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ABSTRACT (250 word max) 

Background: Peripheral (plasma) and central (cerebrospinal fluid, CSF) measures of tau are increased in 

Alzheimer’s disease (AD) relative to prodromal stages and controls. While elevated CSF tau levels have 

been shown to be associated with lower grey matter density (GMD) in AD-specific regions, this 

correlation has yet to be examined for plasma in a large study. 

Methods: Cross-sectional data for 508 ADNI participants were collected for clinical, plasma tau, CSF 

amyloid (Aβ42) and tau, and MRI variables. The relationship between plasma tau and GMD and between 

CSF total-tau (t-tau) and GMD were assessed on a voxel-by-voxel basis using regression models. Age, 

gender, APOE ε4 status, diagnosis, and intracranial volume were used as covariates where appropriate. 

Participants were defined as amyloid positive (Aβ+) if CSF Aβ42 was <192pg/mL. 

Results: Plasma tau was negatively correlated with GMD in the medial temporal lobe (MTL), precuneus, 

thalamus, and striatum. The associations with thalamus and striatum were independent of diagnosis. A 

negative correlation also existed between plasma tau and GMD in Aβ+ participants in the MTL, 

precuneus, and frontal lobe. When compared to CSF t-tau, plasma tau showed a notably different 

associated brain atrophy pattern, with only small overlapping regions in the fusiform gyrus. 

Conclusions: Increased plasma tau was associated with atrophy in several AD-specific brain regions, as 

well as in the striatum and thalamus. These findings support plasma tau as a peripheral marker of 

ongoing AD-type neurodegeneration. The reduced GMD in thalamic and striatal regions associated with 

plasma tau suggest that this association may not be AD-specific. 

 

KEYWORDS (4-10): plasma; tau protein; magnetic resonance imaging; mild cognitive impairment; 

Alzheimer disease 
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INTRODUCTION 

 Understanding the underlying pathological processes of Alzheimer’s disease (AD) and 

developing reliable biomarkers are critical to identify the causes and pathogenesis of AD. Both in vivo 

and post-mortem studies have shown that pathological tau is correlated with neurodegeneration, 

disease severity, and cognitive impairment [1]. Likewise, in vivo central measures of tau in cerebrospinal 

fluid (CSF) also correlate with post-mortem tau pathology and are increased in AD patients relative to 

those in a prodromal stage of AD referred to as mild cognitive impairment (MCI) and cognitively normal 

controls (CN), aiding prediction of disease progression [2, 3]. However, CSF collection is regarded as 

invasive, leading researchers to search for alternative methods to monitor MCI and AD such as blood 

biomarkers.  

A recent meta-analysis reported plasma tau as the only blood-based biomarker to delineate AD 

from controls [4]. Fortunately, a new ultrasensitive technique was developed capable of detecting tau at 

low concentrations in plasma [REF= Randall ]. Similar to CSF, plasma tau levels are higher in AD relative 

to MCI and CN [5]. However, a large overlap was observed between the MCI and CN groups suggesting 

plasma tau may not be suitable as a diagnostic marker. Further, the correlation between plasma tau and 

CSF tau was weak [5].  

Previous studies have reported conflicting results regarding CSF tau and its correlation with 

cortical atrophy [6]. The goal of our project was to investigate the association of plasma tau with 

atrophy in participants of the ADNI. We also aimed to determine if plasma  and CSF tau levels were 

related to atrophy in similar brain regions. We hypothesize that plasma tau will be inversely correlated 

with grey matter density (GMD), as is seen with a majority of studies with CSF tau. Secondly, we 

hypothesize that plasma tau and CSF t-tau will be related to similar regions of atrophy.  

 

MATERIALS and METHODS 

 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

Subjects used in this study were participants in the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) (www.adni-info.org). The ADNI was launched in 2004 to help researchers and clinicians develop 

new treatments for MCI (mild cognitive impairment) and early AD, monitor their effectiveness, and 

decrease the time and cost of clinical trials.  The Principal Investigator of this initiative is Michael W. 

Weiner, M.D., VA Medical Center and University of California, San Francisco. The goal of ADNI is to test 

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the progression 

of MCI and AD.  This multi-year multi-site longitudinal study was started by the National Institute on 

Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug 

Administration (FDA), private pharmaceutical companies, and non-profit organizations as a $60 million, 

5-year public-private partnership. The ADNI participants consist of AD, MCI, and elderly healthy 

individuals. They were aged 55-90 years and recruited from 59 sites across the U.S. and Canada. Written 

informed consent was obtained from all participants and the study was conducted with prior 

Institutional Review Board approval.   

 

  

http://www.adni-info.org/
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Plasma Tau Collection and Quality Control 

Peripheral plasma tau levels were measured for 581 non-Hispanic Caucasian participants using 

the Single Molecule array (Simoa) technique with the Human Total Tau assay (Human Total Tau 2.0 kit, 

Quanterix Corp, Boston, MA, USA). This assay and the plasma tau characteristics for ADNI have been 

previously described [5, 7]. In brief, the assay uses two monoclonal antibodies which bind to the N-

terminus and mid-region of tau, and measures both normal and phosphorylated tau protein. Values are 

given as pg/mL. A total of 38 samples had plasma levels below the Limit of Detection (LOD) or below the 

Lower Limit of Quantification (LLOQ) and were removed from further analysis. An additional four 

samples had missing values. To reduce the possible effect of extreme outliers on statistical analysis, the 

mean and standard deviation (SD) of plasma tau were calculated; participants with a value more than 

three SDs above or below the mean value were regarded as outliers and removed from further analysis. 

This resulted in the removal of eight participants, leaving 508 participants for the study (166 CN, 174 

MCI, 168 AD). 

 

CSF Collection and Quality Control 

CSF samples were available for 370 of the 508 ADNI plasma tau subjects with comparable 

demographic, clinical, and apolipoprotein (APOE) genotyping results to the full sample [8]. Briefly, a 

lumbar puncture was performed after an overnight fast and the CSF was collected into collection tubes. 

The CSF was transferred into polypropylene tubes, frozen on dry ice within one hour of collection, and 

then shipped to the ADNI Biomarker Core laboratory at the University of Pennsylvania Medical Center 

on dry ice. Aliquots (0.5ml) were prepared from these samples after one hour of thawing at room 

temperature and stored in bar code-labeled polypropylene vials at -80°C.  

CSF analytes (Aβ1-42, t-tau and p-tau181p) were measured using the multiplex xMAP Luminex 

platform (Luminex Corp, Austin, TX) with Innogenetics (INNO-BIA AlzBio3; Ghent, Belgium; for research 

use-only reagents) immunoassay kit-based reagents. To reduce the possible effect of outliers on 

statistical analysis, the mean and standard deviation of CSF analytes were calculated and subjects with 

at least one analyte value more than three SD below or above the mean value of each of CSF variable 

were regarded outliers and removed from the analysis.  This resulted in 341 valid CSF samples.  For the 

MRI-CSF study, only participants with a CSF value for both t-tau and p-tau were included in the CSF study 

(91 CN, 158 MCI, 82 AD). Participants were classifies as amyloid positive (Aβ+) if CSF Aβ1-42 <192pg/mL. 

 

MRI Scan Processing 

All participants had baseline 1.5T magnetization-prepared rapid gradient-echo (MPRAGE) 

images downloaded from the ADNI LONI site (http://adni.loni.usc.edu/). Scan processing with voxel-

based morphometry (VBM) in Statistical Parametric Mapping 8 (SPM8; Wellcome Trust Centre for 

Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and quality control were done as 

previously described [9]. Briefly, scans were co-registered to a T1-weighted template and segmented 

into different tissue classes (gray matter, GM; white matter, WM; CSF). Grey matter maps were 

normalized to MNI space without modulation as 1 x 1 x 1 mm voxels and smoothed with an 8 mm 

Gaussian kernel to create GM density (GMD) images for further analysis.  

  

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Image Analysis 

 To evaluate the relationship between central (CSF) and peripheral (plasma) measures of tau and 

GMD, voxel-wise linear regression models in SPM8 were used. Covariates included in the regression 

models were age, gender, APOE status (ε4 carrier or ε4 non-carrier), and total intracranial volume, 

generated using Freesurfer version 5.1. Analyses were done with and without diagnosis. An explicit GM 

mask was applied to the MRI scans to restrict the search area for the statistical analysis. Significant 

results were displayed at a voxel-wise p < 0.05 (family-wise error (FWE) corrected for multiple 

comparisons) and with a minimum cluster size (k) of 100 voxels. If no brain regions survived correction 

for multiple comparisons, then a slightly less stringent voxel-wise p-value of 0.001 (uncorrected) was 

used. To determine if there were any overlapping brain regions significantly correlated to plasma tau 

and CSF, a composite image was created in SPM8. 

 

Statistical Analysis 

SPSS V24.0 was used to log transform the CSF t-tau and p-tau values in order to achieve normal 

distribution. Plasma tau values were normally distributed and thus absolute values were used for 

analysis; results were unchanged when a transformed plasma value was use. The association of gender, 

APOE status, and Aβ positivity with diagnostic groups was assessed using a Pearson chi-squared test. 

ANOVA was used to assess the relationship of age, Mini-Mental State Exam (MMSE), Clinical Dementia 

Rating Scale – Sum of Boxes (CDR-SB), plasma tau, and CSF analytes with diagnostic status. Post-hoc 

pairwise differences among diagnostic groups was assessed using a Bonferroni correction for multiple 

comparisons. The MarsBaR toolbox in SPM8 was used to extract mean GMD from significant clusters 

from the voxel-wise results for further characterization of the results.   

 

Results 

 

Demographic and clinical characteristics 

There was a near equal number of subjects in each diagnostic group with 166 CN, 174 MCI, and 

168 AD. Significant differences among diagnostic groups were observed for all demographic and clinical 

characteristics examined except for age (Table 1). As expected, the AD group had the highest percentage 

of APOE ε4 carriers (67.9%), followed by the MCI group consisting of 54% APOE ε4 carriers. Significant 

differences in the mean MMSE and CDR-SB among the diagnostic groups, with the AD group showing 

the most impairment and the MCI group showing intermediate impairment between AD and CN (p < 

0.001). Plasma tau, CSF t-tau, and CSF p-tau were significantly different between groups, with the AD 

group showing significantly higher levels compared to MCI and CN (p = 0.002, p < 0.001, and p < 0.001, 

respectively). Similar to previous reports, the mean plasma tau levels in the MCI and CN groups were 

nearly equal. The number of Aβ+ subjects was also significantly different among diagnostic groups (p < 

0.001). 

 

Voxel-based MRI analysis 

A significant negative association between increased plasma tau and decreased GMD in several 

brain regions was observed, including in the middle, inferior, and superior temporal gyrus, 

parahippocampus, hippocampus, fusiform, uncus, precuneus, thalamus, caudate, putamen, and middle 

and inferior frontal gyrus (Fig. 1A-D, voxel-wise p<0.001 (uncorrected), k=100 voxels). As would be 

expected, AD participants had lower mean GMD in the larger clusters identified (MTL structures, 
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striatum, and thalamus; Supplemental Fig.1A). When controlling for diagnosis, a significant negative 

association between plasma tau and GMD was still observed in the right thalamus and bilaterally in the 

striatum (Fig. 1C-D). No significant clusters were observed in the positive direction (data not shown). 

 

Amyloid-positive subjects 

 There was no significant association between plasma tau and GMD in the Aβ- subjects, however 

increased plasma tau was significantly correlated with decreased GMD in the Aβ+ subjects in the 

fusiform, hippocampus, parahippocampus, precuneus, and premotor cortex (Fig. 2A-D, voxel-wise 

p<0.001 (uncorrected), k=100 voxels), as well as the frontal and parietal lobes, pre- and post-central 

gyri, and the globus pallidus. Notably, in the MTL cluster, Aβ+ subjects showed lower mean GMD 

compared to Aβ- subjects (Supplemental Fig. 1B). After diagnosis was added as a covariate, many of the 

same regions of reduced GMD remained significantly negatively correlated with increased plasma tau 

including in the precuneus, parahippocampus, and premotor cortex (Fig. 2B-D). No significant clusters 

were observed in the positive/unexpected direction (data not shown).  

 

CSF-Plasma tau comparison 

Peripheral measures of tau protein were of total-tau only, thus, we sought to compare the 

regional atrophy associated with plasma tau to that associated with CSF t-tau only. At p < 0.05 (FWE 

corrected), increased CSF t-tau was negatively associated with reduced GMD in the precuneus and 

temporal gyrus (Supplemental Fig. 2). However, the uncorrected results were used for comparison with 

the plasma tau results, as this threshold was used in the plasma tau analyses described above. Central 

and peripheral measures of tau protein were associated with GMD in some overlapping, but largely 

different brain regions. The temporal pole, fusiform, and angular gyrus were brain regions in which both 

increased CSF t-tau and plasma tau were associated with reduced GMD (Fig. 3A-D). As several reports 

have previously shown, increased CSF t-tau was associated with lower GMD in cortical structures known 

to be affected in persons with AD. However, as above, in the present study plasma tau was 

predominantly associated with subcortical structures. Within the Aβ+ subjects, no significant overlap 

was observed between the association of GMD with plasma tau and the association of GMD with CSF t-

tau (data not shown).  

 

Discussion 

 The main goal of this study was to determine if plasma tau was associated with cortical atrophy 

in a population at risk for AD or already manifesting signs of clinical  AD. We found increased plasma tau 

was negatively correlated with reduced GMD in several AD-specific brain regions, including the MTL and 

precuneus, as well as in the thalamus and striatum. Further investigation into only Aβ+ subjects also 

revealed an association between increased plasma tau levels and reduced GMD in MTL structures, the 

precuneus, and the premotor cortex. When the pattern of GM atrophy associated with increased plasma 

tau was compared to that associated with increased CSF t-tau, only small regions of overlap were 

observed in the temporal pole, fusiform, and angular gyrus. Otherwise, the central (i.e. CSF) and 

peripheral (i.e. plasma  levels of tau showed quite different associated patterns of atrophy. These 

findings suggest that plasma tau may reflect neurodegeneration in AD-specific regions and more 

generally.  

 The MTL is one of the first brain regions that shows  tau pathology and the earliest to 

degenerate in AD patients [10]. Thus, our observation that high plasma tau is associated with cortical 
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atrophy in several MTL structures including the parahippocampus and hippocampus across all subjects 

and in Aβ+ subjects suggests that this peripheral measure of tau may be reflective of CSF  and brain tau 

pathology as well as brain atrophy. We also observed a negative correlation between increased plasma 

tau and reduced GMD in the precuneus. A functional decline in the precuneus occurs early in the  course 

of AD, but tau deposition normally occurs in later stages. Specifically, the precuneus along with the 

hippocampus are both core components of the default mode network, an important functional resting-

state network that is impaired early in AD [11]. Thus, the atrophy in the precuneus associated with 

plasma tau could be reflective of structural deterioration in the default mode network early in AD.  

Even more striking was the inverse association of plasma tau with GMD in the thalamus and the 

striatum across all subjects, especially given that these areas are affected later in the disease course. 

These were the only brain regions that were also independent of diagnosis, suggesting that plasma tau 

may reflect neurodegeneration unrelated to AD diagnosis. Alternatively, in the Aβ+ subjects, the 

association of plasma tau and GMD in the parahippocampus and precuneus was independent of 

diagnosis. These findings suggest that plasma tau may be reflecting neurodegeneration specific to AD 

pathology. Taken together, the results independent of diagnosis suggests that plasma tau may be 

reflecting disease-specific neurodegeneration in different regions, with associated atrophy in AD-

relevant regions linked to AD pathology and associated atrophy in other regions potentially reflecting 

other pathology or a more general neurodegeneration. Studies evaluating plasma tau in other 

tauopathies may shed light on this hypothesis. 

Our initial hypothesis was that plasma tau and CSF t-tau would be related to similar regions of 

atrophy, especially if the two tau measures were truly reflective of AD neurodegeneration. 

Unexpectedly, plasma tau and CSF t-tau had very little overlap, with plasma tau mapping more to 

subcortical structures and CSF t-tau mapping more to cortical structures. Only small regions of overlap 

were observed in the temporal pole, fusiform, and angular gyrus. These results suggest that CSF and 

plasma measures of tau protein may reflect related but somewhat different pathological substrates of 

AD. This could be due to differences in the assays, tau isoforms detected by the assays, or in the 

variability of the measurements. There may also be differences in how tau, released from neurons, is 

cleared from brain interstitial fluid to CSF and plasma. Further work is needed to further elucidate the 

differences between plasma and CSF tau. 

One study limitation is the lack of a commensurate replicate data set. This tau quantification 

method is relatively new and hopefully independent data sets will become available. Additionally, 

accumulated p-tau is the main hallmark in AD and other tauopathies but there is not yet a technique for 

measuring p-tau in plasma, thus yielding a second limitation to this study. New techniques to assess p-

tau in plasma could be extremely beneficial. A third limitation is that our data is cross-sectional only. 

Longitudinal data would provide us the information needed to better assess changes in plasma tau over 

time and the association between changing plasma tau measures and rate of neurodegeneration. 

 In conclusion, high levels of plasma tau were associated with lower grey matter density in both 

AD-specific and non-AD-related brain regions. Future replication and longitudinal studies will be 

important to fully elucidate the contribution of plasma tau as a possible biomarker in AD and other 

tauopathies.  
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Table 1. Demographic and clinical characteristics.  

 

 CN MCI AD p-value 

N 166 174 168 - 

Age (years) 75.2 (5.1) 74.1 (7.6) 75.3 (7.3) 0.789 

Gender (M, F) 95, 71 115, 59 87, 81 0.025 

APOE ε4 (% ε4 positive) 27.1% 54% 67.9% <0.001 

MMSE 29.1 (1) 26.9 (1.8) 23.2 (2) <0.001 

CDR-SB 0 (0.1) 1.6 (0.9) 4.3 (1.6) <0.001 

Plasma tau 2.7 (1) 2.8 (1.2) 3.1 (1.3) 0.002 

CSF t-tau* 65.7 (24.7) 97.6 (48.6) 121.2 (52.4) <0.001 

CSF p-tau* 22.3 (10.5) 34.3 (16.2) 41.5 (18.5) <0.001 

Amyloid (-/+)** 59, 32 41, 116 5, 76 <0.001 

CN = cognitively normal; MCI = mild cognitive impairment; AD = Alzheimer’s disease; M = male; F = 

female; APOE = apolipoprotein; MMSE = mini-mental state exam; CDR-SB = clinical dementia rating-sum 

of boxes; CSF = cerebrospinal fluid. Mean +/- standard deviation. Significant p-values < 0.05 are 

italicized. 

*n = 91 CN, 158 MCI, 82 AD 

**missing 1 MCI and 1 AD 

Figure 1: Increased plasma tau is negatively correlated with reduced grey matter density (GMD) in the 

(A) parahippocampus, (B) precuneus, (C) striatum, and (D) thalamus. C and D represent the anatomic 

overlap (orange) of regions of GM atrophy associated with increased plasma tau using only age, gender, 

APOE e4 status, and total intracranial volume as covariates (yellow) and with the addition of diagnosis as 

a covariate (red). Results are displayed at p<0.001 (uncorrected) and k=100 voxels in all figures.  

Figure 2: Increased plasma tau is negatively correlated with reduced GMD in the amyloid positive 

subjects in the (A) hippocampus, (B) precuneus, (C) parahippocampus, and (D) BA 6 premotor cortex. B-

D also represent the anatomic overlap (orange) of regions of GM atrophy associated with increased 

plasma tau using only age, gender, APOE e4 status, and total intracranial volume as covariates (yellow) 

and with the addition of diagnosis as a covariate (red). Results are displayed at p<0.001 (uncorrected) 

and k=100 voxels in all figures.  

Figure 3: Anatomical overlap of GM atrophy (orange) associated with increased plasma tau (red) and 

that associated with increased CSF t-tau (yellow). Results are displayed at p<0.001 (uncorrected) and 

k=100 voxels in all figures.  

Supplemental Figure 1: Mean GMD in selected regions significant in the voxel-wise analysis across (A) 

diagnostic and (B) amyloid status. Covariates included in both models include age, gender, APOE e4 

status, and total intracranial volume. 

Supplemental Figure 2: Increased CSF total-tau is negatively correlated with reduced GMD in the (A-B) 

precuneus, (C) fusiform, and (D) BA21. Covariates included in the analysis were age, gender, APOE e4 

status, and total intracranial volume. Results are displayed at p<0.05 (FWE corrected) and at a threshold 

(k) of 100 voxels. 
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