levels are observed in the presence of ADA (128). 

 

The construct of a drug, e.g. full antibody versus fusion protein, is a major 

contributing factor to immunogenicity, and explains in part the variance in 

immunogenicity between drugs as described above (140). Biologics are intrinsically 

immunogenic although some constructs are less immunogenic than others. Both, 

infliximab and rituximab are chimeric antibodies, and are considered to be the most 

immunogenic (101). Tocizilumab, a humanized mAb, and adalimumab a fully 

human mAb are less immunogenic (101), with etanercept, a receptor construct fusion 

protein (136), least likely to of elicit an immune response (140). 

 

Finally, treatment related factors can include a variety of aspects including regime, 

route of administration, duration of treatment and co-treatment (140). High doses of 

infliximab have been shown to maintain clinical response in the presence of ADA 

(146) and induce immunological tolerance via the induction of unresponsive T cells 

(anergy) (147). Careful monitoring of dose in line with individual responses will also 

help minimise unwanted immunogenicity effects. Co-treatment of anti-TNFs with 

the cDMARD MTX has been associated with reduced ADA levels (148), however, 

absolute numbers of patients developing ADA remains the same (124).  
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1.2.2. Measuring ADA 

 

The true extent of the impact of ADA on clinical outcome is still open for debate 

(149). Currently there are many methods of measuring ADA with varying accuracy 

and sensitivity (149). Bridging enzyme-linked immunosorbent assays (ELISAs) are 

most commonly used to measure ADA; both free and bound ADA are detected using 

a labeled version of the therapeutic antibody (140). However, detection of bound 

ADA is compromised by ‘drug inference’. Therefore, if ADA testing is done by 

competitive binding assay directly after treatment administration, the high levels of 

drug in the body could mask presence of ADA. Alternative assays include radio-

immunoassays such as the antigen-binding test (ABT), which uses a radioactively 

labeled version of the therapeutic (140). Similar to ELISA based techniques, 

radioimmunoassays predominately detect free ADA. A better alternative is the pH-

shift anti-idiotype antigen-binding test (PIA), which is able to detect free and bound 

ADA, however, few studies have used this technique (140). Furthermore, most of 

these assays do not distinguish between neutralising or non-neutralising antibodies, 

and therefore if the ADA will directly interfere with the drugs activity or simply 

reduce the half-life of the drug (140). The ability to accurately detect ADA could 

potentially deliver precision medicine to heterogeneous diseases such as RA and 

increase the efficiency of clinical decision-making.  
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1.3. The biology of B cells in health and in disease 

  

B cells are a population of immune cells fundamental in the host response against 

pathogens. So called due to their origin in the bone marrow (BM), B cells contribute 

to the clearance of pathogens via the production of antibodies against foreigner 

antigens, antigen presentation, and secretion of a vast array of cytokines (90, 91, 

150). Broadly defined as immunoglobulin (Ig)-expressing cells, their origin can be 

traced back to jawed vertebrates (151). Their initial discovery came following the 

identification of Ig/antibodies in the serum (152), with plasma cells (terminally 

differentiated B cells) later defined as the producers of antibodies (153). Different B 

cell stages of differentiation and maturation can be distinguished based on the 

expression of different surface molecules, as outlined in Table 1.3. These phenotypes 

allow us to identify and study the different B cell types. 
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Table 1.3. B cell subtypes. 
Expression (+) or no expression (-), at high, intermediate (Int) or low levels, of cell-
surface proteins on human B cells. 
 
  CD19 CD20 CD38 CD24 CD27 IgM IgD 
Immature + + High High - High High 
Mature + + Int Int - Int + 
Memory + + - High + +/- - 
Plasmablast Low Low High - High +/- - 
Plasma Cell Low - High - + - - 
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1.3.1. Early B cell development 

 

B cells derive from hematopoietic stem cells in the BM where they undergo initial 

maturation, developing in direct contact with the stromal cells that provide many of 

the signals required for their development (154). Within the BM, growth factors and 

cytokines, including CXCL12, Fms-related tyrosine kinase 3 (FLT3), thymic stromal 

lymphopoietin (TSLP), IL-7, stem-cell factor (SCF), and receptor activator of 

nuclear factor-κB ligand (RANKL), are required for successful differentiation and 

maturation of B cells in the early stages of development (155-159). Transcription 

factors including E2A, EBF and PAX5 also promote B cell maturation, stabilising B 

cell lineage commitment and differentiation (160, 161). In particular, PAX5 deletion 

in mice leads to the generation of uncommitted cells, which frequently results in 

development of lymphomas in these mice (162). Furthermore, PAX5 mutations have 

been identified in childhood B-lineage acute lymphoblastic leukaemia (163).  

 

As part of their development, B cells acquire the expression of an Ig molecule, the B 

cell receptor (BCR). The BCR is membrane bound and comprises two heavy and 

two light chains, with a unique variable domain and hyper-variable regions that 

specifically bind to antigen. The gene encoding the heavy chain consists of multiple 

variable (V), diversity (D), and joining (J) gene segments whereas the gene encoding 

the light chain has multiple V and J segments. The random rearrangement of these 

segments during B cell early development contributes to the diversity of the BCR 

(164). Heavy chain rearrangement occurs first, with D-J, and then V-DJ 

rearrangements, at the pro-B cell stage of development. These VDJ rearrangements 

are driven by the recombinases RAG-1 and RAG-2 (165). After VDJ rearrangement 

of the heavy chain, a surrogate light chain is expressed alongside the heavy chain 

generating the pre-BCR (pre-B cells). Successful expression of the pre-BCR triggers 

VJ arrangement of the light chain and the expression of the BCR, a functional IgM 

or IgD, in immature B cells, which can now leave the BM and migrate to the lymph 

nodes and spleen (166). Once in the periphery, immature B cells continue their 

maturation programme in response to environmental stimuli. An overview of early B 

cell development is shown in Figure 1.2. 

  



 42 

 
Figure 1.2. Early B cell development. 
Overview of the different B cell stages of development in the bone marrow. B cells 
develop from haematopoietic stem cells, undergoing D-J (early pro-B cell) then V-
DJ (late pro-B cells) recombination of the heavy chains (H) of the BCR, and leading 
to the expression of a pre-BCR (large pre-B cell). IL-7 drives the differentiation and 
development of B cells. Following VJ recombination of the light chain (L) B cells 
express a mature BCR (small pre-B cell). Immature B cells are subject to central 
tolerance and may undergo clonal deletion, receptor editing or anergy; those that 
pass the central tolerance checkpoint enter the periphery as immature B cells. 
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1.3.2. Central tolerance 

 

Immunological tolerance refers to the mechanisms by which the immune system 

prevents the effects of auto-reactive immune cells, including the release of auto-

reactive lymphocytes into the periphery and the production of autoantibodies. Nearly 

50-70% of newly formed immature B cells in the BM are either polyreactive or 

autoreactive (167). Central tolerance occurs in the BM and prevents the escape of 

auto-reactive B cells into the periphery by three mechanisms: receptor editing, clonal 

deletion and anergy. Receptor editing is a process involving the internalization of an 

autoreactive BCR and rearrangement of a subsequent light chain gene, which leads 

to a BCR with a new specificity. Receptor editing removes about 30-35% of 

autoreactive B cells (167). If receptor editing fails to remove an autoreactive B cell, 

B cells are deleted via a process called clonal deletion (167). Autoreactive B cells 

can also enter a state of unresponsiveness known as anergy, whereby B cells fail to 

respond to antigen stimulation (168). These anergic B cells are relatively short-lived. 

 

1.3.3. Transitional B cells 

 

Immature cells that have overcome central tolerance are classified as immature 

Transitional-1 cells (T1) and leave the BM and migrate to the spleen where they 

further differentiate into T2 B cells (166, 169). The architecture of the spleen is 

divided into two main defined regions; the red pulp containing red blood cells and 

the white pulp in which the lymphoid cells reside. T cells reside in the T cell areas, 

which centre around arterioles and make up the periarterial lymphatic sheaths 

(PALS). The B cell follicles surround the PALS, and B cells can also be found in the 

marginal zone of the white pulp of the spleen. T1 B cells migrate to the B cell 

follicles surrounding the PALS within the spleen (170). Transitional B cells are 

functionally immature and short-lived, with T2 cells having an increased survival 

compared to T1 cells as a result of interactions with T cells via IL-4 and CD40L, 

illustrating the importance of T cell help in B cell development (171). BCR 

signalling is required for T1s to develop into T2s (172), with BAFF also playing a 

role as demonstrated by a lack of T2 B cells in mice with BAFF and BAFFR 

deficiency (173, 174). While signalling via the BCR remains critical for survival of 

T1 and T2 B cells, both respond differentially to antigen encounter, whereby T2 B 
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cells proliferate but T1 B cells undergo apoptosis (175). Neurogenic locus notch 

homolog protein 2 (Notch2) is important in controlling cell fate decisions; based on 

the strength of the signal via the BCR engagement and Notch2 signalling, T2 B cells 

will develop further into mature follicular (FO) or marginal zone (MZ) B cells (176). 

Notch2 is thought to be critical for MZ B cell development with studies in Notch2 

KO mice demonstrating a loss of MZ B cells (177). T2s can also develop into non-

antibody producing B cell phenotypes, including Bregs, in response to 

environmental stimuli such as ligation of CD40, TLR and the BCR, and in response 

to cytokines including IL-21, IL-1β, IL-6, IFNγ and IL-35 (see Chapter 1.4 for more 

details) (178, 179).  

 

1.3.4. B cell activation and maturation 

 

Following a successful BCR development, B cells exit the BM and enter the 

periphery where they are exposed to stimuli that ensure their survival. B cells require 

constitutive signalling by the BCR (in the absence of bound antigen) for their 

survival. The BCR interacts with the co-receptor CD45 (180) which contains an 

immunoreceptor tyrosine-based activation motif (ITAM). This interaction actively 

regulates down-stream BCR signalling, and provides a positive BCR signal for B 

cell survival (181). Conversely, interaction with CD22 or CD72, both which possess 

an immunoreceptor tyrosine-based inhibition motif (ITIM), act to negatively regulate 

signalling via the BCR (182, 183). In addition to the IgM-BCR, mature B cells in the 

periphery also express an IgD-BCR, however, a distinct role for the IgD is not 

clearly understood (184). More recent evidence has suggested that the chemokine 

receptor CXCR4 interacts specifically with IgD and not the IgM, via modulation of 

the actin skeleton, and that signaling via CXCR4 requires the IgD (185).  

 

B cell activation factor (BAFF), a cytokine produced by BM stromal cells, 

monocytes, DCs and B cells, has been demonstrated to have an important role in 

promoting B cell survival (186, 187). BAFF-deficient mice, for example, lack 

mature B cells (174, 188). APRIL (a proliferation-inducing ligand, TNFSF 13a), 

which is related to BAFF, also plays a role in B cell development (186). Both BAFF 

and APRIL bind the receptors BCMA (B cell maturation antigen, TNFRSF 17) and 



 45 

TACI (transmembrane activator and CAML interactor, TNFRSF 13b), with BAFF 

also binding BAFF-R. The expression of the three receptors varies across different B 

cell subsets; BCMA is expressed on mature B cells, plasmablasts and plasma cells; 

TACI is on memory B cells, plasmablasts and plasma cells; and BAFF-R on 

immature and mature B cells but not plasmablasts and plasma cells (189). Interaction 

of these growth factors with their receptors leads to signalling via NF-kB pathways, 

with BAFF thought to signal via both the RelB and cRel NF-kB pathways (190). 

Whilst, ligation of BAFF-R promotes immature B cell survival and maturation, 

ligation of BCMA is required for plasma cell survival. Ligation of TACI is instead 

involved in T-cell independent antibody responses, B cell regulation, and class-

switch recombination (191). 

 

1.3.4.1. T cell independent activation 

 

B cell activation does not always require T cell help. B cells can undergo a more 

rapid activation independent of T cells and the formation of GCs. T cell independent 

activation still requires two signals following antigen encounter. The second signal is 

provided either by activation of toll-like receptors (TLRs) e.g. by LPS expressed on 

the surface of bacteria, or via cross-linking of several BCRs, which can be achieved 

with repetitive polysaccharides or polymeric antigens such as flagellin (192). 

 

1.3.5. Peripheral tolerance 
 

A proportion of immature B cells leaving the BM are auto-reactive despite central 

tolerance. Peripheral tolerance keeps in check auto-reactive B cells that made it past 

the tolerance checkpoints within the BM and have entered the periphery. There are 

several mechanisms of peripheral tolerance including anergy, suppression by 

regulatory cells and clonal deletion. Anergy, the state of unresponsiveness, is 

characterised by the down regulation of the BCR, which makes the B cell 

unresponsive to auto-antigen encounter (168). Poorer binding of the antigen to the 

BCR can induce anergy, and whilst strong antigen binding results in exclusion of the 

B cell from the B cell follicles, preventing their proliferation and expansion (168). 

Transgenic mice with BCRs specific for hen egg lysozyme (HEL), demonstrated that 

low avidity binding by monovalent antigens typically resulted in anergy, whereas 
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high avidity binding by multivalent antigens leads to clonal deletion (193). Studies 

in a BCR signalling reporter mouse model suggest that antigen-encounter in the 

spleen during B cell maturation, influences the responsiveness of the BCR via the 

down-modulation of IgM expression on the surface of the cell and by having an 

effect on modifying basal calcium levels (194). Anergy can also occur as a result of 

prolonged exposure to an antigen, which results in an increase in intracellular free 

calcium and tyrosine phosphorylation (195).  

 

BCR signalling is also regulated by interactions with receptors containing ITIMs, 

including CD22, via the recruitment of SH2 domain-containing phosphatases (SHP) 

such as SHP-1 (196). These proteins act to dephosphorylate protein tyrosines that 

have been phosphorylated after BCR signalling. Interaction of the BCR with these 

ITIM bearing molecules is thought to be important in the maintenance of anergy 

following antigen encounter (168). In addition, the recruitment of SH2 domain-

containing inositol 5’-phosphatase 1 (SHIP1) and phosphatase and tensin homolog 

(PTEN) are believed to be key players in maintaining anergy and restraining auto-

immunity development (197, 198). Regulatory T cells are able to directly suppress 

auto-reactive B cells thus preventing immune reactions against self (199). Finally, 

auto-reactive B cells can undergo programmed cell death (apoptosis) via the process 

of clonal deletion as a result of the lack of appropriate co-stimulation signals or 

survival signals such as BAFF (186). 

 

1.3.6. Germinal centre formation and antibody production  

MZ B cells are mature B cells that reside within the marginal zones of the spleen. 

While mouse MZ B cells are non-circulating, human MZ B cells are able to 

recirculate through the blood (176). MZ B cells respond rapidly, quickly 

differentiating into plasmablasts and secreting antibody. They are therefore a useful 

first line of defence against pathogens circulating in the blood (200). MZ B cells 

express high levels of the transcription factor Blimp-1, which is critical for 

differentiation of plasma cells. This allows them to rapidly differentiate into plasma 

cells. MZ B cells are typically IgMhiIgDloCD21hiCD23− (201). They also express 

high levels of CD1d, an MHC class I-like molecule involved in lipid antigen 

presentation and the activation of invariant natural killer T cells (iNKT) (202, 203).  
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FO B cells are mature B cells that constitutively circulate between the follicles in the 

lymph nodes, and in the absence of antigen will live only for a few days (204). 

Within the follicles are follicular dendritic cells (FDCs) which play an important role 

in the activation of B cells (205). FO B cells express CXCR5, which binds the 

chemokine CXCL1 and is secreted by FDCs as well as marginal reticular cells, and 

importantly drives migration of B cells to the follicles (205, 206). The FDCs express 

Fc receptors CD23 and CD32 which allow them to capture soluble antigen and 

present it to B cells on their surface in its native form (207). Alternatively, larger 

antigens are brought into the follicles by conventional DCs (205). FO B cells that 

have encountered antigen are retained in the follicle; antigen encounter causes B 

cells to upregulate the expression of integrins, which facilitate their adhesion to the 

extracellular matrix, and allow the B cells to migrate to the interface between the T 

and B cell zones (208). They start to express CCR7 which binds CCL19 and CCL21, 

driving migration towards the T-cell zone and thus the interaction with T cells at the 

B-T cell border within the follicle (205). Helper follicular T cells within the follicles 

(Tfh) that have recognised the same antigen will, upon encounter with the B cell, 

promote proliferation and further maturation of the FO B cell into short-lived 

antibody secreting plasmablasts or go on to form germinal centres (GC) (205). Short-

lived plasmablasts provide an immediate IgM antibody response. Those B cells that 

do not encounter their cognate antigen continue to recirculate (205).  

 

Antigen-activated FO B cells that have not differentiated into plasma cells, migrate 

to the lymphoid follicles and form GCs. GCs are formed by proliferating B cells, as 

well as FDCs and antigen-specific T cells that provide help to B cells, and are 

composed of a dark zone and a light zone (92, 209). It is in the GC that B cells 

become memory B cells expressing high affinity BCR and long-lived plasma cells 

producing switched antibodies, which provide long-term protection against 

pathogens (92, 209). Within the dark zone of the GC, B cells become activated 

proliferating B cells called centroblasts. Here they undergo somatic hypermutation 

(SHM), affinity maturation and isotype switching. Affinity maturation is the process 

whereby B cells express BCR of increasing affinity to the target antigen; this is 

achieved as a result of SHM and selection for antigen binding (92). The process of 

SHM involves point mutations in the hypervariable regions of the BCR which can 
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generate Ig with differing affinity for the antigen and is driven by the enzyme 

activation-induced cytidine deaminase (AID) (166). The somatic hypermutated B 

cells stop proliferating and become centrocytes upon migration into the light zone. 

The light zone contains FDCs and Tfh cells. Here, centrocytes that bind antigen 

presented by FDCs with low affinity are outcompeted by B cells with higher affinity 

for their antigen and undergo apoptosis (210). Tfh cells promote survival of the B 

cells via ligation of CD40 expressed on B cells and by producing the cytokine IL-21, 

which drives proliferation of the B cells and promotes the retention of the B cells 

within the GC (211). Only the B cells with highest affinity go onto proliferate (clonal 

expansion) and differentiate into long-lived plasma cells and memory cells (166).  

 

Also, only centrocytes with highest-affinity BCRs undergo class switching. Isotype 

class switching alters the antibody type relevant to the particular antigen, and was 

first demonstrated in chickens (212). B cells constitutively express IgM unless they 

receive the necessary signals for class switching, which results in the expression of 

another Ig. Therefore IgM is considered the primary response antibody (213). There 

are 5 different immunoglobulins: IgM, IgA, IgG, IgE, IgD, with differing and 

specialised functions (Table 3.3). Mature B cells express both IgM- and IgD- BCRs 

and while both are also secreted the role of secreted IgD is less clear. It has been 

proposed that IgD may have a possible role in response to microbiota, with a 

deficiency of the DNA damage-response protein 53BP1 leading to an upregulation 

of IgD on B cells that is dependent upon an intact microbiome (214). IgG antibodies 

are the most abundant, and able to neutralize toxins and viruses and fix complement, 

and can be sub-divided into 4 sub classes: IgG1, IgG2, IgG3 and IgG4 (215). IgA 

antibodies are involved in the mucosal immune response and provide protection 

against pathogens at mucosal surfaces (216). Finally, IgE antibodies protect against 

helminths and are also involved in the allergic responses (217). 

 

Numerous transcription factors tightly regulate plasma cell development including 

most notably Blimp-1, and Bcl-6. Bcl-6 is a transcriptional repressor and mice 

lacking Bcl-6 fail to form GCs (218). Amongst other roles, Bcl-6 acts to silence 

Blimp-1 the master regulator of plasma cells, and therefore inhibits B cells leaving 

the GC as plasma cells (219). The architecture of the GC has been demonstrated to 

be in part determined by the transcription factor FoxO-1 (220, 221). Mice lacking 
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FoxO-1 on GC B cells are unable to develop a dark zone and B cells fail to undergo 

affinity maturation and class-switching (221). FoxO-1 was also found to promote 

CXCR4 transcription, which has previously been reported to be necessary for dark 

and light zone formation (222). Chip-seq analysis of human GC B cells identified 

shared binding regions for FoxO-1 and Bcl-6 further demonstrating that FoxO-1 

works alongside Bcl-6 (221).  
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Table 1.4 Antibody types and their role in the immune response. 
 

Antibody Structure Role 

IgD Monomer Microbiota recognition 

IgM Pentamer Neutralising 

IgG Monomer Neutralises toxins and viruses, able to cross the placenta, 

fixes complement, opsonising. 

IgA Dimer Mucosal response 

IgE Monomer Allergy, protects against helminths 
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1.3.7. Long-lived plasma cells and memory B cells 
 

The high-affinity B cells produced from a GC reaction develop into either plasma 

cells or memory cells (166). Following their proliferation and expansion within the 

GC, B cells migrate to peripheral tissues or return to the BM. In the BM they 

become long-lived plasma cells, which are terminally differentiated and non-

proliferative. Those in the periphery develop into memory B cells. Immunological 

memory allows the rapid response of the immune system upon reencounter with the 

same antigen. Following antigen encounter, the memory B cells differentiate into 

high-affinity plasma cells and produce antibody against the re-offending pathogen 

(223). In addition to GC-derived memory B cells that are considered class-switched 

memory B cells, there also exists IgM memory B cells, derived from T-independent 

antigen encounter and activation (224, 225). 
 

1.3.8. Natural antibody secreting cells (B-1 cells) 
 

In contrast to typical FO-derived antibody-secreting cells, there is a sub-group of B 

cells that are able to spontaneously secret antibodies (226). These B cells, known as 

B-1 B cells (as opposed to “B-2” which encompasses all other ‘conventional’ B 

cells), secret natural antibodies (IgM antibodies present naturally in the blood 

without prior immunization). They were first identified in mice, defined by their 

expression of CD5 and existing predominantly in the peritoneal cavity (227). Human 

B-1 cells were more elusive than their mice counterparts, later defined as 

CD20+CD27+CD43+CD70- (228). In mice only B-1 cells express the marker CD5, 

whereas CD5 expression in humans is not restricted to B-1 cells.  

 

Given their ability to spontaneously secrete antibodies, B-1 cells do not therefore 

require T cell help, nor do they undergo an adaptive response and hence cannot form 

memory-like B cells (226). Thus, they are considered ‘innate’ B cells. B-1 cells are 

deemed to have two major functions: 1. The rapid or immediate defence against 

microbial pathogens, and 2. Housekeeping, in the form of facilitating removal of 

dead cells and debris. This is due to the polyreactive nature of natural antibodies and 

the ability to bind broadly expressed components of microbial pathogens such as 

phosphorylcholine (PC), and for example phosphatidylcholine (PtC), which is a key 
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component of the membrane of red blood cells (229, 230). B-1 antibodies do not 

undergo SHM are more limited in their V(D)J combinations. They predominately 

express IgM antibodies but have been demonstrated to have some ability to class-

switch; it is thought that a high proportion of IgM and IgA in the serum is B-1 cell 

derived (231, 232). It is considered that B-1 cells develop early in life and are 

maintained through self-renewal, with declining numbers found with age (228, 233, 

234). However, while B-1 cells have a useful role in the first line defence against 

microbial pathogens, they are thought to play a pathogenic role in autoimmune 

diseases, for example via the production of auto-antibodies (235, 236).  

 

An overview of B cell maturation is show in Figure 1.3. 
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Figure 1.3 B cell maturation. 
Overview of the stages of B cell development and maturation once immature cells 
have left the bone marrow and following antigen encounter. Having undergone 
development in the bone marrow immature B cells enter the periphery and become 
T1 B cells and migrate to the B cell follicles within the spleen where they further 
differentiate into T2 B cells. Upon antigen activation of mature B cells, they either 
differentiate into mature follicular (FO) or marginal zone (MZ) B cells. MZ B cells 
rapidly differentiate into short lived antigen producing plasmablasts. FO B cells will 
either develop into plasmablasts as part of the primary immune response, or form 
germinal centres (GCs) within the lymphoid follicles. Within the GCs B cells 
undergo somatic hypermutation and antigen selection, resulting in high affinity 
BCRs and will develop either into long-lived plasma cells or high affinity memory B 
cells. Alternatively, T2s can also develop into Bregs, and more recently a 
plasmablast-like IL-10 producing B cell subtype has been described.  
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1.3.9. Role of B cells beyond antibody production 
 

1.3.9.1. Antigen presentation by B cells 
 
Immunological studies of patients treated with rituximab (a B-cell depletion anti-

CD20 antibody) have highlighted other aspects of B cell biology beyond the 

production of antibodies that are important in auto-immune conditions. In rituximab 

treated patients, although there is sometimes a reduction in auto-antibody levels, 

these levels are not dramatically reduced as rituximab does not deplete antibody 

producing plasma cells (104). B cells express major histocompatibility complex 

(MHC) class II molecules, allowing them to process and present antigen, and are 

considered professional antigen presenting cells (237). B cells become activated 

following encounter with antigen. Binding of antigen to the BCR triggers a signal-

transduction cascade that results in the transcriptional activation of genes that lead to 

B cell activation. The BCR-antigen complex is internalised and trafficked towards 

newly synthesised MHC class II molecules within the intracellular compartments. 

Here the antigen is processed into peptides, and the peptides form complexes with 

the MHC. This MHC-peptide complex is transported to the surface of the cell where 

it can encounter T cells. Recognition of the peptide by the T-cell receptor (TCR) on 

the surface of T-helper cells (Th cells), leads to their activation. The depletion of B 

cells from mice, has demonstrated that B cells are required for optimal activation and 

proliferation of CD4+ T cells (238). In turn the activated antigen specific T cell 

provides “help” to the B cell via ligation of co-receptors on B cells such as CD40 

and via the production of cytokines such as IL-2, IL-4 and IL-5 (239). These 

cytokines promote both the proliferation and survival of B cells, driving their 

differentiation into plasma cells (171, 240, 241). Bregs are also involved in lipid 

presentation and the activation of natural killer T cells, with anti-inflammatory 

capacity (242). 

 

1.3.9.2. Cytokine producing B cells 

 

B cells have been demonstrated to produce a variety of cytokines (243). Those that 

produce inflammatory cytokines are broadly termed effector B cells (243). Effector 

B cells can be subdivided into B effector (Be)1 and Be2 cells. Be1 cells develop 
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following Th1 help, and produce IFNγ and IL-12, which in turn continue to promote 

Th1 cells (244). Th2 help leads to the development of Be2 cells that produce IL-2, 

IL-4 and IL-13, and which also help promote Th2 cells. Both Be1 and Be2 cells are 

able to produce TNFα and IL-6. In addition to the release of pro-inflammatory 

cytokines, B cells mediate immune regulation via the production of the anti-

inflammatory cytokine IL-10, these cells named as Bregs are described in more 

detail below (245). The multiple pathogenic and regulatory functions of B cells are 

summarized in Figure 3.3.  
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Figure 1.4. Pathogenic and regulatory functions of B cells.  
Overview of effector functions of B cells that drive the elimination of pathogens, and 
of regulatory functions that control excessive inflammation. These varying functions 
are often implicated in auto-immune conditions leading to excessive inflammation 
through over activation of effector functions and failure of regulatory functions. 
  

B CellProduce antibodies

Produce pro-
inflammatory 

cytokines

Antigen presentation 
to T cells 

Drive inflammation

Regulate Th1/Th2 
balance

Clear apoptotic 
cells

Induce Tregs

Produce anti-
inflammatory 

cytokines e.g. IL-10



 57 

1.4. Regulatory B cells 
 

The very first observation that suggested that B cells may have regulatory capacity 

dates back to 1974 (246). Adoptive transfer of lymphoid cells from sensitised mice 

was shown to suppress delayed type hypersensitivity (DTH), and suppression was 

greater when the transferred cell population was enriched with B cells. However, it 

was much later that they were identified as Bregs, and shown that they restrain 

excessive activation of the immune system, via the provision of IL-10 (247). This 

was demonstrated in a mouse model of colitis, where a subset of IL-10 producing B 

cells that suppress intestinal inflammation was reported (247). Shortly following, 

Fillatreau and colleagues showed that mice with experimental autoimmune 

encephalomyelitis (EAE) with IL-10-deficient B cells were unable to recover from 

disease (248). Bregs are thought to represent less than 1% of the peripheral blood B 

cell population (249).   

 

1.4.1. Breg activation 

 

Subsequently, it was demonstrated that Bregs require activation in order to produce 

IL-10. In collagen-induced arthritis (CIA), stimulation of B cells with an agonistic 

anti-CD40 antibody gave rise to a population of B cells with potent suppressive 

capacity. These B cells were able to produce IL-10 and both inhibited Th1 

differentiation and prevented arthritis development (250). Furthermore, mice lacking 

CD40 exclusively on B cells develop an exacerbated autoimmune disease compared 

to wild type (248). In addition to CD40 engagement, stimulation of TLRs or the 

BCR results in the differentiation of Bregs (251, 252). Defects in BCR signalling 

were associated with a reduction in IL-10-producing B cells and exacerbated disease 

in EAE mice (178).  

Bregs have also been shown to differentiate in response to multiple 

cytokines, including IL-21 in the EAE model (253); Breg expansion in response to 

IL-1β and IL-6 induced by gut microbiota (179); immature B cell expansion and 

increased IL-10 production in response to IFNγ in humans and in EAE mice (254); 

and the expansion of IL-10+ B cells by IL-35 in the experimental autoimmune uveitis 

(EAU) mouse model (255). Production of IL-10 by B cells therefore can be achieved 
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by a variety of stimuli suggesting there are multiple mechanisms by which Bregs can 

be induced in vivo. 

 

1.4.2. Bregs in human health and disease 

 

In humans, IL-10+ B cells were first described in multiple sclerosis (MS) patients. B 

cells from patients with MS were shown to produce less IL-10 than their healthy 

counterparts (256). Further work looking at MS patients showed better clinical 

outcomes in patients with helminth infections. This is likely due to an accumulation 

of IL-10+ B cells in response to the infection (257).  

Our group has demonstrated that in healthy individuals, CD19+CD24hiCD38hi 

immature B cells were able to suppress IFNγ, TNFα and IL-17 production by CD4+ 

T cells, but that these B cells were functionally impaired in systemic lupus 

erythematous (SLE) (258). Immature B cells isolated from SLE patients produced 

less IL-10 than healthy B cells upon CD40L stimulation, despite normal CD40 

expression levels. This was found to be due to an impaired phosphorylation of 

STAT3, which is involved in signalling following CD40 ligation. The deficiency 

was found to be in the B cells themselves rather than in the T cells, as healthy 

CD19+CD24hiCD38hi B cells were able to suppress IFNγ produced by CD4+ T cells 

from SLE.  

 

Unlike in SLE patients where the number of immature B cells is normal, rheumatoid 

arthritis (RA) patients with active disease have fewer CD24hiCD38hi B cells and 

CD19+CD24hiCD38hiIL-10+ B cells (98). The number of CD24hiCD38hi B cells was 

shown to correlate negatively with CRP, but no correlation was observed with ESR, 

RF, or anti-cyclic citrullinated peptide (CCP) antibodies (98). Interestingly, in 

patients with active RA, CD19+CD24hiCD38hi B cells were able to suppress IFNγ 

and TNFα production by CD4+ T cells, however, they fail to inhibit the polarisation 

of naïve CD4+ T cells into Th17 cells or convert them into suppressive Tregs (98).  

 

Several more recent papers have also studied the role of Bregs in RA. Three 

independent studies reported fewer Bregs in RA patients (259-261) whereas one 

study reported an increased percentage of Bregs in RA patients (262). However, in 

the latter paper, only three out of ten RA samples showed proportionally more IL-10 
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production than in healthy individuals (262). IL-10 also correlated inversely with 

disease activity score (DAS) in all four studies, suggesting that IL-10-producing B 

cells are more effective in regulating disease in patients with better clinical scores. 

Furthermore, in RA patients receiving anti-TNF therapy, there was an increase in 

Bregs at 6 months following commencement of anti-TNF treatment compared to 

baseline (263).  

 

The ability of CD24hiCD38hiIL-10+ Bregs to suppress Th1 responses via IL-10 is 

partially mediated by the engagement of CD80 and CD86. Inhibition of TNFα and 

IFNγ production by CD4+ T cells in humans is reduced in the presence of antibodies 

against CD80 or CD86 (98, 258). IL-10+ Bregs have also been shown to inhibit 

CD8+ T cells, suppressing IFNγ production in response to hepatitis B virus infection 

(264), and TNFα production following stimulation with LPS and CpG (249). Both in 

mouse and in humans, it has been shown that IL-10 produced by Bregs converts 

naïve and activated T cells into Tr1 and FoxP3 Treg cell subsets, which are 

important in the maintenance of tolerance (98, 265). In patients with active RA, 

Bregs fail to convert effector T cells into Tregs, thus further suggesting a defect in 

the tolerogenic status in these patients (98). 

 
Bregs are also thought to induce tolerance and promote survival of transplants. Two 

major initial findings were indicative of an important role for B cells in 

transplantation. Firstly, in patients treated with rituximab there was a very high rate 

of acute rejection of renal transplants (266). Secondly, patients tolerant to renal 

transplants showed higher numbers of B cells and exhibited an increased expression 

of genes related to B cell differentiation (267, 268). Thus, the increase in 

CD24hiCD38hi B cells present in tolerant patients supports a role for Bregs in 

transplantation (267, 269). Furthermore, several studies have also specifically linked 

an increase in IL-10 production by B cells to tolerance in transplantation. In renal 

transplant patients, tolerant individuals exhibit a frequency of CD24hiCD38hi B cells 

that is comparable to that in healthy individuals, but those with stable grafts but 

under immunosuppression and those with chronic rejection exhibit a reduced 

frequency of these B cells (269). Furthermore, in a separate study of renal 

transplants, CD24hiCD38hi B cells in tolerant individuals produced more IL-10 

following 4 days stimulation to induce Bregs, than either HCs or those with stable 
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transplants (270). Evidence of the protective role of Bregs in transplantation is also 

supported by experiments in mice. For example, anti-CD20 treatment in ovalbumin 

(OVA) sensitised mice with skin grafts lead to accelerated rejection of skin grafts 

from mice expressing the OVA gene (271). It was also shown that tolerance could be 

transferred via transfer of splenic B cells from cardiac allograft tolerant mice to 

recipient mice, which lead to an increased graft survival (272). Transfer of B cells 

expressing Tim-1, a marker of Bregs, also increased survival of islet allografts in 

WT mice (273). Finally, an increased frequency of T2 B cells was observed in a 

mouse model of transplantation tolerance, with the survival of skin grafts by B cells 

shown to be antigen-specific, with only B cells from tolerised and not naïve mice 

able to prolong skin graft survival in naïve mice. (274). However, T2 B cells from 

IL-10 KO mice could also induce tolerance, suggesting that IL-10 may not be the 

only mechanism by which Bregs induce tolerance (274).  

 

1.4.3. Phenotype of Bregs 

 

There is currently no consensus on what cell surface markers define Bregs, and 

while Bregs typically produce IL-10, not all IL-10+ cells are suppressive and not all 

regulatory B cells achieve suppression via IL-10 (258, 275). Thus, the gold standard 

to identify Bregs remains the measurement of IL-10 production and the assessment 

of their suppressive capacity. There are several proposed phenotypes for Bregs 

(described below), however, none of the phenotypic markers currently available 

capture the entirety of IL-10 producing B cell population. Therefore, it is important 

to continue to investigate whether there are surface markers or a combination, that 

can allow a more accurate identification of Bregs. This is important if we are to 

better understand their function and role in human health and disease. A further 

limitation to the study of Bregs using IL-10 as their marker, is the technical restraint 

of isolating cells using IL-10 due the intracellular location of IL-10. Furthermore, 

IL-10 production requires stimulation; the ability to identify a cell type that is 

‘primed’ to produce IL-10, without stimulation, would allow us to identify Bregs ex 

vivo. 
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1.4.3.1. CD24hiCD38hiIL-10+ Bregs 

 

Our group has previously shown that amongst the various subsets of B cells in 

circulation, immature CD24hiCD38hi B cells produce the majority of IL-10 following 

in vitro stimulation with an agonistic anti-CD40 antibody (258). This population was 

originally described in PBMCs from healthy individuals and later found to be 

decreased in patients with SLE (258). As described above CD19+CD24hiCD38hi B 

cells are able to suppress IFNγ, TNFα and IL-17 production by CD4+ T cells (258). 

Furthermore, they are able to inhibit the polarisation of naïve T cells into Th1 or 

Th17 cells (98).  

 

1.4.3.2. B10 Bregs 

 

IL-10 expressing CD19+CD24hiCD27+ memory B cells, termed B10 cells, have been 

shown to down-regulate the production of cytokines by monocytes in humans (249). 

Of note, these cells were first described in the spleens of normal and auto-immune 

mice as CD1dhiCD5+ B cells (276), with parallel functions exhibited by 

CD19+CD24hiCD27+ human B10 cells, following stimulation of PBMCs with LPS, 

CD40L and CpG (249). However, these Bregs do not suppress T cell cytokine 

production to any greater extent than their negative B cell counterparts. However, 

monocyte-derived TNFα was reduced when monocytes were cultured with B10 

cells, and this effect could be reversed by blocking IL-10, although IL-10 alone did 

not suppress TNFα production (249). 

 

1.4.3.3. B regulatory 1 Bregs 

 

In humans, inducible IL-10+B cells were designated as B regulatory 1 (BR1) cells, 

defined as CD25hiCD71hiCD73loIL-10+ (277). Br1 cells are able to suppress antigen-

specific CD4+ T cell proliferation via IL-10 production, and were originally 

identified in non-allergic beekeepers, tolerant to the bee venom allergen 

phospholipase A2 (PLA), and in allergic individuals before and after 

immunotherapy. Br1 cells produce allergen-specific IgG4 antibodies, implicating a 

role in allergen tolerance, as well as high levels of IL-10. Tolerant individuals 

exhibit an increased frequency of Br1 cells compared to controls, and interestingly 
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an increased expression of IL-10 and IgG4 by B cells, and an increase in number of 

IL-10+ PLA-specific B cells, was observed in allergic individuals following allergen-

specific immunotherapy (278). 

 

1.4.3.4. IL-10+ plasmablasts 

 

Matsumoto et al. first described a subset of regulatory plasmablasts in IL-10 reporter 

mice, whereby CD138+ plasmablasts in the draining lymph nodes expressed IL-10 in 

response to inflammation via induction of experimental autoimmune 

encephalomyelitis (EAE) (279). Furthermore, they demonstrated that in the absence 

of plasmablasts, as a result of genetic ablation of BLIMP-1 and IRF4 in B cells, that 

disease was more severe compared to control mice. In humans, stimulation of 

isolated B cells with CpGC plus IL-2, IL-6 and IFNγ lead to an expansion of 

CD27intCD38+ plasmablasts that secreted IgM (279). In this study the majority of IL-

10+ B cells were found to be captured within this CD27intCD38+ cell population. 

More recently a natural regulatory plasma cell population has been described in 

Salmonella infected mice, with expansion of IL-10+CD138hi B cells in response to 

the infection (280). These cells were also found to express the inhibitory receptor 

LAG-3, and a population of LAG-3+CD138hi B cells was further described in naïve 

mice, which up-regulated IL-10 in response to infection. Finally, an accumulation of 

LAG-3+CD138hi B cells in CD72 KO mice was observed, with those mice 

demonstrating a reduced control of infection, which was restored following 

treatment with anti-IL-10 and anti-IL-10R antibodies (280). 

 

1.4.3.5. TIM-1+ Bregs 

 

Tim-1+ IL-10+ B cells exhibiting regulatory capacity were first described in the 

spleens of naïve mice, and were expanded in response to immunisation with an islet 

allograft or OVA (273). Subsequently, B cells in C57BL/6 mice with a mutation in 

the Tim-1 gene conferring a loss-of-function were shown to produce less IL-10 

(281). More recently Aravena et al. (282) have translated these findings into humans, 

and characterised this Tim-1+ population in patients with systemic sclerosis. Tim1+ B 

cells were able to suppress IL-17, IFNγ and TNFα production by CD4+ T cells. In 



 63 

line with CD24hiCD38hiIL10+ Bregs, immature (CD24hiCD38hi) B cells express 

greatest levels of Tim-1, which was upregulated upon activation via engagement of 

the BCR and TLR9. Furthermore, systemic sclerosis patients show reduced numbers 

of Tim-1+IL-10+ B cells (282). 

 

1.4.3.6. iBregs, GZMB+ B cells, and CD39+CD73+ Bregs 

 

While the majority of Bregs, although phenotypically quite varied, mediate 

suppression primarily via the production of IL-10, other regulatory B cells suppress 

by alternative IL-10-independent mechanisms. 

 

iBregs (induced Bregs) were identified in co-cultures of B cells isolated from 

PBMCs from healthy individuals stimulated with CpGC and co-cultured with 

autologous T cells. They require CTLA-4 stimulation by T cells, and were 

demonstrated to regulate T cell proliferation via the cytokine transforming growth 

factor (TGF)-β and the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the 

expansion of regulatory T cells (283). Another subtype of B cells able to suppress T 

cell proliferation in an IL-10 independent manner are characterised by the expression 

of the protease Granzyme B (GZMB) and were identified in solid tumours. In this 

context, Linder et al. showed that GrB production was expanded by IL-21 and 

characterised these GrB+ B cells as CD38+CD1d+IgM+CD147+(284).  

 A final Breg subset that also acts to regulate inflammation via the expression 

of enzymes is characterised by CD19+CD39+CD73+ expression. This population was 

first described by Saze and colleagues in B cells from PBMCs isolated from healthy 

donors (285). CD39 and CD73 are nucleotide-metabolizing ecto-enzymes and are 

both part of a pathway that converts ATP to AMP and AMP to adenosine (286). The 

balance of ATP to adenosine conversion favours either a pro- or anti-inflammatory 

environment, thus acting as a regulatory pathway.  
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1.5. Siglecs and CD170/Siglec-5 

 

CD170/Siglec-5 (Sialic acid-binding Ig-like lectin-5) is a member of the Siglec 

family, which are sialic acid-binding immunoglobulin-like lectins. Siglecs are found 

in all mammals and can be broadly classified as those that are conserved across all 

mammals, and the more variable CD33-related Siglecs (287). Most immune cells 

express Siglecs including monocytes, NK cells, T cells and B cells. Siglecs are cell-

surface trans-membrane receptors, they have from two up to 17 extracellular Ig 

domains, and a cytoplasmic domain with an ITIM or an ITAM motif. The terminal 

Ig domain is an amino-terminal V-set domain that has the sialic acid binding site. 

The majority of sialic acids have an ITIM and are negative regulators of signalling, 

with a few Siglecs having an ITAM domain and act as activating receptors. Many 

Siglecs have been described to be endocytic receptors either constitutively recycling 

via the endosomes or endocytosed following ligation. For example, CD22 following 

ligation has been shown to co-localise with the transferrin receptor suggesting 

trafficking through the endosomal system, and has been shown to subsequently 

recycle back to the surface (288, 289).  

 

Siglecs bind sialic acid residues or sialyated proteins, which are expressed on all 

cells, with each Siglec having preferential binding to particular sialosides; CD170 

preferentially binds alpha 2-8 sialic acid (Neu5Ac2-8-Neu5Ac) and Sialyl-Tn 

(Neu5Alpha2-6-GalNAc) (290, 291). Regulation of signalling via Siglecs can occur 

as a result of both cis and trans interactions with sialic acids (290).  

 

B cells uniquely express Siglec-2 (CD22), CD170 (292), and Siglec-10 (290). CD22 

is the most well characterised Siglec on B cells and has a prominent functional role 

due to its ability to negatively regulate BCR signalling, by both binding to sialic 

acids on the receptor thus inhibiting signalling, or by sequestering sialic acids away 

from the receptor to allow signalling (183, 293, 294). CD22 is able to form homo-

oligomers with other CD22 molecules by binding sialic acids on their surface, upon 

antigen binding to the BCR these homo-ologomers are able to bind the BCR via the 

sialic acids expressed on the surface of the BCR. This leads to the phosphorylation 

of the ITIM of CD22, leading to the inhibition of calcium signalling from the BCR 

(295). 
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CD170, in addition to being expressed by B cells, has been described on neutrophils 

and monocytes (290, 296). It possesses four extracellular Ig domains, one ITIM and 

one ITIM-like motif, which allows CD170 to negatively regulate signalling (296). 

Following ligation, CD170 undergoes phosphorylation of it’s ITIM leading to the 

recruitment of the protein tyrosine phosphatases (PTPs), Src homology-2-containing 

tyrosine phosphatases 1 (SHP-1) and SHP-2 (297). This ability of CD170 to act as 

an inhibitory signalling receptor was first demonstrated in CD170-transfected rat 

basophil leukemia (RBL) cells, which showed reduced calcium signaling and 

serotonin release, suggesting a less activated cell state (298).  

 

CD170 shares a very similar extracellular structure with Siglec-14, exhibiting 99% 

sequence homology of the first two Ig domains (299). However, unlike CD170 

which has an ITIM, Siglec-14 has an intracellular domain that associates with the 

ITAM containing the adapter protein DAP12 (287). Ligation of Siglec-14 leads to 

the phosphorylation of the ITAM allowing the binding of proteins involved in 

signalling; thus Siglec-14 acts to positively regulate signalling (299). Siglec-14 

however, is not expressed on B cells, whereas Siglec-14 and CD170 are co-

expressed on granulocytes (292). It is likely that these two receptors work together to 

regulate signalling providing the respective positive and negative signals (300). 

 

While some studies have investigated the role of CD170, overall there is scarce 

evidence to demonstrate a role for CD170 on B cells (298-300). 
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Figure 1.5 Structure of CD170. 
CD170 is a transmembrane receptor; it has four extracellular Ig domains, including 
one V-set sialic acid binding Ig domain (purple ¾ circle) and three C2-set Ig 
domains (green rectangle). Intracellularly CD170 has one immune-receptor tyrosine-
based inhibitory motif (ITIM) (orange rectangle) and one ITIM-like motif (blue 
rectangle); following ligation of the Siglec the ITIM and ITIM-like domains become 
phosphorylated (P) by SRC kinases, which leads to the recruitment of SHP proteins, 
including SHP-1 and SHP-2, and the negative regulation of signalling. 
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1.5.1. The evolution of CD170 and Siglec-14, and the SIGLEC-14-null 

mutation 

 

Siglec-14 is thought to have evolved from CD170, in response to the exploitation of 

Siglecs by pathogens (301). However, in some individuals Siglec-14 is absent. The 

SIGLEC5 gene, which is adjacent to the SIGLEC14 gene, is undergoing partial gene 

conversion with SIGLEC14 (299). The resulting “SIGLEC5/14” gene has the same 

coding sequence as SIGLEC5, however, it is under the control of the SIGLEC14 

promoter (292). An individual may express both SIGLEC5 and SIGLEC14 or lack 

one or both of the alleles for SIGLEC14, replaced by the SIGLEC5/14. The 

immunological consequences of this Siglec-14-null mutation are not clearly 

understood, however, the Siglec-14 null phenotype has been hypothesized to play a 

role in bacterial infections. Individuals lacking SIGLEC14 show an impaired 

response to group B Streptococcus (GBS) (300), and the null allele was associated 

with varied response to vaccination and susceptibility to Mycobacterium tuberculosis 

(302). 

 

1.5.2. The role of Siglecs in health and disease 

 

Sialic acids, the ligands for Siglecs, are expressed across vertebrates, but are not 

conventionally found on microorganisms (303). Sialic acids can therefore be 

considered to denote self, thus the ligation of Siglecs by sialic acids has implicated 

Siglecs in immune regulation and tolerance, such as the regulation of BCR activation 

by self antigen (304). If an autoreactive BCR binds an auto-antigen presented by 

another cell, sialic acids expressed on the opposing cell can recruit CD22, thus 

inhibiting auto-reactive signaling via the BCR (295). This role of CD22 in tolerance 

is supported by studies in CD22 deficient autoimmune mouse strains, which 

developed exacerbated disease compared to control mice (305). In KO mice lacking 

CD22 and/or Siglec-G (orthologue of human Siglec-10), there was an increase in 

calcium signalling and higher IgM levels (303). Thus, both CD22 and Siglec-G can 

act as negative regulators suppressing antibody production in B cells. Of interest, 

bacteria including C. jejuni, and N. meningitide, and some viruses have evolved to 

exploit Siglecs. Either by de novo biosynthesis or by the scavenging of sialic acids 
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from the environment, the expression of sialic acids on the surface of these 

pathogens can lead to evasion of immune responses (306).  

 

Siglecs may also be involved in immune tolerance via regulation of the anti-

inflammatory cytokine IL-10. The monocyte RAW246 cell line overexpressing 

CD170 or Siglec-9 showed increased IL-10 production following stimulation with 

LPS (307). Furthermore, the flagellum from C. jejuni was found to induce IL-10 

production by DCs via binding to Siglec-10 (308).  

 

CD170 was originally described as a myeloid specific marker (309, 310), with its 

expression in B cells having only more recently been described (311). There are 

limited functional studies of CD170 on immune cells, beyond its ability to bind sialic 

acids and signal via the ITIM motif. This is in part due to the lack of a direct 

orthologous gene in mice. One study has described CD170 function on T cells, 

demonstrating a better survival of CD170-expressing T cells following HIV-1 

infection. In addition HIV-1 infected patients had more CD170 expressing T cells 

(312). Another study showed that stimulation with the N-formyl peptide fMLP or 

TNFα, enhanced neutrophil CD170 expression, and that anti-CD170 monoclonal 

antibodies reduced oxidative burst activity by neutrophils (309).  

 

Although no association between aberrant expression of CD170 and RA 

pathogenesis has been made, several reports have described CD170 expression as 

being associated with various pathologies, which could give us an insight into its 

function in RA. Aberrant expression of CD170 was observed in acute myeloid 

leukaemia and a complete lack of expression in acute lymphoblastic leukaemia 

(313). CD170 has been identified as a marker of critical limb ischemia in patients 

with diabetes (314). Overexpression of CD170 was associated with increased 

replication of Mycobacterium tuberculosis (302). A GWAS study looking at 

periodontitis identified CD170 as a risk loci for this disease (315). Interestingly the 

occurrence of periodontitis has also been demonstrated to be higher in patients with 

RA, suggesting a role for oral microbiota in disease, and may be a linked to the 

ability of Siglecs to bind pathogens expressing sialic acids (290, 316). 
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1.5.3. Regulation of TLR signaling by Siglecs 

 

Regulation of the adaptive immune response by Siglecs has been demonstrated for 

CD22 and its role in modulating BCR signaling (294). Further to this, Siglecs have 

also been shown to play a role in innate immune responses by regulating signaling 

via Toll-like receptors (TLRs). TLRs are able to recognize, for example, LPS 

expressed by bacteria, and CpG-DNA/ ssRNA released intracellularly by bacteria 

and viruses, thus allowing a cell to respond independently of BCR 

ligation/activation. CD22 KO B cells from mice show increased proliferation in 

response to TLR stimulation (Poly(I:C)/LPS/CpGC), greater activation (measured by 

CD86 expression) and more MHC class II expression (317). Confirming this, 

Paulson and colleagues showed that by expressing CD22 on a CD22-/- murine B cell 

line, there was a decrease of MHC class II expression, whilst subsequently blocking 

CD22 with an anti-CD22 antibody resulted in an increase in proliferation (317). 

Furthermore, in the CD22 KO B cells there was a reduced production of suppressors 

of cytokine signaling (SOCs) compared to WT mice, which was more pronounced 

following CpG stimulation (317). Moreover, B cells from Siglec-G x CD22 double 

deficient mice showed increased proliferation compared B cells from to control mice 

in response to TLR stimulation (303). Thus further supporting a role for negative 

regulation of signaling in response to TLR engagement by siglecs. In bone marrow 

derived macrophages (BMDMs) an up-regulation of Siglec-E (orthologue of human 

Siglec-9) was observed in response to LPS stimulation, and was associated with 

reduced NF-κB signaling, and dependent on the signal transduction adapter MyD88 

(318). Furthermore, crosslinking of Siglec-E reduced TNFα and IL-6 cytokine 

production by the BMDMs. Overall siglecs appear to have a role in regulating 

signaling in response to TLR stimulation, although a direct interaction between 

TLRs and siglecs has not yet been described.  

 

1.5.4. Siglecs as targets for therapeutics 

 

CD22 is expressed across all B cells subsets, thus making it an attractive target for B 

cell depletion therapy. Epratuzumab is a monoclonal antibody based drug against 

CD22, which has shown efficacy in cancer (B-cell non-Hodgkin lymphoma (319)) 
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and in SLE (320). However, it has been shown to regulate BCR signaling rather than 

leading to a depletion of B cells (321). In a mouse model expressing humanized 

CD22, B cells showed no change in proliferation following epratuzumab treatment 

but instead show a decrease in calcium signaling in response to anti-IgM stimulation 

(322). CD33 (Siglec-3) is also targeted for treatment of acute myeloid leukemia by 

the mAb gemtuzumab, an antibody-drug conjugate against CD33. In this regard and 

in light of their association with numerous diseases, and their ability to regulate both 

innate and adaptive immune responses, other Siglecs may prove attractive targets for 

therapeutics. Finally, Siglec-15, which is highly expressed in differentiating 

osteoclasts, can be targeted to inhibit bone loss associated with some cancer and 

other pathologies (323).  
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1.6. ABIRISK 

 

The ABIRISK project (Anti-Biopharmaceutical Immunization: prediction and 

analysis of clinical relevance to minimize the RISK), was funded by The Innovative 

Medicines Initiative (IMI) in March 2012, part of the EU Seventh Framework 

Programme for Research and Technological Development (FP7). It aims to 

understand the immune response to biologics, and to understand how an individual 

patient responds to a specific treatment. The work in this report forms part of work 

package 2 that aims to evaluate biomarkers as potential predictors of 

immunogenicity, and evaluate functionally and numerically, the role that B cells and 

in particular Bregs, play in the pathogenesis of RA and formation of ADA. The 

project as a whole combines, scientists, statisticians and clinicians from both 

academia and industry, and looks at both cross-sectional as well as longitudinal data 

collected through clinical studies. 
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1.7. Aims and objectives 

 

In order to address the questions posed by ABIRISK, I employed the use of a high-

throughput flow cytometry platform, LEGENDScreenTM. This tool takes advantage 

of flow cytometry technology to provide a unique opportunity to investigate the 

expression of 332 proteins on the surface of immune cell subsets from PBMCs from 

both healthy individuals and RA patients. From this I generated a wealth of data that 

I mined to investigate several aims as outlined below. 

 

1.7.1. Aims: 

 

1. To validate and optimize the LEGENDScreenTM, a novel high-throughput 

flow cytometry platform that had not previously been published, as a tool to 

extensively immune-phenotype T and B cells from healthy individuals and 

patients with RA.  

2. To use LEGENDScreenTM to analyse the immune cell profiles in ADA+ and 

ADA- adalimumab treated RA patients and identify markers associated with 

ADA formation. 

3. To validate identified ADA markers in a prospective cohort of adalimumab 

treated patients. 

4. To use LEGENDScreenTM to compare the immune cell profiles of HC versus 

RA patients and to identify markers uniquely associated with RA, generating 

a ‘signature of RA’. 

5. To investigate the potential of the RA signature to predict development of 

RA in a pilot cohort of at-risk individuals. 

6. To mine the LEGENDScreenTM results to identify a novel marker for Bregs.  
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2. Materials & Methods 
 

2.1. Ethical Approval 

 

Ethical approval was obtained from the ethics committee of University College 

London Hospitals Health Service Trust under REC reference no. 14/LO/0506 and 

IRAS project number 10126303 for Prospective Study, and REC reference no. 

14/SC/1200 IRAS project number 142793 for Cross-Sectional study. Ethical 

approval was also obtained from the ethics committee of; CPP, Ile de France VII 

(13-048), Academic Medical Centre, Amsterdam (METC 2013_304), and Azienda 

Ospedaliero Univeritaria Careggi, Italy (2012/0035P82). Patients and controls were 

recruited after providing informed consent (Appendix A.1 and A.2). Storage of 

samples collected complied with the requirements of the Data Protection Act 1998. 

 

2.2. Patients and healthy volunteers  

 

A UK cross-sectional cohort of 124 RA patients (treated with cDMARDs, 

adalimumab and tocilizumab) and a European prospective cohort of 37 RA patients 

switching to adalimumab treatment, were recruited for this study as part of the 

ABIRISK consortium (Anti-Biopharmaceutical Immunization: prediction and 

analysis of clinical relevance to minimize the RISK; www.abirisk.eu/). Further RA 

patients were recruited to the prospective cohort that were treated with rituximab, 

etanercept, infliximab or tocilizumab, for use by other members of the consortium. 

Peripheral blood was obtained from RA patients attending the rheumatology clinic at 

University College London Hospital, London or at other ABIRISK centers in France, 

Netherlands and Italy. All RA patients matched the definition of RA, as outlined in 

the ACR/EULAR classification (revised 2010, 1992 ACR original). Sample 

collection was done in accordance with the study protocol for the clinical study of 

rheumatoid arthritis with respect to response to biological treatment, as part of the 

ABIRISK consortium. Samples were collected as part of either the cross-sectional or 

prospective study ABIRISK studies (see below). Detailed clinical and laboratory 

information corresponding to day of sampling, was collected from clinical records 

where available including: DAS28 score, CRP, RF, ESR, and anti-CCP, smoking 

status, gender, age, and BMI. DAS28 is used as the measure of disease activity – it 
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combines the number of swollen joints and the number of tender joints out of a total 

of 28 defined joints, as well as ESR/CRP levels and a self-assessment of health made 

by the patient out of 10. A score of 5.1 or over is considered active disease, less than 

3.2 is considered low disease activity and below 2.6 remission. Full clinical and 

demographic details can be found in the results section. Age and sex matched 

healthy controls were recruited and studied in parallel for the cross-sectional study 

(n=49). 

 

2.2.1. Cross-sectional  

 

Patients recruited as part of the cross-sectional study had blood samples taken at a 

single time point. Samples were collected from RA patients treated with biologics 

(adalimumab, or tocizilumab) or cDMARDs, and from treatment naïve patients. 

50ml of blood was collected in Heparin/Sodium Vacutainer blood collection tubes 

for isolation of peripheral blood mononuclear cells (PBMCs) (BD) and a further 5ml 

serum sample was obtained in serum Vacutainer Serum Separator Tubes (BD). 

 

2.2.2. Prospective 

 

Patients with RA that were switching treatment onto a biologic, either from previous 

treatment by a different biologic or from previous treatment with cDMARDs only, 

were recruited for this arm of the study. These patients were followed longitudinally 

with collection of serum and PBMC samples at baseline prior to starting the new 

treatment, and subsequently at one, three, six and 12 months post commencement of 

treatment. RNA was also collected at each time point using PAXgene collection 

tubes (PreAnalytiX), and an additional 2ml of blood taken in EDTA vacutainer tubes 

(BD) for DNA analysis at month six only. To minimise batch effect, PMBCs and 

serum were frozen at each visit to allow simultaneous assessments to be performed 

for a given individual. 

 

2.3. Leukocytes reduction system (LRS) cones 

 

For experiments that required large quantities of B cells it is not possible to obtain 

enough cells from 50ml of blood from healthy donors. For these experiments 
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therefore, PBMCs were extracted from leukocytes reduction system (LRS) cones 

using density gradient centrifugation with Ficoll®-Paque Plus (GEHealthcare), as 

described below. The leukocyte cones were obtained from single donors from NHS 

Blood and Transplant (NHSBT). These leukocyte cones have previously been shown 

to yield viable human PBMCs and generate similar results to those observed from 

standard PBMC extraction form healthy human donor blood (324).  

 

2.4. Sample preparation, processing and storage 

 

2.4.1. PBMC isolation and freezing 

 

PBMCs were isolated from peripheral blood via density gradient centrifugation with 

Ficoll®-Paque Plus. The Standard Operating Procedure was used as defined by the 

ABIRISK consortium to ensure all samples were processed in the same way across 

the consortium. Samples were processed as soon as possible after collection, within 

the same day. Whole blood was centrifuged at 400 x g, at room temperature (RT) 

(18-21oC) for 10 minutes with slow acceleration and minimal brake. The plasma 

layer was transferred into a sterile 50ml falcon and placed in a 56oC water bath to 

heat inactivate, for a minimum of 35 minutes. After the heat inactivation the plasma 

was refrigerated to cool it to 4oC. The remaining blood sample was diluted 1:1 with 

Roswell Park Memorial Institute (RPMI) 1640 with L-glutamine and NaHCO3 

medium (Sigma-Aldrich) and layered over 50ml SepMate™ (STEMCELL 

Technologies, Canada) tubes filled with 15ml of Ficoll. For cones, no plasma was 

extracted and blood was diluted 1:5 before layering on Ficoll due to the increased 

concentration of cells compared to standard blood samples. SepMate tubes were 

centrifuged at 1200 x g (RT) for 10 minutes then the tubes were inverted emptying 

the upper fraction, containing PBMCs, into empty sterile 50ml falcon tubes. Cells 

were washed with RPMI by centrifuging at 400 x g for 10 minutes at 4oC, then the 

cell pellets combined and suspended in 20ml RPMI ready for counting. 

Alternatively, diluted blood was layered directly on to 15ml of Ficoll in 50ml falcon 

tubes and centrifuged at 800 x g, room temperature (RT) for 25 minutes with 

minimum acceleration and brake. The lymphocyte layer was extracted using sterile 

pasteur pipettes into a 50ml falcon tube. Extracted cells were then washed and 

resuspended in RPMI for counting. The cooled plasma was spun at 2400 x g, 4oC, 
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for 10 minutes, to separate out complement. Live cells were counted (see later) and 

frozen down at a concentration of 1x107 cells/ml in complement-free supernatant 

from inactivated autologous plasma (upper layer) and 10% DMSO (Sigma-Aldrich), 

in 1ml aliquots. PBMCs from cones were frozen in fetal calf serum (FCS) (Biosera, 

France) with 10% DMSO.  Cells were initially frozen down at -80oC for at least 24 

hours, before being transferred into liquid nitrogen (-196oC) for long-term storage. 

Freezing down at -80oC was done in a Nalgene® Mr. Frosty® (Thermo Scientific), 

containing isopropyl alcohol, which creates a controlled freezing rate of 1oC/minute.  

 

2.4.2. Thawing of PBMCs 

 

When required, frozen cells (stored in liquid nitrogen) were rapidly thawed by 

diluting in warmed (37oC) RPMI 1640 supplemented with 10% fetal calf serum 

(FCS) and 100 U/µg/mL penicillin/streptomycin (p/s) (Sigma-Aldrich). Cells were 

centrifuged at 500 x g, 4oC for 8 minutes and washed with the supplemented RPMI 

and counted before proceeding with experiments. Cells were counted using a 

Neubauer Haemocytometer and a light microscope. Cells were diluted 1 in 10 in 

Trypan blue (Sigma-Aldrich) which stains the nuclei of dead cells. The total number 

of live cells was calculated by multiplying the number of cells in one corner of the 

grid by x104 (to account for the volume in the Haemocytometer), by the dilution 

factor, and the total volume that the cells were suspended in. 

 

2.4.3. Serum processing and freezing 

 

Serum blood collection tubes were centrifuged at 1500 x g for 10 minutes at 4ºC. 

Serum was aliquoted into cryovials, and frozen down at -20oC for 24 hours and 

transferred to -80oC for long-term storage. 

 

2.4.4. Processing of EDTA and PAXgeneTM tube samples 
 

Blood samples collected in EDTA blood collection tubes for DNA were aliquoted 

directly into cryovials. Both DNA aliquots and RNA tubes were frozen down at -

20oC for 24 hours and transferred to -80oC for long-term storage. 
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2.5. Shipment of samples to ABIRISK partners 

 

EDTA DNA samples and PAXgeneTM RNA samples were shipped on dry ice to 

ABIRISK partners for other analyses. Selected PBMCs were also sent using a liquid 

nitrogen dry shipper. Serum samples were sent for anti-drug antibody testing by 

ABIRISK partners; the results informed samples selection of patients for 

experiments, and data analysis, according to the presence or absence of ADA. 

 

2.6. Anti-drug antibodies measurements 

 

Adalimumab ADA were measured using MSD GOLD 96-well Streptavidin 

SECTOR Plates (L15SA) and a Meso Scale Discovery (MSD) MESO® QuickPlex 

SQ 120 Instrument (Meso Scale Diagnostics) by collaborators in the ABIRISK 

consortium. 

 

2.7. B cell isolation using magnetic cell sorting 

 

B Cells were isolated from PBMC samples, which were thawed, and isolated by 

negative selection using an EasySep™ Human B Cell Enrichment Kit (Stemcell 

Technologies). Isolation was done with cells in MACS buffer; 1X PBS (Sigma-

Aldrich), 0.5% FCS and 2mM ethylenediamine tetra-acetic acid (EDTA) (Gibco, 

Invitrogen). PBMCs were thawed as described, washed in MACS buffer, counted 

and resuspended at 5x107 cells/ml in MACS buffer in polystyrene round bottom 

FACS tubes. 50µl/ml of enrichment cocktail was added to each sample and cells 

incubated at RT for 10 minutes. After incubation 75µl/ml of magnetic particles 

which have been vortexed to achieve uniform suspension, are added and samples 

incubated for a further 5 minutes. Tubes were topped up with MACS buffer to a total 

volume of 2.5ml and placed into the EasySepTM magnet without lid for 5 minutes. 

Unwanted cells bound to the magnetic beads are attracted to the tube wall and bound 

there by the magnet. Samples and magnets were inverted and the solution containing 

unbound B cells was poured into a fresh tube. Cells were counted and resuspended at 

the required volume for further experiments in supplemented RPMI. 
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2.8. Stimulation of cells for IL-10 production 

 

To induce production of IL-10 by B cells, PBMCs and isolated B cells need to be 

stimulated. PBMCs are thawed and plated in 96 well plates, alternatively B cells can 

be isolated prior to plating. Stimulations were added as described below and cells 

were incubated at 37oC 5% CO2 for 72h. 

 

2.8.1. CpG and mCD40L stimulation 

 

Cells were cultured with final concentration of 1µM CpGC (ODN 2395) 

(InvivoGen), or 10µg/ml MEGACD40L® (soluble, human, recombinant) (Enzo Life 

Sciences). CpGC stimulates both pDCs which produce IFNα that promotes IL-10 

production by B cells, and the B cells themselves. Cells were incubated for 72 hours 

at 37oC 5% CO2. 

 

2.8.2. CD3 stimulation 

 

For PBMCs αCD3 can be used to activate T cells, which in turn stimulate B cells via 

CD40. 96 well plates were pre-incubated with 0.5µg/ml anti-CD3 (Hit-3a) (BD 

Biosciences), for 2 hours at 37oC 5% CO2 to allow to adherence to the plate. Cells 

are subsequently added and incubated for 72h. 

 

2.9. Stimulation with PMA, Ionomycin, and Brefeldin for detection of 

cytokines by flow cytometry 

 

For analysis of cytokines for flow cytometry cells were incubated with 0.05µg/ml 

PMA, 0.25µg/ml Ionomycin and 5µg/ml Brefeldin (all Sigma-Aldrich), for the final 

5 hours of culture. At the 67 hour timepoint, the cell culture supernatant was 

carefully removed from the wells and replaced with supplemented RPMI, and PMA, 

Ionomycin and Brefeldin, and incubated for a final 5h at 37oC, 5% CO2. The 

supernatant was transferred into a new 96 well plate and can be frozen and -80oC for 

cytokine analysis by ELISA. 
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2.10. Flow Cytometry  

 

Samples were stained with antibodies for flow cytometry as per the table below. All 

samples were run on the BD LSR II (BD) and acquired using BD FACS Diva except 

the LEGENDScreenTM, which was run on the Verse (BD) and acquired using BD 

FACSSuite™ v1.0 (BD). Full details of all antibodies used can be found in Table 

4.1. For panel setup and compensation single stains were made using compensation 

beads (Anti-Mouse Ig, κ/Negative Control Compensation Particles Set, BD), by 

adding one drop of each of the beads (positive and negative control) and 1µl of 

antibody in 500µl of FACS buffer. Before acquisition of samples, voltages for the 

lasers were adjusted to minimise compensation between samples, then a 

compensation matrix was generated using the single stain controls. All flow 

cytometry data was analysed using FlowJo 8.7. or 10.5 (Treestar), fluorescence 

minus one (FMO) controls were used to set gating for analysis to define positive 

staining. T-distributed Stochastic Neighbor Embedding analysis and generation of 

vSNE plots was performed in FlowJo 10.5. 
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Table 2.1 Antibodies for flow cytometry.  
Target, fluorochrome colour, isotype, clone and supplier for antibodies used for cell 
surface markers and cytokines, for analysis by flow cytometry. 
 
Cell 
Surface 
Marker 

Colour Isotype Clone Company Dilution 

CD11c BV510 Mouse IgG1, κ 3.9 BioLegend 1 in 50 
CD11c BV421 Mouse IgG1, κ 3.9 BioLegend 1 in100 
CD127 BV510 Mouse IgG1, κ A019D5  BioLegend 1 in 50 
CD127 BV421 Mouse IgG1, κ A019D5 BioLegend 1 in 100 
CD138 APC Mouse IgG1, κ DL-101  BioLegend 1 in 50 
CD150 BV421 Mouse IgG1, κ A12 BD 1 in 100 
CD150 PE Mouse IgG1, κ A12 

(7D4) 
BioLegend 1 in 100 

CD158d APC Mouse IgG1, κ mAb 33 
(33)  

BioLegend 1 in 50 

CD167a PE Mouse IgM, κ 51D6 BioLegend 1 in 100 
CD170 PE Mouse IgG1, κ 1A5 BioLegend 1 in 100 
CD172α/β 
(SIRPα/β) 

APC Mouse IgG1, κ SE5A5  BioLegend 1 in 50 

CD19 BV785 Mouse IgG1, κ HIB19 BioLegend 1 in 50 
CD19 APC-Cy7 Mouse IgG1, κ SJ25C1 BD 1 in 100 
CD1a PE/Dazzle 

594 
Mouse IgG1, κ HI149  BioLegend 1 in 100 

CD1a BV421 Mouse IgG1, κ HI149 BioLegend 1 in 100 
CD1c BV421 Mouse IgG1, κ L161  BioLegend 1 in 100 
CD226 PerCP/Cy5.5 Mouse IgG1, κ 11A8 BioLegend 1 in 50 
CD226 APC Mouse IgG1, κ 11A8 BioLegend 1 in 50 
CD24 PE-Cy7 Mouse IgG2a, κ ML5 BD 1 in 25  
CD307e APC Mouse IgG2a, κ 509f6 BioLegend 1 in 50 
CD324 APC/Fire 750 Mouse IgG1, κ 67A4  BioLegend 1 in 50 
CD324 APC Mouse IgG1, κ 67A4  BioLegend 1 in 50 
CD335 PerCP/Cy5.5 Mouse IgG1, κ 9E2 BioLegend 1 in 50 
CD335 BV421 Mouse IgG1, κ 9E2 BioLegend 1 in 100 
CD338 FITC Mouse IgG2b, κ 5D3 BioLegend 1 in 50 
CD338 PE Mouse IgG2b, κ 5D3 BioLegend 1 in 100 
CD38 BV605 Mouse IgG1, κ HIT2 BioLegend 1 in 25 
CD38 FITC Mouse IgG1, κ HIT2 BD 1 in 100 
CD4 V500 Mouse IgG1, κ RPA-T4 BD 1 in 100 
CD62L BV421 Mouse IgG1, κ DREG-

56 
BioLegend 1 in 100 

CD97 FITC Mouse IgG1, κ VIM3b BioLegend 1 in 50 
CD97 PE Mouse IgG1, κ VIM3b BioLegend 1 in 100 
DR3 PE Mouse IgG1, κ JD3 BioLegend 1 in 100 
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Ig light 
chain κ  

BV421 Mouse IgG1, κ MHK-49 BioLegend 1 in 100 

NOTCH2 APC Mouse IgG2a, κ MHN2-
25 

BioLegend 1 in 50 

 
Cytokine Colour Isotype Clone Company Dilution 
IFNγ  BV510 Mouse IgG1, κ 4S.B3 BioLegend 1 in 25 
IL-10 APC Rat IgG2a JES3-

19F1 
BD 1 in 25 

IL-17a BV711 Mouse IgG1, κ BL168 BioLegend 1 in 25 
IL-6 FITC Mouse IgG1, κ MQ2-

13A5 
eBiosciences 1 in 50 

TNFα eFlour450 Mouse IgG1, κ MAb11 eBiosciences 1 in 25 
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2.10.1. Ex-vivo staining 

 

Cells for staining were plated in a 96-well plate at a 5x105 cells per well. Cells were 

washed twice with 200µl/well 1X PBS (1in 10 dilution of 10X PBS in double 

distilled (dd) H2O) by centrifugation at 500 x g, for 5 minutes. Samples were stained 

with LIVE/DEAD™ Fixable Blue Dead Cell Stain (Invitrogen) (1:500 dilution in 

PBS) and the plate incubated for 20 minutes at room temperature (RT). Cells were 

subsequently washed twice in FACS buffer (1X PBS plus 1% FCS and 0.01% 

sodium azide) and stained with cell surface antibodies at the required concentration 

(see Table 2.1) in a volume of 50µl and incubated at 4oC for 30 minutes. Appropriate 

FMO controls were also generated. After incubation with antibodies, cells were 

washed twice in FACS buffer and fixed with 100µl/well fixation buffer (BioLegend) 

for 10 minutes at 4oC. Finally cells were washed and resuspended in FACS buffer 

and data was acquired on the LSR II flow cytometer (BD). 

 

2.10.2. Intracellular staining after culture 

 

Cells were cultured with stimulations as required (e.g. CpGC for 72h), followed by 

0.05µg/ml PMA, 0.25µg/ml Ionomycin and 5µg/ml Brefeldin for final 5 hours of 

culture for detection of cytokines, as described above. Cells were stained with 

LIVE/DEAD™ Fixable Blue Dead Cell Stain and cell surface markers as described 

above. After staining of cell surface markers, cells were washed twice with FACS 

buffer, and then incubated in 100µl of intracellular fixation buffer (eBiosciences) at 

4oC for 20 minutes. After incubation, cells were washed twice with 1X 

permeabilisation buffer (diluted 1 in 10 from 10X stock) (eBioscience) and 

incubated for 5 minutes with 25µl of permeabilisation buffer at 4oC. 25µl of 

permeabilisation buffer containing the cytokine antibodies diluted at double 

concentration was added to the cells and they were incubated for a further 40 

minutes at 4oC. Finally, cells were washed and resuspended in FACS buffer, and 

data acquired on the LSR II. 

 

 

 



 83 

2.11. LEGENDScreenTM 

 

LEGENDScreenTM (BioLegend) kits were used to preform high throughput flow 

cytometry using the BD FACSVerse (BD). Peripheral blood mononuclear cells 

(PBMCs) from HCs and RA patients were analysed using the LEGENDScreenTM as 

per the manufacturer’s protocol with several modifications as described below. The 

kits were validated before use as a tool for evaluating the expression of cell surface 

markers in PBMCs and on specific cells subtypes within PBMCs (T cells and B 

cells). This work was done in in collaboration with William Sanderson (previous 

PhD student in the laboratory), Dr Marsilio Adriani (previous Post-Doc at UCL), and 

in connection with BioLegend; when this project began the LEGENDScreenTM had 

not been published. LEGENDScreenTM staining was done on total approximate 40 

million PBMCs; this allowed for staining of 120,000 cells per LEGENDScreenTM 

PE-antibody and provided sufficient resolution for analysis of the smallest B cell 

population of interest (immature B cells), which represent around 5-10% of the total 

B cell population. Inter-assay variability was validated by comparing data from the 

same sample ran repeatedly at three different timepoints, and intra-assay variation 

was analysed by comparing average expression across the four plates (see Chapter 3 

Results I for more details). This confirmed the reproducibility of LEGENDScreenTM 

for the analysis of PBMCs and is outlined in more detail in Chapter 3 Results I.  

 

The kit contains lyophilized PE-antibodies, with one PE-conjugated antibody per 

well across 4 x 96-well plates (Figure 2.1). The kit contains antibodies against 332 

different cell surface proteins and appropriate isotype controls. The lyophilized 

antibodies were reconstituted with sterile-filtered water (Sigma) prior to the addition 

of sample. Plates were spun at 600 x g for 5 minutes, then reconstituted with 25µl of 

deionised water. Reconstituted LEGENDScreenTM plates were split into two new 

sets of 4 plates suitable for the Verse FACS machine, to allow the simultaneous 

staining of two samples. Since I was using the minimum recommended number of 

cells for staining, the PE-conjugated antibodies would be in excess, and therefore the 

split plates still contain sufficient antibody (in excess) for accurate staining. 

Reconstituted plates were kept at 4oC in the dark. An additional step was included at 

this stage whereby PBMCs were stained in a volume of 10ml using LIVE/DEAD™ 

Fixable Blue Dead Cell Stain (1 in 500 in PBS) in the dark at RT for 20 minutes to 
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allow exclusion of dead cells during analysis (Dead Cell Stain not included within 

the kit). The cells were washed, resuspended in the Cell Staining Buffer provided 

within the kit and seeded at a density of 120,000 cells/well (2.4x106/ml) into 96 well 

plates containing the PE antibodies for the 332 markers and isotype controls. Plates 

containing the PBMCs were incubated at 4oC in the dark for 30 minutes. A second 

additional step was included to allow identification of markers on specific immune 

cells; cells were washed by centrifuging plates at 500 x g for 6 minutes and 50 µl of 

the following antibodies diluted in FACS buffer were added per well; CD4 V500 (1 

in 100), CD19 APC-Cy7 (1 in 100), CD24 PE-CY7 (1 in 200), CD38 FITC (1 in100) 

(not included in the kit). Cells were incubated at 4oC for 20 minutes in the dark to 

allow for staining. Hence, cells were stained with a total of 5 different conjugated 

antibodies, plus a Dead Cell Stain, for flow cytometry. This allowed analysis of each 

of the 332 different markers on PBMCs total, CD4+ T cells, CD19+ B cells and 

CD19+CD24hiCD38hi immature B cells, CD19+CD24intCD38int mature B cells and 

CD19+CD24hiCD38lo memory B cells (see Chapter 3 Results I Figure 3.1 for further 

details of gating strategy). Cells were washed and fixed with Fixation Buffer 

contained within the LEGENDScreenTM kit, for 15 minutes at 4oC in the dark before 

being washed again and resuspended in 120µl of Cell Staining Buffer. Appropriate 

single stain controls were also generated for calibrating the flow cytometer (V500, 

APC-Cy7, PE-Cy7, FITC, Blue UV and PE). Plates were run on the Verse FACS 

machine (BD), using an automated plate reader. Labels for each well with the 

antibody from the LEGENDScreenTM kit were inputted into the Verse software and 

saved as a template that could be used for each sample run. Each plate took 

approximately 2 hours to run, with 4 plates per sample and two samples stained 

simultaneously, totaling approximately 8 hours run time. See Figure 2.1. 
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Figure 2.1. Overview of the LEGENDScreenTM platform. 
The LEGENDScreenTM kit consists of four 96-well plates with lyophilized PE-
conjugated antibodies against 332 cell surface marker proteins and appropriate 
isotype controls, with one antibody per well. PBMCs from HC and RA patient 
samples are first stained with a Blue Dead Cell Stain (1), before being seeded at a 
density of ~120,000 cells per well into the LEGENDScreenTM plates (2). Each well 
contains one PE-conjugated antibody (3), and cells are further stained with 
antibodies against CD4, CD19, CD24 and CD38 to delineate CD4+ T cells, CD19+ B 
cells and CD19+CD24hiCD38hi immature B cells, CD19+CD24intCD38int mature B 
cells and CD19+CD24hiCD38lo memory B cells (4). Samples are analysed using flow 
cytometry (5).  
  

1. Approx. 4x107 PBMCs incubated 
with Blue Dead Cell Stain 

2. 120,000 cells per well 

3. Each well contains a PE-
conjugated antibody against a 
cell surface marker 

PBMC 

Blue Dead 
Cell Stain 

αCD4 

αCD19 

αCD24 
αCD38 

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12"

A"

B"

C"

D"

E"

F"

G"

H"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12"

A"

B"

C"

D"

E"

F"

G"

H"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12"

A"

B"

C"

D"

E"

F"

G"

H"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12"

A"

B"

C"

D"

E"

F"

G"

H"

Plate 1 

Plate 4 Plate 3 

Plate 2 

8" 9" 10" 11" 12"

4. Cells further stained with 
antibodies against CD4, 
CD19, CD24 and CD38  

5. Samples analysed using flow cytometry 



 86 

2.12. Isolation of cell subsets using fluorescence activated cell sorting 

 

Cells were sorted using the FACS Aria (BD). PBMCs or isolated B cells as required 

were stained with fluorescence conjugated antibodies against specific cell surface 

proteins that delineate required cells types, and thus allow the cells to be sorted. 

PBMCs were thawed and counted, as described; if required B cells were isolated 

using the EasySep™ Human B Cell Enrichment Kit, as described, and/or cultured. 

Cells for sorting are washed twice (500 x g, 8 minutes) and resuspended in MACS 

buffer (PBS + 1% FCS, 0.4% EDTA) for staining at 1x108 cells/ml. Conjugated 

antibodies are added, at a concentration of 10µl of antibody per 20 million cells, and 

incubated at 4oC for 20 minutes. Cells are washed twice in MACS buffer (500 x g, 8 

minutes) and resuspended in a volume of 1x108cells/ml. Cells were filtered into blue 

filter capped FACS tubes and flushed through with MACS buffer so cells were at a 

final concentration of 5x107/ml for sorting. Single stains were made up in 500µl of 

MACS buffer. Directly prior to the sort DAPI was added to the cells (1 in 10,000 

dilution) to detect dead cells. For collection of sorted cells, polypropylene FACS 

tubes were prepared with media for collection (RMPI + 50% FCS); one tube per 

population to be sorted. Cells were sorted using the FACS sorter, drawing gates on 

the software to define required populations to be sorted. After sorting, cells were 

counted, washed twice (500 x g, 8 minutes) and resuspended at the volume required 

for the experiment, in the required media. 

 

2.13. T cell suppression assay with FACS sorted B cells 
 

T cells and sorted B cell population’s were cultured at a ratio of 1:1 for 72h. Cells 

were stimulated with 0.5µg/ml anti-CD3 (to activate T cells) with or without CpGC 

(1µM) (to activate B cells) and 0.05µg/ml PMA, 0.25µg/ml Ionomycin and 5µg/ml 

Brefeldin added for the final 5h of incubation (all as described). Cells were also 

cultured with/without 10µg /ml LEAF™ Purified anti-human IL-10 and IL-10R 

(CD210) (both BioLegend), as required. Furthermore, B cells were incubated with 

5µg/ml human Siglec-5/Siglec-14 antibody or 5µg/ml monoclonal mouse IgG1 

isotype control (both R&D systems) for 30 minutes at 37oC and 5%CO2 prior to their 

addition to T cells, as required. CD4+ CD25- T cells were sorted from freshly 

defrosted PBMC samples. CD19hiCD170hi and CD19+CD170int/low B cells were 
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sorted from B cells that were purified using the EasySep™ Human B Cell 

Enrichment Kit as described and cultured at 1 million cells per well in 200µl 

supplemented RPMI, with CpGC for 72h at 37oC, to induce expansion of the 

CD170hi population. Cytokine production was assessed by intracellular cytokine 

staining for flow cytometry as described and supernatants were collected and 

analysed for IL-10 by ELISA. 

 

2.14. ImageStream® 

 

ImageStream is a flow cytometry based imaging technique. PBMCs were defrosted 

and counted as described and plated at 1x106 per well in a 96 well plate. Cells were 

either rested overnight at 37oC or cultured for 72h with 1µM CpGC, and 0.05µg/ml 

PMA, 0.25µg/ml Ionomycin and 5µg/ml Brefeldin for the last 5 hours of culture for 

cytokine production. Cells were stained with antibodies against cell surface and 

intracellular proteins as described above. Stained samples are suspended in 30µl 

FACS buffer in 1.5ml eppendorfs and analysed using the ImageStreamX Mark II 

(Amnis). Analysis was done using IDEAS software (Merck). Co-localisation of 

proteins was determined by calculating Bright Detailed Similarity score; Pearson’s 

correlation coefficient was calculated for localized bright spots with a radius of 3 

pixels or less, and log transformed to give the Bright Detailed Similarity score. A 

score of around greater than two can be thought of as co-localised. Internalisation of 

a protein was determined by calculating the internalised protein as a ratio of the total 

protein. The Internalization score is a log of this ratio, with a higher number 

suggesting greater internalisation. 

 

All samples were stained with LIVE/DEAD Fixable Violet Dead Cell Stain (Thermo 

Fisher) and the antibodies outlined in Table 2.2  
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Table 2.2. Fluorochrome conjugated antibodies used for ImageStream 
experiments. 
 
Recycling, and co-localisation with endosomes/lysosomes 

Marker Colour Isotype Clone 

CD19  Alexa Fluor® 488 Mouse IgG1, κ HIB19 

CD170 PE Mouse IgG1, κ 1A5  

TfR  PE/Cy7 Mouse IgG2a, κ CY1G4  

LAMP-1 Brilliant Violet 605™ Mouse IgG1, κ H4A3 

 
Co-localisation with IgM 

Marker Colour Isotype Clone 

CD19  PECy7 Mouse IgG1, κ HIB19 

CD170 PE Mouse IgG1, κ 1A5  

CD22 APC Mouse IgG1, κ HIB22 

IgM FITC Mouse IgG1, κ MHM-88  

 

IL-10 

Marker Colour Isotype Clone 

CD19  Alexa Fluor® 488 Mouse IgG1, κ HIB19 

CD170 PE Mouse IgG1, κ 1A5  

CD24 PE/Cy7 Mouse IgG2a, κ ML5 

CD38 Brilliant Violet 605™ Mouse IgG1, κ HIT2 

IL-10 APC Rat IgG2a JES3-19F1 
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2.15. Cytokine detection by ELISA 

 

Enzyme-linked immunosorbent assay (ELISA) was used to measure and quantify IL-

10 in the supernatants of cultured cells (Human IL-10 DuoSet ELISA R&D 

systems). Supernatants were collected from cultured cells, stimulated to produce IL-

10, prior to replacement of media with media containing 0.05µg/ml PMA, 0.25µg/ml 

Ionomycin and 5µg/ml Brefeldin for final 5h of stimulation. Supernatants were 

carefully transferred into a new 96-well plate and frozen at minus 80oC until 

required. Supernatants were left to defrost at RT before using in the ELISA. The 

ELISA was performed as per the manufacturers instructions on undiluted culture 

supernatants. Flat-bottomed 96-well plates were coated overnight with 50µl/well of 

the 2µg/ml capture antibody. The plate was then washed four times with 200µl/well 

PBS-Tween and blocked with 1% Bovine Serum Albumin (BSA) (Santa Cruz 

Biotechnology) in PBS (=Reagent Diluent) for one hour. The plate was washed (x4) 

again and undiluted supernatant samples added for 2 hours at RT or 4oC overnight. 

In addition, an 8-fold serially diluted recombinant human IL-10 standard (31.2-

200pg/ml) was also added as a control from which to generate the standard curve. 

After incubation the plate was washed (x4), incubated with 100µl of 75ng/ml 

detection antibody for 2h at RT, washed, and incubated with 100µl working dilution 

(1 in 40) Steptavidin-HRP for 20 minutes at RT in the dark, before washing (x4) a 

final time. 100µl substrate solution (TMB Stabilized Chromogen, Life Technologies) 

was added and cells incubated for 10-15 minutes in the dark until the colour had 

developed sufficiently, as indicated by a gradual colour gradient across the serially 

diluted samples. At this point, 50µl of Stop Solution 2N Sulfuric Acid (R&D) was 

added to quench the reaction. The optical density (OD) was read immediately using 

a microplate reader at 450nm. 

 

2.16. Recycling and internalisation assays 

 

PBMCs were thawed and counted as described. B cells were isolated using the 

EasySep™ Human B Cell Enrichment Kit as described. B cells were plated at 

200,000 cells per well in a total 100µl volume in a 96 well plate in supplemented 

RPMI. Cell surface CD170 was blocked by adding saturating amounts of anti-

CD170 antibody on ice for 30 minutes (10µg/ml). Cells were washed twice in 
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supplemented RPMI, and resuspended in supplemented RPMI. Cells were incubated 

for 60 minutes (37oC) to allow CD170 to be recycled to the surface. Control cells 

were left on ice. Internalised (un-blocked CD170) recycled to the surface can be 

stained using CD170-PE and analysed by flow cytometry (as described). Recycling 

was measured as the increase in CD170 MFI (median fluoresce intensity) compared 

to cells left on ice. 

 

Alternatively, PBMCs were plated at 1x106 per well in 100µl of supplemented RPMI 

and left to rest overnight at 37oC. After resting cells were stained with the PE 

conjugated antibody against CD170 in supplemented RPMI, on ice for 30 minutes. 

Excess CD170-PE was washed off and cells were either left on ice or incubated for 

60 minutes at 37oC. Cells were further stained for flow cytometry and internalisation 

of CD170 analysed by ImageStream® (as described). 

 

2.17. Calcium Flux 

 

PBMCs were thawed and counted as described. B cells were isolated using the 

EasySepTM Human B Cell Enrichment Kit as described. After isolation cells were 

counted, washed and resuspended in supplemented RPMI, and plated in a 96 well 

plate at 1 million cells per well. As required B cells were blocked prior with anti-

CD170 (5µg/ml), for 30 minutes at 37oC, 5% CO2. After blocking cells were washed 

in RPMI + Probenecid (5µl in 5ml) (an organic anion transporter inhibitor) 

(Invitrogen). Cells were loaded with Fluo-4 – AM dye for Ca2+ flux (Invitrogen), by 

incubating cells with 1µM Fluo-4 – AM diluted in RPMI +Probenecid for 30 

minutes at 37oC, 5% CO2. Cells were washed twice in RPMI +Probenecid and left to 

rest for minimum 30 minutes at 37oC, 5% CO2. Baseline Flou-4 MFI was recorded 

for 30 seconds before adding AffiniPure F(ab’)2 Fragment Goat Anti-Human IgA 

+IgG +IgM (H+L) (Jackson ImmunoResearch) (final concentration 20µg/ml, diluted 

in PBS, warmed to RT before adding), and then the sample was recorded for a 

further 3 minutes. Samples were analysed using the kinetics function in FlowJo v8.7. 
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2.18. SIGLEC5/14 genotyping 

 

2.18.1. DNA extraction 

 

DNA was extracted from thawed frozen PBMC samples using the QIAamp DNA 

Mini Kit (Qiagen), as per the manufacturers instructions. 5x106 cells were 

resuspended in 200µl of PBS in 1.5ml eppendorfs. To lyse cells, 20µl of QIAGEN 

Protease was added and mixed by pipetting, followed by 200µl of Buffer AL. 

Samples were then vortexed for 15 seconds to mix, and incubated at 56°C for 10 

minutes. To extract the DNA 200µl of ethanol as added to each sample, and samples 

were vortexed again to mix. Next the samples were pipetted onto QIAamp Mini spin 

columns with a 2ml collection tube. Columns were centrifuged at 6000 x g for 1 

min; the collection tube containing filtrate was discarded and replaced with a clean 

one. Next, 500µl of Buffer AW1 was added, and samples centrifuged at 6000 x g for 

1 minute and the collection tube discarded. Then 500µl of Buffer AW2 was added, 

samples centrifuged at 17,000 x g for 3 min, and the collection tube discarded again. 

To elute QIAamp Mini spin columns were placed in a clean 1.5ml eppendorf and 

200µl Buffer AE added. Samples were incubated at room temperature (15–25°C) for 

5 minutes. Finally, columns were centrifuged at 6000 x g (8000 rpm) for 1 minute 

and filtrate collected.   

 

To assess quality and quantity of yield, samples were analysed using the 

NanoDrop™ Spectrophotometer ND-1000 (Labtech) and ND-1000 v3.7.1 software. 

DNA samples were stored at minus 20oC. 

 

2.18.2. PCR for genotyping of SIGLEC5 and SIGLEC14 

 

The following 15µl reaction mix was used for each sample; 1µl DNA (50-70ng/µl) 

(or water; no DNA control), 11.01µl nuclease free water (Ambion), 3µl 5x GC 

Buffer (OneTaq Polymerse kit), 0.3µl dNTPs (NEB), 0.09 µl OneTaq Polymerase 

(NEB), plus either 0.3µl hSig14 fwd (10pM) and 0.3µl hSig14 rev (10pM), or 0.3µl 

hSig5 fwd (10pM) and 0.3µl hSig5 rev (10pM), or 0.3µl hSig14 fwd (10pM) and 

0.3µl hSig5 rev (10pM).  
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The following primers were used (5’à 3’); 

hSig14 fwd AAA GTG CTG CAG CTA TGG GAC,  

hSig14 rev TCC TCT CCC AAT GCT GAA CC,  

hSig5 fwd ACT GCC GTC CCA CAA GAC C,  

hSig5 rev ACA GAA ACC CAC CAA GCG GG.  

 

PCR was performed using the OPTICON PCR instrument (BioRad). Samples were 

run on the following PCR cycle; 94oC 1 minute 30 seconds, [94oC 20s, 57.5oC 30s, 

68oC 2m30s]x35 cycles, 68oC 3m00s. 

 

2.18.3. Agarose gel electrophoresis 

 

A 1% agarose gel was made by heating 1g of agarose in 100ml of Tris-Acetate 

EDTA buffer (10x Tris Acetate-EDTA (Sigma) diluted to 1X in PBS) until it 

dissolved. 10µl of SYBR® Safe DNA gel stain (Invitrogen) was added and the 

mixture poured into the gel casing with a comb for up to 20 wells, and left to cool for 

minimum 20 minutes until set. The set gel was placed in the gel electrophoresis 

apparatus and the apparatus filled with Tris-Acetate Buffer until the gel was 

completely covered. 5µl of 1Kb Hyper Ladder (BioLine), or 15µl of sample plus 

1.5µl of loading dye (5X sample loading buffer, BioLine), were added to the wells. 

Samples were run at 100 volts for approximately 40 minutes, until the loading dye 

reached the far end of the gel. The gel was read on a UV transilluminator (BioRad) 

using Quantify One software. The expected bands are as follows; 

 

Wild type  Sig5 2,097 bp + Sig14 1,671 bp 

Heterozygous  Sig5 2,097 bp  + Sig14 1,671 bp + Sig5/14  1,491 bp 

Homozygous  Sig5/14 1,491 bp 

 

2.19. Statistical Analysis 

 

Statistics were performed using Prism (GraphPad) unless otherwise mentioned. P 

values were calculated using two-tailed t-test, ANOVA (Analysis of variance) (with 
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multiple comparisons) or multiple t-tests, or equivalent non-parametric tests, as 

required and as described below. Values are presented as dot plots with mean ± 

standard error mean (SEM), or as box and whisker plots with whiskers showing 

minimum and maximum values, and box showing upper and lower quartiles and 

median value. P values less than 0.05 were considered significant with p<0.05*, 

p<0.01** and p<0.001***.  

FACS files were analysed using FlowJo version 8.7. and version 10.5 

(TreeStar). tSNE analysis was performed using the tSNE plugin for FlowJo 10. 

Volcano plots for LEGENDScreenTM data were generated by plotting p value 

(unpaired multiple t-test) versus fold-change. Fold change was determined by 

calculating the difference between groups as a ratio.  

Outliers were removed in the validation analysis using the ROUT method 

(Robust regression and Outlier removal) in Prism (Q=1%), where stated.  

Generation of heatmaps was performed using Multiple Experiment 

Viewer_4_8 (MeV_4_8) (TM4). Heatmaps provide a visual overview of the 

differences between groups and show mean (average) expression for each marker, 

with each square representing one of the 332 LEGENDScreenTM markers. 

Principle component analysis (PCA) was performed using JMP statistical 

software package Version 12.0.1 (SAS Institute). This dimensionality reduction 

technique allowed us to ascertain if our LEGENDScreenTM derived signatures were 

powerful enough to define our populations of interest (e.g. ADA+ versus ADA-, or 

HC versus RA patients). 

Receiver operating characteristic (ROC) curves were generated, and area 

under the curve (AUC) calculated in JMP. A positive outcome was considered either 

an ADA+ individual or an RA patient accordingly, with ROC curves used to 

determine the ability of LEGENDScreenTM derived and validated surface markers to 

predict these outcomes. 

For two variables, paired or unpaired t-test analysis was performed as 

required, assuming normal distribution. Where samples did not exhibit normal 

distribution, a Mann-Whitney test was performed. Normality was tested using 

D’Agostino and Pearson normality test. Paired analysis was performed for paired 

values such as the same individual with and without treatment. For three or more 

variables, unpaired or paired ANOVA was performed assuming normal distribution. 

For non-normal data a Kruskal-Wallis test was performed. 
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2.19.1. Pipeline for analysis of LEGENDScreenTM data and signature 

generation 

 

The pipeline for analysis of the extensive LEGENDScreenTM data set was developed 

as part of this project. This is also explained in the Results chapters. 

Identification of differentially expressed markers was done using multiple t-

test analysis, with markers with p<0.05 considered to be significant. To confirm 

robustness of these markers, they were validated in an independent cohort. T-test 

analysis was performed assuming normal distribution. 

To exclude markers associated with inflammation I correlated the expression 

of each of the 332 LEGENDScreenTM markers on the total RA cohort, with the 

respective DAS28 score for each patient. Any markers that showed significant 

correlation (r), p<0.05, were considered to be associated with inflammation and 

removed. 

In the ADA-signature analysis to remove treatment-associated markers, I 

compared expression between ADA+, ADA- and cDMARD treated RA patients (as a 

control). For normally distributed samples (tested using D’Agostino and Pearson 

normality test), I performed an ANOVA test to compare means; for non-normally 

distributed data I performed a Kruskal-Wallis test. In the RA signature analysis to 

exclude treatment associated markers, I selected only markers that were different 

between HC and adalimumab treated RA and between HC and cDMARD treated 

RA. 

To confirm the selected markers were sufficient to define our populations of 

interest (e.g. ADA+ versus ADA-, or HC versus RA patients), I performed a PCA. 

In the validation cohort I use an unpaired t-test analysis or a Mann-Whitney 

test to compare marker expression between the two groups. A ROC curve analysis 

was performed on successfully validated markers as described above to determine 

predictive power. 

 For continuous clinical parameters including DAS28, CRP, ESR, age, BMI 

and ADA titre, I performed a correlation analysis with SIRPα/β expression using 

Pearson correlation. For categorical clinical variables, MTX co-treatment, gender 

and smoking status I used a t-test analysis.  
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3. Results I – The LEGENDScreenTM 
 

In this chapter I establish and validate LEGENDScreenTM as a novel high-throughput 

platform for the analysis of PBMCs and immune cell subsets in HCs and RA patients 

by flow cytometry. 

 

3.1. Establishment and validation of the LEGENDScreenTM staining 

 

Amongst the many different cell types involved in the pathogenesis of RA, B and T 

cells are established key players in the initiation and chronicity of disease (1). In 

particular B cells are known to mediate inflammatory roles via the release of 

autoantibodies and pro-inflammatory cytokines, as well as inhibition of 

inflammation via Bregs (325). As outlined in the methods I modified the 

LEGENDScreenTM protocol to include the addition of antibodies to delineate CD4+ 

T cells, CD19+ B cells, and CD19+CD24hiCD38hi immature B cells, 

CD19+CD24intCD38int mature B cells and CD19+CD24hiCD38lo memory B cells. 

This allowed the expression of the 332 LEGENDScreenTM markers to be analysed 

on these different cell populations. The gating strategy used is shown in Figure 3.1. 

Firstly, I gated on lymphocytes using forward (FSC-A) and side (SSC-A) scatter, 

then I used the height and width, forward and side scatter parameters to exclude 

doublets, and gated out dead cells using the Dead Cell Stain. B cells were defined as 

CD19+ and T cells as CD4+. CD24 and CD38 were used to identify B cell subsets 

within the CD19+ cell population. The frequency of expression of the 

LEGENDScreenTM markers was defined by gating on the appropriate isotype control 

contained within the kit. 

 
Using known lineage-specific markers, the specificity of the platform for each cell 

subset (CD19+ B cells and CD4+ T cells) was corroborated (Figure 3.2). B cell and T 

cell populations gated based on CD19 and CD4 expression respectively showed 

consistent expression of their lineage specific markers, supporting the chosen gating 

strategy for these cell subsets. 
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Figure 3.1. LEGENDScreenTM gating strategy. 
PBMCs from frozen samples were stained with the LEGENDScreenTM kit in 
addition to markers against CD19, CD4, CD24 and CD38 and a Blue Live Dead 
stain to assess viability. Representative flow cytometry plots showing the sequential 
gating strategy for CD19+ B cells, CD4+ T cells and B cell subsets based on CD24 
and CD38 expression on CD19+ B cells. Cells were gated using side scatter-area 
(SSC-A) and forward scatter-area (FSC-A) parameters, followed by exclusion of 
doublets using FSC-height(H) and FSC-A, and SSC-H and SSC-width(W), and 
exclusion of dead cells. Immune cell subsets were gated as shown and expression of 
PE-conjugated LEGENDScreenTM markers gated based on specific PE isotype 
control contained within the kit. 
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Figure 3.2. Validation of the flow cytometry gating strategy for defining CD4+ T 
cells and CD19+ B cells in the LEGENDScreenTM analysis. 
PBMCs from 10 HCs were stained with the LEGENDScreenTM and additional 
antibodies to identify CD19+ B cells and CD4+ T cells. Overlay histograms for 
markers (PE MFI) reported to be specific for CD4+ T cells (A), and CD19+ B cells 
(B), showing their expression on B cells gated using CD19 and T cells gated using 
CD4, to validate specificity (n=10). 
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3.2. Validation of the LEGENDScreenTM platform in healthy individuals 

 
As phenotyping using the LEGENDScreenTM had not previously been published, it 

was necessary to established the stability of this platform in terms of both intra- and 

inter- assay variability. This was done in collaboration with William Sanderson 

(previous PhD student in the laboratory), and Dr Marsilio Adriani (former Post-Doc 

at UCL). Validation was performed on PBMCs from 10 HCs. Inter-assay variability 

was assessed using PBMCs from the same HC isolated at a single time-point but 

analysed on three independent occasions within a month time period. MFI 

expression for the 332 markers on either T cells, B cells or monocytes was compared 

between each run and correlation calculated between the datasets (r) (Figure 3.1B). 

The line of regression (r) is close to one suggesting that both thawing of the cells and 

data collection by the FACSVerseTM remain constant over-time and did not 

dramatically affect the results. Very few points fall far from the line of regression, 

therefore I can be confident that I can compare samples run at different times and 

that any variation is not due to inter-assay variability. While some markers show 

some deviation, it is likely that these markers have particularly low MFI where a 

small difference is amplified in the correlation analysis but may not be biologically 

relevant. To assess intra-assay variability, the mean MFI for each of the plates from 

a single run were compared using one-way ANOVA (Figure 3.1C). This was done 

for three independent HCs and showed no significant difference in the MFI between 

the 4 plates.  
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Figure 3.3. Validation of LEGENDScreenTM for inter- and intra- assay stability. 
PBMCs from 10 HCs were stained using the LEGENDScreenTM kit. A) PBMCs 
from the same HC isolated at a single time point were analysed using the 
LEGENDScreenTM on three independent occasions (Run 1-3), marker expression 
was analysed (MFI) and correlation assessed using Spearman correlation coefficients 
(r). (B) Mean MFI from each of the four LEGENDScreenTM plates for 3 HCs 
(samples 1-3). Mean ±SD, one-way ANOVA. Experiments and analysis performed 
by Marsilio Adriani. 
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3.3. Validation of the LEGENDScreenTM for analysis of patients with RA.  

 

Our aim is to use the LEGENDScreenTM to compare differences between HCs and 

RA patients. To assess inter-patient variability, PBMCs isolated from 10 cDMARD 

treated RA patients (demographics in Table 3.1) were stained using the 

LEGENDScreenTM platform as described for HCs and including the addition of 

markers defining CD4+ T cells, CD19+ B cells and B cell subsets (CD24hiCD38hi 

immature B cells, CD24intCD38int mature B cells and CD24hiCD38lo memory B 

cells). I compared this data to that from the 10 HCs used in the prior validation, and 

took the standard deviation for each marker expressed (MFI) on the B cell 

population for the two groups (RA and HC). Wilcoxon non-parametric test of paired 

data did not show statistical differences in the average variation exhibited by the 

LEGENDScreenTM markers between HCs and RA patients (Figure 3.4). 
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Table 3.1 LEGENDScreenTM RA signature discovery cohort patient 
demographics and disease characteristics. 
 

  
Healthy 
controls 

DMARDs treated 
RA (biologic naïve) 

Adalimumab 
treated RA 

n 18 10 21* 
Sex, female n (%) 15 (79) 9 (90) 17 (81) 
Age (years), mean 

(SD) 35.2 (10.7) 45.6 (13.5) 58.5 (13.3) 
DAS28 (SD) - 3.95 (1.76) 3.26 (1.4) 
Seropositive 

(RF+/CCP+) (%) - 100 95 
CRP mg/l (SD) - 6.78 (4.75) 9.77 (15.6) 

Current Treatment 
   DMARDs (n) - 10 4* 

Adalimumab (n) - - 14 
Etanercept (n) - - 1* 

Tocilizumab (n) - - 2* 
*All patients previously treated with adalimumab and tested for ADA against 
adalimumab. Values in the table represent mean ± standard deviation (SD), or 
number of patients (n) with proportion of total (%) where indicated. 
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Figure 3.4. Inter-patient variation of LEGENDScreenTM marker expression 
(MFI) on B cells is not significantly different from variation observed within 
HCs. 
10 HCs and 10 cDMARD treated RA patients were stained using LEGENDScreenTM 
with additional antibodies to identify CD19+ B cells. Standard deviation was 
calculated for each of the 332 LEGENDScreenTM markers for either HCs or RA 
patients; each black dot represents one of the 332 LEGENDScreenTM markers. 
Wilcoxon testing showed no significant difference (p>0.05). 
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3.4. Summary 

 

In this first chapter I have demonstrated that the LEGENDScreenTM exhibits high 

intra- and inter- stability, and that our gating panel is sufficient to identify T and B 

cells. Furthermore, I show that inter-patient variation is not significantly greater that 

inter-HC variation. Therefore, I believe that the LEGENDScreenTM is a stable 

platform that will allow the investigation of phenotypical differences between HC 

and RA patients, on T cells, and B cells. This tool has the potential to uncover novel 

markers that may have important immunological roles or provide possible novel 

therapeutic targets.  
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4. Results II – Predicting ADA in adalimumab treated RA 

patients 
 

One of the major drawbacks of biological treatment is immunogenicity, the immune 

response against a drug, and the development of antibodies directed against the drug 

(anti-drug antibodies [ADA]) (140), which are often associated with a poorer clinical 

outcome (125, 326). Adalimumab, a fully human monoclonal antibody against tumor 

necrosis factor (TNF)α and a common first line biologic used in the treatment of RA, 

exhibits particularly high rates of immunogenicity (up to around a third of patients 

treated with adalimumab develop antibodies against the drug) (128, 129, 327). The 

identification of predictive biomarker/s that distinguish rheumatoid arthritis (RA) 

patients who are more likely to develop ADA in response to adalimumab, would 

considerably improve the clinical management of RA. To achieve this aim, I took 

advantage of the LEGENDScreenTM and compared adalimumab treated RA patients 

that have developed ADA to ADA negative patients. 

	
  

4.1. LEGENDScreenTM analysis identifies an immune-module associated 

with ADA in RA patients treated with adalimumab  

 

For the initial investigation of ADA in adalimumab treated RA patients with the 

LEGENDScreenTM platform, I used a cross-sectional cohort of patients recruited at 

UCL. Patients attending the rheumatology clinics that matched our recruitment 

criteria (RA, adalimumab treated) were identified and approached on the day of their 

appointment; enrolled patients were consented and blood samples were taken for 

PBMCs and serum. Clinical data including DAS28 score, CRP, RF, ESR, and anti-

CCP, smoking status, gender, age, and BMI were recorded on the day of the 

recruitment. Clinical details of patients used for LEGENDScreenTM experiments can 

be found in Table 4.1. Serum samples were sent in batches for ADA testing by 

ABIRISK collaborators at GSK and the recruitment of patients continued until 10 

ADA+ patients were identified. In our cross-sectional cohort of 55 adalimumab 

treated RA patients, approximately 20%, tested positive for ADA against 

adalimumab, this is within the expected range of ADA positivity based on reported 

literature of up to a third, and very close to the value found in a European 
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retrospective multicohort analysis, reporting an incidence of 19.2% (128, 129, 328) 

(Table 4.2).  

 

Co-treatment with MTX has been shown to reduce ADA levels (148), albeit not the 

incidence of ADA (124). In our cohort, although our samples size is too small to 

obtain firm results, fewer of the patients with detectable ADA are co-treated with 

MTX, which is in-line with reported observations. Furthermore, while the average 

dose of MTX in ADApos patients that are taking the drug is higher, this is likely to 

reflect the worse disease exhibited in this patient group, which is in part due to a 

failure of adalimumab as a result of ADA.  

 

To identify biomarker/s associated with an ADA response to adalimumab, I 

compared the surface immune-signature of PMBCs isolated from 10 ADA- versus 10 

ADA+ RA patients that were treated with adalimumab for a minimum of 12 months 

(Table 4.1). PBMCs were stained with fluorescently-conjugated antibodies 

identifying CD4+ T cells, CD19+ B cells, and immature, mature and memory B cell 

subsets in addition to the 332 cell surface markers included in the 

LEGENDScreen™ panel (Figure 3.2, Appendix A.3, and as described in Chapter 3 

Results I). The expression-pattern of surface markers on PBMCs appears to be 

distinct between ADA- and ADA+ RA patients (Figure 4.1A). The variation in 

marker expression is also present following analysis of CD19+ B cells and CD4+ T 

cells (Figure 4.1B), with a greater difference observed in B cells than in T cells. As 

many of the markers assessed by the LEGENDScreen™ platform were either not 

expressed or were expressed at a very low level, to increase the statistical power of 

future analyses, markers with less than 5% expression on all samples tested were 

excluded from this study. These markers were considered to not be expressed based 

on background staining observed for isotype controls of up to 5%. Inclusion of this 

criteria resulted in the removal of 74 B cell and 134 T cell-associated markers. 

Expression of the remaining markers was compared between ADA+ and ADA- RA 

patients using unpaired multiple t-test analysis to test if the differences observed 

were significant. B cells showed highest number of differentially expressed markers 

(ADA- vs. ADA+) (n= 22) compared to T cells (n=11) (p<0.05, multiple t-test) 

(Figure 4.1C).  These results together with the numerical and functional imbalance in 

B cells associated with the pathogenesis of RA (98, 325, 329), prompted us to focus 
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on differentially expressed markers expressed by B cell subsets. Respectively four, 

seven and nineteen DEMs were identified on mature, immature, and memory B cells 

between ADA+ and ADA- RA patients (Figure 4.1D, Appendix A.4). Of note, all 

these differentially expressed markers are down-regulated in ADA+ RA patients, 

compared to ADA-.  

 

Next, a systematic framework analysis (SFA) was used to distinguish between 

differentially expressed markers associated with the presence of ADA as opposed to 

disease severity and/or the effect of adalimumab therapy. The SFA is shown in 

Figure 4.2 and described as follows. Differentially expressed markers on memory B 

cells that correlated significantly with Disease Activity Score-28 (DAS28) (n=1) 

(Pearson correlation) were excluded from our study, as these were considered to be 

due to RA-related inflammation (Appendix A.5). None of the differentially 

expressed markers identified on mature and immature B cells correlated with 

DAS28. To account for treatment effect, I compared the expression of the 

differentially expressed markers in ADA-, ADA+ and cDMARD treated RA patients 

(RA-D). Using one-way ANOVA analysis or Kruskal-Wallis analysis for non-

normally distributed markers, I excluded markers that were significantly different 

between ADA- and RA-D, but not between ADA+ and RA-D. These markers were 

considered to be related to treatment, based on the assumption that ADA+ patients 

are typically non-responders to treatment, and therefore differences between ADA+ 

and ADA- patients may be due to the treatment not working and not ADA itself. 

Furthermore, patients treated with cDMARDs act as a non-adalimumab treated 

control to account for adalimumab specific treatment effects (Figure 4.3). I also 

removed markers that no longer showed significance following ANOVA analysis 

between ADA- and ADA+ samples in order to select markers that are more robustly 

different between ADA+ and ADA- and therefore more likely to be replicated in the 

validation cohort. Following the application of the SFA I was left with 7 

differentially expressed markers; CD167a and CD1c expressed on mature; IL-7Rα, 

CD138 and CD324 on immature and SIRPα/β and CD1a on memory B cells 

(expression shown in heatmap; Figure 4.4A). These 7 markers are henceforth 

defined as the ADA ‘module’. To ascertain if this selection of markers has sufficient 

statistical power to discriminate between ADA+ and ADA- RA patients, I performed 

a principal component analysis (PCA) (Figure 4.4B). This dimensionality reduction 
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technique demonstrated that the 7 parameters cluster ADA+ and ADA- patients 

separately with the first principle component accounting for 47% of the variation 

observed between the individual samples. 
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Table 4.1. ADA cross-sectional cohort patient demographics and disease 
characteristics. 
 

  

RA 
(adalimumab 

ADAneg) 

RA 
(adalimumab 

ADApos) 

DMARDs 
treated RA 

(biologic naïve) 
n 10 10 10 

Sex, female n (%) 7 (70) 9 (90) 9 (90) 

Age (years), mean (SD) 62.4 (14.8) 53.4 (10.5) 45.6 (13.5) 
DAS28 (SD) 3.05 (1.06) 3.63 (1.69) 3.95 (1.76) 

Seropositive 
(RF+/CCP+) (%) 100 90 100 

CRP mg/l (SD) 14.07 (21.54) 5.64 (6.20) 6.78 (4.75) 
Current treatment  

  DMARDs only (n)  3*  1* 10 
Adalimumab (n) 5 8 - 

Etanercept (n)  1* - - 
Tocilizumab (n)  1*  1* - 

Treatment       
MTX use, n (%) 7 5 5 

Average MTX dose, 
mg/week, mean (SD) 15.7 (3.6) 18 (51.1) 19 (2.0) 

Prednisolone use, n (%) 1 2 2 
Hydroxychloroquine 

use, n (%) 1 2 6 
Sulfasalazine use, n (%) 1 1 6 
  
*Previously treated with adalimumab.  
Values in the table represent mean ± standard deviation (SD), or number of patients 
(n) with proportion of total (%) where indicated. 
Adalimumab dose 40mg every two weeks, tocilizumab dose 4mg/kg every 4 weeks, 
etanercept does 25mg twice a week. 
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Table 4.2. ADA results for adalimumab treated UK cross-sectional cohort of 
RA patients. 
	
  
ABIRISK sample no.* ADA response 

(positive/negative) 
ADA titres 
(fold dilution) 

08-01-0007  P 16 
08-01-0008  N n/a 
08-01-0022 N n/a 
08-01-0025  P 2 
08-01-0026  N n/a 
08-01-0027 N n/a 
08-01-0037  P 8 
08-01-0040 N n/a 
08-01-0042 N n/a 
08-01-0046  N n/a 
08-01-0055 N n/a 
08-01-0057 N n/a 
08-01-0059 N n/a 
08-01-0063 N n/a 
08-01-0064  N n/a 
08-01-0065  N n/a 
08-01-0066 N n/a 
08-01-0068 N n/a 
08-01-0069  P <2 
08-01-0071  P <2 
08-01-0076  P <2 
08-01-0077 N n/a 
08-01-0085  N n/a 
08-01-0086  N n/a 
08-01-0087  N n/a 
08-01-0088  N n/a 
08-01-0107  P <2 
08-01-0109  P 2 
08-01-0119  P 80 
08-01-0123  N n/a 
08-01-0124  P 80 
08-01-0125  P 500 
08-01-0129  N n/a 
08-01-0134  P <2 
08-01-0135  P 320 
08-01-0137  N n/a 
08-01-0138  N n/a 
08-01-0139  N n/a 
08-01-0140  N n/a 
08-01-0142  N n/a 
08-01-0143  N n/a 
08-01-0148  N n/a 
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08-01-0149  P 20 
08-02-0002  N n/a 
08-02-0006  P 40 
08-03-0001  N n/a 
08-03-0002  N n/a 
08-03-0004  N n/a 
08-03-0006  N n/a 
08-03-0007  N n/a 
08-03-0009  N n/a 
08-03-0010  N n/a 
08-03-0012  P 20 
08-03-0013  N n/a 
08-03-0014  N n/a 
	
  
Negative (N) 39 80.20% 
Positive (P) 16 19.80% 
TOTAL 55  
	
  
*“08” = UK sample 

“01” = London, “02” = Basildon, “03” = Sheffield 
“00xx” = sample no. 
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Figure 4.1. LEGENDScreenTM analysis of adalimumab treated RA patients 
(cross-sectional cohort) identifies cell surface markers associated with ADA. 
PBMCs from patients treated with adalimumab defined as ADA+ (n=10) or ADA- 
(n=10) were stained with LEGENDScreenTM for 332 cell surface markers, in 
addition to antibodies against CD19, CD4 and CD24 and CD38. Heatmaps showing 
average frequency expression of each LEGENDScreenTM marker for each sample 
group (ADA+ and ADA-) for PBMCs (A), and CD4+ T cells and CD19+ B cells (B), 
each square represents one of the 332 markers, and are ranked according to 
expression in ADA- patients. Volcano plots showing fold-change of frequency 
expression between patient groups (ADA-/ADA+) (Log2) and p value (t-test) (Log10), 
in ADA- versus ADA+; for CD4+T cells and CD19+B cells (C), and mature 
(CD24intCD38int), immature (CD24hiCD38hi) and memory (CD24hiCD38lo) B cells 
(D). No markers passed the Holm-Sidak post-hoc test. Blue circle: significantly 
down-regulated markers; red circle significantly up-regulated markers.  
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Figure 4.2. Selection of markers for ADA module from LEGENDScreenTM 
analysis of cross-sectional cohort. 
Flow Diagram. One-way ANOVA analysis of ADA- vs. ADA+ vs. cDMARD treated 
(RA-D) RA patients (see also Figure 4.3). Fold change calculated as a ratio of the 
ADA+ value divided by the ADA- value. 
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Figure 4.3. Removal of differentially expressed markers from ADA module. 
One-way ANOVA analysis or Kruskal-Wallis (non-parametric data), of ADA- vs. 
ADA+ vs. cDAMRDs treated RA patients (RA-D) of LEGENDScreenTM expression 
data for differentially expressed markers that were retained following removal of 
markers associated with DAS28. Normality was determined using D’Agostino and 
Pearson normality; CD138, CD324, CD87, CD111, CD109, CD178, CD1c, and 
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CD59 were not normally expressed. (A) Markers retained. (B) Markers removed due 
to significant difference between ADA- and RA-D. (C) Markers removed as ADA- 
vs. ADA+ no longer significant. Box and whisker plot (min to max) *p≤0.05, ns=not 
significant.  
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Figure 4.4. The ADA-associated “immune-module”. 
PBMCs from patients treated with adalimumab defined as ADA+ (n=10) or ADA- 
(n=10) were stained with LEGENDScreenTM for 332 cell surface markers, in 
addition to antibodies against CD19, CD4, CD24 and CD38. (A) Heatmap showing 
mean frequencies of differentially expressed markers (p value defined in Appendix 
A.4), between patient groups on B cell subsets, following exclusion of markers 
associated with DAS28 and ‘treatment effect’ (see Figure 4.2). (B) PCA of 
frequency of expression of the differentially expressed markers on the 20 
adalimumab treated RA patients (ADA- black circles, ADA+ red squares) with 
contribution of each marker to the principal components denoted by length and 
direction of the corresponding red arrow. 
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4.2. Low frequency of SIRPα/β+memory B cells constitutes a risk factor for 

ADA development 

 

While previous studies have shown some molecular association with the 

development of ADA in RA patients (143, 144), currently there are no clinically 

accepted predictive biomarkers for ADA development in anti-TNFα treatment. I 

validated the B cell subset ADA-associated ‘module’ in an independent prospective 

European RA cohort (n=35) (map of recruitment is shown in Figure 4.5A), which 

was designed to assess immunogenicity development following initiation of 

adalimumab treatment (none of the patients included in this study had been 

previously treated with this biologic) (Table 4.3). These patients formed part of a 

wider cohort of approximately 250 RA patients recruited across ABIRISK that were 

switching treatment to infliximab, tocilizumab, etanercept or rituximab. 

 

Purified PBMCs and serum were collected at three time points: baseline prior to 

commencement of treatment, 1 month and 12 months after treatment initiation 

(Figure 4.5B), and ADA was measured at each time point (Table 4.4). Out of the 37 

patients recruited, 5 seronegative (RF and CCP negative) and 2 of unknown 

serological status were excluded from this study (Figure 4.6). A further 6 patients, 

which tested positive at baseline (n=5) or had transient ADA expression (n= 1) were 

excluded. The prospective cohort of RA patients was classified as ADA+ or ADA- 

based on presence of ADA at the 12-month time-point. 

 

Month 12 PBMCs from the prospective cohort were stained for CD19, CD24, CD38 

and the 7 differentially expressed markers as shown in Figure 4.4A. Analysis 

showed that the frequency of SIRPα/β+memory B cells was consistently reduced in 

ADA+ compared to ADA- RA patients at the 1-year follow-up (t-test following 

removal of outliers (ROUT Q=1%)) (330). None of the other module markers were 

confirmed in this analysis (Figure 4.7A-C). To test the ability of SIRPα/β+memory B 

cells to distinguish patients as ADA+ or ADA- I generated a receiver operating 

characteristic (ROC) curve, plotting sensitivity against specificity for different 

SIRPα/β values observed in our validation cohort at month 12 (Figure 4.7D). An 

area under the curve (AUC) value of 0.92 was calculated, indicating that the 
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frequency of SIRPα/β+memory B cells is highly accurate at defining ADA positivity. 

A cut-off value for the frequency of SIRPα/β+memory B cells was determined using 

the calculation of sensitivity-(1-specificity), with individuals expressing less than 

9.4% SIRPα/β+memory B cells deemed to be ADA+. 

  

To further confirm that changes in SIRPα/β+memory B cell frequencies were 

associated with ADA and not to any of the other clinical or demographic parameters, 

implicated in RA (DAS28, CRP, ESR, age, BMI, ADA titre), a correlation analysis 

of these variables was performed. None of the clinical parameters, DAS28, CRP, 

ESR, age, BMI, nor ADA titre correlated significantly with the percentage of 

SIRPα/β+memory B cells (Figure 4.8A). Furthermore, there were no significant 

differences in the percentage of SIRPα/β+memory B cells between patients stratified 

according to concomitant treatment with methotrexate (MTX), gender or smoking 

status (Figure 4.8B-D).  

 

Of interest, the development of ADA in the prospective cohort was associated with 

non-response or partial response to adalimumab, according to the EULAR 

classification (67%) (Figure 4.8E). The frequency of SIRPα/β+memory B cells was 

significantly decreased in non-responders compared to responder patients (Figure 

4.8F). However, patient response to treatment was independent from the quantities 

of ADA in circulation, since ADA titre did not correlate with DAS28 (Figure 4.8G). 

I therefore hypothesise that the presence of less than 9.4% SIRPα/β+memory B cells 

in RA patients prior to initiation of adalimumab treatment could be used as 

biomarker to predict ADA development in these patients. 
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Figure 4.5. Recruitment of a European Prospective cohort of RA patients 
commencing adalimumab treatment. 
PBMCs and serum samples were collected longitudinally (baseline, month 1 and 12 
following start of treatment) from RA patients starting adalimumab treatment across 
Europe. For each visit ADA level was measured by Meso Scale Discovery (MSD) 
technology. (A) Map shows location of recruitment sites (orange marker), with the 
number of adalimumab treated patients recruited at each site shown within the 
orange marker. (B) Timeline of sample collection.  
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Table 4.3. Prospective European ADA cohort patient demographics and disease 
characteristics. 
Independent prospective validation cohort (UK, France, Italy, Netherlands). 
 
  RA (adalimumab 

ADAneg) 
RA (adalimumab 

ADApos) 
n 12 12 

Sex,  female n (%) 8 (67) 10 (83) 
Age (years), mean 

(SD) 
59 (15.7) 45 (12.6) 

DAS28 (SD) 2.45 (1.2) 3.49 (1.2) 
Seropositive 

(RF+/CCP+) n (%) 
12 (100) 12 (100) 

CRP mg/l (SD) 7.5 (11.6) 9.2 (9.1) 
Location   

UK 1 1 
France 6 3 

Italy 1 1 
Netherlands 4 7 

Treatment     
MTX use, n (%) 10 (83.3%) 8 (66.7%) 

Average MTX dose, 
mg/week, mean ± SD 

18.25±5.3 15.63±6.6 

Prednisolone use, n 
(%) 

1 (8.3%) 3 (25%) 

Prednisone use, n 
(%) 

3 (25%) 3 (25%) 

Hydroxychloroquine 
use, n (%) 

3 (25%) 0 (0%) 

Leflunomide use, n 
(%) 

0 (0%) 3 (25%) 

Sulfasalazine use, n 
(%) 

2 (17%) 0 (0%) 

 
†EULAR response at month 12 visit 
Values in the table represent mean ± standard deviation (SD), or number of patients 
(n) with proportion of total (%) where indicated. 
Month 12 (M12) 
All patients received 40mg adalimumab every other week. 
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Table 4.4. ADA results and serological status (RF/anti-CCP+) for prospective 
cohort of RA patients that switched to adalimumab treatment. 
Neg = negative, Pos = positive, “?” = unknown. Final ADA status is negative (no 
ADA present at any time point), positive (ADA present at month 12 (M12) only, or 
M12 and month 1(M1)), transient (ADA present at M1 but not at M12) and baseline 
(ADA present at baseline). Sero-status “Neg” if neither RF or anti-CCP positive, 
“Pos” if either RF or anti-CCP pos. 

ABIRISK 
sample 

no.* 

 
 

Baseline 

ADA 
status 

M1 

 
 

M12 

ADA 
titre 

(ng/ml) 
M12 

Final 
ADA 
status RF 

anti- 
CCP 

Sero- 
status 

40-01-0013 Neg Neg Neg n/a Neg n/a n/a ? 
40-01-0015 Neg Neg Neg n/a Neg Neg Neg Neg 
40-07-0001 Neg Neg Neg n/a Neg Neg Neg Neg 
40-04-0006 Neg Pos Neg n/a Transient n/a Neg ? 
40-14-0001 Neg Neg Neg n/a Pos Neg Neg Neg 
40-17-0014 Pos n/a Pos 19.66 Baseline Neg Neg Neg 
40-08-0005 Neg Neg Pos 20.96 Pos Neg Neg Neg 
03-01-0005 Neg Pos Pos 17.78 Pos Neg Neg Neg 
40-05-0008 Pos Neg Neg n/a Baseline Pos Pos Pos 
40-01-0026 Pos Neg Neg n/a Baseline Neg Pos Pos 
40-08-0002 Pos Pos Pos 22.69 Baseline Pos Pos Pos 
09-01-0016 Pos Neg Neg n/a Baseline Pos Pos Pos 
09-01-0020 Neg Neg Neg n/a Transient Pos Pos Pos 
10-04-0014 Pos Neg Neg n/a Baseline Pos Pos Pos 
40-01-0003 Neg Neg Neg n/a Neg Pos Pos Pos 
40-05-0005 Neg Pos Pos 25.38 Pos Pos Pos Pos 
40-01-0017 Neg Pos Pos 89.34 Pos Pos Pos Pos 
40-11-0001 Neg Neg Neg n/a Neg Pos Pos Pos 
40-17-0007 Neg Neg Neg n/a Neg Pos Neg Pos 
40-17-0011 Neg Neg Neg n/a Neg Pos Pos Pos 
40-01-0022 Neg Neg Neg n/a Neg Pos Pos Pos 
40-01-0027 Neg Neg Neg n/a Neg Pos Pos Pos 
03-01-0007 Neg Pos Pos 242.91 Pos Pos Pos Pos 
03-01-0009 Neg Neg Neg n/a Neg Pos Pos Pos 
09-01-0012 Neg Neg Neg n/a Neg Pos Pos Pos 
09-01-0015 Neg Neg Pos 17.45 Pos Pos Pos Pos 
09-01-0017 Neg Pos Pos 1973.43 Pos Pos Pos Pos 
09-01-0018 Neg Pos Pos 31.32 Pos Pos Pos Pos 
09-01-0021 Neg Pos Pos 9.96 Pos Pos Pos Pos 
10-01-0011 Neg Neg Neg n/a Neg Pos Pos Pos 
10-01-0017 Neg Neg Pos 5.22 Pos Pos Pos Pos 
10-01-0013 Neg Neg Pos 8.23 Pos Pos Pos Pos 
10-01-0014 Neg Pos Pos 16.33 Pos Pos Pos Pos 
10-01-0020 Neg Neg Neg n/a Neg Pos Pos Pos 
08-01-0002 Neg Neg Pos 5.36 Pos Pos Pos Pos 
08-01-0004 Neg Neg Neg n/a Neg Pos Pos Pos 
40-10-0002 Neg Pos Pos 3.32 Pos Pos Pos Pos 
09-01-0023 Neg Neg Neg n/a Neg Pos Pos Pos 
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*"03-" = Italy ,"08-"  = UK , "09-"/"10-" = Netherlands, "40-" = France 
"-xx-" = centre number 
"-00xx" = sample no. 
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Figure 4.6. Selection of prospective patients for validation cohort. 
Flow diagram detailing the selection criteria applied to the validation cohort of 
patients. 
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Figure 4.7. Reduced frequency of SIRPα/β+ memory B cells is validated in 
ADA+ adalimumab treated RA patients. 
PBMCs and serum samples were collected longitudinally (baseline, month 1 and 12 
following start of treatment), from RA patients starting adalimumab treatment across 
Europe. For each visit ADA level was measured by Meso Scale Discovery (MSD) 
technology. Month 12 PBMCs were stained for flow cytometry, for the module (7 
markers), and the frequencies of cells expressing the markers analysed (n=12 ADA-, 
n=12 ADA+). Outliers removed using robust regression and outlier removal (ROUT 
(Q=1%)). (A-C) Frequency of expression of markers on (A) mature, (B) memory 
and (C) immature B cells from the prospective cohort; scatter plots showing mean 
±SEM. T-test analysis, **p≤0.01. 
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Figure 4.8. ADA+ patients are poor responders to adalimumab treatment. 
PBMCs and serum samples were collected from RA patients across Europe at month 
12 following start of adalimumab treatment. ADA level was measured by Meso 
Scale Discovery (MSD) technology. PBMCs were stained for flow cytometry 
SIRPα/β (n=12 ADA-, n=12 ADA+). Clinical data was obtained from clinical 
records. (A) Scatter plots showing %SIRPα/β+memory B cells with: DAS28 score, 
CRP mg/L, ESR mm/hr, age, BMI, ADA ng/ml (log10), at month 12. (B-D) 
%SIRPα/β+memory B cells in patients treated with combination therapy with 
methotrexate (co-MTX), or without (No MTX) (B), by gender (C) and by smoking 
status (D), at month 12. (E) Dot plot representing proportion of ADA- and ADA+ 
patients that are responders (black) or non-responders (purple); each circle represents 
one prospective patient. (F) Scatter column plot with %SIRPα/β+memory B cells for 
non-responder (NR) and responder (R) patients to adalimumab according to EULAR 
classification. (G) ADA ng/ml (log10) and DAS28. All non-significant (p>0.05), 
except F where *p<0.05. For A and G Pearson Correlation (r) was performed, and 
for B, C and F t-test and D one-way ANOVA. Column graphs show mean and 
±SEM.  
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4.3. Frequency of SIRPα/β+memory B cells as a predictor of ADA 

 

I envisaged two possible scenarios for the change in the frequency of 

SIRPα/β+memory B cells: i) all patients prior to adalimumab treatment express a 

similar frequency of SIRPα/β+memory B cells, and the frequency is down regulated 

concomitantly to the development of ADA; ii) patients that will go on to develop 

ADA have fewer SIRPα/β+memory B cells at baseline compared to the ADA- 

patients. Using the cut-off value determined by ROC-curve analysis, described in 

Figure 4.7F, 9 out of 20 patients assessed at baseline showed less than 9.4% of 

SIRPα/β+memory B cells in circulation. Strikingly, 73% of patients with 

SIRPα/β+memory B cell frequencies below the cut-off value became ADA+ after 12 

months of adalimumab therapy whilst 80% of patients with SIRPα/β+memory B cell 

frequencies above the cut-off value remained ADA- (Figure 4.9A). Representative 

expression of SIRPα/β on memory B cells in ADA- versus ADA+ RA patients is 

shown in Figure 4.9B. To confirm the predictive value of reduced SIRPα/β+ memory 

B cells frequency, baseline samples were separated according to future development 

of ADA by month 12. Patients that will develop ADA showed significantly lower 

frequencies of SIRPα/β+memory B cells compared to patients that do not develop 

ADA (p=0.0002) (Figure 4.9C). Longitudinal analysis revealed no changes in the 

frequency of SIRPα/β+ memory B cells between visits in both ADA- and ADA+ 

patients (Figure 4.9D and 4.9E). Furthermore, analysis of the month 1 visit revealed 

that the majority (80%) of patients that have developed ADA by month 12 already 

have detectable ADA by 1 month following start of treatment (Figure 4.9E). 
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Figure 4.9. Low frequency of SIRPα/β+memory B cells predicts ADA 
development in adalimumab treated RA patients. 
PBMCs from the prospective cohort (Table 4.3) taken at baseline, month 1 (M1) and 
12 (M12) visits (n = 21), were stained with SIRPα/β-APC for flow cytometry (n=11 
ADA+ n=10 ADA-). (A) RA patients prior to commencing adalimumab (baseline, 
from prospective cohort) were stratified according to the frequency of 
SIRPα/β+memory B cells. Black circle and red square correspond to individuals 
respectively that do not "ADA-" or do "ADA+" develop ADA, after unblinding. The 
dotted line represents the threshold value from M12 ROC curve analysis. (B) 
Representative flow cytometry plots showing %SIRPα/β+memory B cells in "ADA-" 
and "ADA+" individuals. (C) Scatter plot showing mean±SEM of 
%SIRPα/β+memory B cells of patients at baseline, sub-divided by ADA 
development by M12, t-test analysis, following a robust regression and outlier 
removal (ROUT (Q=1%)), identifying two outliers, ***p≤0.0001. (D) Graph 
showing longitudinally the %SIRPα/β+memory B cells at baseline, M1 and M12 for 
ADA- RA patients, dotted line as A, one-way ANOVA. (E) As D for ADA+ patients, 
with red squares indicating positive ADA detection and black circle shows negative 
ADA detection at point of sampling. 
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4.4. Summary 

 

Here I identified the frequency of SIPRα/β expressing memory B cells as a 

predictive marker for development of ADA against adalimumab. This marker was 

derived using a strict analysis framework that aimed to dissect the development of 

ADA away from confounding factors that can arise as a consequence of ADA, such 

as poor response to treatment and worse disease. Hence, I removed markers 

associated with DAS28 score and with treatment effect. Notably while 

LEGENDScreenTM identified several markers that showed a difference between the 

ADA+ and ADA- RA patients within the cross-sectional cohort, only one marker was 

reproducible in the validation cohort. This could reflect the subtleties in the 

difference between ADA+ and ADA- patients or perhaps that there are multiple 

mechanisms of development of ADA. Most significantly, the frequency of SIPRα/β+ 

memory B cells do not only define ADA in patients with detectable ADA but also 

predict ADA development, which could have important implications within the 

clinic allowing a more informed choice of biological therapeutic.  

 

Our initial cohort was recruited in London, therefore the patients enrolled in this 

study are likely to reflect a mixture of backgrounds and ethnicities due to the 

multicultural nature of the London population and since UCLH receives referrals 

from across the UK. The validation of the ADA associated markers was 

demonstrated in a unique and independent cohort of RA patients switching to 

adalimumab treatment from across Europe. This cohort was part of a wider cohort of 

patients recruited for the study of immunogenicity by ABIRISK. Our diverse cohorts 

give us confidence that the frequency of SIRPα/β+ memory B cells is reflective of 

the greater population. While studies have aimed to assess incidence of ADA in 

diverse population cohorts (European (328), International (129)) to my knowledge 

no one has compared incidence between populations. Understanding if a particular 

population is more susceptible to ADA development may give us further clues to the 

mechanisms of immunogenicity. 

 

The true clinical impact of ADA remains up for debate. While multiple studies in 

RA have shown a correlation between ADA and treatment failure (125, 126), due to 
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the variety of methods used to measure ADA across studies, and the varying 

associated limitation of these methods, it is difficult compare these studies, with 

reports of ADA prevalence varying between different studies (149). As mentioned 

the work presented in this thesis forms part of the project ABIRISK, a European 

consortium formed to address the outstanding questions regarding immunogenicity. 

One the major goals of ABIRISK is to accurately quantify the impact of ADA on 

diseases including RA, inflammatory bowel disease (IBD) and MS (149). Part of this 

aim includes the development of an accurate and standardised way to quantify ADA 

(331). Recently ABIRISK published a luciferase-bioassay for the detection of anti-

interferon-beta antibodies that was found to be more sensitive than the conventional 

bridging ELISA (331). I am therefore confident that the detection of ADA in our 

cohort is an accurate reflection of the true levels and incidence of ADA within the 

cohort. Furthermore, our cohort also provides evidence in support of the clinical 

effect of ADA, with the majority (two thirds) of ADA+ patients showing a poor 

response to treatment only a year after first administration of the drug, and with 

ADA development detectable typically as early as 1 month after starting 

adalimumab. 

 

While there are many studies that quantify ADA in RA patients, far fewer studies 

addressed the mechanisms or aim to predict ADA development. It has recently been 

shown in BAFF transgenic mice that the observed reduction in ADA development 

when patients are co-treated with MTX could be due to high BAFF levels (332). 

This was also associated with increased expression of CD73 and CD39. Interestingly 

a regulatory subset of B cells has been described as CD73+CD39+ (285), suggesting 

a possible role for regulatory B cells in the protection against development of ADA. 

Furthermore in anti-TNF treated RA patients, higher serum BAFF levels were 

associated with absence of ADA (332). However, neither CD73 nor CD39 were 

identified in our analysis as markers associated with ADA. Furthermore, while I 

have not measured serum BAFF levels, the LEGENDScreenTM included the BAFF 

receptors BAFF-R (CD268) and TACI (CD269), however, neither of which were 

found to be associated with ADA in our analysis either. 

 

Given an observed increased susceptibility to developing ADA against a second anti-

TNF (142) and an increased risk of developing ADA against adalimumab in patients 
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homozygous for the same IgG allotype as the drug (144), it is possible that ADA 

development may be specific to the drug and thus require different 

predictors/biomarkers for different drugs. More recently within ABIRISK, Notch2 

has been shown to predict ADA against IFN-beta treatment in MS (333). Notably no 

studies confirm these identified associations in different disease cohorts. At current, I 

have not investigated the expression of SIRPα/β+ in different diseases or against a 

different treatment. If we were to find SIRPα/β+ is not predictive of ADA 

development for example in tocilizumab treated RA patients, we can speculate that 

ADA development could be a treatment specific mechanism. If SIRPα/β+ is 

predictive against other drugs in RA but not in e.g. IBD, we can hypothesize that 

ADA development is disease specific. Alternatively, if it is predictive against 

adalimumab in IBD but not for other drugs, then this would also add support towards 

a treatment-specific mechanism of ADA development. Nonetheless, regardless of the 

outcome, this information would give us a valuable insight into the mechanism of 

ADA development, and therefore are important to investigate. 

 

4.5. Future Work 

 
In light of the points discussed above regarding the mechanisms of ADA 

development, future work could include measuring serum BAFF levels for our 

cohort and correlating these results with our data. Furthermore, it would be 

beneficial to investigate SIRPα/β expression in RA patients treated with different 

biologics and in patients with other autoimmune conditions such as IBD. This would 

help us to establish firstly if SIRPα/β can be used more generally to predict ADA 

and secondly to better understand if the mechanism of ADA is generalised or 

treatment/disease specific.  
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5. Results III – The signature of RA 
 

RA is defined by the manifestation of synovitis, however, seropositive RA onset is 

preceded by athe presence of specific auto-antibodies such as RF and/or anti- anti-

CCP, which have been identified as many as 15 years before onset of disease (334, 

335). In addition to the presence of auto-antibodies, patients with symptoms such as 

arthralgia and raised inflammatory cytokine levels are at risk of developing RA 

(336). Only 20% of at risk individuals have been reported to develop RA within 4 

years (337). Prompt treatment of early arthritis leads to a better response and a 

longer-term positive disease outcome (338, 339). In order to implement early 

intervention treatment we need to be able to identify those patients that will progress 

to RA. Here I aimed to take advantage of the LEGENDScreenTM platform to 

generate an immune-signature unique to RA patients.  

 

5.1. Identification of a unique signature in RA patients 

 

To identify biomarker/s associated with disease I compared the surface immune-

signature of PMBCs isolated from 18 healthy and 31 RA patients (Table 3.1). 

PBMCs were stained with fluorescently-conjugated antibodies identifying CD4+ T 

cells, CD19+ B cells, and B cell subsets (CD24hiCD38hi immature B cells, 

CD24intCD38int mature B cells and CD24hiCD38lo memory B cells) in addition to the 

332 cell surface markers included in the LEGENDScreen™ panel (as described in 

the methods [see Figure 2.1] and in Chapter 3 Results I, [see Figure 3.1]). To assess 

if the LEGENDScreenTM was sensitive enough to detect differences between HC and 

RA patients, I firstly measured the frequency of expression of the 332 

LEGENDScreenTM cell surface markers on total PBMCs. This data is presented as 

heatmaps in Figure 5.1A. The results show two unique “immune-signatures” that 

differentiate HCs from RA patients. I next calculated fold change to quantify the 

differences and identify the markers that most strongly contributed to the observed 

immune profile variations in PBMCs between HC and RA. To establish if these 

differences were significant, I performed a t-test analysis, thus identifying 

significantly differentially expressed markers that were either up or down regulated 

on RA compared to HC on the respective B cell subsets. This data is presented as a 
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volcano plot, reflecting the significance, size and direction of the change between 

sample groups (Figure 5.1.B). 

 

Having established that differences between HC and RA patients at a PBMC level 

could be identified, I further focused my analysis to look at T and B cells separately. 

By assessing the frequency of the 332 markers expressed on B and T cells I was able 

to obtain a T cell and a B cell immune profile that distinguished HCs from RA 

patients (Figure 5.1C). To improve the statistical power of the future analyses 

performed on this dataset, markers that were expressed on less than 5% of cells were 

removed; this resulted in the exclusion of 115 markers on T cells and 74 on B cells. 

Markers that were found to be significantly differentially expressed on either T or B 

cells between HCs and RA patients, following multiple t-test analysis are quantified 

in Figure 5.1D (a complete list of differentially expressed markers can be found in 

the appendix [A.6]).  

 

The majority of significantly differentially expressed markers were up-regulated in 

RA, which would match the hyper-activated state associated to B and T cells in 

disease (95). Notably there are more differentially expressed markers in B cells than 

T cells with 34 markers in B cells and only 9 markers in T cells; results that further 

support the pivotal role of B cells in driving RA development and progression (104). 

Next, I have assessed the immune profile of immature, mature and memory B cells 

in HCs compared to RA patients using the same gating strategy as described in 

Figure 3.2. The analysis of the expression of the 332 surface markers on B cell 

subsets revealed 40 differentially expressed markers on mature B cells, 49 on 

immature B cells and 72 on memory B cells (Figure 5.1C). A full list of the 

differentially expressed markers on the B cell subsets can be found in the appendix 

(A.6). 

 

5.2. Strategy for the generation of the “immune-signature” 

 

To identify an immune-signature unique to RA patients and to eliminate possible 

confounding factors, I applied a systematic framework analysis (SFA) that excludes 

the effect of treatment and disease activity (described in Figure 5.2). I used the 

frequency of expression on B cells from HCs as a baseline, generated a fold change 
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for each individual marker expressed on B cells or B cells subsets, and compared 

these values to those identified in RA patients treated with adalimumab or with 

cDMARDs. Markers that were differentially expressed, compared to HCs, in both 

cDMARDs and adalimumab treated RA were retained; this was in order to identify 

markers that were differentially regulated in all RA patients rather than in response 

to treatment with cDMARDs or adalimumab. This resulted in the identification of 5 

markers on total B cells, 9 on mature, 4 on immature and 12 on memory B cells 

(Figure 5.2). In addition, any markers that were correlated with disease activity, a 

measurement that is in part calculated based on the level of inflammation 

(CRP/ESR), were also removed in order to exclude markers associated more 

generally with inflammation as opposed to inherent differences in RA patients. As 

none of our remaining markers correlated with DAS28, no further markers were 

eliminated at this stage. A full list of markers that correlated with DAS28 is reported 

in the appendix (Appendix A.5). Following our exclusion criteria, 16 unique markers 

expressed by different B cell subsets and/or total B cells were retained; Benjamini 

and Hochberg analysis with an FDR of 5% was applied to correct for multiple 

comparisons (Table 5.1). This list was further refined by including only markers that 

pass the Benjamini and Hochberg analysis and that meet a stringent p value 

(p<0.0018), thus resulting in the inclusion of only 10 markers, and which I refer to as 

the ‘RA signature’. (Figure 5.3A). PCA of the frequency of expression of the 10 

markers on their respective B cell subset from our LEGENDScreenTM cohort dataset 

demonstrated that these 10 differentially expressed markers have sufficient statistical 

power to discriminate between HCs and RA patients (Figure 5.3B).  
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Figure 5.1. LEGENDScreenTM analysis of RA patients versus HCs identifies 
more differences on B cells than T cells. 
PBMCs from HCs (n=10) and RA patients (n=31) were stained with 
LEGENDScreenTM for 332 cell surface markers, in addition to antibodies against 
CD19, CD4, CD24 and CD38. (A) Heatmap showing average frequency expression 
of each LEGENDScreenTM marker on total PBMCs for each sample group (HC and 
RA), each square represents one marker and are ranked according to expression in 
HC. B) Volcano plots showing fold-change of frequency expression between patient 
groups (HC/RA) (Log2) and p value (t-test) (log10) for the 332 LEGENDScreenTM 
markers on total PBMCs. Blue circle: significantly down-regulated markers; red 
circle significantly up-regulated markers, in RA versus HC. C) Heatmaps (as A) for 
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CD4+ T cells and CD19+ B cells. D+E) Volcano plots (as B) for CD19+ B cells and 
CD4+ T cells (D) and, and immature (CD24hiCD38hi), mature (CD24intCD38int) and 
memory (CD24hiCD38lo) B cells (E).  
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Figure 5.2. Selection of markers for RA signature from LEGENDScreenTM 
analysis of cross-sectional RA cohort.  
Overview of systematic framework analysis applied to generate a immune-signature 
of markers that define RA.  
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Table 5.1. Complete list of RA signature markers. 
Differentially expressed markers on B cells and B cell subsets (as indicated) between 
HCs and RA patients following exclusion of markers as per Figure 5.2. Markers 
listed in order of significance with most significant at the top. A false discovery rate 
of 5% was applied using the Benjamini Hochberg analysis’ markers that passed the 
FDR are indicated with *. 
 

Marker Fold 
Change 

P Value Cell Type 

*CD97 1.91 0.000004 Total B cells 
*CD97 2.00 0.000021 Memory B cells 
*Ig light chain κ  1.26 0.000034 Mature B cells 
*CD150 (SLAM) 2.21 0.000038 Mature B cells 
*Ig light chain κ  1.21 0.000042 Immature B cells 
*CD150 (SLAM) 2.08 0.000055 Total B cells 
*CD97 2.15 0.000059 Mature B cells 
*Ig light chain κ  1.28 0.000086 Memory B cells 
*CD11c 1.69 0.000169 Memory B cells 
*CD158d 5.17 0.000502 Memory B cells 
*CD62L 1.19 0.000545 Mature B cells 
*CD170 1.78 0.000966 Immature B cells 
*CD307 1.95 0.001079 Immature B cells 
*CD335 9.60 0.001634 Memory B cells 
*Notch 2 1.96 0.001741 Immature B cells 
*CD158d 3.64 0.001848 Mature B cells 
*CD307 2.26 0.001885 Mature B cells 
*CD307 2.02 0.001901 Memory B cells 
CD158d 3.12 0.002438 Total B cells 
*CD97 2.17 0.003736 Immature B cells 
CD226 2.54 0.003746 Memory B cells 
CD150 (SLAM) 2.24 0.003814 Immature B cells 
CD150 (SLAM) 2.52 0.005632 Memory B cells 
CD245 1.61 0.008291 Mature B cells 
CD158d 3.22 0.009261 Immature B cells 
CD114 4.64 0.013400 Memory B cells 
CD11c 1.98 0.017330 Mature B cells 
CD172a 2.25 0.018464 Memory B cells 
CD172a 2.01 0.024192 Total B cells 
CD62L 1.19 0.026830 Immature B cells 
CD172a 2.59 0.032133 Mature B cells 
CD202b 4.07 0.038068 Memory B cells 
Integrin β5 2.91 0.041377 Memory B cells 
CD172a 1.63 0.046593 Immature B cells 
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Figure 5.3. Principle component analysis of expression data for RA signature 
shows separate clustering of HC and RA patients. 
Analysis of LEGENDScreenTM data. (A) Heatmap showing average (mean) 
frequency of expression for each of the 10 RA signature markers on HC and RA. (B) 
Principle component plot for frequency of expression of top 10 differentially 
expressed markers showing HC (blue dots) and RA (red squares) for the first two 
principle components (percentage contribution to variation in brackets). Contribution 
of each marker to the principle components is depicted by the length and direction of 
the corresponding red arrow. 
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5.3. Validation of the RA signature in an independent cohort of RA patients 

and HCs confirms five of the signature markers  

 
Next, to ensure reproducibility of our results I validated the RA immune-signature 

markers in an independent European cohort. Our validation cohort (n = 88) was 

recruited in France, The Netherlands, Germany and in the UK (Table 5.2). The 

advantage of including patients from different European centres in our study is that it 

allows us to exclude the potential effect that ethnicity may play in the differences 

observed in our initial UK cohort. To allow faster acquisition of data and the analysis 

of a greater number of patients, I used conventional flow cytometry. PBMCs were 

isolated from RA patients and stained for the RA signature surface markers (as 

Figure 5.3). Using the cut off value of p<0.05 five of the ten markers identified in 

the initial cohort were successfully validated (CD97+ B cells, CD150+ mature B 

cells, CD11c+ memory B cells, CD170+ immature B cells, CD307e+ B cells) (green 

dots), and five markers that no longer showed a significant difference were excluded 

(Ig light chain kappa+ B cells, CD158d+ memory B cells, CD62L+ mature B cells, 

CD335+ memory B cells, Notch2+ immature B cells) (red dots) (t-test or Man-

Whitney test for non-parametric data, following testing for normality using 

D’Agostino & Pearson test [CD11c+ memory B cells, Ig light chain kappa+ B cells, 

CD158d+ memory B cells, CD62L+ mature B cells, CD335+ memory B cells, and 

Notch2+ immature B cells were found to be non-normally distributed])  (Figure 

5.4A+B). PCA clustering analysis demonstrates that these five validated markers are 

able to cluster RA patients from healthy controls (Figure 5.4C). 

 

To test the predictive value of these markers to distinguish HC from RA, I generated 

a receiver operating characteristic curve (ROC curve) for each marker, plotting 

sensitivity against specificity, and calculated the area under the curve (AUC); the 

closer the AUC to 1 the better it is at distinguishing the two groups (Figure 5.5). 

Frequency of CD11c+ memory B cells, CD97+ B cells and CD170+ immature B cells 

have high AUC of 0.74, 0.73 and 0.72 respectively and are therefore good predictors 

of RA. CD150+ mature B cells and CD397e+ immature B cells have low AUC values 

of 0.64 and 0.63 respectively and therefore are poor predictors of RA. Using 

sensitivity and specificity values for the prediction of RA for different marker 
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frequencies, cut off values for prediction of RA were defined, and are shown as “x” 

in the figure. 
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Table 5.2. Validation RA cohort patient demographics and disease 
characteristics. 
Patients recruited from UK, France, Italy and the Netherlands.  

  HCs RA-D RA-A RA-T At-risk 
Early-

RA 
n 31 35 53 22 5 7 

Sex,  female n (%) 24 (68) 26 (81) 37 (70) 14 (64) 100 (0) 100 (0) 
Age (years), mean 

(SD) 
27 

(10.7) 
60 

(17.9) 
54 

(15.1) 
62 

(14.7) 
54 

(13.9) 
47 

(9.0) 

DAS28 (SD) - 
3.01 
(1.4) 

3.02 
(1.7) 

1.72 
(1.2) - - 

Seropositive 
(RF+/CCP+) n 
/seronegative n 

/sero-unknown n - 35/0/0 45/5/3 7/5/10 5/0/0 7/0/0 

CRP mg/l (SD) - 
10.3 

(20.6) 
8.2 

(12.1) 
1.3 

(1.3) 
2.0 

(0.6) 
21.0 

(19.5) 
RA-D = RA treated with cDMARDs 
RA-A = RA treated with adalimumab 
RA-T = RA treated with tocilizumab 
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Figure 5.4. Five of the RA signature markers are successfully validated in an 
independent European cohort of patients. 
PBMCs from HC (n=31), and cDMARD (n=35) (RA-D) and adalimumab treated 
(n=53) (RA-A) RA patients were stained for the RA signature markers (CD97, Ig 
light chainκ, CD150, CD11c, CD158d, CD62L, CD170, CD307e, CD335, and 
Notch 2) and CD19, CD24 and CD38 to define B cells and B cell subsets. (A) 
Volcano plot showing fold change versus p value (t-test or Mann-Whitney) for 
expression of each marker on the specific subset. Dotted lines denote ‘zero’ fold 
change, and p value of 0.05. Green dots are significantly different, red dots no longer 
significantly different in the validation cohort. (B) Individual marker frequency of 
expression for each RA signature marker on the relevant subset. Mean ±SEM, t-test 
analysis or Mann-Whitney, **p<0.01, ***p<0.001. (C) Principle component plot 
showing clustering of HC (blue dots) and RA-D (red squares) and RA-A (green 
triangles) for principle components 1 and 2. Contribution of each marker to the 
principle components is depicted by the length and direction of the corresponding 
red arrow, and given in brackets.  
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Figure 5.5. ROC curve analysis of the 5 RA signature markers, identifies CD97, 
CD170 and CD11c as good predictors of RA. 
ROC curve analysis was performed on frequency expression data of the 5 validated 
RA signature markers (HC=31 and RA=88 samples). AUC is reported in the figure. 
A cut-off value, to predict an RA patient from a HC was determined by sensitivity-
(1-specifictiy) with RA as the positive outcome, and is denoted as ‘x’ and reported in 
the figure.  
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5.4. Preliminary investigations into the RA signature as a tool to predict 
development of RA in “at-risk” individuals 

 

Following the ROC analysis of the validated RA signature markers I hypothesise 

that CD97, CD170 and CD11c could be used as biomarkers for the identification of 

patients that are either “at-risk” of developing RA (these patients are RF or CCP 

positive, but lacked signs of synovitis) or at an early stage of disease (early-RA) 11 

individuals fulfilling the criteria of at-risk or early RA have been recruited so far at 

the rheumatology clinic at UCLH and analysed (early n=5, at-risk n= 6). Although 

no conclusion can be made at this stage due to the low number of patients enrolled in 

this part of my study, the results show a significant increase of frequency of CD97+ 

B cells in individuals that are at “at-risk” of developing RA compared to HCs. The 

mean expression of CD97 is above the ROC curve derived threshold value (dotted 

line) for both “at-risk” and early RA patients (Figure 5.7A). There is also a 

significant increase in frequency of CD170+ immature B cells and CD11c+ memory 

B cells in early-RA patients. Of interest, the “at-risk” patients group had a greater 

standard deviation than the early RA patients (for at-risk and early RA respectively 

for CD97 14.7 and 8.0, CD11c 4.7 and 1.9, and CD170 21.1 and 13.5), with 

typically half the “at-risk” patients falling above cut-off value and half below (Figure 

5.7B). Therefore, I hypothesise that the “at-risk” patients with high frequencies for 

all three RA signature markers are most likely to develop RA.  

 

These preliminary investigations provide encouraging results showing that the use of 

CD97, CD170 and CD11c expression on B cells subset could help to stratify 

individuals that may develop RA. In order to investigate this fully I would need to 

recruit a larger cohort of patients from the rheumatology clinics that are considered 

as “at-risk” of developing RA, and follow them longitudinally to see if they will 

develop RA.  
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Figure 5.6. The RA signature could be predictive of RA onset. 
Following ROC curve analysis, three RA signature makers (CD97, CD170 and 
CD11c) had an AUC value that suggested that they would be good predictors of RA. 
The frequency of expression of these markers was assessed in a preliminary cohort 
of patients who were at-risk of developing RA (n=6) or that had been recently 
diagnosed with RA (at time of sample collection) (early RA) (n=4) using flow 
cytometry and compared to HCs. (A) Frequency of CD97+ B cells, CD170+ 
immature B cells and CD11c+ memory B cells. The ROC curve derived cut-off value 
from Figure 5.5 is indicated as a dotted line. (B) As A but showing at-risk only and 
labelled to indicate which dot is which sample (sample no.). Mean ±SEM, one-way 
ANOVA *p<0.05, **p<0.01. 
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5.5. Summary 
 

In this chapter I use the LEGENDScreenTM data to develop an immune-signature 

that uniquely identifies RA patients irrespective of their inflammation status and 

ability to respond to treatment. The frequency of CD97+ B cells, CD150+ mature B 

cells, CD11c+ memory B cells, CD170+ immature B cells and CD307e+ immature B 

cells is elevated in the UK cohort of RA patients. Further validation in an 

independent European cohort confirms that a higher frequency of CD97+ B cells, 

CD170+ immature B cells and CD11c+ memory B cells have sufficient predictive 

power to define RA patients over HCs as determined by ROC curve analysis. In 

order to address if these markers could be used to predict RA onset, I measured their 

expression in a small cohort of at-risk and early RA individuals. CD97, CD170 and 

CD11c all showed potential to stratify at-risk patients and warrant further 

investigation in a longitudinal cohort. Moreover, by using an unbiased high-

throughput screening approach I have identified several markers that have not 

previously been associated with RA including CD150 and CD170 and provided 

supporting evidence for those that have been reported prior such as CD97, CD307e 

and CD11c (174, 190, 340-343). I propose that this unbiased approached of analysis 

of immune cells in disease could provide a means to identify novel therapeutic 

targets.  

 

5.6. Future work 

 

I will establish if CD97, CD170 and CD11c are able to predict development of RA. 

To achieve this, I will analyse their expression in a larger cohort of at-risk RA 

patients, which have been followed longitudinally and can therefore be stratified 

according to future manifestation of RA disease. Furthermore, I will investigate the 

functional role of CD97, CD11c, CD150 and CD307 in RA, with a long-term aim to 

investigate their potential as drug targets for RA. In addition to these markers, this 

work has identified many other markers on B cells and B cell subsets that are 

dysregulated in HCs compared to RA patients. Any of these molecules could warrant 

further investigation in an effort to reveal more about the role of B cells in RA. 
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6. Results IV – Identification of CD170/Siglec-5 as novel 

marker for Bregs 
 

A major goal in the Bregs field is the identification of a marker that can be used as 

an alternative to IL-10. So far, as described in detail in the introduction, immature B 

cells have been ascribed with regulatory capacities. However, less that 20% of these 

B cells produce IL-10 (344). Our lab and others have previously reported that RA 

patients have a reduced number of Bregs in circulation (98, 259-261). I exploited the 

results from the LEGENDScreenTM by selecting differentially expressed markers on 

immature B cells between HCs versus RA patients. Next, I excluded any of these 

markers that were also differentially expressed between HCs and RA patients on 

mature or memory B cells, resulting in the identification of 15 candidate markers for 

Bregs (Table 6.1). CD170, a member of the Sialic acid-binding immunoglobulin-

type lectins (SIGLEC) family, was the most significantly differentially expressed 

marker that fitted this criteria (see Table 6.1). Siglecs are a family of sialic acid 

receptors that have been increasingly reported to be involved in immune tolerance, 

including B cell tolerance (304). As described in the introduction, human B cells 

have been reported to express only 3 members of this family, Siglec-2 (CD22), 

Siglec-10 (CD330) and Siglec-5 (CD170), all of them with inhibitory functions. For 

instance, Siglec-G (the murine orthologue for Siglec-10) and CD22 double-deficient 

mice develop a severe form of autoimmunity (303). In the case of CD170, it has 

been shown that monocytes overexpressing this receptor produce high amounts of 

IL-10 and low levels of TNFα following TLR stimulation (345). Similarly, Siglec-

10 mediates an increase in IL-10 production by DCs after interaction with C. jejuni 

flagella (308). In contrast, epratuzumab, an antibody targeting CD22, inhibits the 

production of IL-6 and TNF, but not IL-10 by B cells (346). This evidence suggests 

that Siglecs can differentially modulate pro- and anti-inflammatory cytokine 

secretion by immune cells, including B cells. Based on this knowledge, I hypothesise 

that CD170 could act as a surrogate marker for the identification of Bregs.  

 

In this chapter, I show that under Breg polarising conditions the up-regulation of 

CD170 parallels the induction of IL-10 production. CD19hiCD170hi B cells prevent 

the differentiation of CD4+ T cells into IFNγ+CD4+ and IL-17+CD4+ T cells in an IL-
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10 and CD170 dependent manner. Furthermore, RA patients that present with a 

reduced frequency of IL-10-producing B cells also showed a reduced number of 

CD19hiCD170hi B cells.  

 

My initial results also show that CD170 is not only a surface marker for Bregs, but 

may also functionally drive the transcription of IL-10 in Bregs. Preliminary results 

show that in the presence of a blocking anti-CD170 antibody there is a reduction in 

Ca2+ mobilisation in B cells. Moreover, ImageStream analysis suggests that whereas 

CD170 does not interact directly with the BCR, unlike CD22, it is colocalised 

instead with the BCR adapter protein CD19 (347). Of interest, I demonstrate for the 

first time that CD170 is internalised and subsequently recycled to the surface via the 

endosomes. This recycling was found to be defective in B cells isolated from RA 

patients. Finally, I show that a SIGLEC5 gene polymorphism is not associated with 

RA.  
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Table 6.1 Differentially expressed markers between HCs and RA patients 
unique to immature B cells. 
 
  Fold change P value 

CD170 1.784 0.001 
CD181 0.333 0.002 
TRA-1-81 0.374 0.002 
CD150 (SLAM) 2.239 0.004 
Siglec-8 0.344 0.005 
CD119 (IFNgR a chain) 1.235 0.009 
Galectin-9 0.379 0.01 
CD63 1.193 0.016 
NPC 0.429 0.02 
CD39 1.11 0.023 
CD11a 1.008 0.024 
CD1c 1.086 0.034 
CD132 1.261 0.034 
CD99 1.122 0.04 
SSEA-5 0.476 0.049 
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6.1. CD19hiCD170hi B cells express more IL-10 than their negative 

counterparts 

 

We have previously shown, and here confirmed by ELISA (Figure 6.1A) and 

ImageStream (Figure 6.1B), that B cells isolated from RA patients produce less IL-

10 than B cells from HCs upon stimulation with CpGC. The lack of expansion of IL-

10+ Bregs in RA patients was further confirmed by intracellular staining (Figure 

6.1C-E). Hence, I took advantage of the decreased capacity of B cells from RA 

patients to produce IL-10 and used isolated B cells from patients as a control for the 

validation of CD170 as a marker for Bregs, by hypothesising that its expression 

should be decreased alongside the reduced production of IL-10. Next, I stained B 

cells from RA and HCs for CD170 either ex vivo or following 72h stimulation with 

CpGC. The results show that under Breg polarizing conditions there is an expansion 

of a novel population co-expressing high levels of CD19 and CD170 (Figure 

6.1F+G). In contrast to HCs, I report an impairment in the expansion of 

CD19hiCD170hi B cells in RA patients (Figure 61.H).  

 

To identify whether IL-10 producing Bregs also express high levels of CD19 and 

CD170, I purified B cells from HCs and RA patients and stimulated them with 

CpGC. This stimuli has been shown to be pivotal for the maximum production of IL-

10 in humans (348). The results show that in HC B cells the CD19hiCD170hi 

population captures the vast majority of IL-10 producing B cells (Figure 6.2 A+B). 

In addition, my results show that a decrease of CD170 expression results in a similar 

decrease of IL-10 production by B cells. (Figure 6.2B+C).  Furthermore, despite RA 

patients showing an overall reduced number of Bregs, compared to healthy controls, 

those RA IL-10+B cells are also CD19hiCD170hi (Figure 6.2B+C).  

 

Next, I took advantage of tSNE, a high-performance non-linear dimensionality 

reduction technique that in conjunction with a machine learning aided clustering 

algorithm objectively delineates the heterogeneity of a cellular population. tSNE 

analysis was applied to CD19+ B cells at 72h post-stimulation with CpGC. This 

analysis identified that the IL-10+ B cells gate closely overlaps the CD170hi 

population (shown in green), confirming that CD170hi B cells are the predominant 

IL-10 producers, and that CD170hiIL-10+B cells clusters separately from 
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CD170int/lowIL-10- B cells (Figure 6.2D). Furthermore, after CpGC stimulation tSNE 

analysis shows that CD19+CD170hi B cells are not confined to either immature, 

mature or memory B cell subsets (Figure. 6.2E).   
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Figure 6.1 Reduced expansion of CD19hiCD170hi B cells in RA compared to HC. 
B cells isolated from PBMCs from HCs (n=9) and RA patients (n=9) were 
stimulated for 72h with 1µM CpGC, and 0.05µg/ml PMA, 0.25µg/ml Ionomycin and 
5µg/ml Brefeldin for final 5h of culture. Supernatants were collected for cytokine 
analysis and cells were stained for flow cytometry. (A) IL-10 (pg/ml) measured by 
ELISA in supernatants. (B) ImageStream analysis of IL-10 stained intracellularly, 
representative images. C-E) Percentage of IL-10+ B cells with/without stimulation 
with CpGC for 72h, measured by flow cytometry, for HC versus RA patients. F-H) 
Frequency of CD170hi B cells unstimulated or CpGC stimulated, in HC versus RA 
patients. Representative flow cytometry plots. Bar charts mean ±SEM, t-test as 
indicated, **p<0.01, ***p<0.001, **** p<0.0001.  
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Figure 6.2. CD170hi B cells are the highest producers of IL-10. 
B cells isolated from PBMCs from HCs (n=9) and RA patients (n=9) were 
stimulated with 1µM CpGC for 72h, and 0.05µg/ml PMA, 0.25µg/ml Ionomycin and 
5µg/ml Brefeldin for final 5h of culture. Cells were stained for flow cytometry. (A) 
Schematic of experiment. (B) Frequency of CD19hiCD170hi, CD19+CD170int and 
CD19+CD170low B cells in HC and RA, and respective IL-10 expression for each 
subset, representative flow cytometry plots. (C) Summary of IL-10 expression by 
CD19hiCD170hi, CD19+CD170int and CD19+CD170low B cells in HC and RA, mean 
±SEM, one-way ANOVA, ****p<0.0001. (D) vSNE plot of CD170hi (green) and 
CD170int/low (purple) B cells as contour plots with IL-10+ gate overlaid (black line). 
(E) vSNE plot of B cells subsets purple CD24hiCD38hiIgMhiIgDhi immature B cells, 
blue CD24+CD38loIgM+IgD+ memory B cells, green CD24+CD38loIgM-IgD- 
switched memory B cells, and pink CD24intCD38intIgM+IgD+ mature B cells, with 
CD170hi gate overlaid (black line).   
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6.2. CD19hiCD170hi B cells suppress inflammatory cytokine production by 

CD4+ T cells in an IL-10 and CD170 dependent manner 

 

Having established that a CD19hiCD170hi subset of B cells produce the majority of 

IL-10, I next investigated the capacity of this B cell subset to suppress inflammatory 

cytokine production by CD4+ T cells. For this purpose, isolated B cells were cultured 

for 72h with CpGC, and CD19hiCD170hi and CD19+CD170int/low B cells were then 

sorted by flow cytometry and co-cultured with freshly sorted autologous CD4+CD25- 

T cells, in the presence of an anti-CD3 antibody and CpGC for 72h (Figure 6.3A). 

My results show that CD19hiCD170hi B cells suppress the differentiation of 

IFNγ+CD4+ and IL-17+CD4+ T cells, whereas CD19+CD170int/low B cells were 

unable to inhibit the differentiation of IFNγ or IL-17 expressing CD4+ T cells 

(Figure 6.3 B+C). Neutralization of secreted IL-10 and the IL-10 receptor in the 

CD19hiCD170hi B:T cell co-culture significantly impaired the ability of these cells to 

suppress both IFNγ and IL-17 production (Figure 6.3D+E). Of note, I confirmed that 

CD19hiCD170hi B cells produce more IL-10 than their CD170int/low counterparts by 

measuring secreted IL-10 by ELISA in sorted CD19hiCD170hi and 

CD19+CD170int/low B cells (Figure 6.3F). To ascertain whether CD170 plays a 

functional role in the suppressive capacity of CD19hiCD170hi Bregs, I blocked 

CD170 and show that neutralisation of CD170-mediated signalling also prevents 

inhibition by CD19hiCD170hi B cells (Figure 6.3G+H). I have also demonstrated that 

less IL-10 is produced overall in co-cultures of T cells with CD19hiCD170hi B cells 

blocked with αCD170, than with unblocked CD19hiCD170hi B cells as measured by 

ELISA (Figure 6.3I). Thus, TLR9 activated CD19hiCD170hi B cells present all the 

features of a bona fide Bregs. In addition, my findings show that suppression of T 

cells by CD19hiCD170hi B cells requires CD170 in addition to IL-10, suggesting that 

this marker is functionally involved in the mechanism of suppression of Bregs and 

that CD170 may be involved in the IL-10 transcriptional programme. 
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Figure 6.3. CD170hi B cells suppress T cell cytokine production (IFNγ  and IL-
17) in an IL-10 and CD170 dependent manner. 
B cells were isolated from PBMCs from HCs (n=5) and cultured with 1µM CpGC 
for 72h. CD19hiCD170hi and CD19+CD170int/low B cells were sorted by flow 
cytometry. Cells were cultured 1:1 with freshly flow cytometry-sorted autologous 
CD4+CD25- T cells, and stimulated with 0.5µg/ml αCD3 and 1µM CpGC for 72 
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hours. 0.05µg/ml PMA, 0.25µg/ml Ionomycin and 5µg/ml Brefeldin were added to 
the cells for the last 5 hours of culture, followed by intracellular detection of IFNγ 
and IL-17 by flow cytometry. Where required cells were blocked with 10µg/ml αIL-
10 and 10µg/ml αIL-10R antibodies in culture, or B cells blocked with 5µg/ml 
αCD170 antibody for 30 minutes prior to culture with T cells, as indicated. 
Supernatants were collected for analysis of cytokines. (A) Schematic of the 
suppression assay. B-C) Representative flow cytomtery plots and summary bar chart 
of IFNγ (B) and IL-17 (C) produced by CD4+ T cells alone, or with B cell substes 
and blocking antibodies as indicated. (D-E) Bar charts for percentage inhibition of 
IFNγ (D) and IL-17 (E) with/without αIL-10 and αIL-10R, mean ±SEM. (F) IL-10 
(pg/ml) measured by ELISA in supernatents from sorted B cells. (G-H) Bar charts 
for percentage inhibition of IFNγ (G) and IL-17 (H) with/without αCD170, mean 
±SEM. (I) IL-10 (pg/ml) measured by ELISA in supernatants from co-cultures. One-
way ANOVA or t-test as appropiate, *p<0.5, **p<0.01, ***p<0.00.1   
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6.3. CD170 promotes BCR-induced calcium mobilisation 

 

Having shown that CD19hiCD170hi B cells are able to suppress T cells in an IL-10-

dependent manner, I next wanted to understand how the expression of CD170 acts to 

regulate the production of IL-10 by B cells. Although CD170 is known to possess an 

ITIM and act as an inhibitory receptor via the recruitment of SHP proteins (298), 

very little is known about the CD170 signalling mechanisms in immune cells.  

 

CD22, the most well functionally characterised Siglec expressed on B cells, is a 

negative regulator of BCR signalling (304). To dissect whether CD170 is also a 

negative regulator of BCR signalling in response to antigen, I measured Ca2+ flux 

following BCR engagement via stimulation with anti-IgA+IgG+IgM F(ab’)2 in 

isolated B cells. Since this technique requires a high number of cells, and given the 

lack of a sufficient number of CD19hiCD170hi B cells in PBMCs, I used total B cells 

and assessed how blocking CD170 affects BCR-induced Ca2+ mobilisation. Ca2+ flux 

acts as a measure of BCR signalling and reflects a cells capacity to subsequently 

differentiate into an effector B cell. Briefly, I isolated B cells from HCs and stained 

them with Flou-4 dye in the presence or absence of blocking αCD170 antibody. The 

cells were left to rest for 30 minutes before data acquisition. Baseline Ca2+ levels 

were recorded on the FACS machine for 30 seconds before addition of BCR 

stimulation, and recorded for a further 3 minutes to observe the variation in Ca2+ 

levels (Figure 6.4A). I showed that BCR engagement on B cells induced a robust 

Ca2+ mobilisation. Blocking CD170 signalling, however, leads to a significant 

reduction in Ca2+ mobilisation after BCR engagement (Figure 6.4B). These results 

suggest that CD170, unlike CD22, may promote rather than inhibit B cell signalling. 

 

To gain more of an understanding into how CD170 may regulate and participate in 

regulation of signalling via the BCR, I used ImageStream to assess the co-

localisation of CD170 with IgM. In ImageStream analysis, the Bright Detailed 

Similarity Index (log transformed Pearson’s correlation coefficient of localised 

bright spots (i.e. staining for the protein of interest) that are 3 pixels or less in 

distance between them for an overlay of two images (one image for each target 

protein)) is used to determine co-localisation of two proteins of interest. A higher 
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value indicates co-localisation of two proteins. Bright Detailed Similarity analysis, 

indicates that CD170 does not co-localise with IgM (Figure 6.5). As expected, and in 

support of CD22 as a regulator of BCR signalling, ImageStream analysis shows co-

localisation of CD22 with IgM. In contrast, I have observed that CD170 does not 

colocalise with IgM, but with CD19. CD19 is a transmembrane molecule pivotal in 

the early stages of BCR signalling, by associating with micro-clusters of IgM and 

IgD molecules that recruit Syk kinases, and leading to downstream signalling (347). 

Taken together these results suggest that CD170 acts indirectly to promote BCR 

signalling.  
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Figure 6.4. BCR-induced Ca2+ mobilisation is reduced in the presence of 
αCD170 antibody. 
Ca2+ flux was measured by flow cytometry using Flou-4 dye following stimulation 
of isolated B cells from HCs (n=7) with 20µg/ml IgA +IgG +IgM F(ab’)2, with or 
without prior blocking. Samples were recorded on the FACS machine for 30 seconds 
before adding the BCR stimulation, and recorded for a further 3 minutes after 
stimulation. (A) Three representative Ca2+ flux kinetic plots. (B) Ca2+ flux measured 
as mean Flour-4 MFI after BCR engagement, minus mean baseline Flour-4 MFI, 
without and with prior blocking with αCD170, paired-t-test, *p<0.05. 
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Figure 6.5. ImageStream analysis of IgM, CD22, CD170 and CD19 expression 
on B cells confirms co-localisation of IgM and CD22, but suggests an association 
of CD170 with CD19 rather than IgM. 
PBMCs from HCs (n=8) were stained with conjugated antibodies against IgM, 
CD22, CD170 and CD19 and analysed using ImageStream. CD19+CD170+ and 
CD19+CD22+ cells were analysed for Bright Detailed Similarity between CD170 and 
IgM/CD19, and CD22 and IgM respectively. (A) Column graph showing co-
localisation (Bright Detailed Similarity) of the two target proteins. Mean ±SEM, t-
test, **p<0.01, ***p<0.001. (B) Representative ImageStream images showing IgM 
(green) and CD22 (red) expression, IgM (green) and CD170 (red) expression, and 
CD19 (green) and CD170 (red) expression as indicated, including overlay of both 
markers where yellow indicates co-localisation. 
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6.4. B cells from RA patients exhibit defective recycling of CD170  

 

It is unknown if CD170, similarly to other Siglecs, is also an endocytic receptor that 

could be internalised either constitutively or following ligation (289). To determine 

if CD170 is recycled and to analyse the dynamic of CD170 recycling and whether a 

defect in CD170 internalisation and/or recycling to the surface could be the cause of 

the reduced frequency of CD19hiCD170hi B cells in RA patients, B cells were 

purified from HCs and RA patients and surface stained with CD170. B cells were 

then either put on ice or incubated for 60 minutes at 37oC to allow internalisation of 

CD170. Internalised CD170 was detected using ImageStream. A significantly 

increased internalization score, after incubation for 60 minutes at 37oC compared to 

cells on ice (0 minutes), was observed in HCs but not in RA B cells (Figure 6.6). 

This suggests that whereas CD170 is constitutively internalised in HCs, this 

mechanism is defective in RA.  

 

Next, I assessed the recycling dynamic of CD170 in B cells from HCs and RA 

patients. B cells were incubated with a saturating amount of unconjugated CD170-

specific antibody to block cell surface CD170 molecules on ice for 30 minutes. B 

cells were then incubated at 37oC for 20 or 60 minutes to allow recycling of CD170 

molecules from an intracellular location to the cell surface. Recycled intracellular 

CD170 molecules were not bound to the CD170 specific antibody, and therefore by 

staining with a PE-conjugated CD170 specific antibody I was able to assess their 

presence by flow cytometry. Following 20 and 60 minutes of incubation, I observed 

a progressive increase in surface CD170 expression, suggesting recycling of CD170 

to the surface (Figure 6.7A). Comparing HC to RA, after 60 minutes of recycling, 

RA patients have a higher expression of CD170 (MFI) than HCs suggesting a faster 

rate of recycling of CD170 to the cell surface (Figure 6.7B).  

 

Next, I addressed if CD170 is recycled via the endosomal system or is degraded in 

the lysosomes following internalisation. The transferrin receptor (TfR) is 

constitutively recycled via the endosomes and is a useful surrogate marker for the 

endosomes (349), while LAMP-1 has been widely used to identify the lysosomes 

due to its abundance in the lysosomal membrane (350). B cells from HCs were 

stained intracellularly with CD170, LAMP-1 and TfR and colocalization assessed by 
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ImageStream. The results show that CD170 co-localised with TfR but not LAMP-1, 

with the Bright Detailed Similarity Index significantly higher for CD170 and TfR 

(>2) than CD170 and LAMP-1 (<1) (Figure 6.8). Taken together, I have shown for 

the first time that CD170 is an endocytic receptor capable of recycling via the 

endosomes, similar to other members of the Siglec family. Furthermore, there is a 

defect in the ability of CD170 to be internalised by RA B cells, but B cells from RA 

patients exhibit a faster rate of recycling of CD170 to the surface.  
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Figure 6.6. Surface CD170 is internalised in HCs, while internalisation is 
impaired in RA. 
PBMCs from HCs (n=7) and RA patients (n=4) were stained extracellularly with 
CD170-PE on ice, then incubated at 37oC for 60 minutes to allow CD170 
internalisation, or left on ice. Internalisation of CD170 on CD19+ B cells was 
determined by ImageStream analysis and an Internalization Score generated for each 
sample. (A) Internalization of CD170 for paired samples either left on ice (0 mins) or 
incubated at 37oC (60 mins), t-test, *** p<0.001. (B) Representative ImageStream 
images for CD170 without (0 mins) and with (60 mins) incubation to allow 
internalisation; bright field image, CD170 expression (pink), and overlay. (C) As ‘A’ 
for RA patients. (D) Representative histogram overlay of frequency of internalised 
cells (“Internalization”) of CD170 for samples without (0 mins, purple) and with (60 
mins, green) incubation to allow internalisation in HC and RA patients. 
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Figure 6.7. CD170 is constitutively recycled to the cell surface and this occurs at 
a faster rate in RA patients than in HCs. 
B cells from HCs (n=6) and RA patients (n=6) were pre-incubated with an un-
conjugated anti-CD170 antibody for 30 minutes on ice. B cell were then left on ice, 
or incubated at 37oC for 20 or 60 minutes to allow recycling of internal CD170. 
Cells were then stained with CD170-PE to detect recycled CD170. (A) Frequency of 
CD170+ B cells at 0-, 20- and 60-minutes incubation following blocking with 
αCD170, and total CD170 without blocking. (B) Representative histogram overlays 
of CD170 MFI expression for HC and RA patients at 0- and 60- minutes incubation 
(dotted black and red line respectively) at 37oC, total CD170 (black line) and PE 
FMO (shaded grey), and column scatter graph showing a summary of the data; 
recycling calculated as CD170 MFI at 60 minutes minus MFI at 0 minutes.  
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Figure 6.8. Intra-cellular CD170 colocalises with TfR suggesting recycling via 
the endosomes. 
PBMCs from HC (n=5) were stained extracellularly for ImageStream analysis with 
CD19 and intracellularly with CD170-APC, transferrin receptor (TfR) and 
Lysosomal-associated membrane protein 1 (LAMP-1). Bright detailed similarity 
index was calculated between CD170 and TfR, or CD170 and LAMP-1. Column 
scatter graph of summary data; mean ±SEM, t-test, ****p<0.0001. Representative 
ImageStream images of CD170 staining and its expression with respect to TfR and 
LAMP-1. 
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6.5. The SIGLEC5/14 polymorphism is not associated with RA 

 

CD170 has 99% sequence homology of the first two Ig domains with the ITAM 

expressing Siglec-14 (299). In some individuals Siglec-14 is absent, with the 

SIGLEC5 gene having undergone conversion with the SIGLEC14 gene resulting in a 

“SIGLEC5/14” gene whereby the SIGLEC5 gene is under the control of the 

SIGLEC14 promoter, resulting in a loss of Siglec-14 expression (292) (Figure 6.2A). 

Furthermore, the SIGLEC5/14 null mutation is thought to be associated with 

impaired immunological responses (300, 302). Therefore, it was important to 

evaluate if there was any association between the SIGLEC5/14 null allele and RA, 

and to assess if the presence of the null allele affected the expression of CD170 on B 

cells. Hence, I performed PCR amplification of the SIGLEC5, SIGLEC14 and 

SIGLEC5/14 genes, from DNA extracted from frozen PBMCs from 14 HC and 15 

RA patients selected at random from our cross-sectional cohort. I ran the PCR 

products on a 1% agarose gel in order to visualise the presence or absence of the 

genes and genotype the samples (Figure 6.2B). Of note, B cells do not express 

siglec-14 (292), therefore I hypothesized that it is unlikely that this mutation will 

affect CD170 expression on B cells. 

 

I report no incidence of individuals homozygous for the null allele and that the 

majority of individuals (approx. 70%) do not possess a copy of the null allele (Figure 

6.2C). Furthermore, there is no difference in the frequency of the polymorphism 

between HC and RA, suggesting this mutation is not associated with RA. To 

evaluate if the genotype for the null allele affected CD170 expression by B cells I 

compared frequency of CD170+ B cells in ‘wild type’ samples to heterozygous 

samples (HC and RA patients combined) (Figure 6.2D). While there was no 

significant difference between the two groups, interestingly all CD170 low/non-

expressing individuals do not have the polymorphism, however, I cannot draw a 

conclusive association from our results due to the small number of these individuals.  
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Figure 6.9. Genotyping of HC and RA for presence of SIGLEC5/14 null allele. 
DNA was extracted from frozen PBMC samples from HC (n=14) and RA patients 
(n=15); PCR amplification was performed with primers for SIGLEC14, SIGLEC5 
and SIGLEC5/14 (null allele). PCR products were run on a 1% agarose gel. (A) 
Schematic of the WT and null alleles for the SIGLEC5 and SIGLEC14 genes. (B) 
Representative gels for the three genes (n= 9). (C) Frequency of each genotype in 
HC (white bars) and RA (black bars). (D) Box and whisker plot of frequency of 
CD170+ B cells between individuals with either a ‘wildtype’ or a heterozygous 
genotype, t-test not significant. 
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6.6. Summary 

 

I have reported a novel surface marker that uniquely identifies Bregs. The 

suppressive mechanism of this Breg population is dependent on the production of 

IL-10 and the expression of CD170. This novel Breg population is reduced in RA 

patients, which supports our and others work showing reduced Breg numbers in this 

disease. I propose that the reduced number of CD170hi B cells in RA could be due to 

a defect in the recycling of this molecule. This could have functional implications, 

including the reduced IL-10 production observed in B cells from RA patients. I have 

also reported a decrease in Ca2+ mobilisation after blocking CD170, suggesting that 

CD170 acts to regulate BCR signalling. However, I have shown that CD170 does 

not co-localise with the BCR, unlike CD22, but it rather it co-localises with CD19, 

suggesting an indirect regulation of BCR signalling that needs further exploration.  

 

6.7. Future work  

 

I have begun to dissect the mechanism by which CD170 may drive the transcription 

of IL-10 in B cells. An immediate goal is to continue to research the role of this 

unexplored molecule, particularly since very little is known about CD170 on B cells. 

I need to further unravel how CD170 may act to regulate IL-10 production. To do 

this I will sort CD19hiCD170hi B cells, and CD19+CD170int/low B cells following 72h 

stimulation with CpGC as described. I will initially assess by qPCR transcription 

factors known to regulate IL-10 production to see if any are up regulated in 

CD19hiCD170hi B cells, for example, IRF4 (351) and ERK1 (352). It would also be 

of interest to investigate the phosphorylation of STAT3, a transcription factor 

involved in the transcription of IL-10 (353), using phosflow cytometry, and assess 

how STAT3 phosphorylation may vary with increasing CD170 expression. If this 

approach does not lead to the identification of a transcriptional marker, I will 

perform RNA-seq on the two populations from healthy individuals. 

 

I show a possible functional association between CD170 and CD19. It has been 

demonstrated that cross-linking of the BCR with CD19 reduces the threshold for B 

cell activation. CD19 acts as a membrane adaptor protein, recruiting signalling 

molecules including Vav, phosphoinositide-3 kinase (PI3K), and Lyn, and resulting 
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in the activation of the MAP kinase signalling pathways (347). The MAP kinase 

signalling pathways have also been shown to be important in IL-10 production. 

Therefore, I will address in future experiments how disruption of CD170 impairs 

BCR signalling, including activation of MAP kinases, and will compare the results 

in HCs to RA. 

 

Evidence has shown that Bregs in RA are not only numerically deficient but are 

unable to inhibit the polarisation of naïve T cells into Th1 or Th17 cells (98). 

Therefore, I would need to assess the suppressive capacity of CD19hiCD170hi Bregs 

from RA in this setting. It could also be of interest to investigate how the recycling 

of CD170 may be linked to its function, for examples via interaction with TLR9 in 

the endosomes. I would start this investigation by assessing co-localisation of TLR9 

with CD170 using ImageStream. 
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7. Discussion 
 

Technological advances have enabled large-scale analyses of biological 

investigations, increasing the likelihood of new findings including the identification 

of novel biomarkers. The work presented in this thesis introduces a flow cytometry-

based high-throughput immune phenotyping platform that allows identification of 

cell surface markers that are differentially expressed in different groups of RA 

patients and compared to healthy individuals. The wealth of data gathered using the 

LEGENDScreenTM platform was used to explore three inter-connected questions: 1. 

Is it possible to predict ADA development?; 2. Can novel biomarkers of RA be 

identified?; 3. Can a novel marker of Bregs be identified? 

 

7.1. Large datasets as a tool for medical research, and the pros and cons of 

LEGENDScreenTM 

 

One of the appeals of LEGENDScreenTM beyond the wealth of data the platform is 

able to generate, is the possibility of identification of novel markers. The 

LEGENDSceenTM consists of an extensive and comprehensive set of anti-cell 

surface protein directed antibodies, many of which have not been studied before on 

B cells, or in patients with RA. One of the main challenges of this work however, 

was to establish the best way to analyse this wealth of unique data obtained. 

Devising a strategy for the analysis of these more extensive datasets is a challenge 

across similar technologies (354-356). In this thesis the LEGENDScreenTM is not 

only validated, but I also developed a systematic framework analysis in order to 

address several posed questions within this thesis, notably of markers that are 

specific to ADA or RA, and not to confounding factors including the level of 

inflammation. 

 

The LEGENDScreenTM allows for extensive phenotyping of cell-surface protein 

expression, from which we can make direct functional inferences. This gives 

LEGENDScreenTM and similar ‘phenotyping’ platform strategies an advantage over, 

for example, genetic studies, where confounding factors often play a role, including 

SNPs identified in non-protein coding regions of the genome (357), epigenetic 

modifications (358), and a lack of overlap between data studies (354). The 
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LEGENDScreenTM is particularly unique due to its capability to measure the 

expression of 332 different proteins, enabling not only the assessment of novel 

expression patterns of cell-surface proteins, but it may also provide viable new drug 

targets. Such phenotypic analyses are relatively inexpensive, and the identification of 

cell surface proteins also lends itself better to the clinic; blood samples are already 

routinely taken and tested for presence of proteins such as RF and anti-CCP. Blood-

based screening is easy to perform, and it can be repeated at frequent intervals. This 

is advantageous in comparison to, for example, biopsies that are invasive and not 

always routinely carried out, or imaging techniques, such as ultrasound, that require 

specialist equipment. Therefore, biomarkers found within the blood make the 

monitoring of patients more accessible. A future goal of this study is to use the RA 

signature as a blood test to help identify patients at greatest risk of developing RA. 

To our knowledge this is the first study that extensively phenotypes B cells in both 

healthy individuals and RA patients. Several other studies have used the 

LEGENDScreenTM for analysis of mucosa-associated invariant T (MAIT) cells, 

early activation of CD4+ T cells, delta one T (DOT) cells, small-cell lung cancer 

(SCLC) cells, skeletal muscle progenitor cells, and DC subsets (359-363). Notably 

there is a dominance of T cell investigations with LEGENDScreenTM, and 

furthermore, these studies are largely restricted to healthy individuals.  

 

The limitations of the LEGENDScreenTM platform include the requirement of a large 

number of cells and the inability to analyse all 332 markers simultaneously on a 

single cell. While I validated our panel and the number of cells used to ensure that I 

collected enough events for analysis of immature cells, the requirement of a large 

number of cells makes the analysis of small/rare populations more challenging. This 

could be improved by pre-enriching for particular cell types before, although would 

still require a large starting number of PBMCs. Furthermore, despite the extensive 

list of LEGENDScreenTM markers, one remains restricted by the availability of an 

antibody against a target, and some targets may not be provided by the platform. The 

more recently established mass cytometry technique CyTOF, provides an alternative 

to LEGENDScreenTM that allows the analysis of a large number of proteins 

simultaneously on a single cell. Like LEGENDScreenTM CyTOF is also a flow 

cytometry technique, however, here the antibodies against target proteins are 

conjugated to heavy metal ions and detected by time-of-flight mass spectrometry, 
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mitigating the need for compensation (364, 365). CyTOF is able to detect more 

targets than a standard multi-colour flow cytometry panel (up to 135 compared to up 

to 18 colours in flow cytometry), and while LEGENDScreenTM looks at more target 

proteins in total (332), CYTOF has the advantage of being able to simultaneous 

detect multiple targeted proteins on a single cell. CYTOF may provide a potential 

next step for analysis for markers identified using the LEGENDScreenTM. 

Despite LEGENDScreenTM providing a highly comprehensive overview of the 

expression of cell surface proteins across multiple immune cell types, the 

LEGENDScreenTM provides no information on intracellular proteins such as 

signalling molecules and transcription factors. Where a protein has not before been 

described on a subset, or its functionality is relatively unknown, it is particularly 

important therefore to undertake follow up investigations to understand the 

mechanisms behind the expression of a marker, or lack thereof. Furthermore, such 

analysis may also uncover connections between the observed expression of multiple 

markers. This could be achieved by complimentary genetic analysis and/or 

functional analysis of individual markers; the latter of which I have done in this 

thesis and will discuss later. This “multi-omics” approach, has the aim of generating 

a complementary and global view of immune cells in health and disease and thus 

minimising the effects of the limitations of the individual technologies. For example, 

Graessel et al. use quantitative liquid chromatography-tandem mass spectrometry, 

LEGENDScreenTM and gene expression microarray to assess early activation of 

CD4+ T cells (360). 
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7.2. The impact of ADA and implications within the clinic 

 

Biological therapies are routinely used to treat autoimmune conditions such as RA, 

and have significantly improved the management of these diseases. However, 

despite their success, some patients develop immune reactions against these 

therapies, and develop ADA, which often leads to treatment failure (124, 126, 137-

139). Different drugs possess different degrees of immunogenicity, for example 

adalimumab, a whole mAb, is more immunogenic than etanercept, a fusion protein 

that contains only the Fc portion of an antibody (138, 366). While to a certain extent, 

increasing drug dosage has been shown to mitigate the side-effects associated with 

the presence of ADA (146), there is a need to be able to predict which individuals 

will develop ADA. To date, there has been very little investigation of the 

immunological differences between ADA+ patients and ADA- patients that may 

account for why certain individuals develop antibodies against the drug. Here I 

aimed to identify a predictive biomarker associated with ADA. By using a UK cross-

sectional cohort of adalimumab-treated RA patients, followed by validation in a 

European prospective cohort, I have identified that a reduced frequency of 

SIRPα/β+memory B cells prior to adalimumab treatment allows the prediction of 

ADA development in RA patients. In addition, I show that this lower frequency of 

SIRPα/β+memory B cells in ADA+ patients remains relatively stable following 

treatment with adalimumab. In general, and as mentioned earlier, one of the major 

pitfalls in this type of study is the lack of reproducibility of a biomarker. This is 

often due to the absence of validation in independent cohorts (354, 367, 368). I 

mitigated this problem by validating our results in an independent cohort that 

included patients of mixed ethnicity. However, only one of the markers was 

reproducible in the validation cohort. This may be due to the complex nature of the 

development of ADA, despite our attempts to account for possible confounding 

factors including disease activity and treatment.  

 

The ability to detect ADA in RA patients already on treatment would potentially 

deliver precision medicine to this heterogeneous disease and increase the efficiency 

of clinical decision-making. It is tempting to propose that the measurement of the 

frequency of SIRPα/β+memory B cells could also be used as a surrogate marker for 

ADA in the clinic for patients already being treated with adalimumab. Currently 
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there is no method of measuring ADA that is reliably accurate for routine clinical 

use, with the many available assays varying in sensitivity (149). Using ADA titre 

and/or an ADA surrogate measure could also help to inform clinicians as to when to 

make the decision to switch treatment. 

 

It is interesting to note that not all individuals develop ADA, suggesting the 

existence of specific risk factors, genetic or environmental, that predispose some 

individuals to develop ADA. However, despite the association of ADA with loss of 

response to treatment, there have been very few investigations into the 

immunological mechanisms that drive ADA development and/or what may 

predispose an individual. It has been previously reported that in RA three SNPs in 

the promoter region of the IL-10 gene are associated with an increased likelihood of 

the development of ADA against adalimumab (143). In addition, patients that were 

homozygous for the same IgG allotype as adalimumab (G1m17) were more likely to 

develop ADA (41%), and of those individuals that were homozygous for G1m3 only 

10% were ADA+ (144). In MS, which is commonly treated with an antibody therapy 

against interferon-β, ADA development against the drug was associated with the 

HLA-DR4 haplotype (145). There is currently no functional data showing the role of 

SIRP in B cells. Nevertheless, SIRPα has been shown to have a possible role in 

autoimmunity. Specifically, it was found to be a risk locus in individuals with type 1 

diabetes (369), and while Crohn’s disease patients have increased 

SIRPα/β+CD11c+DCs in the mesenteric LNs and in the inflamed intestinal mucosa 

(370). SIRP α and β are members of the signalling inhibitory receptor protein (SIRP) 

family, and are membrane-expressed proteins. Predominantly found on myeloid 

cells, they act to mediate cell-to-cell interactions by regulating the type and strength 

of the signal (293). The major ligand for SIRPα is CD47, which is ubiquitously 

expressed and has a role in apoptosis, proliferation, adhesion and migration (371), 

while SIRPβ has no known ligand. It would be interesting in future studies to 

ascertain whether for example SIRP α and β are also genetic risk loci associated to 

ADA development in patients with RA.  

 

There is an increasing number of biosimilars on the market; studies investigating the 

efficacy of a biosimilar to the original drug have shown that the biosimilars have 

comparable efficacy (372). It has been demonstrated that in patients who have 
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developed ADA against the infliximab formulation known as Remicade, that the 

ADA will cross-react with the biosimilar, as shown for Remsima in IBD (373) and 

Inflectra in RA (374), both infliximab biosimilars. On this basis I would expect the 

frequency of SIRPα/β+memory B cells to also be reduced in patients that lack 

response to or have ADA against adalimumab biosimilars however; this will be 

subject to future investigation. 
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7.3. A novel marker for the identification of Bregs 

 

Despite on-going efforts, a unifying phenotype of Bregs remains elusive. Questions 

around the development and stability of Bregs remain outstanding (275, 344). Thus, 

the identification of a unique Breg marker would aid our understanding of the 

development and function of these cells. Several markers have been associated with 

Bregs, including CD24, CD38, CD27, Tim-1, and CD138 (249, 258, 279, 282). 

Unfortunately, these same markers are also expressed by B cell subsets at different 

stages of development. The identification of IL-10+ B cells by flow cytometry 

typically requires a brief culture with a protein transport inhibitor such as brefeldin, 

followed by fixation and permeabilization of cells. This negates further functional 

analysis of these cells and makes current studies of Bregs more difficult. While 

methods are available for the sorting of IL-10+ cells without fixation, a surface 

marker would better facilitate the investigation of these cells. Here I report that 

under Breg polarising conditions over 80% of CD19hiCD170hi B cells following 

stimulation with CpGC produce IL-10. Moreover, my results show that upregulation 

of CD170 parallels the induction of IL-10 production. 

 

The identification of a unifying Breg marker could also provide a novel therapeutic 

target. Current treatments for multiple immune disorders typically target symptoms 

rather than offering a cure. Given the long-term management required with drugs 

this can lead to unwanted side effects, including risk of life-threatening infections or 

inefficacy of treatment over time. By targeting the depletion or modification of 

specific immune cells involved in disease pathogenesis we could provide a more 

successful option with less side effects. Of interest, rituximab, while depleting the 

inflammatory and antibody producing B cells, also depletes the beneficial Bregs 

(105). Bregs are an appealing target for such directed therapies. Ideally a Breg based 

therapeutic approach could have the potential to permanently reset immune 

homeostasis; harnessing the power of Bregs could lead to a more stable, pre-disease 

like state. We can propose two ways that Bregs could be manipulated for therapeutic 

intervention; firstly the depletion of Bregs, for example, for use cancer; secondly, the 

expansion of an individual’s Bregs in vitro via stimulation of CD40, TLR and/or 

BCR engagement, followed by the adoptive transfer of their Bregs back into the 
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patient, for the treatment of auto-immune diseases (344). However, at the moment 

these strategies are limited by the lack of the ability to purify Bregs.  
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7.4. The role of CD170 in health and disease, and what CD170 can tell us 

about Bregs in RA 

 

In this thesis I propose that high expression of CD170 by B cells defines IL-10+ 

Bregs. Very little is known about the functional role of CD170, particularly on B 

cells. The majority of Siglecs are inhibitory receptors, possessing an ITIM motif, and 

have been shown to dampen inflammatory cytokine production and signalling via the 

BCR. Work by Ando et al. showed that Siglec-9 expression on the macrophage cell 

line RAW264 not only inhibited TNF-α production, but also enhanced IL-10 

production, thus indicating multiple pathways of regulation by Siglecs (345). To 

further understand the mechanism of cytokine regulation by Siglec-9, Ando et al. 

mutated the ITIM and ITIM-like motifs of Siglec-9. These mutations reversed the 

effects of increased Siglec-9 expression on production of IL-10 and TNFα, 

suggesting that signalling via the ITIMs is responsible for both phenomena. 

Activated ITIMs recruit SHP proteins for signalling; observations made following 

the siRNA knockdown of SHP-1 and SHP-2 suggest that SHPs inhibit the described 

enhancement of IL-10. Overall this study suggests that ITIM signalling is required 

for IL-10 enhancement and is regulated by SHP proteins, however, the complete 

mechanisms remains unclear. In line with our observations Ando et al. further 

showed that RAW264 cells expressing CD170, also produced less TNFα and 

exhibited an enhancement of IL-10 (345). Notably, I demonstrate that the 

CD19hiCD170hi B cell population is reduced in RA patients, and this is in parallel 

with less IL-10+ B cells in RA. Although it was interesting to observe that those B 

cells in RA that did upregulate CD170 produced similar amounts of IL-10 compared 

to their HC counterparts.   

 

To begin to understand the differential expression of CD170 between HC and RA 

patients I looked at the recycling of CD170. Siglecs are considered endocytic 

receptors, with constitutive recycling and induced endocytosis having been 

demonstrated (288, 323, 375, 376). I established that CD170 is able to constitutively 

recycle, and that the recycling of CD170 in RA patients is dysregulated. The ability 

of Siglecs to recycle has been demonstrated to be associated with a variety of 

functions, for example; the prevention of viral and bacterial spread by phagocytosis 
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of pathogens expressing sialic acids; antigen presentation following internalisation 

antigen containing sialic acids; and regulation of signalling, for example of the BCR 

by CD22 (289, 376, 377). It is possible that the dysregulation of CD170 recycling I 

have detected in RA patients could not only affect the surface expression of CD170, 

but directly affect the functional capacities of this molecule.   

 

I also demonstrated that CD170 is able to recycle via the endosomes as observed for 

other Siglecs (378). I also show that stimulation via TLR9 induces both CD170 

upregulation and the production of IL-10; within the endosome CD170 could 

directly interact with TLR9 which is situated in the endosomal membrane, and act to 

regulate signalling following TLR engagement. Multiple studies, as discussed in the 

introduction, have reported that KO cell lines, or cell lines over expressing Siglecs 

have shown changes in proliferation, activation, MHC class II expression, NF-κB 

transcription activity, and production of cytokines in response to stimulation via 

TLRs  (303, 317, 318). However, none directly address the relationship between the 

TLR and Siglecs. Thus, future work investigating the link between CD170 and 

TLR9 could enhance our understanding of siglec-TLR interactions across this family 

of proteins. 

 

I have already discussed how manipulation to expand or reduce the Breg population 

could be a useful therapeutic tool. In addition, understanding the functional 

mechanism of CD170 beyond a biomarker of Bregs, may open up further 

possibilities for therapeutic intervention. CD47 expression on cells sends a “do-not-

eat-me” signal to macrophages expressing the ligand SIRPα. This system is 

exploited by tumour cells that overexpress CD47, and blockade of this receptor-

ligand interaction has been demonstrated to lead to the inhibition of tumour growth; 

hence blocking other protein-protein interactions may offer viable therapeutic target 

options (362). Blocking the interaction of CD170 with CD19 may for example 

reduce B cell activation (as suggested by Ca2+ flux experiments).  

 

The ability of Siglecs to recycle makes them attractive targets for therapeutic 

manipulation. Sialoadhesin (Siglec-1) is a macrophage specific adhesion and 

endocytic receptor (376). It is able to bind bacteria and viruses expressing sialic 
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acids limiting the spread of the bacteria/viruses, acting as a scavenger receptor, and 

leading to phagocytosis of the bacteria/viruses (377). This system has the potential to 

be exploited therapeutically using liposomes for targeted delivery into macrophages. 

Liposome targeted delivery of lipid antigens leads to their presentation via CD1d and 

the activation of iNKT (379). Similarly, this system was exploited to deliver toxins 

to macrophages in order to kill them (376). Having observed an impairment in 

recycling of CD170 in RA patients, which may be linked to IL-10 production, it is 

tempting to suggest a therapy whereby restoring the recycling of CD170 in B cells 

from RA patients could recover IL-10 production. More investigations would be 

required into the recycling mechanism of CD170 and how it is linked to IL-10 

production. 

 

In the literature it has been reported that as many as 70% of Chinese individuals have 

the Siglec-14 null mutation, which renders Siglec-14 expression absent on all cells, 

whereas it is much more uncommon in people of Northern European descent (only 1 

in 10 had the mutation) (292). In our cohort of 29 individuals I identified no 

individuals homozygous for the Siglec-14 null mutation. Despite the lower 

frequency reported for European populations this frequency is still higher than I 

observed in our cohort, suggesting that the mutations may not be quite as common as 

documented previously. Since B cells do not express Siglec-14 one might expect that 

the Siglec-14 null allele is not associated with RA, a disease in which B cells play a 

prominent role. Furthermore, the immunological impact of this mutation is not fully 

appreciated (300, 302). 

 

Overall, our initial investigations of CD170 focused on its expression on IL-10-

producing B cells. This leads us to speculate that the manipulation of CD170 through 

therapeutic intervention could be the key to harnessing the power of Bregs and 

improving or promoting their function in RA, and thus facilitating the restraint of 

chronic inflammation that is the hallmark of RA.  
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7.5. Conclusion 

 

In this thesis I have presented three main findings: a) low frequency of SIRPα/βa+ 

memory B cells predicts development of ADA against adalimumab in RA patients; 

b) CD97, CD170 and CD11c may predict RA onset in at-risk individuals, and c) 

CD170 is a novel marker of Bregs. To our knowledge this is the first extensive 

immune phenotyping analysis of B cells in a longitudinal cohort of RA patients 

treated with adalimumab. I hope that markers identified in this thesis can be used as 

part of a toolkit in combination with other biomarkers, genetic and other risk factors 

that will allow for more personalized approach to the treatment of patients with RA 

and similar conditions, and that CD170 may be a useful tool in future investigations 

of Bregs. 
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Appendix 
 
A.1. ABIRISK patient consent form 
 

 
  

Patient	consent	form	 Version	3	 30/06/2015	

 

	 	
Centre for Rheumatology Research                                  Department of Rheumatology	
Rayne Institute                                                                  University College Hospital 
5 University Street                                                            250 Euston Road 

                       LONDON WC1E 6JF                                                       LONDON NW1 2PQ	
	

Investigating anti-drug antibodies in autoimmune disease  
Research ethics review number: 14/SC/1200 PR 

Researchers: Dr. Jessica Manson. Prof. David Isenberg, Prof. Claudia Mauri, Dr. Elizabeth Jury.  
 

CONSENT FORM 
 
1.  I confirm that I have read and understand the Patient Information Sheet (June 2015, Version 5) for the 
above study.  I have had the opportunity to consider the information, ask questions and have had these 
answered satisfactorily. 

2. I understand that my participation is voluntary and that I am free to withdraw at any time without giving 
any reason, without my medical care or legal rights being affected. 

3. I understand that the researchers will access my medical records to obtain data that is relevant to this 

study. 

4. I understand that relevant sections of my medical notes, and data collected during the study, may be 
looked at by individuals from ethical and regulatory authorities or from the NHS Trust, where it is relevant 
to my taking part in this research.  I give permission for these individuals to have access to my records. 

5. I understand that by giving consent, I am agreeing to allow stored samples and information relevant to this 
study from my medical records, to be used in future research concerning autoimmune and rheumatic 
diseases after further regulatory and ethical body approval has been obtained. 

6. I understand that you will not provide any feedback or results from research analysis conducted on my 
sample. 

7. I give consent for you to contact my general practitioner. 

8.I agree to take part in the above study. 

9. I agree to part of my sample being investigated for the amount of genetic material, and some of this 

information being shared with a commercial third party (OPTIONAL). 

10. agree to part of my sample being sent to the Institute of Health and Medical Research in Paris for genetic 
analysis and I understand that you will NOT provide any feedback or results from research analysis 
conducted on this sample (OPTIONAL). 

 

     
Name of participant                          Date                                                 Signature           

 

Name of person taking consent        Date                                                     Signature 

Researcher use only: 
 

         Hospital Number                              Date of Birth                                                     Patient ID Code 

YES	 NO	

YES	 NO	
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A.2. ABRISK patient information sheet 
 

 

	

Patient Information Sheet:  Version 6       18/11/2015                                                       Page 1 

															 	
	
	
	
	
	
	

PATIENT INFORMATION SHEET 
Investigating anti-drug antibodies in autoimmune disease:  
Research Ethics Reference number: 14/SC/1200 

 

We would like to invite you to take part in our study. Before you decide, it is important to understand what the 
research involves and why it is being done. Please read this information sheet and ask any questions you may have. 
We encourage you to take as much time as you need and to discuss it with others if you wish. 
 

PART 1 – ABOUT THIS STUDY 
 

What is the purpose of this research? 
We are studying the drugs used to treat autoimmune diseases. They work very well in most cases, but in a minority of 
patients, the medicine is neutralised before it has time to take effect. This problem is caused by the patient’s own 
antibodies, called anti-drug antibodies, and nobody knows why some people develop them while others do not. The 
aim of this study is to discover clinical features or blood markers that will help us to predict which medicines will 
work for which patients, and in the longer term, to design better medicines or ways to use these medicines, to avoid 
the development of anti-drug antibodies. 
 

Why have I been invited to take part? 
You have been approached for this study because you have rheumatoid arthritis (RA) or systemic lupus erythematosus 
(SLE) and have been treated previously with one of the drugs we want to investigate. We will also invite healthy 
volunteers to donate blood for comparison. 
 

Do I have to take part? 
No. It is up to you whether or not you join this study. We will describe the study and go through this information 
sheet. If you agree to take part you will be given this information sheet to keep and we will then ask you to sign a 
consent form. You can change your mind at any time without giving a reason, and this would not affect the care you 
receive. 
 

What will happen to me if I take part? 
You will be asked to attend the hospital once to have blood samples taken.  We will ask you to donate 50mL of blood 
(about 3 tablespoons). This sample will be taken at the same time as your routine blood tests, so there will only be one 
needle and will coincide with your routine clinic visits. The procedure normally lasts 5 minutes.  
We will also obtain information from your medical records that is relevant to this study. 
 

Are there any risks? 
There are no risks other than a small amount of discomfort or a small bruise that is sometimes associated with having 
your blood taken.  
 

What will happen to my sample? 
The	blood	sample	will	be	taken	to	the	laboratory	and	kept	in	tubes	marked	with	a	unique	code,	but	not	with	
any	 identifiable	 information.	We	will	 examine	 the	 surface	 of	 blood	 cells	 for	 features	 that	 are	 known	 to	 be	
important	in	 the	way	cells	communicate.	 In	addition,	we	will	test	a	substance	 in	your	cells	called	RNA.	Your	
RNA	carries	some	information	about	your	genetic	makeup.	When	testing	the	RNA,	some	of	the	information	that	
is	stored	in	your	genes	will	become	available	to	the	scientists	conducting	the	study.	However,	the	goal	of	the	
research	is	to	measure	the	amount	of	the	different	types	of	RNA	in	your	cells	to	see	how	this	might	be	related	to	
SLE	and	RA.		The	RNA	information	will	not	be	used	to	study	your	genetic	makeup.	The	RNA	tests	will	be	done	
by	a	Contract	Research	Organization	(CRO)	and	the	data	subsequently	be	shared	with	a	commercial	third	party.	
Those	parties	will	have	no	way	of	linking	your	sample	to	your	personal	information.	
We will also check the levels of antibodies in the sample. It may be necessary in the future to test these samples again, 
with new techniques that have not yet been discovered. Also any leftover samples will be kept for future studies 
asking new questions relating to arthritis or SLE after obtaining the correct ethical and regulatory approval. By giving 

Centre for Rheumatology Research 
Rayne Institute 
5 University Street 
LONDON 
WC1E 6JF 

Department of Rheumatology 
University College Hospital 

250 Euston Road 
LONDON 
NW1 2PQ 
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consent, you would be prospectively agreeing to allow us to conduct this further research using your blood samples 
and information from your medical records relevant to this research.  
If you agree to part of your sample being used for genetic analysis, it will be given a second unique code and sent to 
the Institute of Health and Medical Research in Paris.  
We will not provide you with any feedback or results from research analysis conducted on your sample. 

 

Will I benefit? 
You will not benefit directly from taking part in this study at this time, but the information we get will help us to 
design better future therapies for people with autoimmune diseases.  
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PART 2 – CONDUCT OF THIS STUDY 
 

Will my involvement be kept confidential? 
Yes. We follow ethical and legal codes of practice to ensure that all information about you and your involvement is 
handled in confidence. Some parts of your medical records may need to be accessed by authorised NHS staff and/or 
during a formal inspection by regulatory bodies during monitoring or auditing of the study. These staff have a duty of 
confidentiality to you as a research participant. All information about you will be anonymised, stored in locked 
cabinets and encrypted computer files, and kept strictly confidential. 
 

What will happen to the results from this study? 
Everything we discover through this research will be made as freely available as possible, through publishing in 
medical journals. However, these scientific results take time to collate and may not be available for several years. No 
personal information that could be used to identify you will ever be published or made available to anyone not directly 
involved in your clinical care or this research. 
 

Can I withdraw from this study? 
Yes. You can withdraw from the study at any time without giving a reason, and this would not affect the care you 
receive. We would then destroy any stored samples and data that had already been collected.  
 

How is this study organised and funded? 
This study is part of a collaboration between several research institutions across Europe, funded by the Innovative 
Medicines Initiative (www.imi.europa.eu). The research in London is organised by Dr. Jessica Manson, Prof. David 
Isenberg, Prof. Claudia Mauri and Dr. Elizabeth Jury. Nobody, including your doctor, receives any payment for being 
involved in this study. 
 

Who has evaluated this study? 
An independent committee reviews all research in the NHS in order to protect your interests. This study has been 
given approval by the National Research Ethics Service, following a review by a panel of healthcare professionals and 
volunteers from the public. 
 

What if there is a problem or what happens if something goes wrong?  
If you wish to complain, or have any concerns about any aspect of the way you have been approached or treated by 
members of staff you may have experienced due to your participation in the research, National Health Service or UCL 
complaints mechanisms are available to you. Please ask your research doctor if you would like more information on 
this. 
In the unlikely event that you are harmed by taking part in this study, compensation may be available. 
If you suspect that the harm is the result of the Sponsor’s (University College London) or the hospital’s negligence 
then you may be able to claim compensation. After discussing with your research doctor, please make the claim in 
writing to Dr Elizabeth Jury who is the Chief Investigator for the research and is based at the Centre for 
Rheumatology Research, Rayne Building, University College London. Chief Investigator will then pass the claim to 
the Sponsor’s Insurers, via the Sponsor’s office. You may have to bear the costs of the legal action initially, and you 
should consult a lawyer about this. 
 

How can I get further information or make a complaint? 
If you have a concern or question about any aspect of this study, you should speak to the researchers involved for 
further information (jessica.manson@uclh.nhs.uk, 0203 447 9035, d.isenberg@ucl.ac.uk, 0203 447 9143). General 
information about this study, and the wider collaboration of which it is part, can be found on the ABIRISK website 
(www.abirisk.eu). If you wish to make a formal complaint, this can be done through the UCLH Patient Advice and 
Liaison Service; ask any member of staff or make contact by email (pals@uclh.nhs.uk). 
 

This study is covered by Insurance Z6364106/2014/07/64. No Fault Compensation for Clinical Trials and/or Human 
Volunteer Studies 
 

Please ask any questions you may have. 

Centre for Rheumatology 
Rayne Institute 
5 University Street 
LONDON 
WC1E 6JF 

Rheumatology Department 
University College Hospital 

235 Euston Road 
LONDON 
NW1 2BU 
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A.3. Full list of LEGENDScreenTM markers. 
Plate location, maker name, antibody clone, and antibody isotype. 
 

 
  

Marker Clone Isotype Marker Clone Isotype Marker Clone Isotype Marker Clone Isotype 
A1 Blank A1 Blank A1 Blank A1 Blank 
A2 CD1a HI149 Mouse IgG1, κ A2 CD86 IT2.2 Mouse IgG2b, κ A2 CD220 B6.220 Mouse IgG2b, κ A2 Integrin α9β1 Y9A2 Mouse IgG1, κ 

A3 CD1b 
SN13 (K5- 
1B8) Mouse IgG1, κ A3 CD87 VIM5 Mouse IgG1, κ A3 CD221 (IGF-1R) 1H7/CD221 Mouse IgG1, κ A3 integrin β5 AST-3T Mouse IgG2a, κ 

A4 CD1c L161 Mouse IgG1, κ A4 CD88 S5/1 Mouse IgG2a, κ A4 CD226 (DNAM-1) 11A8 Mouse IgG1, κ A4 integrin β7 FIB504 Rat IgG2a, κ 
A5 CD1d 51.1 Mouse IgG2b, κ A5 CD89 A59 Mouse IgG1, κ A5 CD229 (Ly-9) HLy-9.1.25 Mouse IgG1, κ A5 Jagged 2 MHJ2-523 Mouse IgG1, κ 

A6 CD2 RPA-2.10 Mouse IgG1, κ A6 CD90 (Thy1) 5.00E+10 Mouse IgG1, κ A6 CD231 (TALLA) 
SN1a (M3- 
3D9) Mouse IgG1, κ A6 LAP TW4-6H10 Mouse IgG1, κ 

A7 CD3 HIT3a Mouse IgG2a, κ A7 CD93 VIMD2 Mouse IgG1, κ A7 CD235ab HIR2 Mouse IgG2b, κ A7 
Lymphotoxin b 
Receptor (LT-bR) 31G4D8 Mouse IgG2b, κ 

A8 CD4 RPA-T4 Mouse IgG1, κ A8 CD94 DX22 Mouse IgG1, κ A8 CD243 UIC2 Mouse IgG2a, κ A8 Mac-2 (Ga- lec n-3) Gal397 Mouse IgG1, κ 
A9 CD5 UCHT2 Mouse IgG1, κ A9 CD95 DX2 Mouse IgG1, κ A9 CD244 (2B4) C1.7 Mouse IgG1, κ A9 MAIR-II TX45 Mouse IgG1, κ 
A10 CD6 BL-CD6 Mouse IgG1, κ A10 CD96 NK92.39 Mouse IgG1, κ A10 CD245 (p220/240) DY12 Mouse IgG1, κ A10 MICA/MICB 6D4 Mouse IgG2a, κ 
A11 CD7 CD7-6B7 Mouse IgG2a, κ A11 CD97 VIM3b Mouse IgG1, κ A11 CD252 (OX40L) 11C3.1 Mouse IgG1, κ A11 MSC (W3D5) W3D5 Mouse IgG2a, κ 
A12 CD8a HIT8a Mouse IgG1, κ A12 CD99 HCD99 Mouse IgG2a, κ A12 CD253 (Trail) RIK-2 Mouse IgG1, κ A12 MSC (W5C5) W5C5 Mouse IgG1, κ 
B1 CD9 HI9a Mouse IgG1, κ B1 CD100 A8 Mouse IgG1, κ B1 CD254 MIH24 Mouse IgG1, κ B1 MSC (W7C6) W7C6 Mouse IgG1, κ 

B2 CD10 HI10a Mouse IgG1, κ B2 CD101 (BB27) BB27 Mouse IgG1, κ B2 CD255 (TWEAK) CARL-1 Mouse IgG3, κ B2 
MSC and NPC 
(W4A5) W4A5 Mouse IgG1, κ 

B3 CD11a HI111 Mouse IgG1, κ B3 CD102 CBR-IC2/2 Mouse IgG2a, κ B3 CD257 (BAFF, BLYS) T7-241 Mouse IgG1, κ B3 
MSCA-1 (MSC, 
W8B2) W8B2 Mouse IgG1, κ 

B4 CD11b ICRF44 Mouse IgG1, κ B4 CD103 Ber-ACT8 Mouse IgG1, κ B4 CD258 (LIGHT) T5-39 Mouse IgG2a, κ B4 NKp80 5D12 Mouse IgG1, κ 

B5 
CD11b 
(activated) CBRM1/5 Mouse IgG1, κ B5 CD104 58XB4 Mouse IgG2a, κ B5 CD261 (DR4, TRAIL-R1) DJR1 Mouse IgG1, κ B5 Notch 1 MHN1-519 Mouse IgG1, κ 

B6 CD11c 3.9 Mouse IgG1, κ B6 CD105 43A3 Mouse IgG1, κ B6 CD262 (DR5, TRAIL-R2) 
DJR2-4 (7-
8) Mouse IgG1, κ B6 Notch 2 MHN2-25 Mouse IgG2a, κ 

B7 CD13 WM15 Mouse IgG1, κ B7 CD106 STA Mouse IgG1, κ B7 CD263 (DcR1, TRAIL-R3) DJR3 Mouse IgG1, κ B7 Notch 3 MHN3-21 Mouse IgG1, κ 

B8 CD14 M5E2 Mouse IgG2a, κ B8 CD107a (LAMP-1) H4A3 Mouse IgG1, κ B8 
CD266 (Fn14, TWEAK 
Receptor) ITEM-1 Mouse IgG1, κ B8 Notch 4 MHN4-2 Mouse IgG1, κ 

B9 CD15 (SSEA-1) W6D3 Mouse IgG1, κ B9 CD108 MEM-150 Mouse IgM, κ B9 CD267 (TACI) 1A1 Rat IgG2a, κ B9 NPC (57D2) 57D2 Mouse IgG1, κ 
B10 CD16 3G8 Mouse IgG1, κ B10 CD109 W7C5 Mouse IgG1, κ B10 CD268 (BAFF-R, BAFFR) 11C1 Mouse IgG1, κ B10 Podoplanin NC-08 Rat IgG2a, λ 
B11 CD18 TS1/18 Mouse IgG1, κ B11 CD111 R1.302 Mouse IgG1, κ B11 CD270 (HVEM) 122 Mouse IgG1, κ B11 Pre-BCR HSL2 Mouse IgG1, κ 

B12 CD19 HIB19 Mouse IgG1, κ B12 CD112 (Nectin-2) TX31 Mouse IgG1, κ B12 CD271 ME20.4 Mouse IgG1, κ B12 PSMA LNI-17 Mouse IgG1, κ 
C1 CD20 2H7 Mouse IgG2b, κ C1 CD114 LMM741 Mouse IgG1, κ C1 CD273 (B7- DC, PD-L2) 24F.10C12 Mouse IgG2a, κ C1 Siglec-10 5G6 Mouse IgG1, κ 
C2 CD21 Bu32 Mouse IgG1, κ C2 CD115 9-4D2-1E4 Rat IgG1, κ C2 CD274 (B7- H1, PD-L1) 29E.2A3 Mouse IgG2b, κ C2 Siglec-8 7C9 Mouse IgG1, κ 

C3 CD22 HIB22 Mouse IgG1, κ C3 CD116 4H1 Mouse IgG1, κ C3 
CD275 (B7- H2, B7-RP1, 
ICOSL) 9F.8A4 Mouse IgG1, κ C3 Siglec-9 K8 Mouse IgG1, κ 

C4 CD23 EBVCS-5 Mouse IgG1, κ C4 CD117 (c-kit) 104D2 Mouse IgG1, κ C4 CD276 MIH42 Mouse IgG1, κ C4 SSEA-1 MC-480 Mouse IgM, κ 

C5 CD24 ML5 Mouse IgG2a, κ C5 
CD119 (IFN-g R α 
chain) GIR-208 Mouse IgG1, κ C5 CD277 BT3.1 Mouse IgG1, κ C5 SSEA-3 MC-631 Rat IgM, κ 

C6 CD25 BC96 Mouse IgG1, κ C6 CD122 TU27 Mouse IgG1, κ C6 CD278 (ICOS) C398.4A Arm. Hamster IgG C6 SSEA-4 MC-813-70 Mouse IgG3, κ 
C7 CD26 BA5b Mouse IgG2a, κ C7 CD123 6H6 Mouse IgG1, κ C7 CD279 (PD-1) EH12.2H7 Mouse IgG1, κ C7 SSEA-5 8.00E+11 Mouse IgG1, κ 
C8 CD27 O323 Mouse IgG1, κ C8 CD124 G077F6 Mouse IgG2a, κ C8 CD282 (TLR2) TL2.1 Mouse IgG2a, κ C8 TCR g/d B1 Mouse IgG1, κ 
C9 CD28 CD28.2 Mouse IgG1, κ C9 CD126 (IL-6Rα) UV4 Mouse IgG1, κ C9 CD284 (TLR4) HTA125 Mouse IgG2a, κ C9 TCR Vβ13.2 H132 Mouse IgG1, κ 
C10 CD29 TS2/16 Mouse IgG1, κ C10 CD127 (IL-7Rα) A019D5 Mouse IgG1, κ C10 CD286 (TLR6) TLR6.127 Mouse IgG1, κ C10 TCR Vβ23 αHUT7 Mouse IgG1, κ 
C11 CD30 BY88 Mouse IgG1, κ C11 CD129 (IL-9 R) AH9R7 Mouse IgG2b, κ C11 CD290 3C10C5 Mouse IgG1, κ C11 TCR Vβ8 JR2 (JR.2) Mouse IgG2b, κ 
C12 CD31 WM59 Mouse IgG1, κ C12 CD131 1C1 Mouse IgG1, κ C12 CD294 BM16 Rat IgG2a, κ C12 TCR Vβ9 MKB1 Mouse IgG2b, κ 
D1 CD32 FUN-2 Mouse IgG2b, κ D1 CD132 TUGh4 Rat IgG2b, κ D1 CD298 LNH-94 Mouse IgG1, κ D1 TCR Vδ2 B6 Mouse IgG1, κ 

D2 CD33 WM53 Mouse IgG1, κ D2 CD134 
Ber-ACT35 
(ACT35) Mouse IgG1, κ D2 CD300e (IREM-2) UP-H2 Mouse IgG1, κ D2 TCR Vg9 B3 Mouse IgG1, κ 

D3 CD34 581 Mouse IgG1, κ D3 CD135 BV10A4H2 Mouse IgG1, κ D3 CD300F UP-D2 Mouse IgG1, κ D3 TCR Vα24- Jα18 6B11 Mouse IgG1, κ 
D4 CD35 E11 Mouse IgG1, κ D4 CD137 (4-1BB) 4B4-1 Mouse IgG1, κ D4 CD301 H037G3 Mouse IgG2a, κ D4 TCR Vα7.2 3C10 Mouse IgG1, κ 

D5 CD36 5-271 Mouse IgG2a, κ D5 
CD137L (4-1BB 
Ligand) 5F4 Mouse IgG1, κ D5 CD303 201A Mouse IgG2a, κ D5 TCR α/β IP26 Mouse IgG1, κ 

D6 CD38 HIT2 Mouse IgG1, κ D6 CD138 DL-101 Mouse IgG1, κ D6 CD304 12C2 Mouse IgG2a, κ D6 Tim-1 1D12 Mouse IgG1, κ 
D7 CD39 A1 Mouse IgG1, κ D7 CD140a 16A1 Mouse IgG1, κ D7 CD307 509f6 Mouse IgG2a, κ D7 Tim-3 F38-2E2 Mouse IgG1, κ 
D8 CD40 HB14 Mouse IgG1, κ D8 CD140b 18A2 Mouse IgG1, κ D8 CD307d (FcRL4) 413D12 Mouse IgG2b, κ D8 Tim-4 9F4 Mouse IgG1, κ 
D9 CD41 HIP8 Mouse IgG1, κ D9 CD141 M80 Mouse IgG1, κ D9 CD314 (NKG2D) 1D11 Mouse IgG1, κ D9 TLT-2 MIH61 Mouse IgG1, κ 
D10 CD42b HIP1 Mouse IgG1, κ D10 CD143 5-369 Mouse IgG1, κ D10 CD317 RS38E Mouse IgG1, κ D10 TRA-1-60-R TRA-1-60-R Mouse IgM, κ 
D11 CD43 CD43-10G7 Mouse IgG1, κ D11 CD144 BV9 Mouse IgG2a, κ D11 CD318 (CDCP1) CUB1 Mouse IgG2b, κ D11 TRA-1-81 TRA-1-81 Mouse IgM, κ 
D12 CD44 BJ18 Mouse IgG1, κ D12 CD146 SHM-57 Mouse IgG2a, κ D12 CD319 (CRACC) 162.1 Mouse IgG2b, κ D12 TSLPR (TSLP-R) 1B4 Mouse IgG1, κ 
E1 CD45 HI30 Mouse IgG1, κ E1 CD148 A3 Mouse IgG1, κ E1 CD324 (E- Cadherin) 67A4 Mouse IgG1, κ E1 Ms IgG1, κ ITCL MOPC-21 Mouse IgG1, κ 
E2 CD45RA HI100 Mouse IgG2b, κ E2 CD150 (SLAM) A12 (7D4) Mouse IgG1, κ E2 CD325 8C11 Mouse IgG1, κ E2 Ms IgG2a, κ ITCL MOPC-173 Mouse IgG2a, κ 
E3 CD45RB MEM-55 Mouse IgG2b, κ E3 CD152 L3D10 Mouse IgG1, κ E3 CD326 (Ep- CAM) 9C4 Mouse IgG2b, κ E3 Ms IgG2b, κ ITCL MPC-11 Mouse IgG2b, κ 
E4 CD45RO UCHL1 Mouse IgG2a, κ E4 CD154 24-31 Mouse IgG1, κ E4 CD328 (Siglec-7) 6-434 Mouse IgG1, κ E4 Ms IgG3, κ ITCL MG3-35 Mouse IgG3, κ 
E5 CD46 TRA-2-10 Mouse IgG1 E5 CD155 (PVR) SKII.4 Mouse IgG1, κ E5 CD334 (FGFR4) 4FR6D3 Mouse IgG1, κ E5 Ms IgM, κ ITCL MM-30 Mouse IgM, κ 

E6 CD47 CC2C6 Mouse IgG1, κ E6 CD156c (ADAM10) SHM14 Mouse IgG1, κ E6 CD335 (NKp46) 9.00E+02 Mouse IgG1, κ E6 Rat IgG1, κ ITCL RTK2071 Rat IgG1, κ 
E7 CD48 BJ40 Mouse IgG1, κ E7 CD158a/h HP-MA4 Mouse IgG2b, κ E7 CD336 (NKp44) P44-8 Mouse IgG1, κ E7 Rat IgG2a, κ ITCL RTK2758 Rat IgG2a, κ 

E8 CD49a TS2/7 Mouse IgG1, κ E8 

CD158b 
(KIR2DL2/L3, 
NKAT2) DX27 Mouse IgG2a, κ E8 CD337 (NKp30) P30-15 Mouse IgG1, κ E8 Rat IgG2b, κ ITCL RTK4530 Rat IgG2b, κ 

E9 CD49c ASC-1 Mouse IgG1, κ E9 CD158d mAb 33 (33) Mouse IgG1, κ E9 CD338 (ABCG2) 5D3 Mouse IgG2b, κ E9 Rat IgM, κ ITCL RTK2118 Rat IgM, κ 

E10 CD49d 9F10 Mouse IgG1, κ E10 
CD158e1 (KIR3DL1, 
NKB1) DX9 Mouse IgG1, κ E10 CD340 (erbB2/ HER-2) 24D2 Mouse IgG1, κ E10 AH IgG, ITCL HTK888 Arm. Hamster IgG 

E11 CD49e NKI-SAM-1 Mouse IgG2b, κ E11 CD158f UP-R1 Mouse IgG1, κ E11 CD344 (Frizzled-4) CH3A4A7 Mouse IgG1, κ E11 Blank 
E12 CD49f GoH3 Rat IgG2a, κ E12 CD161 HP-3G10 Mouse IgG1, κ E12 CD351 TX61 Mouse IgG1, κ E12 Blank 

F1 CD50 (ICAM-3) CBR-IC3/1 Mouse IgG1, κ F1 CD162 KPL-1 Mouse IgG1, κ F1 CD352 (NTB-A) NT-7 Mouse IgG1, κ F1 Blank 
F2 CD51 NKI-M9 Mouse IgG2a, κ F2 CD163 GHI/61 Mouse IgG1, κ F2 CD354 (TREM-1) TREM-26 Mouse IgG1, κ F2 Blank 
F3 CD51/61 23C6 Mouse IgG1, κ F3 CD164 67D2 Mouse IgG1, κ F3 CD355 (CRTAM) Cr24.1 Mouse IgG2a, κ F3 Blank 

F4 CD52 HI186 Mouse IgG2b, κ F4 CD165 
SN2 (N6- 
D11) Mouse IgG1, κ F4 CD357 (GITR) 621 Mouse IgG1, κ F4 Blank 

F5 CD53 HI29 Mouse IgG1, κ F5 CD166 3A6 Mouse IgG1, κ F5 CD360 (IL- 21R) 2G1-K12 Mouse IgG1, κ F5 Blank 
F6 CD54 HA58 Mouse IgG1, κ F6 CD167a (DDR1) 51D6 Mouse IgG3, κ F6 β2- micro- globulin 2M2 Mouse IgG1, κ F6 Blank 
F7 CD55 JS11 Mouse IgG1, κ F7 CD169 7-239 Mouse IgG1, κ F7 BTLA MIH26 Mouse IgG2a, κ F7 Blank 

F8 CD56 (NCAM) HCD56 Mouse IgG1, κ F8 CD170 (Siglec-5) 1A5 Mouse IgG1, κ F8 C3AR hC3aRZ8 Mouse IgG2b F8 Blank 
F9 CD57 HCD57 Mouse IgM, κ F9 CD172a (SIRPa) SE5A5 Mouse IgG1, κ F9 C5L2 1D9-M12 Mouse IgG2a, κ F9 Blank 
F10 CD58 TS2/9 Mouse IgG1, κ F10 CD172b (SIRPb) B4B6 Mouse IgG1, κ F10 CCR10 6588-5 Arm. hamster IgG F10 Blank 
F11 CD59 p282 (H19) Mouse IgG2a, κ F11 CD172g (SIRPg) LSB2.20 Mouse IgG1, κ F11 CLEC12A 50C1 Mouse IgG2a, κ F11 Blank 
F12 CD61 VI-PL2 Mouse IgG1, κ F12 CD178 (Fas-L) NOK-1 Mouse IgG1, κ F12 CLEC9A 8F9 Mouse IgG2a, κ F12 Blank 
G1 CD62E HAE-1f Mouse IgG1, κ G1 CD179a HSL96 Mouse IgG1, κ G1 CX3CR1 2A9-1 Rat IgG2b, κ G1 Blank 
G2 CD62L DREG-56 Mouse IgG1, κ G2 CD179b HSL11 Mouse IgG1, κ G2 CXCR7 8F11-M16 Mouse IgG2b, κ G2 Blank 

G3 
CD62P (P-
Selectin) AK4 Mouse IgG1, κ G3 CD180 (RP105) MHR73-11 Mouse IgG1, κ G3 δ-Opioid Receptor DOR7D2A4 Mouse IgG2b, κ G3 Blank 

G4 CD63 H5C6 Mouse IgG1, κ G4 CD181 (CXCR1) 8F1/CXCR1 Mouse IgG2b, κ G4 DLL1 MHD1-314 Mouse IgG1, κ G4 Blank 
G5 CD64 10.1 Mouse IgG1, κ G5 CD182 (CXCR2) 5E8/CXCR2 Mouse IgG1, κ G5 DLL4 MHD4-46 Mouse IgG1, κ G5 Blank 
G6 CD66a/c/e ASL-32 Mouse IgG2b, κ G6 CD183 G025H7 Mouse IgG1, κ G6 DR3 (TRAMP) JD3 Mouse IgG1, κ G6 Blank 
G7 CD66b G10F5 Mouse IgM, κ G7 CD184 (CXCR4) 12G5 Mouse IgG2a, κ G7 EGFR AY13 Mouse IgG1, κ G7 Blank 
G8 CD69 FN50 Mouse IgG1, κ G8 CD193 (CCR3) 5.00E+08 Mouse IgG2b, κ G8 erbB3/HER-3 1B4C3 Mouse IgG2a, κ G8 Blank 

G9 CD70 113-16 Mouse IgG1, κ G9 CD195 (CCR5) T21/8 Mouse IgG1, κ G9 FcεRIα 
AER-37 
(CRA-1) Mouse IgG2b, κ G9 Blank 

G10 CD71 CY1G4 Mouse IgG2a, κ G10 CD196 G034E3 Mouse IgG2b, κ G10 FcRL6 2H3 Mouse IgG2b, κ G10 Blank 
G11 CD73 AD2 Mouse IgG1, κ G11 CD197 (CCR7) G043H7 Mouse IgG2a, κ G11 Galec n-9 9M1-3 Mouse IgG1, κ G11 Blank 
G12 CD74 LN2 Mouse IgG1, κ G12 CD200 (OX2) OX-104 Mouse IgG1, κ G12 GARP (LRRC32) 7B11 Mouse IgG2b, κ G12 Blank 
H1 CD79b CB3-1 Mouse IgG1, κ H1 CD200 R OX-108 Mouse IgG1, κ H1 HLA-A,B,C W6/32 Mouse IgG2a, κ H1 Blank 
H2 CD80 2D10 Mouse IgG1, κ H2 CD201 (EPCR) RCR-401 Rat IgG1, κ H2 HLA-A2 BB7.2 Mouse IgG2b, κ H2 Blank 
H3 CD81 5A6 Mouse IgG1, κ H3 CD202b ( Tie2/Tek) 33.1 (Ab33) Mouse IgG1, κ H3 HLA-DQ HLADQ1 Mouse IgG1, κ H3 Blank 
H4 CD82 ASL-24 Mouse IgG1, κ H4 CD203c (E-NPP3) NP4D6 Mouse IgG1, κ H4 HLA-DR L243 Mouse IgG2a, κ H4 Blank 
H5 CD83 HB15e Mouse IgG1, κ H5 CD205 (DEC- 205) HD30 Mouse IgG1, κ H5 HLA-E 3D12 Mouse IgG1, κ H5 Blank 
H6 CD84 CD84.1.21 Mouse IgG2a, κ H6 CD206 (MMR) 15-Feb Mouse IgG1, κ H6 HLA-G 87G Mouse IgG2a, κ H6 Blank 
H7 CD85a (ILT5) MKT5.1 Rat IgG2a, κ H7 CD207 (Langerin) 1.00E+03 Mouse IgG1, κ H7 IFN-g R b chain 2HUB-159 Hamster IgG H7 Blank 
H8 CD85d (ILT4) 42D1 Rat IgG2a, κ H8 CD209 (DC- SIGN) 9E9A8 Mouse IgG2a, κ H8 Ig light chain k MHK-49 Mouse IgG1, κ H8 Blank 
H9 CD85g (ILT7) 17G10.2 Mouse IgG1, κ H9 CD210 (IL- 10 R) 3F9 Rat IgG2a, κ H9 Ig light chain λ MHL-38 Mouse IgG2a, κ H9 Blank 
H10 CD85h (ILT1) 24 Mouse IgG2b, κ H10 CD213a2 SHM38 Mouse IgG1, κ H10 IgD IA6-2 Mouse IgG2a, κ H10 Blank 
H11 CD85j (ILT2) GHI/75 Mouse IgG2b, κ H11 CD215 (IL- 15Rα) JM7A4 Mouse IgG2b, κ H11 IgM MHM-88 Mouse IgG1, κ H11 Blank 
H12 CD85k (ILT3) ZM4.1 Mouse IgG1, κ H12 CD218a (IL-18Rα) H44 Mouse IgG1, κ H12 IL-28RA MHLICR2a Mouse IgG2a, κ H12 Blank 

Plate 4 Plate 3 Plate 2 Plate 1 
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A.4. LEGENDScreenTM ADA results. 
Differentially expressed markers (t-test, p<0.005) on B cells (total) and mature, 
immature and memory B cell subsets from ADA+ vs. ADA- adalimumab treated RA 
patients.  
 
Total B cells 
 
 P value Mean ADA- Mean ADA+ Fold change 
CD158f 0.002 14.4 3.6 4.0 
Notch 4 0.003 10.3 4.5 2.3 
CD105 0.007 50.6 20.3 2.5 
CD158d 0.009 16.6 6.7 2.5 
CD1a 0.009 7.6 3.1 2.4 
CD138 0.010 13.6 4.2 3.2 
CD226 0.010 25.4 6.8 3.7 
DR3 0.016 17.5 6.7 2.6 
CD1c 0.019 86.6 67.9 1.3 
CD111 0.022 39.6 5.5 7.2 
CD338 0.024 10.3 5.4 1.9 
CD275 0.024 80.5 61.7 1.3 
CD87 0.026 33.0 11.0 3.0 
CD172a 0.027 22.1 8.5 2.6 
Nectin-2 0.031 31.5 11.1 2.8 
CD324 0.037 35.4 3.7 9.7 
CD276 0.038 22.1 6.5 3.4 
CD167a 0.039 21.1 11.6 1.8 
CD262 0.042 18.5 11.8 1.6 
CD165 0.043 81.2 67.2 1.2 
CD178 0.046 6.8 2.7 2.5 
FcRL6 0.048 3.4 13.0 0.3 
 
Mature B cells 
 
 P value Mean ADA- Mean ADA+ Fold change 
CD158f 0.010 7.3 2.0 3.6 
CD167a 0.012 17.5 9.4 1.9 
CD138 0.018 6.9 2.7 2.5 
CD1c 0.021 82.8 73.2 1.1 
 
Immature B cells 
 
 P value Mean ADA- Mean ADA+ Fold change 
IL-7Ra 0.005 7.8 1.9 4.1 
CD138 0.005 13.3 3.8 3.4 
DR3 0.022 16.8 7.4 2.3 
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CD87 0.022 32.9 11.0 3.0 
CD158f 0.027 15.5 5.5 2.8 
CD324 0.036 34.5 3.0 11.6 
CD105 0.046 49.5 27.2 1.8 
 
Memory B cells 
 
 P value Mean ADA- Mean ADA+ Fold change 
CD158d 0.004 24.6 9.4 2.6 
CD87 0.010 37.8 13.8 2.7 
CD172a 0.012 30.2 10.3 2.9 
CD111 0.013 42.8 4.7 9.1 
CD167a 0.017 24.9 14.4 1.7 
CD275 0.020 63.4 48.6 1.3 
CD226 0.021 31.6 13.2 2.4 
CD138 0.021 18.4 5.4 3.4 
CD59 0.024 99.7 98.8 1.0 
CD158f 0.028 19.3 5.6 3.4 
CD1a 0.028 11.3 5.3 2.2 
Notch 4 0.034 13.0 5.8 2.2 
CD324 0.040 35.6 4.6 7.8 
CD63 0.040 99.6 98.8 1.0 
CD109 0.042 17.3 5.9 2.9 
CD1c 0.044 89.4 80.9 1.1 
CD178 0.044 10.7 3.5 3.0 
CD338 0.048 17.4 9.8 1.8 
CD97 0.048 74.1 54.2 1.4 
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A.5. LEGENDScreenTM results; markers significantly correlated with DAS28, 
on total B cells and B cell subsets (p>0.05). RA patients. 
 
B cells 
 
 r P value 
BTLA -0.521 0.006 
CD102 -0.432 0.019 
CD11a -0.544 0.002 
CD11c 0.470 0.013 
CD134 0.497 0.006 
CD135 0.398 0.033 
CD152 0.404 0.033 
ADAM10 -0.523 0.004 
CD180 -0.418 0.024 
CD184 -0.444 0.016 
CD196 -0.434 0.019 
CD200 -0.460 0.012 
CD22 -0.416 0.025 
CD229 0.401 0.034 
CD231 -0.525 0.003 
CD245 -0.450 0.014 
CD252 0.381 0.046 
CD26 0.382 0.041 
CD267 0.425 0.022 
CD268 -0.373 0.046 
CD270 -0.443 0.018 
CD275 -0.410 0.027 
CD319 0.539 0.003 
CD35 -0.415 0.025 
CD45RA -0.410 0.027 
CD47 -0.529 0.003 
CD48 -0.484 0.008 
CD53 -0.436 0.018 
CD55 -0.380 0.042 
CD74 -0.413 0.026 
CD99 -0.387 0.038 
HLA-A2 0.413 0.036 
HLA-DQ -0.425 0.024 
HLA-DR -0.419 0.027 
IgD -0.412 0.026 
 
 
 
 
 

Mature B cells 
 
 r P value 
CD102 -0.505 0.005 
CD11a -0.516 0.004 
CD11c 0.458 0.016 
CD134 0.499 0.006 
CD152 0.415 0.028 
ADAM10 -0.443 0.016 
CD166 -0.387 0.038 
CD196 -0.383 0.040 
CD229 0.425 0.024 
CD231 -0.519 0.004 
CD24 -0.486 0.008 
CD245 -0.434 0.019 
CD270 -0.432 0.022 
CD319 0.529 0.004 
CD44 -0.480 0.008 
CD47 -0.500 0.006 
CD48 -0.443 0.016 
CD55 -0.375 0.045 
CD99 -0.411 0.030 
HLA-A2 0.425 0.031 
 
Immature B cells 
 
 r P 

value 
β2 microglobulin 0.427 0.029 
BTLA -0.436 0.023 
CD11a -0.418 0.024 
CD11c 0.422 0.028 
CD134 0.408 0.028 
CD148 -0.447 0.015 
ADAM10 -0.405 0.030 
CD158d -0.375 0.049 
CD184 -0.510 0.006 
CD200 -0.424 0.022 
CD209 0.376 0.044 
CD215 0.374 0.050 
CD229 0.448 0.017 
CD231 -0.488 0.007 
CD252 0.435 0.021 
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CD275 -0.389 0.037 
CD31 -0.424 0.022 
CD319 0.602 0.001 
CD360 -0.385 0.047 
CD44 -0.545 0.002 
CD48 -0.417 0.027 
CD49d -0.403 0.034 
CD53 -0.382 0.041 
CD55 -0.428 0.023 
CD6 0.375 0.045 
CD84 -0.372 0.047 
CD86 0.446 0.017 
CD9 -0.412 0.027 
Ig light chain λ -0.435 0.024 
IgD -0.399 0.035 
IL-28RA 0.602 0.001 
MICA-MICB 0.381 0.042 
 
Memory B cells 
 
 r P value 
β2 microglobulin 0.419 0.033 
BTLA -0.466 0.014 
CCR10 -0.432 0.022 
CD11a -0.398 0.033 
CD134 0.475 0.009 
ADAM10 -0.449 0.015 
CD196 -0.403 0.030 

CD200R -0.421 0.023 
CD22 -0.515 0.004 
CD231 -0.533 0.003 
CD245 -0.454 0.013 
CD270 -0.386 0.047 
CD275 -0.368 0.050 
CD307d -0.380 0.042 
CD314 -0.439 0.017 
CD338 -0.442 0.018 
CD35 -0.391 0.036 
CD352 -0.424 0.025 
CD39 -0.425 0.024 
CD45 -0.382 0.041 
CD47 -0.506 0.005 
CD48 -0.424 0.025 
CD49d -0.417 0.027 
CD50 -0.478 0.009 
CD52 -0.371 0.048 
CD53 -0.408 0.028 
CD55 -0.484 0.009 
CD71 -0.516 0.004 
CD81 -0.390 0.036 
HLA-DQ -0.449 0.017 
HLA-E -0.377 0.048 
NKp80 -0.432 0.019 
Notch 1 -0.382 0.045 
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A.6. Differentially expressed markers from LEGENDScreenTM analysis for HC 
vs. RA. Differentially expressed markers for T cells, B cells and B cell subsets, 
following removal of non-expressed markers. Significant markers only; fold change 
(ratio of RA:HC) and p value (t-test).  
 
T cells 
 
  Fold Change P Value 
CD97 0.056 0.000 
CD48 0.000 0.006 
CD52 0.002 0.024 
CD164 1.081 0.028 
CD43 1.081 0.033 
CD49c 1.435 0.038 
CD134 1.733 0.042 
CD53 0.897 0.042 
 Total 9 
 
Total B cells 
 
  Fold 

Change 
P Value 

CD97 1.910 <0.001 
CD150 2.084 <0.001 
CD162 1.657 0.001 
CD158d 3.122 0.002 
Ig light chain κ  1.177 0.002 
CD107a 1.285 0.004 
CD231 1.887 0.004 
CD275 1.454 0.005 
CD62L 1.111 0.007 
CD105 2.599 0.008 
CD335 6.908 0.008 
CD23 1.222 0.009 
CD166 1.228 0.012 
CD123 1.929 0.012 
NKp80 4.510 0.013 
CD183 0.708 0.017 
CD307 1.631 0.018 
Notch 1 1.605 0.020 
CD2 1.684 0.021 
Notch 4 1.968 0.022 
Galectin-9 0.402 0.022 
CD164 1.037 0.023 
CD172a 2.005 0.024 
CD314 2.214 0.035 
CD148 1.219 0.037 
HLA-E 1.051 0.038 
CD245 1.375 0.042 

CD15 3.697 0.043 
CD16 2.589 0.043 
CD61 2.031 0.044 
CD317 1.127 0.045 
CD94 3.824 0.048 
Notch 2 1.456 0.049 
CD11b 0.761 0.050 
 Total 34 
 
Immature B cells 
 
  Fold 

Change 
P 
Value 

Ig light chain k 1.213 <0.001 
CD71 1.414 <0.001 
Ig light chain λ  1.365 <0.001 
β2 
microglobulin 

0.531 0.001 

CD23 1.239 0.001 
CD170 1.784 0.001 
CD307 1.953 0.001 
CD166 1.487 0.001 
CD243 1.383 0.001 
CD317 1.364 0.001 
CD107a 1.547 0.002 
CD181 0.333 0.002 
TRA-1-81 0.374 0.002 
Notch 2 1.964 0.002 
CD197 1.270 0.002 
CD162 1.499 0.003 
CD1d 1.103 0.003 
CD55 1.039 0.003 
CD231 1.914 0.003 
CD245 1.607 0.003 
CD164 1.326 0.004 
CD97 2.165 0.004 
CD150 
(SLAM) 

2.239 0.004 

CD290 1.395 0.004 
Siglec-8 0.344 0.005 
CD84 1.184 0.006 
CD119 (IFNgR 
chain) 

1.235 0.009 

CD158d 3.216 0.009 



 218 

Galectin-9 0.379 0.010 
CD74 1.248 0.012 
CD184 1.188 0.015 
CD63 1.193 0.016 
NKp80 7.331 0.019 
NPC 0.429 0.020 
CD39 1.110 0.023 
CD11a 1.008 0.024 
CD8a 2.469 0.026 
CD62L 1.194 0.027 
CD123 1.554 0.030 
CD1c 1.086 0.034 
CD132 1.261 0.034 
CD275 1.251 0.037 
CD335 3.982 0.039 
CD99 1.122 0.040 
CD3 1.826 0.046 
CD172a 1.628 0.047 
CD49f 1.164 0.047 
SSEA-5 0.476 0.049 
CD16 2.294 0.050 
 Total 49 
 
Mature B cells 
 
  Fold 

Change 
P value 

Ig light chain κ  1.258 <0.001 
CD150 2.215 <0.001 
CD97 2.152 <0.001 
CD107a 1.448 <0.001 
CD62L 1.186 0.001 
CD162 1.671 0.002 
CD158d 3.640 0.002 
CD307 2.261 0.002 
CD23 1.160 0.002 
CD231 2.028 0.002 
CD71 1.144 0.002 
CD166 1.409 0.002 
CD275 1.483 0.003 
CD148 1.437 0.005 
CD119  1.269 0.007 
CD243 1.230 0.008 
CD84 1.203 0.008 
CD245 1.608 0.008 
CD290 1.465 0.012 
CD74 1.176 0.015 
Ig light chain λ  1.300 0.015 

CD317 1.223 0.015 
CD2 2.050 0.017 
Notch 1 1.844 0.017 
CD11c 1.982 0.017 
CD335 10.038 0.018 
CD164 1.123 0.018 
NKp80 7.062 0.021 
Notch 2 1.669 0.022 
CD124 1.253 0.022 
CD123 1.936 0.024 
CD8a 2.339 0.025 
TLT-2 1.234 0.026 
CD21 0.982 0.031 
CD172a 2.586 0.032 
CD3 1.916 0.035 
CD183 0.656 0.037 
CD61 2.432 0.045 
CD15 4.565 0.046 
CD226 2.478 0.049 
 Total 40 
 
Memory B cells 
 
  Fold 

Change 
P value 

CD97 2.003 <0.001 
Ig light chain κ  1.281 <0.001 
CD11c 1.692 <0.001 
Ig light chain λ  1.472 <0.001 
CD162 2.243 <0.001 
CD158d 5.174 0.001 
CD71 1.218 0.001 
CD107a 1.390 0.001 
CD62L 1.182 0.001 
CD335 9.595 0.002 
CD88 2.368 0.002 
CD307 2.022 0.002 
CD231 2.049 0.002 
CD290 1.402 0.003 
CD116 1.901 0.003 
CD226 2.541 0.004 
CD23 1.736 0.004 
CD2 1.694 0.004 
CD184 1.251 0.005 
CD275 1.663 0.005 
CD338 2.640 0.005 
CD150  2.520 0.006 
CD55 1.017 0.006 
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CD245 1.637 0.006 
NKp80 4.337 0.006 
CD124 2.031 0.007 
CCR10 1.605 0.007 
IgM 1.186 0.007 
CD262 1.798 0.008 
CD243 1.205 0.008 
CD276 3.305 0.011 
CD123 2.674 0.011 
CD80 1.606 0.011 
CD261 1.707 0.011 
Notch 2 1.738 0.011 
CD166 1.226 0.013 
CD114 4.642 0.013 
CD164 1.136 0.015 
CD220 2.328 0.017 
Notch 4 2.643 0.018 
CD14 3.726 0.018 
CD314 2.345 0.018 
CD172a 2.245 0.018 
CD84 1.157 0.019 
CD49f 1.183 0.020 
Nectin-2 3.166 0.022 
CD26 1.799 0.022 
CD74 1.124 0.022 
CD307d 1.994 0.023 

CD141 2.220 0.027 
CD148 1.203 0.028 
CD5 1.710 0.028 
CD200R 1.338 0.030 
CD108 1.349 0.031 
CD134 5.136 0.031 
CD16 2.937 0.031 
CD131 1.991 0.032 
CD66a-c-e 1.557 0.032 
CD143 2.153 0.033 
CD193 0.498 0.035 
CD83 2.080 0.036 
CD202b 4.071 0.038 
CD15 3.884 0.039 
CD197 1.128 0.039 
Integrin β5 2.905 0.041 
CD45 1.137 0.042 
CD61 2.013 0.042 
CD195 1.946 0.042 
CD115 2.176 0.044 
CD1d 1.061 0.047 
CD158f 2.533 0.049 
CD138 3.476 0.050 
 Total 72 
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Table A.7. LEGENDScreenTM results for HC vs. RA treated with cDMARDs 
(RA-DMARDs) and HC vs. RA treated with adalimumab (RA-Adalimumab), 
for each cell subset. Marker and p value given (multiple t-test). 
 
Total B cells - HC vs. RA-DMARDs 
 
Marker P value 
CD97 <0.0001 
CD150 (SLAM) 0.000895 
CD32 0.002278 
CD45 0.00239 
CD82 0.002767 
CD18 0.002997 
CD172a 0.010581 
CD81 0.010982 
CD47 0.016066 
CD21 0.016491 
CD35 0.018505 
CD270 0.022873 
CD11c 0.023862 
CD307 0.025101 
CD53 0.027614 
Integrin alpha9 beta1 0.032312 
CD158d 0.042852 
CD57 0.045233 
CD131 0.049928 
 
Total B cells - HC vs. RA-
adalimumab 
 
Marker P value 
CD162 0.00009 
CD231 0.000744 
CD158d 0.00134 
CD150 (SLAM) 0.001495 
CD57 0.001566 
CD97 0.00328 
NKp80 0.003309 
CD226 0.004921 
CD2 0.004944 
CD105 0.005777 
CD335 0.00605 
beta2 microglobulin 0.006387 

CD314 0.006656 
CD94 0.007913 
CD15 0.011078 
CD6 0.011447 
Jagged2 0.012755 
Integrin alpha9 beta1 0.013646 
CD109 0.013661 
CD275 0.016113 
CD245 0.01854 
CD172a 0.018806 
CD338 0.019309 
CD16 0.020713 
CD66b 0.021727 
Ig light chain lambda 0.02239 
CD112 (Nectin-2) 0.023109 
CD183 0.023225 
CD14 0.024567 
CD61 0.025375 
CD88 0.025923 
CD108 0.028843 
Ig light chain k 0.030476 
CD107a 0.035731 
CD213a2 0.037165 
delta-Opioid Receptor 0.03802 
CD229 0.04022 
Notch 4 0.044316 
CD114 0.045636 
 
Mature B cells- HC vs. RA-
DMARDs 
 
Marker P value 
CD97 0.0006 
CD19 0.0006 
CD150 (SLAM) 0.0038 
CD11c 0.0047 
CD158d 0.0134 
CD307 0.0182 
CD172a 0.0211 
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CD62L 0.0225 
Ig light chain k 0.0290 
CD41 0.0499 
 
Mature B cells- HC vs. RA-
adalimumab 
 
Marker P value 
CD162 0.0002 
CD231 0.0003 
CD226 0.0003 
Ig light chain k 0.0005 
CD158d 0.0006 
CD150 (SLAM) 0.0007 
CD107a 0.0011 
CD8a 0.0011 
CD2 0.0013 
CD307 0.0019 
CD245 0.0020 
Ig light chain lambda 0.0021 
CD148 0.0025 
CD275 0.0026 
CD166 0.0028 
CD108 0.0038 
CD97 0.0055 
CD338 0.0067 
NKp80 0.0075 
CD11c 0.0091 
CD74 0.0118 
CD335 0.0128 
CD314 0.0131 
CD172a 0.0152 
CD16 0.0179 
CD15 0.0183 
CD3 0.0189 
CD119 (IFNgR a chain) 0.0199 
CD229 0.0213 
CD61 0.0237 
CD6 0.0246 
CD290 0.0255 
CD317 0.0256 
CD14 0.0293 

CD23 0.0304 
CD62L 0.0309 
CD36 0.0314 
Notch 1 0.0318 
CD71 0.0327 
CD82 0.0330 
Notch 2 0.0369 
TCR a-b 0.0420 
CD21 0.0438 
CD243 0.0453 
CD112 (Nectin-2) 0.0470 
CD88 0.0484 
CD49c 0.0495 
 
Immature B cells - HC vs. RA-
DMARDs 
 
Marker P value 
CD11c 0.0036 
CD97 0.0045 
CD150 (SLAM) 0.0105 
CD27 0.0108 
CD172a 0.0120 
CD267 0.0122 
CD32 0.0181 
Notch 2 0.0195 
CD9 0.0212 
CD10 0.0236 
CD307 0.0291 
CD170 0.0306 
CD104 0.0366 
CD81 0.0423 
FceRIalpha 0.0468 
CD170 0.0135 
 
Immature B cells - HC vs. RA-
adalimumab 
 
Marker P value 
beta2 microglobulin 0.0000 
Ig light chain k 0.0002 
CD162 0.0003 
CD231 0.0004 
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Ig light chain lambda 0.0005 
CD23 0.0009 
CD66b 0.0009 
CD158d 0.0013 
CD245 0.0014 
CD307 0.0018 
CD226 0.0025 
Jagged2 0.0036 
CD166 0.0038 
CD181 0.0050 
CD170 0.0059 
TRA-1-81 0.0065 
CD275 0.0067 
CD317 0.0069 
CD71 0.0073 
Integrin alpha9 beta1 0.0075 
Notch 2 0.0085 
CD107a 0.0086 
CD150 (SLAM) 0.0088 
CD15 0.0092 
CD290 0.0101 
NKp80 0.0108 
CD39 0.0143 
CD243 0.0153 
CD119 (IFNgR a chain) 0.0195 
CD8a 0.0196 
CD74 0.0212 
CD11a 0.0219 
CD16 0.0233 
CD6 0.0246 
CD84 0.0248 
CD63 0.0255 
CD1c 0.0257 
NPC (57D2) 0.0259 
CD89 0.0272 
CD229 0.0272 
Notch 4 0.0297 
CD88 0.0314 
CD1d 0.0316 
CD123 0.0355 
CD205 0.0368 
CD44 0.0380 

CD335 0.0395 
CCR10 0.0398 
CD213a2 0.0400 
CD55 0.0401 
CD183 0.0406 
delta-Opioid Receptor 0.0418 
Galectin-9 0.0423 
Siglec-8 0.0432 
IL-28RA 0.0460 
CD105 0.0467 
CD314 0.0492 
CD197 0.0492 
 
Memory B cells - HC vs. RA-
DMARDs 
 
Marker  P value 
CD11c 0.0001 
CD97 0.0029 
CD335 0.0057 
CD150 (SLAM) 0.0160 
CD47 0.0180 
CD44 0.0184 
CD226 0.0186 
CD172a 0.0205 
CD158d 0.0209 
CD42b 0.0226 
CD307 0.0287 
CD114 0.0311 
CD152 0.0327 
CD57 0.0341 
CD202b 0.0363 
Integrin beta5 0.0381 
Integrin alpha9 beta1 0.0415 
CD134 0.0439 
Ig light chain k 0.0442 
HLA-A2 0.0453 
 
Memory B cells - HC vs. RA-
adalimumab 
 
Marker  P value 
CD226 0.0000 
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CD338 0.0000 
CD158d 0.0000 
CD162 0.0001 
CD108 0.0003 
Integrin alpha9 beta1 0.0004 
CD231 0.0004 
Ig light chain lambda 0.0004 
CD57 0.0005 
CD245 0.0007 
CD2 0.0010 
CD11c 0.0011 
CD14 0.0012 
CD314 0.0014 
NKp80 0.0014 
Ig light chain k 0.0016 
CD88 0.0017 
CD307 0.0018 
CD220 0.0018 
CD275 0.0021 
CD97 0.0022 
CD66b 0.0026 
CD107a 0.0027 
CD200R 0.0033 
CCR10 0.0041 
CD112 (Nectin-2) 0.0043 
CD150 (SLAM) 0.0043 
CD116 0.0044 
CD202b 0.0046 
Integrin beta5 0.0048 
CD335 0.0049 
CD71 0.0057 
CD15 0.0071 
CD114 0.0073 
CD290 0.0090 

CD276 0.0091 
CD83 0.0101 
CD123 0.0117 
Notch 2 0.0119 
CD124 0.0122 
CD23 0.0126 
beta2 microglobulin 0.0129 
CD138 0.0142 
CD74 0.0153 
CD16 0.0163 
CD158f 0.0174 
CD66a-c-e 0.0181 
CD307d 0.0194 
CD163 0.0202 
IgM 0.0208 
Notch 4 0.0232 
CD172a 0.0251 
CD166 0.0267 
CD55 0.0291 
CD36 0.0296 
CD205 0.0306 
CD325 0.0315 
CD42b 0.0356 
CD62L 0.0366 
CD80 0.0371 
CD105 0.0372 
CD5 0.0378 
CD262 0.0409 
CD61 0.0425 
CD243 0.0435 
CD141 0.0440 
CD261 0.0441 
CD184 0.0483 

 


