A cancellation theorem for generalized Swan modules

F. E. A. Johnson

Abstract The module cancellation problem asks whether, given modules X, X' and Y over a ring Λ , the existence of an isomorphism $X \oplus Y \cong X' \oplus Y$ implies that $X \cong X'$. When Λ is the integral group ring of a metacyclic group G(p,q), results of Klingler show that the answer to this question is generally negative. By contrast, in this case we show that cancellation holds when $Y = \Lambda$ and X is a generalized Swan module.

Introduction

Let Λ be the integral group ring $\Lambda = \mathbb{Z}[G]$ of a finite group G. For Λ -modules X, X', Y we consider the following cancellation question:

(*) If
$$X \oplus Y \cong X' \oplus Y$$
 is it true that $X \cong X'$?

In this paper we focus on this question when G is a metacyclic group G(p,q) defined as the semidirect product

$$G(p,q) = C_p \rtimes C_q$$

where p is an odd prime, q is a positive integral divisor of p-1 and C_q acts via the canonical imbedding $C_q \hookrightarrow \operatorname{Aut}(C_p)$. We first analyze the group ring Λ ; the projection $G(p,q) \twoheadrightarrow C_q$ induces a surjective ring homomorphism $\eta : \Lambda \twoheadrightarrow \mathbb{Z}[C_q]$. The twosided ideal Ker (η) has the following non-obvious description; take A to be the fixed ring $A = \mathbb{Z}[\zeta_p]^{C_q}$ under the Galois action of C_q on the ring of cyclotomic integers $\mathbb{Z}[\zeta_p]$; A is a Dedekind domain in which p ramifies completely. We take $\pi \in A$ to be the unique prime over p. Then Ker (η) can be identified with \mathcal{T}_q , the subring of quasitriangular matrices in the ring $M_q(A)$ of $q \times q$ matrices over A; thus,

$$\mathcal{T}_q = \left\{ X = (x_{rs})_{1 \le r, s \le n} \in M_q(A) \mid x_{rs} \in (\pi) \text{ if } r > s \right\}.$$

A generalized Swan module X is one which occurs in an extension of the form

$$(\mathcal{X}) \qquad \qquad 0 \to \mathcal{T}_q \to X \to \mathbb{Z}[C_q] \to 0.$$

In particular, given the above description of $\text{Ker}(\eta)$, we see that Λ itself is a generalized Swan module. We shall prove the following:

Received June 6, 2018. Received in final form January 18, 2019.

Illinois Journal of Mathematics Vol. 63, No. 1 (2019), 103-125

DOI 10.1215/00192082-7600042, © 2019 by the University of Illinois at Urbana-Champaign

²⁰¹⁰ Mathematics Subject Classification: Primary 16D70; Secondary 20C10.

THEOREM A

Let Z, Z' be Λ -modules such that $Z \oplus \Lambda \cong Z' \oplus \Lambda$; if Z is a generalized Swan module, then $Z \cong Z'$.

We note that \mathcal{T}_q decomposes as a direct sum $\mathcal{T}_q = R(1) \oplus \cdots \oplus R(q)$ where R(i) consists of elements in the *i* th-row of \mathcal{T}_q . The modules R(i) are isomorphically distinct and $\operatorname{Ext}^1(\mathbb{Z}[C_q], R(i)) \cong \mathbb{F}_p$, the field with *p* elements. The extension \mathcal{X} is classified up to congruence by a sequence $\mathbf{c} = (c_i)_{1 \le i \le q}$ where $c_i \in \mathbb{F}_p = \operatorname{Ext}^1(\mathbb{Z}[C_q], R(i))$. We write

$$\delta(\mathcal{X}) = \{i \mid c_i = 0\}.$$

The set $\delta(\mathcal{X})$ is called the *degeneracy* of \mathcal{X} ; we will show that $\delta(\mathcal{X})$ is an invariant of the isomorphism class of the module X not merely of the congruence class of the extension \mathcal{X} . Consequently, we may write $\delta(X) = \delta(\mathcal{X})$. We say that the generalized Swan module X is *degenerate* when $\delta(X) \neq \emptyset$ and *nondegenerate* when $\delta(X) = \emptyset$. Nondegenerate modules are necessarily projective and for these the conclusion of Theorem A already follows from the theorem of Swan–Jacobinski (cf. [4, 12]). However, the (more numerous) degenerate modules are not projective and lie outside the scope of the Swan–Jacobinski theorem. In these cases, Theorem A is a consequence of the following, which can be viewed as a rigidity property.

THEOREM B

Let X, X' be degenerate generalized Swan modules; then $X \cong X' \iff \delta(X) = \delta(X')$.

In formulating our approach we make use of the *derived module category*; that is, the quotient of the category of Λ -modules, by setting projective = 0. The salient features are reviewed briefly in Section 1. A fuller account can be found in Chapter 5 of [7].

There is already a considerable literature on the general question of cancellation; see, for example, [13]. In the case of the metacyclic groups considered here, the results of Klingler [9] show that the question (*) has a generally negative answer. Thus, the cancellation statement of Theorem A is atypical and, to that extent, unexpected.

1. The derived module category

In what follows, Λ will denote the integral group ring $\Lambda = \mathbb{Z}[G]$ of a finite group, as yet unspecified. As a ring, Λ is both left and right Noetherian. The category of right Λ -modules is denoted by $\mathcal{M}od_{\Lambda}$. If $f: M \to N$ is a morphism in $\mathcal{M}od_{\Lambda}$, we write $f \approx 0$, when f can be written as a composite of Λ -homomorphisms $f = \xi \circ \eta$ via a projective module P; thus,

We define $\langle M, N \rangle = \{ f \in \text{Hom}_{\Lambda}(M, N) : f \approx 0 \}; \langle M, N \rangle$ is an additive subgroup of $\text{Hom}_{\Lambda}(M, N)$. We extend \approx to a binary relation on $\text{Hom}_{\Lambda}(M, N)$ by

$$f \approx g \quad \Longleftrightarrow \quad f - g \approx 0.$$

So extended, \approx is an equivalence relation compatible with composition; that is, given Λ -homomorphisms $f, f': M_0 \to M_1, g, g': M_1 \to M_2$ then

(1.1)
$$f \approx f'$$
 and $g \approx g' \implies g \circ f \approx g' \circ f'$.

We denote by $\mathcal{D}er = \mathcal{D}er(\Lambda)$ the *derived module category* (cf. [6, 7]); that is, the quotient category of $\mathcal{M}od_{\Lambda}$ in which the set of morphisms $\operatorname{Hom}_{\mathcal{D}er}(M, N)$ is given by

$$\operatorname{Hom}_{\mathcal{D}\mathrm{er}}(M,N) = \operatorname{Hom}_{\Lambda}(M,N)/\langle M,N\rangle.$$

Since (M, N) is a subgroup of Hom_{Λ}(M, N), it follows that

(1.2) Hom $\mathcal{D}_{er}(M, N)$ has the natural structure of an abelian group.

It is important to distinguish, both notationally and conceptually, between isomorphism in $\mathcal{M}od_{\Lambda}$, which we write as $\cdots \cong_{\Lambda} \cdots$ and isomorphism in $\mathcal{D}er(\Lambda)$, which we write as $\cdots \cong_{\mathcal{D}er} \cdots$. For finitely generated Λ -modules the relationship between the two notions is as follows (see [7, p. 120]):

$$(1.3) D \cong_{\mathcal{D}\mathrm{er}} D' \iff D \oplus P \cong_{\Lambda} D' \oplus P'$$

for some finitely generated projective Λ -modules. P, P'.

There is a related notion, *stable equivalence*, written $D \sim D'$, and defined by

$$(1.4) D \sim D' \iff D \oplus \Lambda^m \cong_{\Lambda} D' \oplus \Lambda^n$$

for some positive integers m, n.

Clearly we have

$$(1.5) D \sim D' \implies D \cong_{\mathcal{D}\mathrm{er}} D'.$$

The converse to (1.5) is, however, false.

Given a finitely generated Λ -module M, we consider exact sequences in $\mathcal{M}od_{\Lambda}$; thus,

$$(\mathcal{E}) \qquad \qquad 0 \to D \xrightarrow{i} P \xrightarrow{p} M \to 0$$

where *P* is finitely generated projective. Clearly such sequences always exist; we may even take *P* to be free. Moreover, as Λ is Noetherian then *D* is also finitely generated. Given another such exact sequence,

$$0 \to D' \xrightarrow{i'} P' \xrightarrow{p'} M \to 0,$$

then Schanuel's Lemma shows that $D \oplus P' \cong_{\Lambda} D' \oplus P$ so that $D \cong_{\mathcal{D}er} D'$. We denote by $D_1(M)$ the isomorphism class in $\mathcal{D}er$ of any module D which occurs in an exact sequence of the above form (\mathcal{E}). We may think of $D_1(M)$ as a *first derivative* of M. The correspondence $M \mapsto D_1(M)$ is functorial in the following way. Given

any such exact sequence (\mathcal{E}) and a Λ -homomorphism $f: M \to M$ then the universal property of projective modules allows us to construct a commutative diagram of Λ -homomorphisms:

While the Λ -homomorphism f_{-} is not uniquely determined, nevertheless its class in \mathcal{D} er *is uniquely determined*. In particular, given another such commutative diagram,

then we have

(1.6)
$$f \approx f' \implies f_- \approx f'_-.$$

Further discussion will be simplified by confining attention to Λ -*lattices*, that is, to Λ -modules which are finitely generated and torsion free as additive groups. For the remainder of this section, all Λ -modules considered will be subject to this restriction. When *M* is a Λ -lattice then Ext¹(*M*, Λ) = 0, in consequence of which (cf. [7, p. 133]) (1.6) can be improved to

(1.7)
$$f \approx f' \iff f_- \approx f'_-$$

Given $f \in \operatorname{End}_{\Lambda}(M)$, we denote by $\rho(f) = [f_-]$ the class of f_- in \mathcal{D} er. By (1.7), the correspondence $[f] \mapsto \rho(f) = [f_-]$ determines a ring isomorphism

(1.8)
$$\rho : \operatorname{End}_{\mathcal{D}er}(M) \xrightarrow{\simeq} \operatorname{End}_{\mathcal{D}er}(D_1(M))$$

The extension theory of Λ -lattices can be formulated in terms of the derived module category. Given the exact sequence \mathcal{E} above and a Λ -homomorphism $\alpha : D \to N$, we construct the pushout diagram

$$\begin{aligned} & \mathcal{E} \\ & \downarrow \natural &= \begin{pmatrix} 0 \to D \xrightarrow{i} P \xrightarrow{p} M \to 0 \\ & \downarrow \alpha & \downarrow \natural & \downarrow \mathrm{Id} \\ & 0 \to N \xrightarrow{i} \mathrm{lim}(\alpha, i) \xrightarrow{\pi} M \to 0 \end{pmatrix}. \end{aligned}$$

Then $\alpha_*(\mathcal{E}) = (0 \to N \xrightarrow{i} \lim_{\longrightarrow} (\alpha, i) \xrightarrow{\pi} M \to 0)$ defines an extension class in $\operatorname{Ext}^1(M, N)$. When *P* is projective, the correspondence $\alpha \mapsto [\alpha_*(\mathcal{E})]$ defines a mapping $\delta : \operatorname{Hom}_{\mathcal{D}er}(D, N) \to \operatorname{Ext}^1(M, N)$. With this notation we have

(1.9)
$$\delta : \operatorname{Hom}_{\mathcal{D}er}(D_1(M), N) \xrightarrow{\simeq} \operatorname{Ext}^1(M, N)$$
 is an isomorphism.

The isomorphism of (1.9) is a *corepresentation formula*; thereby the covariant functor $\text{Ext}^1(M, -)$ is represented by the Hom functor $\text{Hom}_{\mathcal{D}\text{er}}(D_1(M), -)$. Given the exact sequence (\mathcal{E}) , then for any Λ -module N we have exact sequences for $k \ge 1$,

$$\operatorname{Ext}^{k}(P,N) \xrightarrow{i^{*}} \operatorname{Ext}^{k}(D_{1}(M),N) \xrightarrow{\delta} \operatorname{Ext}^{k+1}(M,N) \xrightarrow{p^{*}} \operatorname{Ext}^{k+1}(P,N).$$

As *P* is projective, then $\operatorname{Ext}^{k}(P, N) \cong \operatorname{Ext}^{k+1}(P, N) = 0$ and we obtain the usual *dimension shifting* isomorphisms

(1.10)
$$\operatorname{Ext}^{k+1}(M,N) \cong \operatorname{Ext}^{k}(D_{1}(M),N).$$

We may regard the corepresentation formula (1.9) as the degenerate case of (1.10) corresponding to the case k = 0.

We say that M has *periodic cohomology* when, for some positive integer d, there is an exact sequence

$$0 \to M \to P_{d-1} \to \cdots \to P_0 \to M \to 0,$$

where each P_i is projective. As M is a lattice it can be assumed, in addition, that each P_i is finitely generated. The integer d is then said to be a *cohomological period* for M. If M has periodic cohomology, it has a minimal cohomological period denoted by $\mu(M)$ and any cohomological period of M is an integral multiple of $\mu(M)$.

Finally we recall the tensor product construction for Λ -modules; thus, if M, N are right Λ -modules by $M \otimes N$, we mean the abelian group $M \otimes_{\mathbb{Z}} N$ endowed with the diagonal right action of Λ , $(m \otimes n) \cdot \lambda = m\lambda \otimes n\lambda$. The following is well known (cf. [2, p. 11]).

(1.11) If P is finitely generated projective, then so also is $M \otimes P$.

Suppose, given an exact sequence $0 \to \mathbb{Z} \to P_{\mu(\mathbb{Z})-1} \to \cdots \to P_0 \to \mathbb{Z} \to 0$ where each P_i is finitely generated projective. Applying $M \otimes -$ gives an exact sequence

$$0 \to M \otimes \mathbb{Z} \to M \otimes P_{\mu(\mathbb{Z})-1} \to \cdots \to M \otimes P_0 \to M \otimes \mathbb{Z} \to 0.$$

By (1.11), each $M \otimes P_i$ is finitely generated projective; as $M \otimes \mathbb{Z} \cong M$, then:

(1.12) If \mathbb{Z} has periodic cohomology, then $\mu(\mathbb{Z})$ is a cohomological period of every Λ -lattice M.

2. Modules over the metacyclic group G(p,q)

For each integer $n \ge 2$, we denote by C_n the cyclic group $C_n = \langle x \mid x^n = 1 \rangle$. For the remainder of this paper, we fix an odd prime p, an integral divisor q of p-1 and write d = (p-1)/q. Recalling that $\operatorname{Aut}(C_p) \cong C_{p-1}$, then there exists an element

 $\theta \in \operatorname{Aut}(C_p)$ such that $\operatorname{ord}(\theta) = q$. Taking y to be a generator of C_q and making a once and for all choice of θ with order q, we construct the semi-direct product $G(p,q) = C_p \rtimes_h C_q$ where $h: C_q \to \operatorname{Aut}(C_p)$ is the homomorphism $h(y) = \theta$. There is then a unique integer a in the range $1 \le a \le p-1$ such that $\theta(x) = x^a$, and G(p,q) then has the presentation

$$G(p,q) = \langle x, y \mid x^{p} = y^{q} = 1; yxy^{-1} = x^{a} \rangle.$$

A theorem of Zassenhaus–Artin–Tate (cf. [3, Chapter 12]) shows that, over a finite group G, the trivial module \mathbb{Z} has periodic cohomology if and only if for each prime π , every subgroup of order π^2 is cyclic. By this criterion, \mathbb{Z} has periodic cohomology when G = G(p, q); indeed, it can be shown (cf. [8]) that

(2.1)
$$\mu(\mathbb{Z}) = 2q \quad \text{when } G = G(p,q).$$

We denote by Λ the integral group ring $\Lambda = \mathbb{Z}[G(p,q)]$ and by $i : \mathbb{Z}[C_p] \hookrightarrow \Lambda$ and $j : \mathbb{Z}[C_q] \hookrightarrow \Lambda$, the respective inclusions. Depending on context, \mathbb{Z} may denote the trivial module over any of the group rings Λ , $\mathbb{Z}[C_p]$ or $\mathbb{Z}[C_q]$. We denote by I_C the augmentation ideal of $\mathbb{Z}[C_p]$; I_C is defined by the exact sequence of $\mathbb{Z}[C_p]$ -modules

(2.2)
$$0 \to I_C \stackrel{\iota}{\hookrightarrow} \mathbb{Z}[C_p] \stackrel{\epsilon}{\to} \mathbb{Z} \to 0.$$

On dualizing, we get an exact sequence $0 \to \mathbb{Z} \xrightarrow{\epsilon^*} \mathbb{Z}[C_p] \xrightarrow{\iota^*} I_C^* \to 0$ where $\epsilon^*(1) = \Sigma_x = 1 + x + x^2 + \dots + x^{p-1}$. It is a standard and easily verified fact that

(2.3) I_C^* and I_C are isomorphic as $\mathbb{Z}[C_p]$ -modules.

As I_C^* and I_C are not actually identical, we find it convenient to distinguish between them. We identify the dual I_C^* with the quotient $\mathbb{Z}[C_p]/(\Sigma_x)$. As (Σ_x) is a two-sided ideal in $\mathbb{Z}[C_p]$, then I_C^* is naturally a ring; indeed, putting $\zeta = \exp(2\pi i/p)$, then

(2.4) There is a ring isomorphism
$$I_C^* \cong \mathbb{Z}[\zeta]$$
.

As is well known, $\mathbb{Z}[C_p]$ has a canonical fiber product decomposition

(2.5)
$$\mathbb{Z}[C_p] \to \ I_C^*$$

 $\mathbb{Z} \rightarrow \mathbb{Z}_p$

where $\epsilon : \mathbb{Z}[C_p] \to \mathbb{Z}$ is the augmentation map and \mathbb{F}_p is the field with p elements. To proceed, we briefly recall the cyclic algebra construction. Let S denote a commutative ring and $\theta : S \to S$ a ring automorphism of finite order dividing q; in particular, θ satisfies the identity $\theta^q = \text{Id}$. The cyclic ring $\mathcal{C}_q(S, \theta)$ is then the (two-sided) free S-module

$$\mathcal{C}_q(S,\theta) = S\mathbf{1} + S\mathbf{y} + \dots + S\mathbf{y}^{q-1}$$

of rank q with basis $\{1, y, \dots, y^{q-1}\}$ and with multiplication defined by

$$\mathbf{y}^q = \mathbf{1};$$
 $\mathbf{y}\xi = \theta(\xi)\mathbf{y} \quad (\xi \in S).$

So defined, $\mathcal{C}_q(S,\theta)$ is an extension ring of *S*. In the fiber product (2.5), θ induces a ring automorphism of order *q* on $\mathbb{Z}[C_p]$. As θ fixes Σ_x , then θ induces a ring automorphism on the quotient $I_C^* = \mathbb{Z}[C_p]/(\Sigma_x)$. Likewise θ stabilizes the augmentation ideal I_C and induces the identity automorphism both on the quotient $\mathbb{Z} = \mathbb{Z}[C_p]/I_C$ and \mathbb{F}_p . As the homomorphisms in (2.5) are equivariant with respect to these ring automorphisms, we may apply the cyclic algebra construction $\mathcal{C}_q(-,\theta)$ to (2.5). Identifying $\mathcal{C}_q(\mathbb{Z}[C_p]) = \mathbb{Z}[G(p,q)], \mathcal{C}_q(\mathbb{Z}) = \mathbb{Z}[C_q], \mathcal{C}_q(\mathbb{F}_p) = \mathbb{F}_p[C_q]$, we obtain a fiber product

(2.6)
$$\mathbb{Z}[G(p,q)] \to \mathcal{C}_q(I_C^*,\theta)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}[C_q] \quad \to \quad \mathbb{Z}_p[C_q].$$

To proceed to a more tractable description of $\mathcal{C}_q(I_C^*, \theta)$, we first make the identification $\mathcal{C}_q(I_C^*, \theta) \otimes \mathbb{Q} \cong \mathcal{C}_q(\mathbb{Q}(\zeta), \theta)$ where, as above, ζ is a primitive *p*th root of unity. Then θ acts on $\mathbb{Z}[\zeta]$ via the isomorphism $\operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong C_{p-1}$. Let $A = \mathbb{Z}[\zeta]^{\theta}$ denote the subring fixed by θ . We note (see [1, Lemma 3]) that $p = (\zeta - 1)^{p-1}u$ for some unit $u \in \mathbb{Z}[\zeta]^*$. Putting $\pi = (\zeta - 1)^q$, then

(2.7) p ramifies completely in A, and π is the unique prime in A over p.

We denote by $\mathcal{T}_q(A, \pi)$, the subring of *quasi-triangular* matrices in the ring $M_q(A)$ of $q \times q$ matrices over A defined as follows:

$$\mathcal{T}_q(A,\pi) = \left\{ X = (x_{rs})_{1 \le r, s \le n} \in M_q(A) \mid x_{rs} \in (\pi) \text{ if } r > s \right\}.$$

Likewise, we define

$$\mathcal{T}_q(A/\pi) = \left\{ X = (x_{rs})_{1 \le r, s \le n} \in M_q(A/\pi) \mid x_{rs} = 0 \text{ if } r > s \right\}.$$

Taking the quotient by π defines a surjective ring homomorphism

(2.8)
$$\nu: \mathcal{T}_q(A,\pi) \twoheadrightarrow \mathcal{T}_q(A/\pi).$$

In turn, the correspondence $X \mapsto (x_{11}, \ldots, x_{qq})$ gives a surjective ring homomorphism

(2.9)
$$\varphi: \mathcal{T}_q(A/\pi) \twoheadrightarrow \underbrace{A/\pi \times \cdots \times A/\pi}_q.$$

The following structural theorem is fundamental in what follows:

THEOREM 2.1

There exists a ring isomorphism $\widehat{\lambda}_* : \mathcal{C}_q(I_C^*, \theta) \to \mathcal{T}_q(A, \pi).$

This can be regarded as an explicit form of Rosen's Theorem (see [11]; see also [10, p. 373]; a proof in the above form may be found in [8]). Theorem 2.1 allows us to re-interpret (2.6) as a fiber square of the form

(2.10)
$$\mathbb{Z}[G(p,q)] \to \mathcal{T}_q(A,\pi)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}[C_q] \quad \to \ \mathbb{Z}_p[C_q]$$

If $i_*(-)$ denotes extension of scalars from $\mathbb{Z}[C_p]$ -modules to Λ -modules, then

(2.11) $i_*(I_C)$ and $i_*(I_C^*)$ are isomorphic as Λ -modules.

We note that $\mathcal{C}_q(I_C^*, \theta)$ is simply another description of the induced module $i_*(I_C^*)$. As $\mathcal{T}_q(A, \pi) \cong \mathcal{C}_q(I_C^*, \theta)$, it follows from (2.11) that

(2.12)
$$i_*(I_C) \cong i_*(I_C^*) \cong \mathcal{T}_q(A, \pi).$$

Applying i_* to the exact sequence (2.2), we obtain an exact sequence

 $0 \to i_*(I_C) \stackrel{\iota}{\hookrightarrow} i_*(\mathbb{Z}[C_p]) \stackrel{\epsilon}{\to} i_*(\mathbb{Z}) \to 0.$

However, $i_*(I_C) \cong \mathcal{T}_q(A, \pi)$, $i_*(\mathbb{Z}[C_p]) \cong \Lambda$ and $i_*(\mathbb{Z}) \cong \mathbb{Z}[C_q]$, so giving an exact sequence

(2.13)
$$0 \to \mathcal{T}_q(A,\pi) \stackrel{\iota}{\hookrightarrow} \Lambda \stackrel{\epsilon}{\to} \mathbb{Z}[C_q] \to 0.$$

Moreover, from this construction it follows easily that

(2.14)
$$\operatorname{Hom}_{\Lambda}(\mathcal{T}_q(A,\pi),\mathbb{Z}[C_q]) = 0.$$

Applying $-\otimes \mathbb{Q}$ to (2.14), the semisimplicity of $\mathcal{T}_q(A, \pi) \otimes \mathbb{Q}$ implies that

(2.15)
$$\operatorname{Hom}_{\Lambda}(K,\mathbb{Z}[C_q]) = 0$$

if K is a
$$\Lambda$$
-submodule of $\mathcal{T}_q(A, \pi) \oplus \cdots \oplus \mathcal{T}_q(A, \pi)$

We decompose $\mathcal{T}_q(A, \pi)$ as direct sum of right Λ -modules; thus,

(2.16)
$$\mathcal{T}_q(A,\pi) \cong R(1) \oplus R(2) \oplus \cdots \oplus R(q)$$

where R(i) is the *i*th row of $\mathcal{T}_q(A, \pi)$. We note that

$$(2.17) R(i) \cong_{\Lambda} R(j) \iff i = j,$$

(2.18)
$$\operatorname{Hom}_{\Lambda}(R(i),\mathbb{Z}[C_q]) = 0 \quad \text{for all } i \in \{1,\ldots,q\}.$$

Of the above, (2.17) is proved in Section 4 of [8], while (2.18) follows directly from (2.14).

3. Preliminary cancellation

Let \mathbb{K} be a finite extension field of \mathbb{Q} and let *A* denote the ring of algebraic integers in \mathbb{K} . Let \mathfrak{B} be a finite dimensional semisimple \mathbb{K} -algebra. By Wedderburn's Theorem,

 $\mathfrak{B} \otimes_{\mathbb{O}} \mathbb{R}$ decomposes as a direct product of matrix rings

$$\mathfrak{B} \otimes_{\mathbb{Q}} \mathbb{R} \cong \prod_{i=1}^m M_{d_i}(D_i)$$

where each D_i is either \mathbb{R} , \mathbb{C} or \mathbb{H} . Let $\Omega \subset \mathfrak{B}$ be an *A*-order; that is, Ω is an *A*-subalgebra of \mathfrak{B} such that $\Omega \otimes_A \mathbb{K} \cong \mathfrak{B}$. We say that Ω satisfies the *Eichler condition* when, in the above Wedderburn decomposition, $D_i \cong \mathbb{H} \Longrightarrow d_i \ge 2$. We have the following much simplified version of Jacobinski's Cancellation Theorem [5]:

(3.1) Let
$$L, M$$
 be Ω -lattices such that $L \oplus M \cong_{\Omega} M \oplus M$; if Ω satisfies the Eichler condition, then $L \cong_{\Omega} M$.

An account of the more general version can be found on page 324 in [4].

We apply (3.1) to two of the modules considered in Section 2. In the first case we take $\Omega = \mathcal{T}_q(A, \pi)$ and $\mathfrak{B} = M_q(\mathbb{K})$ where \mathbb{K} is the field of fractions of A. Then for some integers a, b, we have $\mathbb{K} \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^{(a)} \times \mathbb{C}^{(b)}$ and hence $\mathfrak{B} \otimes_{\mathbb{Q}} \mathbb{R} \cong M_q(\mathbb{R})^{(a)} \times M_q(\mathbb{C})^{(b)}$. In particular, Ω satisfies Eichler's condition. Applying (3.1) gives the following:

(3.2) Let L be a
$$\mathcal{T}_q(A, \pi)$$
-lattice such that
 $L \oplus \mathcal{T}_q(A, \pi) \cong_{\mathcal{T}_q(A, \pi)} \mathcal{T}_q(A, \pi) \oplus \mathcal{T}_q(A, \pi)$; then
 $L \cong_{\mathcal{T}_q(A, \pi)} \mathcal{T}_q(A, \pi).$

We extend this to certain Λ -lattices where $\Lambda = \mathbb{Z}[G(p,q)]$. We have a surjective ring homomorphism $\mu : \mathbb{Z}[G(p,q)] \twoheadrightarrow \mathcal{T}_q(A,\pi)$ and induction and co-induction functors

$$\mu_*: \mathcal{M}od_{\Lambda} \to \mathcal{M}od_{\mathcal{T}_q(A,\pi)}; \qquad \mu^*: \mathcal{M}od_{\mathcal{T}_q(A,\pi)} \to \mathcal{M}od_{\Lambda}$$

By regarding $\mathcal{T}_q(A, \pi)$ as a module over Λ , we are abusing notation; the correct symbol for the intended Λ -module is $\mu^*(\mathcal{T}_q(A, \pi))$. To avoid this confusion in the discussion that follows, we write $\mathcal{T} = \mu^*(\mathcal{T}_q(A, \pi))$. Moreover, it is straightforward to check that

(3.3)
$$\mu_*(\mathcal{T}) = \mathcal{T}_q(A, \pi).$$

As Λ satisfies the Eichler condition, it follows directly from (3.1) that

(3.4) If \mathcal{K} is a Λ -lattice such that $\mathcal{K} \oplus \mathcal{T} \cong_{\Lambda} \mathcal{T} \oplus \mathcal{T}$, then $\mathcal{K} \cong_{\Lambda} \mathcal{T}$.

Next we take $\Omega = \mathbb{Z}[C_q]$, $\mathbb{K} = \mathbb{Q}$ and $\mathfrak{B} \cong \prod_{d|q} \mathbb{Q}[x]/(c_d(x))$ where $c_d(x)$ is the *d* th cyclotomic polynomial. Then $\mathfrak{B} \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^{(a)} \times \mathbb{C}^{(b)}$ for some integers *a*, *b* so that again Ω satisfies the Eichler condition. Applying (3.1) gives

(3.5) Let
$$\mathscr{L}$$
 be a lattice over $\mathbb{Z}[C_q]$ such that
 $\mathscr{L} \oplus \mathbb{Z}[C_q] \cong_{\mathbb{Z}[C_q]} \mathbb{Z}[C_q] \oplus \mathbb{Z}[C_q]$; then $\mathscr{L} \cong_{\mathbb{Z}[C_q]} \mathbb{Z}[C_q]$.

We may modify this statement slightly in the context of Λ -lattices. We also have a surjective ring homomorphism $\eta : \mathbb{Z}[G(p,q)] \twoheadrightarrow \mathbb{Z}[C_q]$ and functors

$$\eta_* : \mathcal{M}\mathrm{od}_\Lambda \to \mathcal{M}\mathrm{od}_{\mathbb{Z}[C_q]}; \qquad \eta^* : \mathcal{M}\mathrm{od}_{\mathbb{Z}[C_q]} \to \mathcal{M}\mathrm{od}_\Lambda.$$

In regarding $\mathbb{Z}[C_q]$ as a module over Λ , we should really write $\eta^*(\mathbb{Z}[C_q])$. To avoid this confusion in the discussion that follows, we write $\mathcal{Q} = \eta^*(\mathbb{Z}[C_q])$. With this modification, as Λ satisfies the Eichler condition, we have

(3.6) Let \mathcal{Q}' be a Λ -lattice such that $\mathcal{Q}' \oplus \mathcal{Q} \cong_{\Lambda} \mathcal{Q} \oplus \mathcal{Q}$; then $\mathcal{Q}' \cong_{\Lambda} \mathcal{Q}$.

4. Cohomology calculations

For the remainder of this paper, we fix an odd prime p and a positive integral divisor qof p - 1. As in Section 2, we put G = G(p,q) and write $\Lambda = \mathbb{Z}[G(p,q)]$. In addition, we put $\Gamma = \mathbb{Z}[C_p]$. We proceed to calculate the cohomology of the Λ -modules introduced in Section 1. In doing so, we will employ restriction and extension of scalars to and from the subring $\Gamma \subset \Lambda$. To this end, we shall use boldface symbols **Hom**, **End** and **Ext**^{*a*}, when describing homomorphisms, endomorphisms and extensions of Λ -modules; and standard Roman font, Hom, End and Ext^{*k*}, when referring to the corresponding notions over Γ . The calculations that follow are essentially a summary of those of [8], to which paper we refer the reader for fuller details.

(4.1)

$$\operatorname{Ext}^{k}(\mathbb{Z}, I_{C}) \cong \begin{cases} \mathbb{F}_{p} & k = 1\\ 0 & k = 2, \end{cases}$$

$$\operatorname{Ext}^{1}(\mathbb{Z}[C_{q}], i_{*}(I_{C}),) \cong \operatorname{Ext}^{1}(i^{*}(\mathbb{Z}[C_{q}]), I_{C}) \\ \cong \bigoplus_{i=1}^{q} \operatorname{Ext}^{1}(\mathbb{Z}, I_{C}) \\ \cong \underbrace{\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}}_{q}.$$

As $i_*(I_C) \cong \mathcal{T}_q$, then

(4.2)
$$\mathbf{Ext}^{1}(\mathbb{Z}[C_{q}],\mathcal{T}_{q}) \cong \underbrace{\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}}_{q}.$$

As there is an exact sequence $0 \to \mathcal{T}_q \to \Lambda \to \mathbb{Z}[C_q] \to 0$, it follows by the corepresentation formula that

(4.3)
$$\operatorname{Ext}^1(\mathbb{Z}[C_q], \mathcal{T}_q) \cong \operatorname{End}_{\mathcal{D}\mathrm{er}}(\mathcal{T}_q).$$

It follows that

(4.4)
$$\mathbf{End}_{\mathcal{D}er}(\mathcal{T}_q) \cong \underbrace{\mathbb{F}_p \times \cdots \times \mathbb{F}_p}_{q}$$

From the decomposition $\mathcal{T}_q \cong \bigoplus_{i=1}^q R(i)$, it follows from (4.4) that

$$\operatorname{End}_{\mathcal{D}\mathrm{er}}\left(\bigoplus_{i=1}^{q} R(i)\right) \cong \underbrace{\mathbb{E}_{p \times \cdots \times \mathbb{E}_{p}}}_{q}.$$

Consequently,

$$\bigoplus_{i,j=1}^{q} \operatorname{Hom}_{\mathcal{D}\mathrm{er}}(R(i), R(j)) \cong \underbrace{\mathbb{E}_{p} \times \cdots \times \mathbb{F}_{p}}_{q}.$$

As R(i) is not projective over Λ , then $\operatorname{Hom}_{\mathcal{D}er}(R(i), R(i)) \neq 0$. Hence, we have

$$\operatorname{Hom}_{\mathcal{D}\mathrm{er}}(R(i), R(j)) \cong \begin{cases} \mathbb{F}_p & i = j \\ 0 & i \neq j. \end{cases}$$

Note that

(4.5)
$$\mathbf{Ext}^{1}(\mathbb{Z}[C_{q}], R(k)) \cong \mathbb{F}_{p} \quad \text{for all } k \ (1 \le k \le q).$$

(4.6)
$$\mathbf{Ext}^{2}(R(i), R(j)) \cong \begin{cases} \mathbb{F}_{p} & j = i+1\\ 0 & j \neq i+1, \end{cases}$$

(4.7)
$$\mathbf{Ext}^{2j} \left(R(i), R(q) \right) \cong \begin{cases} \mathbb{F}_p & j \equiv i \mod q \\ 0 & j \neq i+1, \end{cases}$$

(4.8)
$$\mathbf{Ext}^{2j+1}(R(i), R(q)) = 0 \quad \text{for all } i, j$$

The above formulae exemplify the 2q-fold cohomological periodicity of Λ -lattices. If *i* is a positive integer, then for any Λ -lattice *X* we put

а

$$\mathscr{G}^{i}(X) = \mathbf{Ext}^{2i}(X, R(q)); \qquad \mathscr{G}^{*}(X) = \bigoplus_{i=1}^{q} \mathbf{Ext}^{2i}(X, R(q));$$
$$\mathscr{H}^{i}(X) = \mathbf{Ext}^{2i+1}(X, R(q)); \qquad \mathscr{H}^{*}(X) = \bigoplus_{i=1}^{q} \mathbf{Ext}^{2i+1}(X, R(q)).$$

By the dimension shifting argument of (1.10), we see that:

PROPOSITION 4.1

Let $0 \to K \to P \to Q \to 0$ be an exact sequence of Λ -lattices; if P is projective then $\mathcal{H}^i(Q) \cong \mathcal{G}^i(K)$.

For future reference we note that:

PROPOSITION 4.2

Let $\alpha, \beta \subset \{1, \ldots, q\}$; then

$$\mathscr{G}^*(R(\alpha)) \cong \mathscr{G}^*(R(\beta)) \iff \alpha = \beta.$$

Proof

It suffices to show (\Longrightarrow). As \mathbb{Z} has cohomological period 2*q* then by (1.12), it suffices to compare the values $\mathscr{G}^i(R(\alpha))$, $\mathscr{G}^i(R(\beta))$ in the range $1 \le i \le q$. It follows from

(4.6) and (4.7) that

$$\mathscr{G}^{i}(R(j)) \cong \begin{cases} \mathbb{F}_{p} & j = i \\ 0 & j \neq i, \end{cases} \qquad \mathscr{G}^{i}(R(\alpha)) \cong \begin{cases} \mathbb{F}_{p} & i \in \alpha \\ 0 & i \notin \alpha. \end{cases}$$

Thus, if $\mathscr{G}^*(R(\alpha)) \cong \mathscr{G}^*(R(\beta))$, then $\alpha = \beta$.

We note also, immediately from (4.8), that

(4.9)
$$\mathcal{H}^{i}(R(\alpha)) = 0 \quad \text{for all } i.$$

5. Invariance of degeneracy

If $\alpha \subset \{1, \ldots, q\}$, we put $R(\alpha) = \bigoplus_{i \in \alpha} R(i)$. An extension of the form

(Z)
$$0 \to R(\alpha) \xrightarrow{\iota} Z \xrightarrow{p} \mathbb{Z}[C_q] \to 0$$

is said to have *kernel type* α . In fact, the kernel type of the extension Z depends only on the isomorphism class of the module Z. To see this, suppose that the module Z' occurs in an exact sequence

$$(\mathcal{Z}') \qquad \qquad 0 \to R(\beta) \xrightarrow{J} Z' \xrightarrow{q} \mathbb{Z}[C_q] \to 0$$

and that there exists an isomorphism $h: Z \to Z'$. Then the homomorphism

 $q \circ h \circ i : R(\alpha) \to \mathbb{Z}[C_q]$

is zero by (2.18). Consequently, h induces a commutative diagram with exact rows

$$0 \to R(\alpha) \xrightarrow{i} Z \xrightarrow{p} \mathbb{Z}[C_q] \to 0$$
$$\downarrow h_- \qquad \downarrow h \qquad \downarrow h_+$$
$$0 \to R(\beta) \xrightarrow{j} Z' \xrightarrow{q} \mathbb{Z}[C_q] \to 0.$$

Moreover one sees easily that the induced homomorphism $h_+ : \mathbb{Z}[C_q] \to \mathbb{Z}[C_q]$ is surjective. As the underlying additive group of $\mathbb{Z}[C_q]$ is free abelian of finite rank, it follows that h_+ is an isomorphism. Extending the above diagram one place to the left by zeroes, it follows from the Five Lemma that $h_- : R(\alpha) \to R(\beta)$ is also an isomorphism. Consequently, $\mathscr{G}^*(R(\alpha)) \cong \mathscr{G}^*(R(\beta))$, so that by Proposition 4.2 it follows that $\beta = \alpha$; that is,

(5.1) In Z above the kernel type α is an isomorphism invariant of the module Z.

Now consider extensions of the form

$$(\mathcal{X}) \qquad \qquad 0 \to \mathcal{T}_q \xrightarrow{i} X \xrightarrow{p} \mathbb{Z}[C_q] \to 0;$$

that is, where $= \{1, ..., q\}$ so that the module X is a generalized Swan module. Then X is classified up to congruence by a cohomology class

$$\mathbf{c} \in \operatorname{Ext}^1(\mathbb{Z}[C_q], \mathcal{T}_q) \cong \bigoplus_{i=1}^q \operatorname{Ext}^1(\mathbb{Z}[C_q], R(i))$$

described as an $|\alpha|$ -tuple $\mathbf{c} = (c_i)_{1 \le i \le q}$ where $c_i \in \operatorname{Ext}^1(\mathbb{Z}[C_q], R(i)) \cong \mathbf{F}_p$. We shall then say that \mathcal{X} is *nondegenerate* when each $c_i \ne 0$.

PROPOSITION 5.1

Let $\mathcal{X} = (0 \to \mathcal{T}_q \xrightarrow{i} X \xrightarrow{p} \mathbb{Z}[C_q] \to 0)$ be an extension defining a generalized Swan module X; then

 \mathcal{X} is nondegenerate $\iff X$ is projective.

Proof (\Longrightarrow) \mathcal{X} is classified by $\mathbf{c} = (c_i)_{1 \le i \le q} \in \operatorname{Ext}^1(\mathbb{Z}[C_q], \mathcal{T}_q) \cong \underbrace{\mathbb{F}_p \times \cdots \times \mathbb{F}_p}_{q}$.

As we have seen in (4.3), $\operatorname{Ext}^1(\mathbb{Z}[C_q], \mathcal{T}_q) \cong \operatorname{End}_{\mathcal{D}\mathrm{er}}(\mathcal{T}_q)$. As each $c_i \neq 0$, then $\mathbf{c} \in \operatorname{Aut}_{\mathcal{D}\mathrm{er}}(\mathcal{T}_q)$ and we may construct X by means of the pushout construction

$$0 \to \ \mathcal{T}_q \to \Lambda \to \mathbb{Z}[C_q] \to 0$$
$$\downarrow \mathbf{c} \qquad \downarrow \Downarrow \qquad \downarrow \mathrm{Id}$$
$$0 \to \ \mathcal{T}_q \to X \to \mathbb{Z}[C_q] \to 0.$$

As $\mathbf{c} \in \operatorname{Aut}_{\mathcal{D}er}(\mathcal{T}_q)$, then X is projective by Swan's criterion (see [7, p. 115]).

(\Leftarrow) Conversely, suppose that some $c_j = 0$. Let X' be the module described by the extension $0 \to \bigoplus_{i \neq j} R(i) \to X' \to \mathbb{Z}[C_q] \to 0$ with cohomology class $\mathbf{c}' = (c_i)_{i \neq j}$. Then $X \cong R(j) \oplus X'$. As R(j) is not projective, then neither is X. In the contrapositive, if X is projective then \mathcal{X} is nondegenerate.

The more general extension Z is classified up to congruence by a cohomology class

$$\mathbf{c} \in \operatorname{Ext}^1(\mathbb{Z}[C_q], R(\alpha)) \cong \bigoplus_{i \in \alpha} \operatorname{Ext}^1(\mathbb{Z}[C_q], R(i))$$

described as an $|\alpha|$ -tuple $\mathbf{c} = (c_i)_{i \in \alpha}$ where $c_i \in \text{Ext}^1(\mathbb{Z}[C_q], R(i)) \cong \mathbf{F}_p$. We say that \mathbb{Z} is *nondegenerate relative to* α when $c_i \neq 0$ for each $i \in \alpha$. If some $c_i = 0$, we say that \mathbb{Z} is *degenerate relative to* α . If $\alpha \subset \{1, \ldots, q\}$, write $\overline{\alpha} = \{1, \ldots, q\} - \alpha$. From Proposition 5.1 we derive:

PROPOSITION 5.2

Let $Z = (0 \to R(\alpha) \xrightarrow{i} Z \xrightarrow{p} \mathbb{Z}[C_q] \to 0)$ be an extension of kernel type α , nondegenerate with respect to α . Then $R(\overline{\alpha})$ represents $D_1(Z)$.

Proof

Suppose that Z is classified by $\mathbf{c} = (c_i)_{i \in \alpha}$ and consider the cohomology class $\gamma = (\gamma_i)_{i \in \overline{\alpha}}$, $\gamma_i \in \operatorname{Ext}^1(\mathbb{Z}[C_q], R(i))$ defined by $\gamma_i = 1$ for $i \in \overline{\alpha}$. Consider the extension $\mathcal{P} = (0 \to R(\overline{\alpha}) \oplus R(\alpha) \to P \to \mathbb{Z}[C_q] \to 0)$ defined by (γ, \mathbf{c}) . We note that $R(\overline{\alpha}) \oplus R(\alpha) \cong \mathcal{T}_q$. As each $\gamma_i \neq 0$ and each $c_j \neq 0$, then \mathcal{P} is nondegenerate so that P is projective by Proposition 5.1. Putting $\widetilde{Z} = P/R(\overline{\alpha})$ gives an extension

$$0 \to R(\overline{\alpha}) \to P \to \widetilde{Z} \to 0,$$

where \widetilde{Z} occurs in the extension $(0 \to R(\alpha) \to \widetilde{Z} \to \mathbb{Z}[C_q] \to 0)$ classified by **c**. Hence, $\widetilde{Z} \cong Z$ so that *Z* occurs in an extension $(0 \to R(\overline{\alpha}) \to P \to Z \to 0)$ where *P* is projective. Consequently, $R(\overline{\alpha})$ represents $D_1(Z)$ as claimed.

Let $\mathscr{E} = (0 \to \mathscr{T}_q \to E \to \mathbb{Z}[C_q] \to 0)$ be an extension defining a generalized Swan module *E* and classified by $\mathbf{c} = (c_i)_{1 \le i \le q}$ where $c_i \in \text{Ext}^1(\mathbb{Z}[C_q], R(i)) \cong \mathbb{F}_p$. The *degeneracy* $\delta(\mathscr{E})$ of \mathscr{E} is defined by $\delta(\mathscr{E}) = \{i \mid c_i = 0\}$, and the *support* of \mathscr{E} is defined by $\text{supp}(\mathscr{E}) = \{i \mid c_i \ne 0\}$. Evidently $\delta(\mathscr{E})$ and $\text{supp}(\mathscr{E})$ are complementary subsets of $\{1, \ldots, q\}$, $\text{supp}(\mathscr{E}) = \overline{\delta(\mathscr{E})}$. Given such an extension \mathscr{E} , we may decompose the cohomology class as $\mathbf{c} = (\mathbf{c}^-, \mathbf{c}^+)$ where $\mathbf{c}^- = (c_i)_{i \in \delta(\mathscr{E})}$ is identically zero and where $\mathbf{c}^+ = (c_i)_{i \in \text{supp}(\mathscr{E})}$ determines an extension

$$\mathcal{X} = \left(0 \to R(\overline{\alpha}) \stackrel{\iota}{\to} X \stackrel{p}{\to} \mathbb{Z}[C_q] \to 0\right)$$

of kernel type supp(\mathcal{E}) which is nondegenerate with respect to supp(\mathcal{E}). As \mathbf{c}^- is identically zero, then $E \cong R(\alpha) \oplus X$; that is,

PROPOSITION 5.3

Let $\mathcal{E} = (0 \to \mathcal{T}_q \to E \to \mathbb{Z}[C_q] \to 0)$ be an extension defining a generalized Swan module E; then $E \cong R(\alpha) \oplus X$ where X occurs in an extension

$$\mathcal{X} = (0 \to R(\operatorname{supp}(\mathcal{E})) \xrightarrow{i} X \xrightarrow{p} \mathbb{Z}[C_q] \to 0)$$

of kernel type $supp(\mathcal{E})$ which is nondegenerate with respect to $supp(\mathcal{E})$.

PROPOSITION 5.4

Let $\mathcal{E} = (0 \to \mathcal{T}_q \to E \to \mathbb{Z}[C_q] \to 0)$ be an extension defining a generalized Swan module E; then $\mathcal{H}^*(E) \cong \mathcal{G}^*(R(\delta(\mathcal{E})))$.

Proof

Decompose $E \cong R(\delta(\mathcal{E})) \oplus X$ as in Proposition 5.3. Then

$$\mathcal{H}^*(E) \cong \mathcal{H}^*(R(\delta(\mathcal{E}))) \oplus \mathcal{H}^*(X).$$

It follows from (4.8) that $\mathcal{H}^*(R(\delta(\mathcal{E})) = 0$ so that $\mathcal{H}^*(E) \cong \mathcal{H}^*(X)$. Thus, it suffices to show that $\mathcal{H}^*(X) \cong \mathcal{G}^*(R(\delta(\mathcal{E})))$. However, $R(\overline{\operatorname{supp}(\mathcal{E})})$ represents $D_1(X)$ by Proposition 5.2 and $\overline{\operatorname{supp}(\mathcal{E})} = \delta(\mathcal{E})$. Thus, $R(\delta(\mathcal{E}))$ represents $D_1(X)$, and hence $\mathcal{H}^*(X) \cong \mathcal{G}^*(R(\delta(\mathcal{E})))$ by Proposition 4.1.

Clearly $\delta(\mathcal{E})$ is an invariant of the congruence class of the extension \mathcal{E} . In fact, it is also an invariant of the isomorphism class of the module *E* in the derived module category. Formally we have the following:

PROPOSITION 5.5

Let E(1), E(2) be generalized Swan modules; then

 $E(1) \cong_{\mathcal{D}\mathrm{er}} E(2) \implies \delta(\mathcal{E}(1)) = \delta(\mathcal{E}(2)).$

Proof

If $E(1) \cong_{\mathcal{D}er} E(2)$, then for some projective modules P(1), P(2) we have

 $E(1) \oplus P(1) \cong E(2) \oplus P(2)$

so that $\mathcal{H}^*(E(1) \oplus \mathcal{H}^*(P(1)) \cong \mathcal{H}^*(E(2) \oplus \mathcal{H}^*(P(2)))$. As P(1), P(2) are projective, then $\mathcal{H}^*(P(1)) \cong \mathcal{H}^*(P(2)) = 0$, and so $\mathcal{H}^*(E(1)) \cong \mathcal{H}^*(E(2))$. By Proposition 4.1 it follows that $\mathcal{G}^*(\delta(\mathcal{E}(1))) \cong \mathcal{G}^*(\delta(\mathcal{E}(2)))$ so that, by Proposition 4.2, $\delta(\mathcal{E}(1)) = \delta(\mathcal{E}(2))$.

From (1.5) we obtain the following special case of Proposition 5.5:

COROLLARY 5.1

For k = 1, 2, let $\mathcal{E}(k) = (0 \to \mathcal{T}_q \to E(k) \to \mathbb{Z}[C_q] \to 0)$ be extensions defining generalized Swan modules E(1), E(2); then

$$E(1) \sim E(2) \implies \delta(\mathcal{E}(1)) = \delta(\mathcal{E}(2)).$$

6. Proof of Theorem B

In what follows, \mathbb{F}_p will denote the field with p elements where p is an odd prime, and a will denote an integer in the range $1 \le a \le p-1$ chosen so that the residue class $[a] \in \mathbb{F}_p^*$ generates the multiplicative group \mathbb{F}_p^* . For each integer k in the range $1 \le k \le q$, we define elements $v_1^{(k)}, \ldots, v_q^{(k)}$ in $\underbrace{\mathbb{F}_p^* \times \cdots \times \mathbb{F}_p^*}_{q}$ as follows:

$$(\upsilon_{j}^{(k)})_{r} = \begin{cases} [a] & r = j \\ [a]^{-1} & r = k \\ 1 & r \notin \{j, k\}, \end{cases}$$
$$(\upsilon_{j}^{(k)})_{r} = \begin{cases} [a]^{-1} & r = k \\ [a] & r = j \\ 1 & r \notin \{j, k\}, \end{cases}$$
$$(k < j).$$

Moreover, we define $(\upsilon_k^{(k)})_r = 1$ for all r and denote by $U(k = \langle \upsilon_1^{(k)}, \dots, \upsilon_q^{(k)} \rangle$ the subgroup of $\underbrace{\mathbb{F}_p^* \times \dots \times \mathbb{F}_p^*}_{q}$ generated by $\upsilon_1^{(k)}, \dots, \upsilon_q^{(k)}$. For $\lambda \in \mathbb{F}_p^{(q)}$ we define the degeneracy $\delta(\lambda)$ of $\lambda = (\lambda_1, \dots, \lambda_q)$ by $\delta(\lambda) = \{i : 1 \le i \le q : \lambda_i = 0\}$.

For $\alpha \subset \{1, \ldots, q\}$, we define $\mathcal{H}(\alpha) \subset \mathbb{F}_p^{(q)}$ by $\mathcal{H}(\alpha) = \{\lambda \in \mathbb{F}_p^{(q)} : \delta(\lambda) = \alpha\}$. The proofs of the following two statements are straightforward:

(6.1)
$$\mathcal{H}(\alpha)$$
 is stable under the action of $\underbrace{\mathbb{F}_p^* \times \cdots \times \mathbb{F}_p^*}_{q}$.

(6.2) If $k \in \alpha$, then U(k) acts transitively on $\mathcal{H}(\alpha)$.

Recall the surjective ring homomorphisms $\nu : \mathcal{T}_q(A,\pi) \to \mathcal{T}_q(A/\pi)$ and $\varphi : \mathcal{T}_q(A/\pi) \to \underbrace{A/\pi \times \cdots \times A/\pi}_{q}$ defined in (2.8) and (2.9), respectively. Taking the com-

position gives a surjective ring homomorphism $\natural : \mathcal{T}_q(A, \pi) \to \underbrace{A/\pi \times \cdots \times A/\pi}_{q}$. In

the present case, the inclusion $\mathbb{Z} \hookrightarrow A$ has the property that $\mathbb{Z} \cap (\pi) = (p)$ and $A/\pi = \mathbb{Z}/p = \mathbb{F}_p$. Thus, there is a commutative diagram of ring homomorphisms

in which \natural_1 and \natural_2 are surjective. Maintaining the previous choice of *a* in the range $1 \le a \le p$, then as *a* and *p* are coprime, appealing to Bezout's Theorem we can find integers *b*, *d* such that

For k in the range $1 \le k \le q$, we define elements $\widehat{\upsilon}_1^{(k)}, \ldots, \widehat{\upsilon}_q^{(k)}$ in $\mathcal{T}_q(\mathbb{Z}, p)$ as follows:

if
$$j < k$$
 then $(\widehat{v}_{j}^{(k)})_{rs} = \begin{cases} a & r = s = j \\ -p & r = k, s = j \\ b & r = j, s = k \\ d & r = s = k \\ 1 & r = s, r \notin \{j, k\} \\ 0 & \text{otherwise} \end{cases}$

if
$$k < j$$
 then $(\widehat{v}_{j}^{(k)})_{rs} = \begin{cases} d & r = s = k \\ b & r = k, s = j \\ -p & r = j, s = k \\ a & r = s = j \\ 1 & r = s, r \notin \{j, k\} \\ 0 & \text{otherwise} \end{cases}$

Moreover, we define $v_k^{(k)} = \text{Id}_q$. Using row and column operations and appealing to (6.3), one sees easily that $\det(\widehat{v}_k^{(k)}) = 1$ for all *j*. Hence, we have

$$\widehat{\upsilon}_{j}^{(k)} \in \mathcal{T}_{q}(\mathbb{Z}, p)^{*}$$

Under the homomorphism $\natural_1 : \mathcal{T}_q(\mathbb{Z}, p) \to \underbrace{\mathbb{F}_p \times \cdots \times \mathbb{F}_p}_{q}$, we see that

Define $\widehat{U}(k) = \langle \widehat{v}_1^{(k)}, \dots, \widehat{v}_q^{(k)} \rangle \subset \mathcal{T}_q(\mathbb{Z}, p)^*$. As $\mathcal{T}_q(\mathbb{Z}, p)$ is a subring of $\mathcal{T}_q(A, \pi)$, we regard $\widehat{U}(k)$ as a subgroup of $\mathcal{T}_q(A, \pi)^*$. In consequence of (6.4), we see that

(6.5)
$$\natural_2(\widehat{U}(k)) = U(k).$$

For any subset $\alpha \subset \{1, \ldots, q\}$, we define $\widetilde{\mathcal{H}}(\alpha) \subset \operatorname{Ext}^1(\mathbb{Z}[C_q], \mathcal{T}_q(A, \pi))$ by

$$\widetilde{\mathscr{H}}(\alpha) = \{ \mathbf{c} = (c_i)_{1 \le i \le q} : \delta(\mathbf{c}) = \alpha \}.$$

It follows from (6.2) and (6.5) that

(6.6)
$$\widehat{U}(k)$$
 acts transitively on $\widetilde{\mathcal{H}}(\alpha)$ if $k \in \alpha$.

To proceed we fix an extension

$$(\mathcal{X}) \qquad \qquad 0 \to \bigoplus_{k=1}^{q} R(k) \to X \to \mathbb{Z}[C_q] \to 0.$$

The corepresentation formula (1.9) then shows that

(6.7)
$$\operatorname{Ext}^{1}(\mathbb{Z}[C_{q}], \mathcal{T}_{q}(A, \pi)) \cong \operatorname{End}_{\mathcal{D}\mathrm{er}}(\mathcal{T}_{q}(A, \pi)) \cong \operatorname{End}_{\mathcal{D}\mathrm{er}}\left(\bigoplus_{k=1}^{q} R(k)\right).$$

Thus, the extension X is classified by a matrix

$$\mathbf{c} = (c_{ij})_{1 \le i, j \le q}; \qquad c_{ij} \in \operatorname{Hom}_{\mathcal{D}er}(R(j), R(i)).$$

For each *i*, *j* choose a Λ -homomorphism $\gamma_{ij} \in \text{Hom}_{\Lambda}(R(j), R(i))$ which represents c_{ij} after passing to the derived module category. Then $\gamma = (\gamma_{ij})_{1 \le i,j \le q}$ is a Λ -endomorphism of $\bigoplus_{k=1}^{q} R(k)$ which represents **c** in the derived module category. Let $\iota : \bigoplus_{k=1}^{q} R(k) \to \Lambda$ denote the inclusion; then *X* can be described as $X \cong X(\gamma)$ via

the pushout diagram

$$0 \to \bigoplus_{k=1}^{q} R(k) \xrightarrow{\iota} \Lambda \to \mathbb{Z}[C_q] \to 0$$
$$\downarrow \gamma \qquad \qquad \downarrow \natural \qquad \qquad \downarrow \mathrm{Id}$$
$$0 \to \bigoplus_{k=1}^{q} R(k) \to X(\gamma) \to \mathbb{Z}[C_q] \to 0$$

where $X(\gamma) = \lim_{i \to j} (\iota, \gamma)$. However, by (4.5), $\operatorname{Hom}_{\mathcal{D}er}(R(j), R(i)) = 0$ if $j \neq i$ so that $c_{ij} = 0$ for $i \neq j$ and the classifying matrix **c** is diagonal

$$\mathbf{c} = \begin{pmatrix} c_1 & & \\ & c_2 & \\ & & \ddots & \\ & & & c_q \end{pmatrix},$$

where $c_k = c_{kk} \in \text{End}_{\mathcal{D}er}(R(i)) \cong \mathbb{F}_p$. Making the identification

$$\bigoplus_{i=1}^{q} \operatorname{Ext}^{1}(\mathbb{Z}[C_{q}], R(i)) \longleftrightarrow \underbrace{\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}}_{q}.$$

Then, following Section 5, we associate with **c** its degeneracy $\delta(\mathbf{c}) = \{i \mid c_i = 0\}$. Now suppose given another such extension,

$$(\mathcal{X}') \qquad \qquad 0 \to \bigoplus_{i=1}^{q} R(i) \to X' \to \mathbb{Z}[C_q] \to 0,$$

parametrized by $\mathbf{c}' = (c'_i)_{1 \le i \le q}$. It follows from (6.6) that

(6.8) If
$$k \in \delta(\mathbf{c}) = \delta(\mathbf{c}')$$
, then there exists $\widehat{\alpha} \in \widehat{U}(k)$ such that $\widehat{\alpha} \cdot \mathbf{c} = \mathbf{c}'$.

We come to the following, which is Theorem B of the Introduction.

THEOREM 6.1

Let X, X' be degenerate generalized Swan modules; then

$$X \cong X' \iff \delta(X) = \delta(X').$$

Proof

 (\Longrightarrow) . Suppose that $X \cong X'$; then $X \cong_{\mathcal{D}er} X'$. It follows from Proposition 5.5 that $\delta(X) = \delta(X')$.

(\Leftarrow) We may suppose that X, X' are described by extensions

$$\mathcal{X} = (0 \to \mathcal{T}_q \to X \to \mathbb{Z}[C_q] \to 0); \qquad \mathcal{X}' = (0 \to \mathcal{T}_q \to X' \to \mathbb{Z}[C_q] \to 0)$$

classified by **c**, **c'** respectively. By the above discussion, X can be described as a pushout $X \cong X(\gamma)$

$$\begin{array}{rcl} 0 \to & \mathcal{T}_{q} & \to & \Lambda & \to \mathbb{Z}[C_{q}] \to 0 \\ & & & & & \\ \gamma \downarrow & & & \widehat{\gamma} \downarrow & & \mathrm{Id} \downarrow \\ & & & & \\ 0 \to & & & & \\ \mathcal{T}_{q} & \to X(\gamma) \to \mathbb{Z}[C_{q}] \to 0 \end{array}$$

where γ is a Λ -endomorphism of $\mathcal{T}_q \cong \bigoplus_{k=1}^q R(k)$ which represents **c** on passage to the derived module category. Suppose that $\delta(X) = \delta(X') = \alpha$ where $\alpha \neq \{1, \ldots, q\}$. Choose $i \in \{1, \ldots, q\}$ such that $c_i = c'_i = 0$. Then by (6.8), there exists $\alpha \in \operatorname{Aut}_{\Lambda}(\mathcal{T}_q)$ such that $\alpha \cdot \mathbf{c} = \mathbf{c}'$.

Now $\alpha \circ \gamma : \mathcal{T}_q \to \mathcal{T}_q$ is a Λ -endomorphism which represents $\mathbf{c}' = \alpha \circ \mathbf{c}$ in the derived module category so that, on forming the pushout extension

we see that $X(\alpha \circ \gamma) \cong X'$. There is now a commutative diagram with exact rows

$$\begin{array}{rcl} 0 \to & \mathcal{T}_{q} & \to & X(\gamma) & \to \mathbb{Z}[C_{q}] \to 0 \\ \\ & \alpha \downarrow & \widehat{\alpha} \downarrow & \mathrm{Id} \downarrow \\ \\ 0 \to & \mathcal{T}_{q} & \to X(\alpha \circ \gamma) \to \mathbb{Z}[C_{q}] \to 0 \end{array}$$

in which α and Id are isomorphisms. By the Five Lemma, $\widehat{\alpha} : X(\gamma) \to X(\alpha \circ \gamma)$ is also an isomorphism. The conclusion follows as $X \cong X(\gamma)$ and $X(\alpha \circ \gamma) \cong X'$.

7. Proof of Theorem A

We first consider the notion of separating an extension as a direct sum. Given an extension $\mathcal{E} = (0 \to K \xrightarrow{i} X \xrightarrow{p} C \to 0)$ where X is the internal direct sum $X = X_1 + X_2$ of submodules X_1, X_2 , we put $K_i = X_i \cap \text{Ker}(p)$ so that we have extensions $\mathcal{E}_r = (0 \to K_r \xrightarrow{i_r} X_r \xrightarrow{p_r} p(X_r) \to 0)$. The direct sum extension $\mathcal{E}_1 \oplus \mathcal{E}_2$ is then defined by

$$\mathcal{E}_1 \oplus \mathcal{E}_2 = (0 \to K_1 \oplus K_2 \xrightarrow{\begin{pmatrix} i_1 0 \\ 0 i_2 \end{pmatrix}} X_1 \oplus X_2 \xrightarrow{\begin{pmatrix} p_1 0 \\ 0 p_2 \end{pmatrix}} p(X_1) \oplus p(X_2) \to 0)$$

and there is a mapping of extensions $\mu : \mathcal{E}_1 \oplus \mathcal{E}_2 \to \mathcal{E}$

$$\begin{aligned} \mathcal{E}_1 \oplus \mathcal{E}_2 \\ \downarrow \mu \\ \mathcal{E} \end{aligned} = \begin{pmatrix} 0 \to K_1 \oplus K_2 \xrightarrow{\begin{pmatrix} i_1 & 0 \\ O & i_2 \end{pmatrix}} X_1 \oplus X_2 \xrightarrow{\begin{pmatrix} p_1 & 0 \\ O & p_2 \end{pmatrix}} p(X_1) \oplus p(X_2) \to 0 \\ \downarrow \mu_K \qquad \downarrow \mu_X \qquad \downarrow \mu_C \\ 0 \to K \xrightarrow{i} X \xrightarrow{p} C \to 0 \end{pmatrix} \end{aligned}$$

where μ_K , μ_X , μ_C are given by the appropriate additions $\binom{x_1}{x_2} \mapsto x_1 + x_2$. With this it is straightforward to show that

(7.1)
$$\mu: \mathcal{E}_1 \oplus \mathcal{E}_2 \to \mathcal{E} \text{ is an isomorphism of extensions} \\ \iff p(X_1) \cap p(X_2) = 0.$$

For the rest of this section we shall write $\mathcal{T} = \mathcal{T}_q(A, \pi)$ and $\mathcal{Q} = \mathbb{Z}[C_q]$ so that a generalized Swan module *E* is given by an extension

$$0 \to \mathcal{T} \to E \to \mathcal{Q} \to 0.$$

PROPOSITION 7.1

Let $\mathcal{E} = (0 \to \mathcal{T} \oplus \mathcal{T} \xrightarrow{i} X \xrightarrow{p} \mathcal{Q} \oplus \mathcal{Q} \to 0)$ be an extension and suppose X is the internal direct sum $X = X_1 + X_2$ of submodules X_1, X_2 . If X_1 is a generalized Swan module, then $p(X_1) \cap p(X_2) = 0$.

Proof

Let \mathbb{F} be a field of characteristic zero and put $\mathcal{T}_{\mathbb{F}} = \mathcal{T} \otimes_{\mathbb{Z}} \mathbb{F}$, $\mathcal{Q}_{\mathbb{F}} = \mathcal{Q} \otimes_{\mathbb{Z}} \mathbb{F}$, $Y = X \otimes_{\mathbb{Z}} \mathbb{F}$, $Y_i = X_i \otimes_{\mathbb{Z}} \mathbb{F}$. By Maschke's Theorem, $Y \cong \mathcal{T}_{\mathbb{F}} \oplus \mathcal{T}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}}$. By hypothesis, X_1 occurs as an extension $(0 \to \mathcal{T} \to X_1 \to \mathcal{Q} \to 0)$ so that, again by Maschke's Theorem $Y_1 \cong \mathcal{T}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}}$. As $Y = Y_1 + Y_2$, it follows from Wedderburn's Theorem that $Y_2 \cong \mathcal{T}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}}$. As $Hom_{\Lambda}(\mathcal{T}, \mathcal{Q}) = 0$, then the restrictions $p : Y_i \to \mathcal{Q}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}}$ vanish on $\mathcal{T}_{\mathbb{F}}$ and hence $\dim_{\mathbb{F}}(p(Y_i) \leq \dim_{\mathbb{F}}(\mathcal{Q}_{\mathbb{F}}) = q$. However, $\dim_{\mathbb{F}}(p(Y_1) + p(Y_2)) = \dim_{\mathbb{F}}(\mathcal{Q}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}}) = 2q$. Thus,

$$\dim_{\mathbb{F}}(p(Y_1) + \dim_{\mathbb{F}}(p(Y_2) \le \dim_{\mathbb{F}}(p(Y_1) + p(Y_2))).$$

and so $\dim_{\mathbb{F}}(p(Y_1) \cap p(Y_2)) = 0$. Hence, $p(X_1) \cap p(X_2) = 0$.

Suppose given an extension $\mathcal{E} = (0 \to \mathcal{T} \oplus \mathcal{T} \xrightarrow{i} X \xrightarrow{p} \mathcal{Q} \oplus \mathcal{Q} \to 0)$ where X is the internal direct sum $X = X_1 + X_2$ of submodules X_1, X_2 , and consider the extensions $\mathcal{E}_1, \mathcal{E}_2$ as defined above. With this notation we have

PROPOSITION 7.2

If X_1 is a generalized Swan module, then X_2 is also a generalized Swan module.

Proof

As X_1 is a generalized Swan module, then $p(X_1) \cap p(X_2) = 0$ by Proposition 7.1

above. Consider the extension which defines X_1 as a generalized Swan module

$$\mathcal{E}' = (0 \to \mathcal{T} \xrightarrow{i'} X_1 \xrightarrow{p'} \mathcal{Q} \to 0)$$

and compare this with the exact sequence $\mathcal{E}_1 = (0 \to K_1 \xrightarrow{i_1} X_1 \xrightarrow{p_1} p(X_1) \to 0)$ via the diagram

As K_1 is a submodule of $\mathcal{T} \oplus \mathcal{T}$, then $p' \circ i_1 = 0$ by (2.15). Thus, we may complete \mathcal{D}_+ to a commutative diagram

in which h_+ is necessarily surjective. Note that $\operatorname{Hom}_{\Lambda}(\mathcal{T}, \mathcal{Q}) = 0$ by (2.14). As $p(X_1) \subset \mathcal{Q} \oplus \mathcal{Q}$, then $\operatorname{Hom}_{\Lambda}(\mathcal{T}, p(X_1)) = 0$. In particular, $p \circ i' = 0$ so that, in similar fashion to the above, we obtain a diagram

$$\widetilde{\mathcal{D}}_{-} \begin{cases} 0 \to \mathcal{T} \stackrel{i'}{\hookrightarrow} X_1 \stackrel{p'}{\to} \mathcal{Q} \to 0 \\ \downarrow g_{-} & \downarrow \mathrm{Id} & \downarrow g_{+} \\ 0 \to K_1 \stackrel{i_1}{\hookrightarrow} X_1 \stackrel{p}{\to} p(X_1) \to 0 \end{cases}$$

Composing $\widetilde{\mathcal{D}}_{-} \circ \widetilde{\mathcal{D}}_{+}$ we obtain a commutative diagram

$$\begin{cases} 0 \to K_1 \stackrel{i_1}{\hookrightarrow} X_1 \stackrel{p}{\to} p(X_1) \to 0 \\ & \downarrow g_- \circ h_- & \downarrow \mathrm{Id} & \downarrow g_+ \circ h_+ \\ 0 \to K_1 \stackrel{i_1}{\hookrightarrow} X_1 \stackrel{p}{\to} p(X_1) \to 0 \end{cases}$$

from which it follows that $g_+ \circ h_+ = \text{Id.}$ Thus, h_+ is also injective and so gives an isomorphism $h_+ : p(X_1) \xrightarrow{\simeq} Q$. Extending $\widetilde{\mathcal{D}}_+$ one place to the left by zeroes and applying the Five Lemma, we see that $h_- : K_1 \to \mathcal{T}$ is also an isomorphism. Now consider the exact sequence

$$\mathscr{E}_2 = \big(0 \to K_2 \xrightarrow{i_2} X_2 \xrightarrow{p_2} p(X_2) \to 0 \big).$$

We have $K_1 + K_2 \cong \mathcal{T} \oplus \mathcal{T}$ and $K_1 \cong \mathcal{T}$. Hence, $K_2 \cong \mathcal{T}$ by (3.4). Also, $p(X_1) + p(X_2) \cong \mathcal{Q} \oplus \mathcal{Q}$ and $p(X_1) \cong \mathcal{Q}$. Hence, $p(X_2) \cong \mathcal{Q}$ by (3.6). Thus, X_2 occurs in an exact sequence $0 \to \mathcal{T} \to X_2 \to \mathcal{Q} \to 0$ and so X_2 is a generalized Swan module. \Box

COROLLARY 7.1

Let X, S be Λ -lattices such that $X \oplus \Lambda \cong S \oplus \Lambda$. If X is a generalized Swan module, then so also is S and $\delta(S) = \delta(X)$.

Proof

As both X and Λ are generalized Swan modules, then there is an extension

 $0 \to \mathcal{T} \oplus \mathcal{T} \to X \oplus \Lambda \to Q \oplus Q \to 0.$

As $S \oplus \Lambda \cong X \oplus \Lambda$, then there is an extension

 $0 \to \mathcal{T} \oplus \mathcal{T} \to S \oplus \Lambda \to Q \oplus Q \to 0.$

Again, as Λ is a generalized Swan module, it follows from Proposition 7.2 that *S* is a generalized Swan module. As $X \sim S$, the conclusion $\delta(S) = \delta(X)$ follows from Corollary 5.1.

We come to the following which is Theorem A of the Introduction.

THEOREM 7.1

Let X be a generalized Swan module. If X' is a Λ -lattice such that $X' \oplus \Lambda \cong X \oplus \Lambda$, then $X' \cong X$.

Proof

First suppose that $\delta(X) = \emptyset$. Then X is projective by Proposition 5.1. Hence, X' is also projective and the conclusion follows from the Swan–Jacobinski Theorem as Λ satisfies the Eichler condition. In the general case, $\delta(X) \neq \emptyset$. Then by Corollary 7.1, X' is also a generalized Swan module and $\delta(X') = \delta(X)$. It now follows from Theorem 6.1 that $X' \cong X$.

Acknowledgment. We wish to thank the referee for some helpful comments on the original version.

References

- B. J. Birch, "Cyclotomic fields and Kummer extensions" in *Algebraic Number Theory*, edited by J. W. S. Cassels and A. Fröhlich, Academic Press, Cambridge, MA, 1965, 85–93. MR 0219507.
- [2] J. F. Carlson, *Modules and Group Algebras*, Lectures Math. ETH Zürich, Birkhäuser, Basel, 1996. MR 1393196. DOI 10.1007/978-3-0348-9189-9.
- [3] H. Cartan and S. Eilenberg, *Homological Algebra*, Princeton University Press, Princeton, NJ, 1956. MR 0077480.

- [4] C. W. Curtis and I. Reiner, *Methods of Representation Theory, Vol. II.* Wiley-Interscience, New York, 1987. MR 0892316.
- H. Jacobinski, *Genera and decompositions of lattices over orders*, Acta Math. 121 (1968), 1–29. MR 0251063. DOI 10.1007/BF02391907.
- F. E. A. Johnson, *Stable Modules and the D(2)-Problem*, London Math. Soc. Lecture Note Ser. **301**, Cambridge University Press, Cambridge, 2003. MR 2012779. DOI 10.1017/CBO9780511550256.
- [7] F. E. A. Johnson, Syzygies and Homotopy Theory, Algebr. Appl. 17, Springer, London, 2012. MR 3024350. DOI 10.1007/978-1-4471-2294-4.
- [8] F. E. A. Johnson and J. J. Remez, *Diagonal resolutions for metacyclic groups*,
 J. Algebra. 474 (2017), 329–360. MR 3595795. DOI 10.1016/j.jalgebra.2016.10.044.
- [9] L. Klingler, Modules over the integral group ring of a nonabelian group of order pq, Mem. Amer. Math. Soc. 59 (1986), no. 341. MR 0823445. DOI 10.1090/memo/0341.
- [10] I. Reiner, Maximal Orders, London Math. Soc. Monogr. 5, Academic Press, London, 1975. MR 0393100.
- [11] M. Rosen, *Representations of twisted group rings*, PhD thesis, Princeton University, 1963. MR 2614041.
- [12] R. G. Swan, *K-theory of Finite Groups and Orders*, with notes by E. G. Evans, Lecture Notes Math. **149**, Springer, Berlin, 1970. MR 0308195.
- [13] R. G. Swan, *Torsion-free cancellation over orders*, Illinois J. Math 32 (1988), 329–360. MR 0947032.

Department of Mathematics, University College of London, Gower Street, London WC13 6BT, U.K.; feaj@math.ucl.ac.uk