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Abstract—Noise removal is a critical step to recover the signal 
of interest from resting-state fMRI data. Several pre-processing 
pipelines have been developed mainly based on nuisance 
regression or independent component analysis. The aim of this 
work was to evaluate the ability in removing spurious non-
BOLD signals of different cleaning pipelines when applied to a 
dataset of healthy controls and temporal lobe epilepsy patients. 
Increased tSNR and power spectral density in the resting-state 
frequency range (0.01-0.1 Hz) were found for all pre-processing 
pipelines with respect to the minimally pre-processed data, 
suggesting a positive gain in terms of temporal properties when 
optimal cleaning procedures are applied to the acquired fMRI 
data. All the pre-processing pipelines considered were able to 
recover the DMN through group ICA. By visually comparing 
this network across all the pipelines and groups, we found that 
AROMA, SPM12, FIX and FIXMC were able to better delineate 
the posterior cingulate cortex.  
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I. INTRODUCTION 
Resting-state functional magnetic resonance imaging (rs-

fMRI) based on the blood-oxygenated-level dependent 
(BOLD) contrast is a powerful tool for studying spontaneous 
brain activity in healthy controls and patients [1], [2]. This 
technique is relatively easy to acquire, it does not depend on a 
task to be performed and it has been shown to be stable across 
subjects [3]. However, by acquiring the data in the absence of 
any task (i.e. at rest), the a-priori information of brain 
activation is missing. Therefore, these data are not used to 
localise a brain area active during a specific task (as in task-
based fMRI), but rather to investigate brain connectivity from 
a broader point of view, using functional connectivity (FC) 
analyses, such as independent component analysis (ICA) or 
seed-based correlation.  

Despite the recent technical improvements in the 
acquisition phase, the BOLD signal is generally quite noisy. 
Therefore, it is necessary to recover and separate the signal of 

interest (related to brain function) from the other noise-related 
fluctuations in order to obtain more reliable FC results [2], [4]. 
To achieve artefacts removal, several pre-processing pipelines 
have been developed which are generally based on nuisance 
regression or on ICA [5]. These pipelines result in cleaned 
fMRI time series that more accurately reflect the underlying 
brain fluctuations of interest and allow to reduce possible bias 
in the connectivity estimates due to noise confounds. In 
nuisance regression-based pipelines, motion parameters are 
estimated during realignment and are used, together with white 
matter (WM) and cerebral spinal fluid (CSF) average time 
series, as regressors of no interest [5]. The second group of 
pipelines exploit ICA, a data-driven method to decompose the 
fMRI data into signal of interest and structured noise. The 
actual classification of these components into signal of interest 
or noise is usually carried out manually, resulting in a time 
consuming and user-specific procedure. In summary, nuisance-
regression techniques regress out variance of no interest in a 
supervised fashion, while ICA based pipelines do not use data-
dependent prior information to determine components of no 
interest. Recently, different authors have started to propose 
specific toolboxes for automatically classifying the ICA 
components, as ICA-AROMA [6] or FIX [7]. However, 
regardless the nature of the denoising pipelines adopted, their 
effectiveness needs to be assessed in both the control and 
patient populations.  

The aim of this paper was to evaluate the ability of 
removing spurious non-BOLD signals of different cleaning 
pipelines, keeping in mind that understanding which share of 
the resting-state signal is related to neural signals and which 
proportion is unambiguously related to noise is a challenging 
question [8]. These were applied to a dataset of healthy 
controls and temporal lobe epilepsy patients in order to assess 
their behaviour in physiological and pathological conditions. 
The resulting cleaned data were compared by computing 
temporal SNR (tSNR) and power spectra density measures. 
Additionally, we investigated the accuracy of each cleaned 
dataset to recover the Default Mode Network (DMN) through 



group-based ICA, aiming at providing preliminary findings 
about the impact of the cleaning procedure on network-based 
connectivity.  

II. METHODS 

A. Population 
Nineteen temporal lobe epilepsy patients (nine left-sided 

[LTLE], 41 ± 14y) and twenty age and gender matched healthy 
controls (38 ± 10y) were enrolled. This study was approved by 
the London - Stanmore Research Ethics Committee (REC 
reference 15/LO/1051). Written informed consent was 
obtained for each subject. 

B. Image Acquisition 
Imaging was carried out on a 3T Siemens PET/MRI 

scanner equipped with a 16-channel head and neck coil. 
During the rs-fMRI acquisition, the subjects were instructed to 
stay still and relaxed and to close their eyes without falling 
asleep. rs-fMRI data were acquired using an echo-planar 
imaging sequence and the following parameters: TR=2020 ms, 
TE=30 ms, flip angle=70°, voxel size=3x3x4 mm3, 36 slices, 
260 volumes. High resolution 3D T1-weighted anatomical 
images were also acquired: TR=2000 ms, TE=2.92 ms, voxel 
size=1.1x1.1x1.1 mm3, dimensions=193x187x173. 

C. Raw Data and Basic Pre-processing 
Three pipelines were considered to minimally pre-process 

the data. The first included only the spatial normalization of 
the raw data to the MNI 2-mm standard space (referred to as 
Raw). The second (Min) comprised minimal pre-processing 
steps using SPM12 
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/): 
realignment, slice timing correction, co-registration to 
structural, spatial normalisation to MNI 2-mm standard space 
and spatial smoothing with a 6-mm FWHM kernel. The third 
(Min+HP) was carried out as the second with the addition of a 
final high-pass filtering step, with cut-off 0.01 Hz. 

D. ICA-AROMA 
The fourth pre-processing approach was an ICA-based 

pipeline in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) using 
the ICA-AROMA toolbox to clean each participant’s scans 
specifically from motion confounds (referred to as ICA-
AROMA). FSL FEAT pre-processing was initially applied to 
the data (without temporal filtering) along with MELODIC 
(automatic estimation of the optimal number of components), 
as specified in the reference manual. The resulting 
independent components were then used in ICA-AROMA to 
automatically identify and remove motion artefacts (non-
aggressive option). The cleaned data were finally filtered 
(high-pass, cut-off 0.01 Hz) and spatially normalized to MNI 
2-mm standard space. 

E. FIX 
Two additional ICA-based approaches (pipelines five and 

six) were implemented in FSL using the FIX toolbox to clean 
each participant’s scans from various and heterogeneous types 

of structured noise. Standard FSL FEAT pre-processing was 
initially applied to the data. Each pre-processed dataset was 
then decomposed using MELODIC (automatic dimensionality 
estimation). As FIX requires reliable ‘training data’ which 
have to match the data under investigation, manual 
classification of the components was done on 21 subjects (7 
for each of the three groups) accordingly to their spatial 
distribution, the temporal power spectrum and the time series. 
This allowed training the classifier which was then applied to 
all subjects’ data. Components automatically classified as 
artefacts were removed from the data using the non-
aggressive option. FIX was applied without (FIX) and with 
motion regression (FIXMC). In the latter case, the full 
variance of 24 motion parameters was regressed out. All 
cleaned data were finally spatially normalised to MNI 2-mm 
standard space. 

F. SPM12 
Another pipeline used to pre-process the rs-fMRI data was 

implemented in SPM12 (referred to as SPM12) and exploited 
nuisance regression through a general linear model (GLM). 
The data was pre-processed using realignment, slice timing 
correction, co-registration to structural data, spatial 
normalisation to MNI 2-mm standard space. The functional 
data were finally smoothed by 6-mm FWHM kernel. The 
normalized T1-weighted scans were segmented and the 
resulting WM and CSF probability maps were thresholded at 
0.9, to strictly retain only pure WM and CSF voxels, and 
binarised. These masks were then used to extract the WM and 
CSF average time series to be used in the nuisance regression. 
WM and CSF signals, together with the 6 motion parameters 
(estimated in the realignment step), were regressed out from 
the data. The residuals were finally band-pass filtered 
(0.0078-0.1 Hz). 

G. Temporal Signal-to-Noise Ratio 
tSNR can be used to determine the SNR of fMRI time 

series, by taking into account the mean signal over time. For 
each pipeline and corresponding cleaned data, tSNR was 
computed voxel-wise for each subject by dividing the mean 
signal over time by the standard deviation over time. For each 
subject, the mean tSNR value in the GM and WM was then 
computed, using the tissue segmentations previously 
estimated (probability values >=0.9). The mean was chosen as 
a summary value to be used in subsequent statistical 
comparisons.  

H. Power Spectral Density 
Power spectra were also considered in order to evaluate 

the impact of the cleaning pipelines on the frequency content, 
considering the typical frequency range for resting-state 
(0.01-0.1 Hz). The average time series across the DMN nodes 
were computed for each subject, relying on the network mask 
derived on the basis of the ICA template from Smith et al. 
[10] (the same mask was used for every subject). The DMN 
was chosen as it represents a robust and reproducible network, 
encompassing brain regions fluctuating at similar resting-state 
frequencies, as opposed to the whole GM mask which covers 
multiple brain areas and thus might be characterized by a 



different frequency content. The extracted time series were 
standardised by subtracting its mean and dividing by its 
standard deviation. The power spectra were then compute and 
averaged across subjects. The integral under the curve was 
also computed between 0.01-0.1 Hz for each pipeline and 
subject, in order to quantify the power across the range of 
interest. 

I. Statistical Analysis 
For each group separately, a one-way analysis of variance 

(ANOVA) for repeated measures was performed on the tSNR 
values and on the integral under the curve to test for 
significant differences across the different pipelines. A post-
hoc paired sample two-tailed t-test was applied (p-
value<0.05), which was corrected for multiple comparison 
using Bonferroni correction. 

J. ICA Spatial Maps Analysis 
Finally, we tested the efficiency of the different cleaning 

pipelines in terms of ICA networks and spatial maps. A 
group-based ICA (MELODIC, FSL) was run for every group 
and pipeline, setting the number of components to 30 (a value 
commonly used in the literature [9]) to make sure the same 
number of component was extracted from each group, and the 
DMN network was again retained for further analyses. The 
spatial correlation between the group DMN extracted for each 
pipeline and the DMN template from Smith et al. [10] was 
assessed using the FSL cross correlation function. Under the 
assumption that the more the group ICA maps correlate with 
the corresponding template, the more the cleaning pipeline 
correctly identifies the true signal [10], we aimed to obtain an 
initial comparison between the different pre-processing 
pipelines, in terms of functional connectivity analysis. 

III. RESULTS 

A. Temporal Signal-to-Noise Ratio 
Fig.1 reports the distribution of tSNR values over GM and 

WM, considering each pipeline and group separately. In all 
cases, increased tSNR was found for AROMA, FIX, FIXMC 
and SPM12 pipelines when compared to the minimally pre-
processed data. Similar tSNR values were found for SPM12 
vs FIXMC, AROMA vs FIX. Additionally, an increased 
standard deviation was found when the data were processed, 
as compared to Raw data. Similar tSNR values were found for 
controls and RTLE, while consistently lower values were 
shown in the LTLE group. 

 

Fig. 1. Distribution of tSNR values in grey matter and white matter, 
considering each group and pipeline separately. 

When statistically compared, for all groups the tSNR 
values were significantly different across the seven pipelines 
in both GM and WM (GM: F(6,133)=164.17, p-value<0.05 
for controls; F(6,63)=122.68, p-value<0.05 for RTLE; 
F(6,56)=50.26, p-value<0.05 for LTLE; WM: F(6,133)= 
293.85, p-value<0.05 for controls; F(6,63)= 384.8, p-
value<0.05 for RTLE; F(6,56)= 136.07, p-value<0.05 for 
LTLE). The t-test between pairs of pipelines revealed 
significant differences (p<0.05, Bonferroni corrected) in the 
tSNR values calculated in GM and in WM for all pairs of 
pipelines and groups, except in the following cases: AROMA 
vs FIX for LTLE (GM); SPM12 vs FIX for LTLE and RTLE 
(GM, WM); and for SPM12 vs FIXMC in all cases (Fig.2). 

 

Fig. 2. Graphical representation of the t-values resulting from the statistical 
comparison of the tSNR measures for each pair of pipelines (reading column 
first then row). The comparisons which were not statistical significant 
(p>=0.05) are reported in white. 

B. Power Spectral Density 
 Fig.3 shows the average power spectra of the DMN 

signals for the three groups and pipelines considered. Of note 
that the Raw pipeline results are not reported here as they 
showed the same patterns as the Minimum. In all cases, the 
Min pipeline presented an initial high peak, possibly related to 
physiological noise and subject motion, at around 0.002 Hz 
(out of the range of interest) which was eliminated after 
processing with the other cleaning pipelines. For each 
pipeline, the average power spectra followed similar trends 
across the three groups, with consistent patterns to those 
usually reported in literature for the DMN network.  

Overall, the integral under the curve in the range of 
frequencies of interest (0.01-0.1 Hz) was always higher for 
SPM12, AROMA, FIX and FIXMC when compared to the 
minimally pre-processed data (Raw, Minimum, 
Minimum+HP). Considering the ANOVA results, for all 
groups the integral under the curve of the power spectral 
density was significantly different across all the pipelines 
(F(6,133)=51.25, p-value<0.05 for controls; F(6,63)=34.68, p-
value<0.05 for RTLE; F(6,56)=19.12, p-value<0.05 for 
LTLE).  

 

 



 

Fig. 3. Average power spectra in the DMN for each group and pipeline. The 
mean (solid line) is reported together with the standard error of the mean 
(shading). 

The t-test between pairs of pipelines revealed significant 
differences (p<0.05, Bonferroni corrected) for all pairs of 
pipelines and groups, except in the following cases: AROMA 
vs FIX for all groups; AROMA vs FIXMC for RTLE and 
LTLE; Minimum+HP vs AROMA/FIX/FIXMC for all 
groups; FIX vs FIXMC for RTLE and LTLE; FIXMC vs 
Minimum and Raw for the LTLE; Minimum vs Raw for all 
groups (Fig.4). 

 

Fig. 4. Graphical representation of the t-values resulting from the statistical 
comparison of the integral under curve measures in the range of frequencies 
of interest (0.01-0.1 Hz) (reading column first then row). The comparison 
which were not statistical significant (p>=0.05) are reported in white. 

C. ICA Spatial Maps Analysis 
The group-based DMN maps, resulting from the rs-fMRI 

data cleaned with the different pipelines, are reported in 
Figg.5-7. The DMN was accurately recovered by all the 
cleaned datasets. However, in the case of AROMA, SPM12, 
FIX and FIXMC the posterior cingulate cortex appeared to be 
more accurate than in the case of Minimum and 
Mimimum+HP. In the control group, the frontal portion of the 
DMN was not accurately identified by SPM12 and FIX. 
Qualitative differences in the frontal area are also present in 

the patient groups, which might also be due to alterations in 
the DMN connectivity due to their pathologies. 

 

 

Fig. 5. DMN for the control group. The same slice in MNI space has been 
displayed with a thresholded of z>3. 

 

 

Fig. 6. DMN for the RTLE group. The same slice in MNI space has been 
displayed with a thresholded of z>3. 

 

 

Fig. 7. DMN for the LTLE group. The same slice in MNI space has been 
displayed with a thresholded of z>3. 

Table I reports the values of the spatial correlation 
between the group DMN obtained from each cleaned dataset 
and the DMN template. Similar and high correlation values 
were detected for all the pipelines. A slight increased 
correlation was found for the Minimum+HP and FIXMC 
pipelines in the control group; AROMA, SPM12 and FIXMC 
in RTLE group; FIX in the LTLE group. 



TABLE I.  SPATIAL CORRELATION VALUES BETWEEN THE DMN 
OBTAINED FROM CLEANED DATA AND THE DMN TEMPLATE. 

 Controls RTLE LTLE 
Minimum 0.62 0.57 0.65 
Minimum+HP 0.69 0.58 0.63 
AROMA 0.65 0.66 0.65 
SPM12 0.65 0.66 0.63 
FIX 0.64 0.64 0.66 
FIXMC 0.67 0.67 0.63 

 

IV. DISCUSSION 
The aim of this work was to evaluate the ability of seven 

different cleaning pipelines in removing spurious non-BOLD 
signals. These were applied to a dataset of healthy controls 
and temporal lobe epilepsy patients and the resulting cleaned 
data were compared, by relying on temporal analyses. 

As expected, we found an increased tSNR when the data 
were pre-processed with SPM12, AROMA, FIX and FIXMC 
as compared to the minimally pre-processed data. In 
particular, SPM12 and FIXMC did not show a significant 
difference, which can be attributed to the fact that both 
pipelines carry out a regression step where noisy components 
are completely eliminated (regressed out) from the data. 
Compared to the raw data, we found an increased standard 
deviation when any of the other pipelines was used. This was 
in agreement with previous studies on pipeline comparison 
and it was attributed to the fact that noise tends to mask the 
differences within a group of subjects [2], [9]. Therefore, by 
cleaning the data, one can capture the differences between the 
subjects in a given group (increased standard deviation), 
previously covered by the unwanted confounds. 

Power spectral density has been used to assess the power 
in the range of frequency of interest, thereby providing an 
additional measure of comparison. Previous works mainly 
qualitatively assessed the power spectral density at high and 
low frequencies to see how it was changing after appropriate 
pre-processing [9]. In this work, a quantification of the power 
spectral density was provided by computing the integral under 
the curve in the frequency range 0.01-0.1 Hz, of interest in 
resting-state analysis. This measure was used to compare the 
different cleaning methods. The Raw and Minimum pipelines 
showed very similar spectra with an initial peak, out of the 
frequency range, which was attributed to physiological noise 
and motion. Indeed, this peak was removed in all the other 
pipelines which also showed high power content in the range 
of interest. In terms of power quantification in the frequency 
range of interest, SPM12 reported the highest power which 
was significantly different from all the other pipelines. This 
can be attributed to the regression of WM and CSF, carried 
out by this pipeline only. 

All the pre-processing pipelines considered were able to 
recover the DMN through group-based ICA.  

By visually comparing this network across all pipelines 
and groups, we found that AROMA, SPM12, FIX and 
FIXMC were able to better delineate the posterior cingulate 
cortex. We also reported differences in the anterior areas of 
the brain in the patients, which might be related to DMN 
changes due to their pathology. However, when considering 
the results of the correlation with the DMN template we did 
not find notable differences across the different pipelines. 

V. CONCLUSIONS 
To conclude, we reported a comparison of different pre-

processing pipelines in terms of tSNR, power spectral density 
and ability to recover the DMN, for the analysis of rs-fMRI 
data in healthy controls and epilepsy patients. In this context, 
it is challenging to define an appropriate ground truth to 
determine the best pipeline to adopt. On the other hand, it is 
fundamental to investigate the impact of different pre-
processing pipelines on the analysis of resting-state 
connectivity, especially when considering patient data. In the 
future, we are planning to extend this work to include more 
subjects to further confirm these results. 
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