A cancellation theorem for generalized Swan modules

F. E. A. Johnson

Abstract

The module cancellation problem asks whether, given modules X, X^{\prime} and Y over a ring Λ, the existence of an isomorphism $X \oplus Y \cong X^{\prime} \oplus Y$ implies that $X \cong X^{\prime}$. When Λ is the integral group ring of a metacyclic group $G(p, q)$, results of Klingler show that the answer to this question is generally negative. By contrast, in this case we show that cancellation holds when $Y=\Lambda$ and X is a generalized Swan module.

Introduction

Let Λ be the integral group ring $\Lambda=\mathbb{Z}[G]$ of a finite group G. For Λ-modules X, X^{\prime}, Y we consider the following cancellation question:

$$
\begin{equation*}
\text { If } X \oplus Y \cong X^{\prime} \oplus Y \text { is it true that } X \cong X^{\prime} \text { ? } \tag{*}
\end{equation*}
$$

In this paper we focus on this question when G is a metacyclic group $G(p, q)$ defined as the semidirect product

$$
G(p, q)=C_{p} \rtimes C_{q}
$$

where p is an odd prime, q is a positive integral divisor of $p-1$ and C_{q} acts via the canonical imbedding $C_{q} \hookrightarrow \operatorname{Aut}\left(C_{p}\right)$. We first analyze the group ring Λ; the projection $G(p, q) \rightarrow C_{q}$ induces a surjective ring homomorphism $\eta: \Lambda \rightarrow \mathbb{Z}\left[C_{q}\right]$. The twosided ideal $\operatorname{Ker}(\eta)$ has the following non-obvious description; take A to be the fixed ring $A=\mathbb{Z}\left[\zeta_{p}\right]^{C_{q}}$ under the Galois action of C_{q} on the ring of cyclotomic integers $\mathbb{Z}\left[\zeta_{p}\right] ; A$ is a Dedekind domain in which p ramifies completely. We take $\pi \in A$ to be the unique prime over p. Then $\operatorname{Ker}(\eta)$ can be identified with \mathcal{T}_{q}, the subring of quasitriangular matrices in the ring $M_{q}(A)$ of $q \times q$ matrices over A; thus,

$$
\mathcal{T}_{q}=\left\{X=\left(x_{r s}\right)_{1 \leq r, s \leq n} \in M_{q}(A) \mid x_{r s} \in(\pi) \text { if } r>s\right\} .
$$

A generalized Swan module X is one which occurs in an extension of the form

$$
\begin{equation*}
0 \rightarrow \mathcal{T}_{q} \rightarrow X \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \tag{X}
\end{equation*}
$$

In particular, given the above description of $\operatorname{Ker}(\eta)$, we see that Λ itself is a generalized Swan module. We shall prove the following:

[^0]
THEOREM A

Let Z, Z^{\prime} be Λ-modules such that $Z \oplus \Lambda \cong Z^{\prime} \oplus \Lambda$; if Z is a generalized Swan module, then $Z \cong Z^{\prime}$.

We note that \mathcal{T}_{q} decomposes as a direct sum $\mathcal{T}_{q}=R(1) \oplus \cdots \oplus R(q)$ where $R(i)$ consists of elements in the i th-row of \mathcal{T}_{q}. The modules $R(i)$ are isomorphically distinct and $\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(i)\right) \cong \mathbb{F}_{p}$, the field with p elements. The extension \mathcal{X} is classified up to congruence by a sequence $\mathbf{c}=\left(c_{i}\right)_{1 \leq i \leq q}$ where $c_{i} \in \mathbb{F}_{p}=\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(i)\right)$. We write

$$
\delta(\mathcal{X})=\left\{i \mid c_{i}=0\right\} .
$$

The set $\delta(\mathcal{X})$ is called the degeneracy of \mathcal{X}; we will show that $\delta(\mathcal{X})$ is an invariant of the isomorphism class of the module X not merely of the congruence class of the extension \mathcal{X}. Consequently, we may write $\delta(X)=\delta(\mathcal{X})$. We say that the generalized Swan module X is degenerate when $\delta(X) \neq \emptyset$ and nondegenerate when $\delta(X)=\emptyset$. Nondegenerate modules are necessarily projective and for these the conclusion of Theorem A already follows from the theorem of Swan-Jacobinski (cf. [4, 12]). However, the (more numerous) degenerate modules are not projective and lie outside the scope of the Swan-Jacobinski theorem. In these cases, Theorem A is a consequence of the following, which can be viewed as a rigidity property.

THEOREM B

Let X, X^{\prime} be degenerate generalized Swan modules; then $X \cong X^{\prime} \Longleftrightarrow \delta(X)=\delta\left(X^{\prime}\right)$.
In formulating our approach we make use of the derived module category; that is, the quotient of the category of Λ-modules, by setting projective $=0$. The salient features are reviewed briefly in Section 1. A fuller account can be found in Chapter 5 of [7].

There is already a considerable literature on the general question of cancellation; see, for example, [13]. In the case of the metacyclic groups considered here, the results of Klingler [9] show that the question $\left(^{*}\right.$) has a generally negative answer. Thus, the cancellation statement of Theorem A is atypical and, to that extent, unexpected.

1. The derived module category

In what follows, Λ will denote the integral group ring $\Lambda=\mathbb{Z}[G]$ of a finite group, as yet unspecified. As a ring, Λ is both left and right Noetherian. The category of right Λ-modules is denoted by $\operatorname{Mod}_{\Lambda}$. If $f: M \rightarrow N$ is a morphism in $\operatorname{Mod}_{\Lambda}$, we write $f \approx 0$, when f can be written as a composite of Λ-homomorphisms $f=\xi \circ \eta$ via a projective module P; thus,

We define $\langle M, N\rangle=\left\{f \in \operatorname{Hom}_{\Lambda}(M, N): f \approx 0\right\} ;\langle M, N\rangle$ is an additive subgroup of $\operatorname{Hom}_{\Lambda}(M, N)$. We extend \approx to a binary relation on $\operatorname{Hom}_{\Lambda}(M, N)$ by

$$
f \approx g \quad \Longleftrightarrow \quad f-g \approx 0
$$

So extended, \approx is an equivalence relation compatible with composition; that is, given Λ-homomorphisms $f, f^{\prime}: M_{0} \rightarrow M_{1}, g, g^{\prime}: M_{1} \rightarrow M_{2}$ then

$$
\begin{equation*}
f \approx f^{\prime} \quad \text { and } \quad g \approx g^{\prime} \quad \Longrightarrow \quad g \circ f \approx g^{\prime} \circ f^{\prime} \tag{1.1}
\end{equation*}
$$

We denote by $\operatorname{Der}=\operatorname{Der}(\Lambda)$ the derived module category $(c f .[6,7])$; that is, the quotient category of $\mathcal{M o d}_{\Lambda}$ in which the set of morphisms $\operatorname{Hom}_{\mathfrak{D} \text { er }}(M, N)$ is given by

$$
\operatorname{Hom}_{\mathscr{D e r}}(M, N)=\operatorname{Hom}_{\Lambda}(M, N) /\langle M, N\rangle .
$$

Since $\langle M, N\rangle$ is a subgroup of $\operatorname{Hom}_{\Lambda}(M, N)$, it follows that

$$
\begin{equation*}
\operatorname{Hom}_{\mathscr{D} \mathrm{er}}(M, N) \text { has the natural structure of an abelian group. } \tag{1.2}
\end{equation*}
$$

It is important to distinguish, both notationally and conceptually, between isomorphism in $\mathcal{M o d}_{\Lambda}$, which we write as $\cdots \cong_{\Lambda} \cdots$ and isomorphism in $\operatorname{Der}(\Lambda)$, which we write as $\cdots \cong \mathscr{D e r ~}^{\cdots}$. For finitely generated Λ-modules the relationship between the two notions is as follows (see [7, p. 120]):

$$
\begin{equation*}
D \cong_{\operatorname{Der}} D^{\prime} \quad \Longleftrightarrow \quad D \oplus P \cong_{\Lambda} D^{\prime} \oplus P^{\prime} \tag{1.3}
\end{equation*}
$$

for some finitely generated projective Λ-modules. P, P^{\prime}.
There is a related notion, stable equivalence, written $D \sim D^{\prime}$, and defined by

$$
\begin{equation*}
D \sim D^{\prime} \Longleftrightarrow D \oplus \Lambda^{m} \cong \Lambda_{\Lambda} D^{\prime} \oplus \Lambda^{n} \tag{1.4}
\end{equation*}
$$

for some positive integers m, n.
Clearly we have

$$
\begin{equation*}
D \sim D^{\prime} \quad \Longrightarrow \quad D \cong \operatorname{Der} D^{\prime} . \tag{1.5}
\end{equation*}
$$

The converse to (1.5) is, however, false.
Given a finitely generated Λ-module M, we consider exact sequences in $\mathcal{M} \mathrm{od}_{\Lambda}$; thus,

$$
\begin{equation*}
0 \rightarrow D \xrightarrow{i} P \xrightarrow{p} M \rightarrow 0 \tag{£}
\end{equation*}
$$

where P is finitely generated projective. Clearly such sequences always exist; we may even take P to be free. Moreover, as Λ is Noetherian then D is also finitely generated. Given another such exact sequence,

$$
0 \rightarrow D^{\prime} \xrightarrow{i^{\prime}} P^{\prime} \xrightarrow{p^{\prime}} M \rightarrow 0,
$$

then Schanuel's Lemma shows that $D \oplus P^{\prime} \cong{ }_{\Lambda} D^{\prime} \oplus P$ so that $D \cong{ }_{D}$ er D^{\prime}. We denote by $D_{1}(M)$ the isomorphism class in $\mathscr{D e r}$ of any module D which occurs in an exact sequence of the above form (\mathcal{E}). We may think of $D_{1}(M)$ as a first derivative of M. The correspondence $M \mapsto D_{1}(M)$ is functorial in the following way. Given
any such exact sequence (\mathcal{E}) and a Λ-homomorphism $f: M \rightarrow M$ then the universal property of projective modules allows us to construct a commutative diagram of Λ-homomorphisms:

$$
\begin{array}{llllll}
0 \rightarrow & D & \xrightarrow{i} & P & \xrightarrow{p} & M \rightarrow 0 \\
& \downarrow f_{-} & & \downarrow f_{0} & \downarrow f \\
0 \rightarrow & D & \xrightarrow{i} & P & \xrightarrow{p} M \rightarrow 0
\end{array}
$$

While the Λ-homomorphism f_{-}is not uniquely determined, nevertheless its class in Der is uniquely determined. In particular, given another such commutative diagram,

$$
\begin{array}{lllll}
0 \rightarrow & D & \xrightarrow{i} P \xrightarrow{p} M \rightarrow 0 \\
& \downarrow f_{-}^{\prime} & \downarrow f_{0}^{\prime} & \downarrow f^{\prime} \\
0 \rightarrow & D & \xrightarrow{i} & P & \xrightarrow{p} M \rightarrow 0
\end{array}
$$

then we have

$$
\begin{equation*}
f \approx f^{\prime} \quad \Longrightarrow \quad f_{-} \approx f_{-}^{\prime} \tag{1.6}
\end{equation*}
$$

Further discussion will be simplified by confining attention to Λ-lattices, that is, to Λ-modules which are finitely generated and torsion free as additive groups. For the remainder of this section, all Λ-modules considered will be subject to this restriction. When M is a Λ-lattice then $\operatorname{Ext}^{1}(M, \Lambda)=0$, in consequence of which (cf. [7, p. 133]) (1.6) can be improved to

$$
\begin{equation*}
f \approx f^{\prime} \quad \Longleftrightarrow \quad f_{-} \approx f_{-}^{\prime} \tag{1.7}
\end{equation*}
$$

Given $f \in \operatorname{End}_{\Lambda}(M)$, we denote by $\rho(f)=\left[f_{-}\right]$the class of f_{-}in Der. By (1.7), the correspondence $[f] \mapsto \rho(f)=\left[f_{-}\right]$determines a ring isomorphism

$$
\begin{equation*}
\rho: \operatorname{End}_{\mathscr{D e r}}(M) \xrightarrow{\simeq} \operatorname{End}_{\mathscr{D e r}}\left(D_{1}(M)\right) . \tag{1.8}
\end{equation*}
$$

The extension theory of Λ-lattices can be formulated in terms of the derived module category. Given the exact sequence \mathcal{E} above and a Λ-homomorphism $\alpha: D \rightarrow N$, we construct the pushout diagram

Then $\alpha_{*}(\mathcal{E})=(0 \rightarrow N \xrightarrow{i} \underset{\rightarrow}{\lim }(\alpha, i) \xrightarrow{\pi} M \rightarrow 0)$ defines an extension class in $\operatorname{Ext}^{1}(M, N)$. When P is projective, the correspondence $\alpha \mapsto\left[\alpha_{*}(\mathcal{E})\right]$ defines a mapping $\delta: \operatorname{Hom}_{\mathscr{D} \mathrm{er}}(D, N) \rightarrow \operatorname{Ext}^{1}(M, N)$. With this notation we have

$$
\begin{equation*}
\delta: \operatorname{Hom}_{\mathscr{D e r}}\left(D_{1}(M), N\right) \xrightarrow{\simeq} \operatorname{Ext}^{1}(M, N) \quad \text { is an isomorphism. } \tag{1.9}
\end{equation*}
$$

The isomorphism of (1.9) is a corepresentation formula; thereby the covariant functor $\operatorname{Ext}^{1}(M,-)$ is represented by the Hom functor $\operatorname{Hom}_{\mathscr{D} \text { er }}\left(D_{1}(M),-\right)$. Given the exact sequence (\mathcal{E}), then for any Λ-module N we have exact sequences for $k \geq 1$,

$$
\operatorname{Ext}^{k}(P, N) \xrightarrow{i^{*}} \operatorname{Ext}^{k}\left(D_{1}(M), N\right) \xrightarrow{\delta} \operatorname{Ext}^{k+1}(M, N) \xrightarrow{p^{*}} \operatorname{Ext}^{k+1}(P, N)
$$

As P is projective, then $\operatorname{Ext}^{k}(P, N) \cong \operatorname{Ext}^{k+1}(P, N)=0$ and we obtain the usual dimension shifting isomorphisms

$$
\begin{equation*}
\operatorname{Ext}^{k+1}(M, N) \cong \operatorname{Ext}^{k}\left(D_{1}(M), N\right) \tag{1.10}
\end{equation*}
$$

We may regard the corepresentation formula (1.9) as the degenerate case of (1.10) corresponding to the case $k=0$.

We say that M has periodic cohomology when, for some positive integer d, there is an exact sequence

$$
0 \rightarrow M \rightarrow P_{d-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

where each P_{i} is projective. As M is a lattice it can be assumed, in addition, that each P_{i} is finitely generated. The integer d is then said to be a cohomological period for M. If M has periodic cohomology, it has a minimal cohomological period denoted by $\mu(M)$ and any cohomological period of M is an integral multiple of $\mu(M)$.

Finally we recall the tensor product construction for Λ-modules; thus, if M, N are right Λ-modules by $M \otimes N$, we mean the abelian group $M \otimes_{\mathbb{Z}} N$ endowed with the diagonal right action of $\Lambda,(m \otimes n) \cdot \lambda=m \lambda \otimes n \lambda$. The following is well known (cf. [2, p. 11]).

If P is finitely generated projective, then so also is $M \otimes P$.
Suppose, given an exact sequence $0 \rightarrow \mathbb{Z} \rightarrow P_{\mu(\mathbb{Z})-1} \rightarrow \cdots \rightarrow P_{0} \rightarrow \mathbb{Z} \rightarrow 0$ where each P_{i} is finitely generated projective. Applying $M \otimes-$ gives an exact sequence

$$
0 \rightarrow M \otimes \mathbb{Z} \rightarrow M \otimes P_{\mu(\mathbb{Z})-1} \rightarrow \cdots \rightarrow M \otimes P_{0} \rightarrow M \otimes \mathbb{Z} \rightarrow 0
$$

By (1.11), each $M \otimes P_{i}$ is finitely generated projective; as $M \otimes \mathbb{Z} \cong M$, then:
If \mathbb{Z} has periodic cohomology, then $\mu(\mathbb{Z})$ is a cohomological period of every Λ-lattice M.

2. Modules over the metacyclic group $G(p, q)$

For each integer $n \geq 2$, we denote by C_{n} the cyclic group $C_{n}=\left\langle x \mid x^{n}=1\right\rangle$. For the remainder of this paper, we fix an odd prime p, an integral divisor q of $p-1$ and write $d=(p-1) / q$. Recalling that $\operatorname{Aut}\left(C_{p}\right) \cong C_{p-1}$, then there exists an element
$\theta \in \operatorname{Aut}\left(C_{p}\right)$ such that $\operatorname{ord}(\theta)=q$. Taking y to be a generator of C_{q} and making a once and for all choice of θ with order q, we construct the semi-direct product $G(p, q)=$ $C_{p} \rtimes_{h} C_{q}$ where $h: C_{q} \rightarrow \operatorname{Aut}\left(C_{p}\right)$ is the homomorphism $h(y)=\theta$. There is then a unique integer a in the range $1 \leq a \leq p-1$ such that $\theta(x)=x^{a}$, and $G(p, q)$ then has the presentation

$$
G(p, q)=\left\langle x, y \mid x^{p}=y^{q}=1 ; y x y^{-1}=x^{a}\right\rangle
$$

A theorem of Zassenhaus-Artin-Tate (cf. [3, Chapter 12]) shows that, over a finite group G, the trivial module \mathbb{Z} has periodic cohomology if and only if for each prime π, every subgroup of order π^{2} is cyclic. By this criterion, \mathbb{Z} has periodic cohomology when $G=G(p, q)$; indeed, it can be shown (cf. [8]) that

$$
\begin{equation*}
\mu(\mathbb{Z})=2 q \quad \text { when } G=G(p, q) \tag{2.1}
\end{equation*}
$$

We denote by Λ the integral group ring $\Lambda=\mathbb{Z}[G(p, q)]$ and by $i: \mathbb{Z}\left[C_{p}\right] \hookrightarrow \Lambda$ and $j: \mathbb{Z}\left[C_{q}\right] \hookrightarrow \Lambda$, the respective inclusions. Depending on context, \mathbb{Z} may denote the trivial module over any of the group rings $\Lambda, \mathbb{Z}\left[C_{p}\right]$ or $\mathbb{Z}\left[C_{q}\right]$. We denote by I_{C} the augmentation ideal of $\mathbb{Z}\left[C_{p}\right] ; I_{C}$ is defined by the exact sequence of $\mathbb{Z}\left[C_{p}\right]$-modules

$$
\begin{equation*}
0 \rightarrow I_{C} \stackrel{\iota}{\hookrightarrow} \mathbb{Z}\left[C_{p}\right] \stackrel{\epsilon}{\rightarrow} \mathbb{Z} \rightarrow 0 \tag{2.2}
\end{equation*}
$$

On dualizing, we get an exact sequence $0 \rightarrow \mathbb{Z} \xrightarrow{\epsilon^{*}} \mathbb{Z}\left[C_{p}\right] \xrightarrow{\iota^{*}} I_{C}^{*} \rightarrow 0$ where $\epsilon^{*}(1)=$ $\Sigma_{x}=1+x+x^{2}+\cdots+x^{p-1}$. It is a standard and easily verified fact that

$$
\begin{equation*}
I_{C}^{*} \text { and } I_{C} \text { are isomorphic as } \mathbb{Z}\left[C_{p}\right] \text {-modules. } \tag{2.3}
\end{equation*}
$$

As I_{C}^{*} and I_{C} are not actually identical, we find it convenient to distinguish between them. We identify the dual I_{C}^{*} with the quotient $\mathbb{Z}\left[C_{p}\right] /\left(\Sigma_{x}\right)$. As $\left(\Sigma_{x}\right)$ is a two-sided ideal in $\mathbb{Z}\left[C_{p}\right]$, then I_{C}^{*} is naturally a ring; indeed, putting $\zeta=\exp (2 \pi i / p)$, then

$$
\begin{equation*}
\text { There is a ring isomorphism } I_{C}^{*} \cong \mathbb{Z}[\zeta] \text {. } \tag{2.4}
\end{equation*}
$$

As is well known, $\mathbb{Z}\left[C_{p}\right]$ has a canonical fiber product decomposition

$$
\begin{array}{ccc}
\mathbb{Z}\left[C_{p}\right] & I_{C}^{*} \\
\epsilon \downarrow & & \downarrow \tag{2.5}\\
\mathbb{Z} & \rightarrow & \mathbb{Z}_{p}
\end{array}
$$

where $\epsilon: \mathbb{Z}\left[C_{p}\right] \rightarrow \mathbb{Z}$ is the augmentation map and \mathbb{F}_{p} is the field with p elements. To proceed, we briefly recall the cyclic algebra construction. Let S denote a commutative ring and $\theta: S \rightarrow S$ a ring automorphism of finite order dividing q; in particular, θ satisfies the identity $\theta^{q}=\mathrm{Id}$. The cyclic ring $\bigodot_{q}(S, \theta)$ is then the (two-sided) free S module

$$
\bigodot_{q}(S, \theta)=S \mathbf{1}+S \mathbf{y} \dot{+} \cdots \dot{+} S \mathbf{y}^{q-1}
$$

of rank q with basis $\left\{\mathbf{1}, \mathbf{y}, \ldots \mathbf{y}^{q-1}\right\}$ and with multiplication defined by

$$
\mathbf{y}^{q}=\mathbf{1} ; \quad \mathbf{y} \xi=\theta(\xi) \mathbf{y} \quad(\xi \in S)
$$

So defined, $\mathscr{C}_{q}(S, \theta)$ is an extension ring of S. In the fiber product (2.5), θ induces a ring automorphism of order q on $\mathbb{Z}\left[C_{p}\right]$. As θ fixes Σ_{x}, then θ induces a ring automorphism on the quotient $I_{C}^{*}=\mathbb{Z}\left[C_{p}\right] /\left(\Sigma_{x}\right)$. Likewise θ stabilizes the augmentation ideal I_{C} and induces the identity automorphism both on the quotient $\mathbb{Z}=\mathbb{Z}\left[C_{p}\right] / I_{C}$ and \mathbb{F}_{p}. As the homomorphisms in (2.5) are equivariant with respect to these ring automorphisms, we may apply the cyclic algebra construction $\bigodot_{q}(-, \theta)$ to (2.5). Identifying $\bigodot_{q}\left(\mathbb{Z}\left[C_{p}\right]\right)=\mathbb{Z}[G(p, q)], \bigodot_{q}(\mathbb{Z})=\mathbb{Z}\left[C_{q}\right], \bigodot_{q}\left(\mathbb{F}_{p}\right)=\mathbb{F}_{p}\left[C_{q}\right]$, we obtain a fiber product

$$
\mathbb{Z}[G(p, q)] \rightarrow{\varphi_{q}}\left(I_{C}^{*}, \theta\right)
$$

$$
\begin{array}{cc}
\downarrow & \downarrow \tag{2.6}\\
\mathbb{Z}\left[C_{q}\right] & \rightarrow \mathbb{Z}_{p}\left[C_{q}\right] .
\end{array}
$$

To proceed to a more tractable description of $\mathcal{C}_{q}\left(I_{C}^{*}, \theta\right)$, we first make the identification $\bigodot_{q}\left(I_{C}^{*}, \theta\right) \otimes \mathbb{Q} \cong \bigodot_{q}(\mathbb{Q}(\zeta), \theta)$ where, as above, ζ is a primitive p th root of unity. Then θ acts on $\mathbb{Z}[\zeta]$ via the isomorphism $\operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q}) \cong C_{p-1}$. Let $A=\mathbb{Z}[\zeta]^{\theta}$ denote the subring fixed by θ. We note (see [1, Lemma 3]) that $p=(\zeta-1)^{p-1} u$ for some unit $u \in \mathbb{Z}[\zeta]^{*}$. Putting $\pi=(\zeta-1)^{q}$, then

$$
\begin{equation*}
p \text { ramifies completely in } A \text {, and } \pi \text { is the unique prime in } A \text { over } p . \tag{2.7}
\end{equation*}
$$

We denote by $\mathcal{T}_{q}(A, \pi)$, the subring of quasi-triangular matrices in the ring $M_{q}(A)$ of $q \times q$ matrices over A defined as follows:

$$
\mathcal{T}_{q}(A, \pi)=\left\{X=\left(x_{r s}\right)_{1 \leq r, s \leq n} \in M_{q}(A) \mid x_{r s} \in(\pi) \text { if } r>s\right\} .
$$

Likewise, we define

$$
\mathcal{T}_{q}(A / \pi)=\left\{X=\left(x_{r s}\right)_{1 \leq r, s \leq n} \in M_{q}(A / \pi) \mid x_{r s}=0 \text { if } r>s\right\} .
$$

Taking the quotient by π defines a surjective ring homomorphism

$$
\begin{equation*}
\nu: \mathcal{T}_{q}(A, \pi) \rightarrow \mathcal{T}_{q}(A / \pi) \tag{2.8}
\end{equation*}
$$

In turn, the correspondence $X \mapsto\left(x_{11}, \ldots, x_{q q}\right)$ gives a surjective ring homomorphism

$$
\begin{equation*}
\varphi: \mathcal{T}_{q}(A / \pi) \rightarrow \underbrace{A / \pi \times \cdots \times A / \pi}_{q} \tag{2.9}
\end{equation*}
$$

The following structural theorem is fundamental in what follows:

THEOREM 2.1

There exists a ring isomorphism $\widehat{\lambda}_{*}: \smile_{q}\left(I_{C}^{*}, \theta\right) \rightarrow \mathcal{T}_{q}(A, \pi)$.

This can be regarded as an explicit form of Rosen's Theorem (see [11]; see also [10, p. 373]; a proof in the above form may be found in [8]). Theorem 2.1 allows us to re-interpret (2.6) as a fiber square of the form

$$
\begin{equation*}
\mathbb{Z}[G(p, q)] \rightarrow \mathcal{T}_{q}(A, \pi) \tag{2.10}
\end{equation*}
$$

$$
\mathbb{Z}\left[C_{q}\right] \quad \rightarrow \mathbb{Z}_{p}\left[C_{q}\right]
$$

If $i_{*}(-)$ denotes extension of scalars from $\mathbb{Z}\left[C_{p}\right]$-modules to Λ-modules, then

$$
\begin{equation*}
i_{*}\left(I_{C}\right) \text { and } i_{*}\left(I_{C}^{*}\right) \text { are isomorphic as } \Lambda \text {-modules. } \tag{2.11}
\end{equation*}
$$

We note that $\bigodot_{q}\left(I_{C}^{*}, \theta\right)$ is simply another description of the induced module $i_{*}\left(I_{C}^{*}\right)$. As $\mathcal{T}_{q}(A, \pi) \cong \mathscr{C}_{q}\left(I_{C}^{*}, \theta\right)$, it follows from (2.11) that

$$
\begin{equation*}
i_{*}\left(I_{C}\right) \cong i_{*}\left(I_{C}^{*}\right) \cong \mathcal{T}_{q}(A, \pi) \tag{2.12}
\end{equation*}
$$

Applying i_{*} to the exact sequence (2.2), we obtain an exact sequence

$$
0 \rightarrow i_{*}\left(I_{C}\right) \stackrel{\iota}{\hookrightarrow} i_{*}\left(\mathbb{Z}\left[C_{p}\right]\right) \xrightarrow{\epsilon} i_{*}(\mathbb{Z}) \rightarrow 0
$$

However, $i_{*}\left(I_{C}\right) \cong \mathcal{T}_{q}(A, \pi), i_{*}\left(\mathbb{Z}\left[C_{p}\right]\right) \cong \Lambda$ and $i_{*}(\mathbb{Z}) \cong \mathbb{Z}\left[C_{q}\right]$, so giving an exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{T}_{q}(A, \pi) \stackrel{\hookrightarrow}{\hookrightarrow} \Lambda \stackrel{\epsilon}{\rightarrow} \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \tag{2.13}
\end{equation*}
$$

Moreover, from this construction it follows easily that

$$
\begin{equation*}
\operatorname{Hom}_{\Lambda}\left(\mathcal{T}_{q}(A, \pi), \mathbb{Z}\left[C_{q}\right]\right)=0 \tag{2.14}
\end{equation*}
$$

Applying $-\otimes \mathbb{Q}$ to (2.14), the semisimplicity of $\mathcal{T}_{q}(A, \pi) \otimes \mathbb{Q}$ implies that

$$
\begin{equation*}
\operatorname{Hom}_{\Lambda}\left(K, \mathbb{Z}\left[C_{q}\right]\right)=0 \tag{2.15}
\end{equation*}
$$

$$
\text { if } K \text { is a } \Lambda \text {-submodule of } \mathcal{T}_{q}(A, \pi) \oplus \cdots \oplus \mathcal{T}_{q}(A, \pi)
$$

We decompose $\mathcal{T}_{q}(A, \pi)$ as direct sum of right Λ-modules; thus,

$$
\begin{equation*}
\mathcal{T}_{q}(A, \pi) \cong R(1) \oplus R(2) \oplus \cdots \oplus R(q) \tag{2.16}
\end{equation*}
$$

where $R(i)$ is the i th row of $\mathcal{T}_{q}(A, \pi)$. We note that

$$
\begin{align*}
& R(i) \cong{ }_{\Lambda} R(j) \Longleftrightarrow \quad \Longleftrightarrow \quad j \tag{2.17}\\
& \operatorname{Hom}_{\Lambda}\left(R(i), \mathbb{Z}\left[C_{q}\right]\right)=0 \quad \text { for all } i \in\{1, \ldots, q\} \tag{2.18}
\end{align*}
$$

Of the above, (2.17) is proved in Section 4 of [8], while (2.18) follows directly from (2.14).

3. Preliminary cancellation

Let \mathbb{K} be a finite extension field of \mathbb{Q} and let A denote the ring of algebraic integers in \mathbb{K}. Let \mathfrak{B} be a finite dimensional semisimple \mathbb{K}-algebra. By Wedderburn's Theorem,
$\mathfrak{B} \otimes_{\mathbb{Q}} \mathbb{R}$ decomposes as a direct product of matrix rings

$$
\mathfrak{B} \otimes_{\mathbb{Q}} \mathbb{R} \cong \prod_{i=1}^{m} M_{d_{i}}\left(D_{i}\right)
$$

where each D_{i} is either \mathbb{R}, \mathbb{C} or \mathbb{H}. Let $\Omega \subset \mathfrak{B}$ be an A-order; that is, Ω is an A subalgebra of \mathfrak{B} such that $\Omega \otimes_{A} \mathbb{K} \cong \mathfrak{B}$. We say that Ω satisfies the Eichler condition when, in the above Wedderburn decomposition, $D_{i} \cong \mathbb{H} \Longrightarrow d_{i} \geq 2$. We have the following much simplified version of Jacobinski's Cancellation Theorem [5]:

Let L, M be Ω-lattices such that $L \oplus M \cong_{\Omega} M \oplus M$; if Ω satisfies the Eichler condition, then $L \cong \cong_{\Omega} M$.

An account of the more general version can be found on page 324 in [4].
We apply (3.1) to two of the modules considered in Section 2. In the first case we take $\Omega=\mathcal{T}_{q}(A, \pi)$ and $\mathfrak{B}=M_{q}(\mathbb{K})$ where \mathbb{K} is the field of fractions of A. Then for some integers a, b, we have $\mathbb{K} \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^{(a)} \times \mathbb{C}^{(b)}$ and hence $\mathfrak{B} \otimes_{\mathbb{Q}} \mathbb{R} \cong M_{q}(\mathbb{R})^{(a)} \times$ $M_{q}(\mathbb{C})^{(b)}$. In particular, Ω satisfies Eichler's condition. Applying (3.1) gives the following:

Let L be a $\mathcal{T}_{q}(A, \pi)$-lattice such that

$$
\begin{align*}
L \oplus \mathcal{T}_{q}(A, \pi) & \cong \mathcal{T}_{q}(A, \pi) \mathcal{T}_{q}(A, \pi) \oplus \mathcal{T}_{q}(A, \pi) ; \text { then } \tag{3.2}\\
& \cong \mathcal{T}_{q}(A, \pi) \mathcal{T}_{q}(A, \pi) .
\end{align*}
$$

We extend this to certain Λ-lattices where $\Lambda=\mathbb{Z}[G(p, q)]$. We have a surjective ring homomorphism $\mu: \mathbb{Z}[G(p, q)] \rightarrow \mathcal{J}_{q}(A, \pi)$ and induction and co-induction functors

$$
\mu_{*}: \mathcal{M o d}_{\Lambda} \rightarrow \mathcal{M o d}_{\mathcal{T}_{q}(A, \pi)} ; \quad \mu^{*}: \mathcal{M o d}_{\mathcal{T}_{q}(A, \pi)} \rightarrow \operatorname{Mod}_{\Lambda}
$$

By regarding $\mathcal{T}_{q}(A, \pi)$ as a module over Λ, we are abusing notation; the correct symbol for the intended Λ-module is $\mu^{*}\left(\mathcal{T}_{q}(A, \pi)\right)$. To avoid this confusion in the discussion that follows, we write $\mathcal{T}=\mu^{*}\left(\mathcal{T}_{q}(A, \pi)\right)$. Moreover, it is straightforward to check that

$$
\begin{equation*}
\mu_{*}(\mathcal{T})=\mathcal{T}_{q}(A, \pi) . \tag{3.3}
\end{equation*}
$$

As Λ satisfies the Eichler condition, it follows directly from (3.1) that

$$
\begin{equation*}
\text { If } \mathcal{K} \text { is a } \Lambda \text {-lattice such that } \mathcal{K} \oplus \mathcal{T} \cong_{\Lambda} \mathcal{T} \oplus \mathcal{T} \text {, then } \mathcal{K} \cong_{\Lambda} \mathcal{T} \text {. } \tag{3.4}
\end{equation*}
$$

Next we take $\Omega=\mathbb{Z}\left[C_{q}\right], \mathbb{K}=\mathbb{Q}$ and $\mathfrak{B} \cong \prod_{d \mid q} \mathbb{Q}[x] /\left(c_{d}(x)\right)$ where $c_{d}(x)$ is the d th cyclotomic polynomial. Then $\mathfrak{B} \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^{(a)} \times \mathbb{C}^{(b)}$ for some integers a, b so that again Ω satisfies the Eichler condition. Applying (3.1) gives

Let \mathscr{L} be a lattice over $\mathbb{Z}\left[C_{q}\right]$ such that

$$
\begin{equation*}
\mathscr{L} \oplus \mathbb{Z}\left[C_{q}\right] \cong_{\mathbb{Z}\left[C_{q}\right]} \mathbb{Z}\left[C_{q}\right] \oplus \mathbb{Z}\left[C_{q}\right] ; \text { then } \mathscr{L} \cong_{\mathbb{Z}\left[C_{q}\right]} \mathbb{Z}\left[C_{q}\right] . \tag{3.5}
\end{equation*}
$$

We may modify this statement slightly in the context of Λ-lattices. We also have a surjective ring homomorphism $\eta: \mathbb{Z}[G(p, q)] \rightarrow \mathbb{Z}\left[C_{q}\right]$ and functors

$$
\eta_{*}: \mathcal{M o d}_{\Lambda} \rightarrow \operatorname{Mod}_{\mathbb{Z}\left[C_{q}\right]} ; \quad \eta^{*}: \operatorname{Mod}_{\mathbb{Z}\left[C_{q}\right]} \rightarrow \operatorname{Mod}_{\Lambda} .
$$

In regarding $\mathbb{Z}\left[C_{q}\right]$ as a module over Λ, we should really write $\eta^{*}\left(\mathbb{Z}\left[C_{q}\right]\right)$. To avoid this confusion in the discussion that follows, we write $\mathcal{Q}=\eta^{*}\left(\mathbb{Z}\left[C_{q}\right]\right)$. With this modification, as Λ satisfies the Eichler condition, we have

$$
\begin{equation*}
\text { Let } \mathcal{Q}^{\prime} \text { be a } \Lambda \text {-lattice such that } \mathcal{Q}^{\prime} \oplus \mathcal{Q} \cong_{\Lambda} \mathcal{Q} \oplus \mathcal{Q} \text {; then } \mathcal{Q}^{\prime} \cong_{\Lambda} \mathcal{Q} \text {. } \tag{3.6}
\end{equation*}
$$

4. Cohomology calculations

For the remainder of this paper, we fix an odd prime p and a positive integral divisor q of $p-1$. As in Section 2 , we put $G=G(p, q)$ and write $\Lambda=\mathbb{Z}[G(p, q)]$. In addition, we put $\Gamma=\mathbb{Z}\left[C_{p}\right]$. We proceed to calculate the cohomology of the Λ-modules introduced in Section 1. In doing so, we will employ restriction and extension of scalars to and from the subring $\Gamma \subset \Lambda$. To this end, we shall use boldface symbols Hom, End and $\mathbf{E x t}^{a}$, when describing homomorphisms, endomorphisms and extensions of Λ-modules; and standard Roman font, Hom, End and Ext ${ }^{k}$, when referring to the corresponding notions over Γ. The calculations that follow are essentially a summary of those of [8], to which paper we refer the reader for fuller details.

$$
\begin{align*}
\operatorname{Ext}^{k}\left(\mathbb{Z}, I_{C}\right) & \cong \begin{cases}\mathbb{F}_{p} & k=1 \\
0 & k=2,\end{cases} \\
\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], i_{*}\left(I_{C}\right),\right) & \cong \operatorname{Ext}^{1}\left(i^{*}\left(\mathbb{Z}\left[C_{q}\right]\right), I_{C}\right) \\
& \cong \bigoplus_{i=1}^{q} \operatorname{Ext}^{1}\left(\mathbb{Z}, I_{C}\right) \tag{4.1}\\
& \cong \underbrace{\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}}_{q} .
\end{align*}
$$

As $i_{*}\left(I_{C}\right) \cong \mathcal{T}_{q}$, then

$$
\begin{equation*}
\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], \mathcal{T}_{q}\right) \cong \underbrace{\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}}_{q} \tag{4.2}
\end{equation*}
$$

As there is an exact sequence $0 \rightarrow \mathcal{J}_{q} \rightarrow \Lambda \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0$, it follows by the corepresentation formula that

$$
\begin{equation*}
\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], \mathcal{T}_{q}\right) \cong \operatorname{End}_{D_{\operatorname{er}}\left(\mathcal{T}_{q}\right)} \tag{4.3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\operatorname{End}_{D_{\operatorname{er}}}\left(\mathcal{T}_{q}\right) \cong \underbrace{\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}}_{q} \tag{4.4}
\end{equation*}
$$

From the decomposition $\mathcal{T}_{q} \cong \bigoplus_{i=1}^{q} R(i)$, it follows from (4.4) that

$$
\operatorname{End}_{\mathscr{D e r}}\left(\bigoplus_{i=1}^{q} R(i)\right) \cong \underbrace{\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}}_{q}
$$

Consequently,

$$
\bigoplus_{i, j=1}^{q} \operatorname{Hom}_{\mathfrak{D e r}}(R(i), R(j)) \cong \underbrace{\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}}_{q} .
$$

As $R(i)$ is not projective over Λ, then $\operatorname{Hom}_{\operatorname{Der}}(R(i), R(i)) \neq 0$. Hence, we have

$$
\boldsymbol{H o m}_{\mathscr{D} \operatorname{er}}(R(i), R(j)) \cong \begin{cases}\mathbb{F}_{p} & i=j \\ 0 & i \neq j\end{cases}
$$

Note that

$$
\begin{equation*}
\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(k)\right) \cong \mathbb{F}_{p} \quad \text { for all } k(1 \leq k \leq q) \tag{4.5}
\end{equation*}
$$

$$
\begin{align*}
\mathbf{E x t}^{2}(R(i), R(j)) & \cong \begin{cases}\mathbb{F}_{p} & j=i+1 \\
0 & j \neq i+1,\end{cases} \tag{4.6}\\
\mathbf{E x t}^{2 j}(R(i), R(q)) & \cong \begin{cases}\mathbb{F}_{p} & j \equiv i \bmod q \\
0 & j \neq i+1,\end{cases} \tag{4.7}\\
\mathbf{E x t}^{2 j+1}(R(i), R(q)) & =0 \text { for all } i, j . \tag{4.8}
\end{align*}
$$

The above formulae exemplify the $2 q$-fold cohomological periodicity of Λ-lattices. If i is a positive integer, then for any Λ-lattice X we put

$$
\begin{array}{ll}
\mathscr{\mathcal { G }}^{i}(X)=\mathbf{E x t}^{2 i}(X, R(q)) ; & \mathcal{E}^{*}(X)=\bigoplus_{i=1}^{q} \mathbf{E x t}^{2 i}(X, R(q)) ; \\
\mathscr{H}^{i}(X)=\mathbf{E x t}^{2 i+1}(X, R(q)) ; \quad \mathscr{H}^{*}(X)=\bigoplus_{i=1}^{q} \mathbf{E x t}^{2 i+1}(X, R(q)) .
\end{array}
$$

By the dimension shifting argument of (1.10), we see that:

PROPOSITION 4.1

Let $0 \rightarrow K \rightarrow P \rightarrow Q \rightarrow 0$ be an exact sequence of Λ-lattices; if P is projective then $\mathscr{H}^{i}(Q) \cong \mathcal{E}^{i}(K)$.

For future reference we note that:

PROPOSITION 4.2

Let $\alpha, \beta \subset\{1, \ldots, q\}$; then

$$
\mathscr{E}^{*}(R(\alpha)) \cong \mathscr{\mathscr { G }}^{*}(R(\beta)) \quad \Longleftrightarrow \quad \alpha=\beta .
$$

Proof

It suffices to show (\Longrightarrow). As \mathbb{Z} has cohomological period $2 q$ then by (1.12), it suffices to compare the values $\mathscr{E}^{i}(R(\alpha)), \mathcal{E}^{i}(R(\beta))$ in the range $1 \leq i \leq q$. It follows from
(4.6) and (4.7) that

$$
\mathscr{E}^{i}(R(j)) \cong\left\{\begin{array} { l l }
{ \mathbb { F } _ { p } } & { j = i } \\
{ 0 } & { j \neq i , }
\end{array} \quad \mathcal { E } ^ { i } (R (\alpha)) \cong \left\{\begin{array}{ll}
\mathbb{F}_{p} & i \in \alpha \\
0 & i \notin \alpha
\end{array}\right.\right.
$$

Thus, if $\mathscr{E}^{*}(R(\alpha)) \cong \mathscr{E}^{*}(R(\beta))$, then $\alpha=\beta$.
We note also, immediately from (4.8), that

$$
\begin{equation*}
\mathscr{H}^{i}(R(\alpha))=0 \quad \text { for all } i . \tag{4.9}
\end{equation*}
$$

5. Invariance of degeneracy

If $\alpha \subset\{1, \ldots, q\}$, we put $R(\alpha)=\bigoplus_{i \in \alpha} R(i)$. An extension of the form

$$
\begin{equation*}
0 \rightarrow R(\alpha) \xrightarrow{i} Z \xrightarrow{p} \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \tag{Z}
\end{equation*}
$$

is said to have kernel type α. In fact, the kernel type of the extension Z depends only on the isomorphism class of the module Z. To see this, suppose that the module Z^{\prime} occurs in an exact sequence

$$
0 \rightarrow R(\beta) \xrightarrow{j} Z^{\prime} \xrightarrow{q} \mathbb{Z}\left[C_{q}\right] \rightarrow 0
$$

and that there exists an isomorphism $h: Z \rightarrow Z^{\prime}$. Then the homomorphism

$$
q \circ h \circ i: R(\alpha) \rightarrow \mathbb{Z}\left[C_{q}\right]
$$

is zero by (2.18). Consequently, h induces a commutative diagram with exact rows

$$
\begin{aligned}
& 0 \rightarrow R(\alpha) \xrightarrow{i} Z \xrightarrow{p} \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \\
& \downarrow h_{-} \quad \downarrow h \quad \downarrow h_{+} \\
& 0 \rightarrow R(\beta) \xrightarrow{j} Z^{\prime} \xrightarrow{q} \mathbb{Z}\left[C_{q}\right] \rightarrow 0 .
\end{aligned}
$$

Moreover one sees easily that the induced homomorphism $h_{+}: \mathbb{Z}\left[C_{q}\right] \rightarrow \mathbb{Z}\left[C_{q}\right]$ is surjective. As the underlying additive group of $\mathbb{Z}\left[C_{q}\right]$ is free abelian of finite rank, it follows that h_{+}is an isomorphism. Extending the above diagram one place to the left by zeroes, it follows from the Five Lemma that $h_{-}: R(\alpha) \rightarrow R(\beta)$ is also an isomorphism. Consequently, $\mathscr{G}^{*}(R(\alpha)) \cong \mathscr{E}^{*}(R(\beta))$, so that by Proposition 4.2 it follows that $\beta=\alpha$; that is,

In Z above the kernel type α is an isomorphism invariant of the module Z.

Now consider extensions of the form

$$
\begin{equation*}
0 \rightarrow \mathcal{T}_{q} \xrightarrow{i} X \xrightarrow{p} \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \tag{X}
\end{equation*}
$$

that is, where $=\{1, \ldots, q\}$ so that the module X is a generalized Swan module. Then \mathcal{X} is classified up to congruence by a cohomology class

$$
\mathbf{c} \in \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], \mathcal{T}_{q}\right) \cong \bigoplus_{i=1}^{q} \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(i)\right)
$$

described as an $|\alpha|$-tuple $\mathbf{c}=\left(c_{i}\right)_{1 \leq i \leq q}$ where $c_{i} \in \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(i)\right) \cong \mathbf{F}_{p}$. We shall then say that \mathcal{X} is nondegenerate when each $c_{i} \neq 0$.

PROPOSITION 5.1

Let $X=\left(0 \rightarrow \mathcal{T}_{q} \xrightarrow{i} X \xrightarrow{p} \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right)$ be an extension defining a generalized Swan module X; then

$$
X \text { is nondegenerate } \quad \Longleftrightarrow \quad X \text { is projective } .
$$

Proof
$(\Longrightarrow) X$ is classified by $\mathbf{c}=\left(c_{i}\right)_{1 \leq i \leq q} \in \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], \mathcal{T}_{q}\right) \cong \underbrace{\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}}_{q}$.
As we have seen in (4.3), $\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], \mathcal{T}_{q}\right) \cong \operatorname{End}_{\mathscr{D e r}}\left(\mathcal{T}_{q}\right)$. As each $c_{i} \neq 0$, then $\mathbf{c} \in$ Aut $_{D_{\mathrm{er}}}\left(\mathcal{T}_{q}\right)$ and we may construct X by means of the pushout construction

$$
\begin{array}{rlcc}
0 \rightarrow & \mathcal{T}_{q} & \rightarrow \Lambda & \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \\
& \downarrow \mathbf{c} & \downarrow \emptyset & \downarrow \mathrm{Id} \\
0 \rightarrow & \mathcal{T}_{q} & \rightarrow X & \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0 .
\end{array}
$$

As $\mathbf{c} \in \operatorname{Aut}_{D_{\text {er }}}\left(\mathcal{T}_{q}\right)$, then X is projective by Swan's criterion (see [7, p. 115]).
(\Longleftarrow) Conversely, suppose that some $c_{j}=0$. Let X^{\prime} be the module described by the extension $0 \rightarrow \bigoplus_{i \neq j} R(i) \rightarrow X^{\prime} \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0$ with cohomology class $\mathbf{c}^{\prime}=$ $\left(c_{i}\right)_{i \neq j}$. Then $X \cong R(j) \oplus X^{\prime}$. As $R(j)$ is not projective, then neither is X. In the contrapositive, if X is projective then \mathcal{X} is nondegenerate.

The more general extension \mathbb{Z} is classified up to congruence by a cohomology class

$$
\mathbf{c} \in \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(\alpha)\right) \cong \bigoplus_{i \in \alpha} \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(i)\right)
$$

described as an $|\alpha|$-tuple $\mathbf{c}=\left(c_{i}\right)_{i \in \alpha}$ where $c_{i} \in \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(i)\right) \cong \mathbf{F}_{p}$. We say that Z is nondegenerate relative to α when $c_{i} \neq 0$ for each $i \in \alpha$. If some $c_{i}=0$, we say that Z is degenerate relative to α. If $\alpha \subset\{1, \ldots, q\}$, write $\bar{\alpha}=\{1, \ldots, q\}-\alpha$. From Proposition 5.1 we derive:

PROPOSITION 5.2

Let $Z=\left(0 \rightarrow R(\alpha) \xrightarrow{i} Z \xrightarrow{p} \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right)$ be an extension of kernel type α, nondegenerate with respect to α. Then $R(\bar{\alpha})$ represents $D_{1}(Z)$.

Proof

Suppose that \mathbb{Z} is classified by $\mathbf{c}=\left(c_{i}\right)_{i \in \alpha}$ and consider the cohomology class $\gamma=$ $\left(\gamma_{i}\right)_{i \in \bar{\alpha}}, \gamma_{i} \in \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(i)\right)$ defined by $\gamma_{i}=1$ for $i \in \bar{\alpha}$. Consider the extension $\mathcal{P}=\left(0 \rightarrow R(\bar{\alpha}) \oplus R(\alpha) \rightarrow P \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right)$ defined by (γ, \mathbf{c}). We note that $R(\bar{\alpha}) \oplus$ $R(\alpha) \cong \mathcal{T}_{q}$. As each $\gamma_{i} \neq 0$ and each $c_{j} \neq 0$, then \mathcal{P} is nondegenerate so that P is projective by Proposition 5.1. Putting $\widetilde{Z}=P / R(\bar{\alpha})$ gives an extension

$$
0 \rightarrow R(\bar{\alpha}) \rightarrow P \rightarrow \widetilde{Z} \rightarrow 0
$$

where \widetilde{Z} occurs in the extension $\left(0 \rightarrow R(\alpha) \rightarrow \widetilde{Z} \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right)$ classified by \mathbf{c}. Hence, $\widetilde{Z} \cong Z$ so that Z occurs in an extension $(0 \rightarrow R(\bar{\alpha}) \rightarrow P \rightarrow Z \rightarrow 0)$ where P is projective. Consequently, $R(\bar{\alpha})$ represents $D_{1}(Z)$ as claimed.

Let $\mathcal{E}=\left(0 \rightarrow \mathcal{T}_{q} \rightarrow E \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right)$ be an extension defining a generalized Swan module E and classified by $\mathbf{c}=\left(c_{i}\right)_{1 \leq i \leq q}$ where $c_{i} \in \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(i)\right) \cong \mathbb{F}_{p}$. The degeneracy $\delta(\mathcal{E})$ of \mathcal{E} is defined by $\delta(\mathcal{E})=\left\{i \mid c_{i}=0\right\}$, and the support of \mathcal{E} is defined by $\operatorname{supp}(\mathcal{E})=\left\{i \mid c_{i} \neq 0\right\}$. Evidently $\delta(\mathcal{E})$ and $\operatorname{supp}(\mathcal{E})$ are complementary subsets of $\{1, \ldots, q\}, \operatorname{supp}(\mathcal{E})=\overline{\delta(\mathcal{E})}$. Given such an extension \mathcal{E}, we may decompose the cohomology class as $\mathbf{c}=\left(\mathbf{c}^{-}, \mathbf{c}^{+}\right)$where $\mathbf{c}^{-}=\left(c_{i}\right)_{i \in \delta(\mathcal{E})}$ is identically zero and where $\mathbf{c}^{+}=\left(c_{i}\right)_{i \in \operatorname{supp}(\mathcal{E})}$ determines an extension

$$
X=\left(0 \rightarrow R(\bar{\alpha}) \xrightarrow{i} X \xrightarrow{p} \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right)
$$

of kernel type $\operatorname{supp}(\mathcal{E})$ which is nondegenerate with respect to $\operatorname{supp}(\mathcal{E})$. As \mathbf{c}^{-}is identically zero, then $E \cong R(\alpha) \oplus X$; that is,

PROPOSITION 5.3

Let $\mathcal{E}=\left(0 \rightarrow \mathcal{T}_{q} \rightarrow E \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right)$ be an extension defining a generalized Swan module E; then $E \cong R(\alpha) \oplus X$ where X occurs in an extension

$$
X=\left(0 \rightarrow R(\operatorname{supp}(\mathcal{E})) \xrightarrow{i} X \xrightarrow{p} \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right)
$$

of kernel type $\operatorname{supp}(\mathcal{E})$ which is nondegenerate with respect to $\operatorname{supp}(\mathcal{E})$.

PROPOSITION 5.4

Let $\mathcal{E}=\left(0 \rightarrow \mathcal{T}_{q} \rightarrow E \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right)$ be an extension defining a generalized Swan module E; then $\mathscr{H}^{*}(E) \cong \mathcal{E}^{*}(R(\delta(\mathcal{E}))$.

Proof

Decompose $E \cong R(\delta(\mathcal{E})) \oplus X$ as in Proposition 5.3. Then

$$
\mathscr{H}^{*}(E) \cong \mathscr{H}^{*}(R(\delta(\mathcal{E}))) \oplus \mathscr{H}^{*}(X)
$$

It follows from (4.8) that $\mathscr{H}^{*}\left(R(\delta(\mathcal{E}))=0\right.$ so that $\mathscr{H}^{*}(E) \cong \mathscr{H}^{*}(X)$. Thus, it suffices to show that $\mathscr{H}^{*}(X) \cong \mathscr{\mathscr { G }}^{*}(R(\delta(\mathcal{E})))$. However, $R(\overline{\operatorname{supp}(\mathcal{E})})$ represents $D_{1}(X)$ by Proposition 5.2 and $\overline{\operatorname{supp}(\mathcal{E})}=\delta(\mathcal{E})$. Thus, $R(\delta(\mathcal{E}))$ represents $D_{1}(X)$, and hence $\mathscr{H}^{*}(X) \cong \mathscr{E}^{*}(R(\delta(\mathcal{E})))$ by Proposition 4.1.

Clearly $\delta(\mathcal{E})$ is an invariant of the congruence class of the extension \mathcal{E}. In fact, it is also an invariant of the isomorphism class of the module E in the derived module category. Formally we have the following:

PROPOSITION 5.5

Let $E(1), E(2)$ be generalized Swan modules; then

$$
E(1) \cong_{D_{\mathrm{er}}} E(2) \quad \Longrightarrow \quad \delta(\mathcal{E}(1))=\delta(\mathcal{E}(2))
$$

Proof

If $E(1) \cong D_{\text {er }} E(2)$, then for some projective modules $P(1), P(2)$ we have

$$
E(1) \oplus P(1) \cong E(2) \oplus P(2)
$$

so that $\mathscr{H}^{*}\left(E(1) \oplus \mathscr{H}^{*}(P(1)) \cong \mathscr{H}^{*}\left(E(2) \oplus \mathscr{H}^{*}(P(2))\right.\right.$. As $P(1), P(2)$ are projective, then $\mathscr{H}^{*}(P(1)) \cong \mathscr{H}^{*}(P(2))=0$, and so $\mathscr{H}^{*}(E(1)) \cong \mathscr{H}^{*}(E(2))$. By Proposition 4.1 it follows that $\mathscr{Q}^{*}(\delta(\mathcal{E}(1))) \cong \mathscr{G}^{*}(\delta(\mathcal{E}(2)))$ so that, by Proposition 4.2, $\delta(\mathcal{E}(1))=$ $\delta(\mathcal{E}(2))$.

From (1.5) we obtain the following special case of Proposition 5.5:

COROLLARY 5.1
For $k=1,2$, let $\mathcal{E}(k)=\left(0 \rightarrow \mathcal{T}_{q} \rightarrow E(k) \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right)$ be extensions defining generalized Swan modules $E(1), E(2)$; then

$$
E(1) \sim E(2) \quad \Longrightarrow \quad \delta(\mathcal{E}(1))=\delta(\mathcal{E}(2)) .
$$

6. Proof of Theorem B

In what follows, \mathbb{F}_{p} will denote the field with p elements where p is an odd prime, and a will denote an integer in the range $1 \leq a \leq p-1$ chosen so that the residue class $[a] \in \mathbb{F}_{p}^{*}$ generates the multiplicative group \mathbb{F}_{p}^{*}. For each integer k in the range $1 \leq k \leq q$, we define elements $v_{1}^{(k)}, \ldots, v_{q}^{(k)}$ in $\underbrace{\mathbb{F}_{p}^{*} \times \cdots \times \mathbb{F}_{p}^{*}}_{q}$ as follows:

$$
\begin{aligned}
& \left(v_{j}^{(k)}\right)_{r}= \begin{cases}{[a]} & r=j \\
{[a]^{-1}} & r=k \\
1 & r \notin\{j, k\},\end{cases} \\
& \left(v_{j}^{(k)}\right)_{r}= \begin{cases}{[a]^{-1}} & r=k \\
{[a]} & r=j \\
1 & r \notin\{j, k\},\end{cases}
\end{aligned}
$$

Moreover, we define $\left(v_{k}^{(k)}\right)_{r}=1$ for all r and denote by $U\left(k=\left\langle v_{1}^{(k)}, \ldots, v_{q}^{(k)}\right\rangle\right.$ the subgroup of $\underbrace{\mathbb{F}_{p}^{*} \times \cdots \times \mathbb{F}_{p}^{*}}$ generated by $v_{1}^{(k)}, \ldots, v_{q}^{(k)}$. For $\lambda \in \mathbb{F}_{p}^{(q)}$ we define the degeneracy $\delta(\lambda)$ of $\stackrel{q}{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{q}\right)$ by $\delta(\lambda)=\left\{i: 1 \leq i \leq q: \lambda_{i}=0\right\}$.

For $\alpha \subset\{1, \ldots, q\}$, we define $\mathscr{H}(\alpha) \subset \mathbb{F}_{p}^{(q)}$ by $\mathscr{H}(\alpha)=\left\{\lambda \in \mathbb{F}_{p}^{(q)}: \delta(\lambda)=\alpha\right\}$. The proofs of the following two statements are straightforward:

$$
\begin{equation*}
\mathscr{H}(\alpha) \text { is stable under the action of } \underbrace{\mathbb{F}_{p}^{*} \times \cdots \times \mathbb{F}_{p}^{*}}_{q} . \tag{6.1}
\end{equation*}
$$ If $k \in \alpha$, then $U(k)$ acts transitively on $\mathscr{H}(\alpha)$.

Recall the surjective ring homomorphisms $\nu: \mathcal{T}_{q}(A, \pi) \rightarrow \mathcal{T}_{q}(A / \pi)$ and $\varphi:$ $\mathcal{T}_{q}(A / \pi) \rightarrow \underbrace{A / \pi \times \cdots \times A / \pi}_{q}$ defined in (2.8) and (2.9), respectively. Taking the composition gives a surjective ring homomorphism $\ddagger: \mathcal{T}_{q}(A, \pi) \rightarrow \underbrace{A / \pi \times \cdots \times A / \pi}_{q}$. In the present case, the inclusion $\mathbb{Z} \hookrightarrow A$ has the property that $\mathbb{Z} \cap(\pi)=(p)$ and $A / \pi=$ $\mathbb{Z} / p=\mathbb{F}_{p}$. Thus, there is a commutative diagram of ring homomorphisms
${ }^{j}$

in which \square_{1} and \natural_{2} are surjective. Maintaining the previous choice of a in the range $1 \leq a \leq p$, then as a and p are coprime, appealing to Bezout's Theorem we can find integers b, d such that

$$
\begin{equation*}
a d+p b=1 \tag{6.3}
\end{equation*}
$$

For k in the range $1 \leq k \leq q$, we define elements $\widehat{v}_{1}^{(k)}, \ldots, \widehat{v}_{q}^{(k)}$ in $\mathcal{T}_{q}(\mathbb{Z}, p)$ as follows:

$$
\text { if } j<k \text { then } \quad\left(\widehat{v}_{j}^{(k)}\right)_{r s}= \begin{cases}a & r=s=j \\ -p & r=k, s=j \\ b & r=j, s=k \\ d & r=s=k \\ 1 & r=s, r \notin\{j, k\} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\text { if } k<j \text { then } \quad\left(\widehat{v}_{j}^{(k)}\right)_{r s}= \begin{cases}d & r=s=k \\ b & r=k, s=j \\ -p & r=j, s=k \\ a & r=s=j \\ 1 & r=s, r \notin\{j, k\} \\ 0 & \text { otherwise }\end{cases}
$$

Moreover, we define $v_{k}^{(k)}=\mathrm{Id}_{q}$. Using row and column operations and appealing to (6.3), one sees easily that $\operatorname{det}\left(\widehat{v}_{k}^{(k)}\right)=1$ for all j. Hence, we have

$$
\widehat{v}_{j}^{(k)} \in \mathcal{T}_{q}(\mathbb{Z}, p)^{*} .
$$

Under the homomorphism $দ_{1}: \mathcal{T}_{q}(\mathbb{Z}, p) \rightarrow \underbrace{\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}}_{q}$, we see that

$$
\begin{equation*}
\mathfrak{q}_{1}\left(\widehat{v}_{j}^{(k)}\right)=v_{j}^{(k)} \tag{6.4}
\end{equation*}
$$

Define $\widehat{U}(k)=\left\langle\widehat{v}_{1}^{(k)}, \ldots, \widehat{v}_{q}^{(k)}\right\rangle \subset \mathcal{T}_{q}(\mathbb{Z}, p)^{*}$. As $\mathcal{T}_{q}(\mathbb{Z}, p)$ is a subring of $\mathcal{T}_{q}(A, \pi)$, we regard $\widehat{U}(k)$ as a subgroup of $\mathcal{T}_{q}(A, \pi)^{*}$. In consequence of (6.4), we see that

$$
\begin{equation*}
\mathfrak{L}_{2}(\widehat{U}(k))=U(k) . \tag{6.5}
\end{equation*}
$$

For any subset $\alpha \subset\{1, \ldots, q\}$, we define $\widetilde{\mathscr{H}}(\alpha) \subset \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], \mathcal{T}_{q}(A, \pi)\right)$ by

$$
\widetilde{\mathscr{H}}(\alpha)=\left\{\mathbf{c}=\left(c_{i}\right)_{1 \leq i \leq q}: \delta(\mathbf{c})=\alpha\right\} .
$$

It follows from (6.2) and (6.5) that

$$
\begin{equation*}
\widehat{U}(k) \text { acts transitively on } \widetilde{\mathscr{H}}(\alpha) \text { if } k \in \alpha . \tag{6.6}
\end{equation*}
$$

To proceed we fix an extension

$$
\begin{equation*}
0 \rightarrow \bigoplus_{k=1}^{q} R(k) \rightarrow X \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \tag{X}
\end{equation*}
$$

The corepresentation formula (1.9) then shows that

$$
\begin{equation*}
\operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], \mathcal{T}_{q}(A, \pi)\right) \cong \operatorname{End}_{D_{e r}}\left(\mathcal{T}_{q}(A, \pi)\right) \cong \operatorname{End}_{\mathscr{D e r}}\left(\bigoplus_{k=1}^{q} R(k)\right) \tag{6.7}
\end{equation*}
$$

Thus, the extension \mathcal{X} is classified by a matrix

$$
\mathbf{c}=\left(c_{i j}\right)_{1 \leq i, j \leq q} ; \quad c_{i j} \in \operatorname{Hom}_{\mathfrak{D} \mathrm{er}}(R(j), R(i)) .
$$

For each i, j choose a Λ-homomorphism $\gamma_{i j} \in \operatorname{Hom}_{\Lambda}(R(j), R(i))$ which represents $c_{i j}$ after passing to the derived module category. Then $\gamma=\left(\gamma_{i j}\right)_{1 \leq i, j \leq q}$ is a Λ endomorphism of $\bigoplus_{k=1}^{q} R(k)$ which represents \mathbf{c} in the derived module category. Let $\iota: \bigoplus_{k=1}^{q} R(k) \rightarrow \Lambda$ denote the inclusion; then X can be described as $X \cong X(\gamma)$ via
the pushout diagram

$$
\begin{array}{cccc}
0 \rightarrow \bigoplus_{k=1}^{q} R(k) \xrightarrow{\iota} & \Lambda & \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \\
\downarrow \gamma & \downarrow \emptyset & \downarrow \mathrm{Id} \\
0 \rightarrow \bigoplus_{k=1}^{q} R(k) \rightarrow X(\gamma) \rightarrow & \mathbb{Z}\left[C_{q}\right] \rightarrow 0
\end{array}
$$

where $X(\gamma)=\xrightarrow{\lim }(\iota, \gamma)$. However, by (4.5), $\operatorname{Hom}_{\mathfrak{D e r}}(R(j), R(i))=0$ if $j \neq i$ so that $c_{i j}=0$ for $i \neq \vec{j}$ and the classifying matrix \mathbf{c} is diagonal

$$
\mathbf{c}=\left(\begin{array}{llll}
c_{1} & & & \\
& c_{2} & & \\
& & \ddots & \\
& & & c_{q}
\end{array}\right),
$$

where $c_{k}=c_{k k} \in \operatorname{End}_{D_{\text {er }}}(R(i)) \cong \mathbb{F}_{p}$. Making the identification

$$
\bigoplus_{i=1}^{q} \operatorname{Ext}^{1}\left(\mathbb{Z}\left[C_{q}\right], R(i)\right) \stackrel{\simeq}{\longleftrightarrow} \underbrace{\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}}_{q}
$$

Then, following Section 5, we associate with \mathbf{c} its degeneracy $\delta(\mathbf{c})=\left\{i \mid c_{i}=0\right\}$. Now suppose given another such extension,

$$
0 \rightarrow \bigoplus_{i=1}^{q} R(i) \rightarrow X^{\prime} \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0
$$

parametrized by $\mathbf{c}^{\prime}=\left(c_{i}^{\prime}\right)_{1 \leq i \leq q}$. It follows from (6.6) that

$$
\begin{equation*}
\text { If } k \in \delta(\mathbf{c})=\delta\left(\mathbf{c}^{\prime}\right) \text {, then there exists } \widehat{\alpha} \in \widehat{U}(k) \text { such that } \widehat{\alpha} \cdot \mathbf{c}=\mathbf{c}^{\prime} . \tag{6.8}
\end{equation*}
$$

We come to the following, which is Theorem B of the Introduction.

THEOREM 6.1

Let X, X^{\prime} be degenerate generalized Swan modules; then

$$
X \cong X^{\prime} \quad \Longleftrightarrow \quad \delta(X)=\delta\left(X^{\prime}\right)
$$

Proof

(\Longrightarrow). Suppose that $X \cong X^{\prime}$; then $X \cong \mathscr{D}_{\text {er }} X^{\prime}$. It follows from Proposition 5.5 that $\delta(X)=\delta\left(X^{\prime}\right)$.
(\Longleftarrow) We may suppose that X, X^{\prime} are described by extensions

$$
X=\left(0 \rightarrow \mathcal{J}_{q} \rightarrow X \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right) ; \quad X^{\prime}=\left(0 \rightarrow \mathcal{T}_{q} \rightarrow X^{\prime} \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0\right)
$$

classified by $\mathbf{c}, \mathbf{c}^{\prime}$ respectively. By the above discussion, X can be described as a pushout $X \cong X(\gamma)$

$$
\begin{array}{rlll}
0 \rightarrow & \mathcal{T}_{q} & \rightarrow & \Lambda \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \\
\gamma \downarrow & \widehat{\gamma} \downarrow & \mathrm{Id} \downarrow \\
0 \rightarrow & \mathcal{J}_{q} & \rightarrow X(\gamma) \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0
\end{array}
$$

where γ is a Λ-endomorphism of $\mathcal{T}_{q} \cong \bigoplus_{k=1}^{q} R(k)$ which represents \mathbf{c} on passage to the derived module category. Suppose that $\delta(X)=\delta\left(X^{\prime}\right)=\alpha$ where $\alpha \neq\{1, \ldots, q\}$. Choose $i \in\{1, \ldots, q\}$ such that $c_{i}=c_{i}^{\prime}=0$. Then by (6.8), there exists $\alpha \in \operatorname{Aut}_{\Lambda}\left(\mathcal{T}_{q}\right)$ such that $\alpha \cdot \mathbf{c}=\mathbf{c}^{\prime}$.

Now $\alpha \circ \gamma: \mathcal{T}_{q} \rightarrow \mathcal{T}_{q}$ is a Λ-endomorphism which represents $\mathbf{c}^{\prime}=\alpha \circ \mathbf{c}$ in the derived module category so that, on forming the pushout extension

$$
\begin{aligned}
& 0 \rightarrow \quad \mathcal{T}_{q} \quad \rightarrow \quad \Lambda \quad \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \\
& \alpha \circ \gamma \downarrow \quad \widehat{\alpha \circ \gamma} \downarrow \quad \text { Id } \downarrow \\
& 0 \rightarrow \quad \mathcal{T}_{q} \quad \rightarrow X(\alpha \circ \gamma) \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0
\end{aligned}
$$

we see that $X(\alpha \circ \gamma) \cong X^{\prime}$. There is now a commutative diagram with exact rows

$$
\begin{aligned}
& 0 \rightarrow \mathcal{T}_{q} \rightarrow X(\gamma) \quad \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0 \\
& \alpha \downarrow \quad \widehat{\alpha} \downarrow \quad \operatorname{Id} \downarrow \\
& 0 \rightarrow \mathcal{T}_{q} \rightarrow X(\alpha \circ \gamma) \rightarrow \mathbb{Z}\left[C_{q}\right] \rightarrow 0
\end{aligned}
$$

in which α and Id are isomorphisms. By the Five Lemma, $\widehat{\alpha}: X(\gamma) \rightarrow X(\alpha \circ \gamma)$ is also an isomorphism. The conclusion follows as $X \cong X(\gamma)$ and $X(\alpha \circ \gamma) \cong X^{\prime}$.

7. Proof of Theorem A

We first consider the notion of separating an extension as a direct sum. Given an extension $\mathcal{E}=(0 \rightarrow K \xrightarrow{i} X \xrightarrow{p} C \rightarrow 0)$ where X is the internal direct sum $X=X_{1} \dot{+} X_{2}$ of submodules X_{1}, X_{2}, we put $K_{i}=X_{i} \cap \operatorname{Ker}(p)$ so that we have extensions $\mathcal{E}_{r}=(0 \rightarrow$ $\left.K_{r} \xrightarrow{i_{r}} X_{r} \xrightarrow{p_{r}} p\left(X_{r}\right) \rightarrow 0\right)$. The direct sum extension $\varepsilon_{1} \oplus \varepsilon_{2}$ is then defined by

$$
\left.\mathcal{E}_{1} \oplus \varepsilon_{2}=\left(0 \rightarrow K_{1} \oplus K_{2} \xrightarrow{\substack{i_{1} 0 \\ 0 i_{2}}}\right) X_{1} \oplus X_{2} \xrightarrow{\binom{p_{1} 0}{0}} p\left(X_{1}\right) \oplus p\left(X_{2}\right) \rightarrow 0\right)
$$

and there is a mapping of extensions $\mu: \mathcal{E}_{1} \oplus \mathcal{E}_{2} \rightarrow \mathcal{E}$
where $\mu_{K}, \mu_{X}, \mu_{C}$ are given by the appropriate additions $\binom{x_{1}}{x_{2}} \mapsto x_{1}+x_{2}$. With this it is straightforward to show that

$$
\begin{align*}
\mu: \varepsilon_{1} \oplus \varepsilon_{2} & \rightarrow \mathcal{E} \text { is an isomorphism of extensions } \tag{7.1}\\
& \Longleftrightarrow p\left(X_{1}\right) \cap p\left(X_{2}\right)=0 .
\end{align*}
$$

For the rest of this section we shall write $\mathcal{T}=\mathcal{T}_{q}(A, \pi)$ and $Q=\mathbb{Z}\left[C_{q}\right]$ so that a generalized Swan module E is given by an extension

$$
0 \rightarrow \mathcal{T} \rightarrow E \rightarrow \mathcal{Q} \rightarrow 0
$$

PROPOSITION 7.1

Let $\mathcal{E}=(0 \rightarrow \mathcal{T} \oplus \mathcal{T} \xrightarrow{i} X \xrightarrow{p} \mathbb{Q} \oplus \mathcal{Q} \rightarrow 0)$ be an extension and suppose X is the internal direct sum $X=X_{1} \dot{+} X_{2}$ of submodules X_{1}, X_{2}. If X_{1} is a generalized Swan module, then $p\left(X_{1}\right) \cap p\left(X_{2}\right)=0$.

Proof

Let \mathbb{F} be a field of characteristic zero and put $\mathcal{T}_{\mathbb{F}}=\mathcal{T} \otimes_{\mathbb{Z}} \mathbb{F}, \mathcal{Q}_{\mathbb{F}}=\mathcal{Q} \otimes_{\mathbb{Z}} \mathbb{F}, Y=X \otimes_{\mathbb{Z}} \mathbb{F}$, $Y_{i}=X_{i} \otimes_{\mathbb{Z}} \mathbb{F}$. By Maschke's Theorem, $Y \cong \mathcal{T}_{\mathbb{F}} \oplus \mathcal{T}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}}$. By hypothesis, X_{1} occurs as an extension ($0 \rightarrow \mathcal{T} \rightarrow X_{1} \rightarrow \mathbb{Q} \rightarrow 0$) so that, again by Maschke's Theorem $Y_{1} \cong \mathcal{T}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}}$. As $Y=Y_{1} \dot{+} Y_{2}$, it follows from Wedderburn's Theorem that $Y_{2} \cong \mathcal{J}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}}$. As $\operatorname{Hom}_{\Lambda}(\mathcal{T}, \mathcal{Q})=0$, then the restrictions $p: Y_{i} \rightarrow \mathcal{Q}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}}$ vanish on $\mathcal{T}_{\mathbb{F}}$ and hence $\operatorname{dim}_{\mathbb{F}}\left(p\left(Y_{i}\right) \leq \operatorname{dim}_{\mathbb{F}}\left(\mathcal{Q}_{\mathbb{F}}\right)=q\right.$. However, $\operatorname{dim}_{\mathbb{F}}\left(p\left(Y_{1}\right)+p\left(Y_{2}\right)\right)=$ $\operatorname{dim}_{\mathbb{F}}(p(Y))=\operatorname{dim}_{\mathbb{F}}\left(\mathcal{Q}_{\mathbb{F}} \oplus \mathcal{Q}_{\mathbb{F}}\right)=2 q$. Thus,

$$
\operatorname{dim}_{\mathbb{F}}\left(p\left(Y_{1}\right)+\operatorname{dim}_{\mathbb{F}}\left(p\left(Y_{2}\right) \leq \operatorname{dim}_{\mathbb{F}}\left(p\left(Y_{1}\right)+p\left(Y_{2}\right)\right)\right.\right.
$$

and so $\operatorname{dim}_{\mathbb{F}}\left(p\left(Y_{1}\right) \cap p\left(Y_{2}\right)\right)=0$. Hence, $p\left(X_{1}\right) \cap p\left(X_{2}\right)=0$.
Suppose given an extension $\mathcal{E}=(0 \rightarrow \mathcal{T} \oplus \mathcal{T} \xrightarrow{i} X \xrightarrow{p} \mathcal{Q} \oplus \mathcal{Q} \rightarrow 0)$ where X is the internal direct sum $X=X_{1} \dot{+} X_{2}$ of submodules X_{1}, X_{2}, and consider the extensions $\varepsilon_{1}, \varepsilon_{2}$ as defined above. With this notation we have

PROPOSITION 7.2

If X_{1} is a generalized Swan module, then X_{2} is also a generalized Swan module.

Proof

As X_{1} is a generalized Swan module, then $p\left(X_{1}\right) \cap p\left(X_{2}\right)=0$ by Proposition 7.1
above. Consider the extension which defines X_{1} as a generalized Swan module

$$
\mathcal{E}^{\prime}=\left(0 \rightarrow \mathcal{T} \xrightarrow{i^{\prime}} X_{1} \xrightarrow{p^{\prime}} \mathbb{Q} \rightarrow 0\right)
$$

and compare this with the exact sequence $\varepsilon_{1}=\left(0 \rightarrow K_{1} \xrightarrow{i_{1}} X_{1} \xrightarrow{p_{1}} p\left(X_{1}\right) \rightarrow 0\right)$ via the diagram

$$
\mathscr{D}_{+}\left\{\begin{array}{lll}
0 \rightarrow K_{1} & \stackrel{i_{1}}{\hookrightarrow} & X_{1} \xrightarrow{p} p\left(X_{1}\right) \rightarrow 0 \\
& \downarrow \text { Id } \\
0 \rightarrow \mathcal{T} \stackrel{i^{\prime}}{\hookrightarrow} & X_{1} \xrightarrow{p^{\prime}} Q & Q
\end{array}\right.
$$

As K_{1} is a submodule of $\mathcal{T} \oplus \mathcal{T}$, then $p^{\prime} \circ i_{1}=0$ by (2.15). Thus, we may complete \mathscr{D}_{+}to a commutative diagram

$$
\widetilde{D}_{+}\left\{\begin{array}{lllllll}
0 \rightarrow & K_{1} & \xrightarrow{i_{1}} & X_{1} & \xrightarrow{p} & p\left(X_{1}\right) & \rightarrow 0 \\
& \downarrow h_{-} & & \downarrow \mathrm{Id} & \downarrow h_{+} & \\
& & & & & \\
0 \rightarrow & \mathcal{T} & \stackrel{i^{\prime}}{\hookrightarrow} & X_{1} & \xrightarrow{p^{\prime}} & \mathbb{Q} & \rightarrow 0
\end{array}\right.
$$

in which h_{+}is necessarily surjective. Note that $\operatorname{Hom}_{\Lambda}(\mathcal{T}, \mathbb{Q})=0$ by (2.14). As $p\left(X_{1}\right) \subset \mathcal{Q} \oplus \mathcal{Q}$, then $\operatorname{Hom}_{\Lambda}\left(\mathcal{T}, p\left(X_{1}\right)\right)=0$. In particular, $p \circ i^{\prime}=0$ so that, in similar fashion to the above, we obtain a diagram

$$
\widetilde{\mathscr{D}}_{-}\left\{\begin{array}{llllll}
0 \rightarrow & \mathcal{T} & \stackrel{i^{\prime}}{\longrightarrow} & X_{1} & \xrightarrow{p^{\prime}} & \mathbb{Q}
\end{array} \quad \rightarrow 0\right.
$$

Composing $\widetilde{D}_{-} \circ \widetilde{D}_{+}$we obtain a commutative diagram

$$
\left\{\begin{array}{lllllll}
0 \rightarrow & K_{1} & \stackrel{i_{1}}{\longrightarrow} & X_{1} & \xrightarrow{p} & p\left(X_{1}\right) & \rightarrow 0 \\
& \downarrow g_{-} \circ h_{-} & & \downarrow \text { Id } & \downarrow g_{+} \circ h_{+} & \\
& & & & & \\
0 \rightarrow & K_{1} & \xrightarrow[i_{1}]{\longrightarrow} & X_{1} & \xrightarrow{p} & p\left(X_{1}\right) & \rightarrow 0
\end{array}\right.
$$

from which it follows that $g_{+} \circ h_{+}=$Id. Thus, h_{+}is also injective and so gives an isomorphism $h_{+}: p\left(X_{1}\right) \xrightarrow{\simeq} Q$. Extending \widetilde{D}_{+}one place to the left by zeroes and applying the Five Lemma, we see that $h_{-}: K_{1} \rightarrow \mathcal{T}$ is also an isomorphism. Now consider the exact sequence

$$
\mathcal{E}_{2}=\left(0 \rightarrow K_{2} \xrightarrow{i_{2}} X_{2} \xrightarrow{p_{2}} p\left(X_{2}\right) \rightarrow 0\right) .
$$

We have $K_{1} \dot{+} K_{2} \cong \mathcal{T} \oplus \mathcal{T}$ and $K_{1} \cong \mathcal{T}$. Hence, $K_{2} \cong \mathcal{T}$ by (3.4). Also, $p\left(X_{1}\right) \dot{+}$ $p\left(X_{2}\right) \cong \mathcal{Q} \oplus \mathcal{Q}$ and $p\left(X_{1}\right) \cong \mathcal{Q}$. Hence, $p\left(X_{2}\right) \cong \mathcal{Q}$ by (3.6). Thus, X_{2} occurs in an exact sequence $0 \rightarrow \mathcal{T} \rightarrow X_{2} \rightarrow \mathcal{Q} \rightarrow 0$ and so X_{2} is a generalized Swan module.

COROLLARY 7.1

Let X, S be Λ-lattices such that $X \oplus \Lambda \cong S \oplus \Lambda$. If X is a generalized Swan module, then so also is S and $\delta(S)=\delta(X)$.

Proof

As both X and Λ are generalized Swan modules, then there is an extension

$$
0 \rightarrow \mathcal{T} \oplus \mathcal{T} \rightarrow X \oplus \Lambda \rightarrow Q \oplus Q \rightarrow 0
$$

As $S \oplus \Lambda \cong X \oplus \Lambda$, then there is an extension

$$
0 \rightarrow \mathcal{T} \oplus \mathcal{T} \rightarrow S \oplus \Lambda \rightarrow Q \oplus Q \rightarrow 0
$$

Again, as Λ is a generalized Swan module, it follows from Proposition 7.2 that S is a generalized Swan module. As $X \sim S$, the conclusion $\delta(S)=\delta(X)$ follows from Corollary 5.1.

We come to the following which is Theorem A of the Introduction.

THEOREM 7.1

Let X be a generalized Swan module. If X^{\prime} is a Λ-lattice such that $X^{\prime} \oplus \Lambda \cong X \oplus \Lambda$, then $X^{\prime} \cong X$.

Proof

First suppose that $\delta(X)=\emptyset$. Then X is projective by Proposition 5.1. Hence, X^{\prime} is also projective and the conclusion follows from the Swan-Jacobinski Theorem as Λ satisfies the Eichler condition. In the general case, $\delta(X) \neq \emptyset$. Then by Corollary $7.1, X^{\prime}$ is also a generalized Swan module and $\delta\left(X^{\prime}\right)=\delta(X)$. It now follows from Theorem 6.1 that $X^{\prime} \cong X$.

Acknowledgment. We wish to thank the referee for some helpful comments on the original version.

References

[1] B. J. Birch, "Cyclotomic fields and Kummer extensions" in Algebraic Number Theory, edited by J. W. S. Cassels and A. Fröhlich, Academic Press, Cambridge, MA, 1965, 85-93. MR 0219507.
[2] J. F. Carlson, Modules and Group Algebras, Lectures Math. ETH Zürich, Birkhäuser, Basel, 1996. MR 1393196. DOI 10.1007/978-3-0348-9189-9.
[3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956. MR 0077480.
[4] C. W. Curtis and I. Reiner, Methods of Representation Theory, Vol. II. Wiley-Interscience, New York, 1987. MR 0892316.
[5] H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math. 121 (1968), 1-29. MR 0251063. DOI 10.1007/BF02391907.
[6] F. E. A. Johnson, Stable Modules and the D(2)-Problem, London Math. Soc. Lecture Note Ser. 301, Cambridge University Press, Cambridge, 2003. MR 2012779. DOI 10.1017/CBO9780511550256.
[7] F. E. A. Johnson, Syzygies and Homotopy Theory, Algebr. Appl. 17, Springer, London, 2012. MR 3024350. DOI 10.1007/978-1-4471-2294-4.
[8] F. E. A. Johnson and J. J. Remez, Diagonal resolutions for metacyclic groups, J. Algebra. 474 (2017), 329-360. MR 3595795. DOI 10.1016/j.jalgebra.2016.10.044.
[9] L. Klingler, Modules over the integral group ring of a nonabelian group of order pq, Mem. Amer. Math. Soc. 59 (1986), no. 341. MR 0823445. DOI 10.1090/memo/0341.
[10] I. Reiner, Maximal Orders, London Math. Soc. Monogr. 5, Academic Press, London, 1975. MR 0393100.
[11] M. Rosen, Representations of twisted group rings, PhD thesis, Princeton University, 1963. MR 2614041.
[12] R. G. Swan, K-theory of Finite Groups and Orders, with notes by E. G. Evans, Lecture Notes Math. 149, Springer, Berlin, 1970. MR 0308195.
[13] R. G. Swan, Torsion-free cancellation over orders, Illinois J. Math 32 (1988), 329-360. MR 0947032.

Department of Mathematics, University College of London, Gower Street, London WC13 6BT, U.K.; feaj@math.ucl.ac.uk

[^0]: Illinois Journal of Mathematics Vol. 63, No. 1 (2019), 103-125
 DOI 10.1215/00192082-7600042, © 2019 by the University of Illinois at Urbana-Champaign
 Received June 6, 2018. Received in final form January 18, 2019.
 2010 Mathematics Subject Classification: Primary 16D70; Secondary 20C10.

