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AbstractÑThis study explores the advantages of using a
different energy window for each individual annihilation photon
when estimating attenuation from scattered PET data. Several
studies have shown that scattered data can be used to reconstruct
the density distribution of the object, although they are limited
to simple phantoms and ideal energy measurements. We have
incorporated a realistic photon detection probability model into
our algorithm, as well as the dependence of attenuation on
photon energy. In the proposed method each detector can assign
a photon to either energy window. Preliminary results on point
source simulations have shown that using a different window for
each annihilation photon allows to derive spatial information on
both attenuation and activity distribution, and to isolate subsets
of scatter angles depending on the energy window pair used.
XCAT simulations demonstrated that it is possible to yield an
attenuation map from scattered PET data only and that MR
information can increase reconstruction accuracy. This method
can also compensate for errors typically introduced from the
MRAC, such as truncation artifacts.

I. I NTRODUCTION

A TTENUATION correction represents one of the major
challenges to be faced in hybrid PET/MRI systems, as

the MR signal is not directly correlated to tissue attenuation.
Several attempts have been made to estimate attenuation co-

efÞcients solely derived from the PET emission data, including
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the MLAA approach proposed by Nuytset al. [1], known as
maximum likelihood reconstruction of attenuation and activity
(MLAA) . Nevertheless, reconstruction algorithms that only
consider coincidences detected with a conventional energy
window, and without the availability of time-of-ßight (TOF),
suffer from cross-talk between attenuation and emission data
resulting from reconstruction, and a scaling problem between
the reconstructed and the true activity distribution [2].

Motivated by the fact that attenuation in PET is mainly due
to Compton scattering, and that scatter events represent up to
40% of the total recorded PET coincidences [3], several groups
have investigated the possibility of using scattered data as an
additional source of information to overcome reconstruction
ambiguities [4], [5]. These attempts share common roots
with SPECT studies, and extend earlier suggestion of using
individual photon energies [6].

Although scattered data have been successfully used to
reconstruct attenuation map in SPECT [7], [8], this is still
at an early stage of development in PET. Current techniques
have shown good results with point-sources and simple 2D
phantoms, and rely on good-to-perfect energy resolution [9]Ð
[12].

The idea of deriving quantitative information from scatter
relies on the possibility of estimating scattering angles through
photon energy measurements. This explains why energy un-
certainty represents one of the main limitations when dealing
with scattered data, since trace back to the scatter angle
given the detected energy is straightforward only if energy
measurements are perfect.

In this work we therefore aim to demonstrate the beneÞts
of using a different energy window for each individual annihi-
lation photon to perform attenuation estimation when dealing
with realistic energy measurements.

The current study is restricted to single scatter events.

II. M ETHOD

A. Energy Based Single Scatter Model

According to the Single Scatter Simulation (SSS) algorithm
[13], given two detectors A and B and a scatter point S, two
different contributions must be considered when evaluating the
expected number of scattered counts, depending on which side
of the scatter point the emission point lies (1).
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Fig. 1. Scattered coincidence with emitter located on AS side.

ILOR,S = I⇤AS + I⇤BS (1)

When a scattered coincidence with the emitter located on
AS side occurs (Fig. 1), the scattered photon is detected at
detector A. Detector B, instead, collects the scattered photon,
which has a lower energy E�, that depends on the scattered
angle✓S . The reverse situation arises when emitters are located
on BS side.

Considering that these two events can be discriminated
based on the individual energy of the photons, measuring both
photon energies with the same energy window is suboptimal.

Ideally, to have the highest probability of detection, and
therefore the highest amount of counts, one would want to
measure the event shown in Fig. 1 with a lower energy window
in B and an upper energy window in A. We will refer to
this case as UL, and vice versa as LU. Furthermore, the UU
notation corresponds to the situation when the two photons are
detected with the same upper energy window, and LL with the
lower one.

Each of the four conÞgurations provides different informa-
tion. To investigate this, we extended the SSS model to a
multiple energy window scenario, assuming that each detector
can assign a photon to either energy window.

As a result, for a givenLORAB and an energy window pair
w, y, the total amount of expected scatter counts is given by:

øgwy(�, µ) =
P

NS

n=1

(
✏w(511)✏y(E(✓Sn ))I⇤ASnB+

✏w(E(✓Sn ))✏y(511)IASn⇤B

) (2)

where✏ is the detection probability,NS is the total number of
scatter points,w andy are the energy windows and✓S is the
scatter angle.

The detection probability has been modeled as a Gaussian
function ✏ = f (E, r, ew), which depends on incident photon
energyE, energy resolutionr and energy windowew.

Software implementing this model was written, based on
the scatter implementation in STIR [14].

B. Forward Model Investigation - Preliminary Study

In order to investigate what kind of information can be
derived from each sinogram, we did a preliminary study on a

Fig. 2. From left to right: point-source phantom (a), XCAT emission image
(b), XCAT attenuation image (c)

simple phantom made of two identical point-source emitters,
symmetric with respect to the attenuation source, as shown
in Fig.2a. XCAT [15] phantom (Fig.2b,2c) simulations were
used to investigate outcomes for more realistic imaging data.
XCAT images used were 77x77x15 with a voxel dimension
of 0.6258x0.6258x0.675cm3.

Simulations have been performed by using Siemens ECAT
931 and Siemens mMR scanner geometric characteristics, with
a simulated energy resolution of 16% at 511 keV. Results
refer to a lower energy window of 350-400 keV and an
upper window of 500-550 keV, except where stated otherwise.
Simulation inputs, outputs and scatter are 3-D; for purpose of
presentation, only one slice is displayed.

C. Energy Based Transmission Maximum Likelihood

An energy based transmission tomography maximum like-
lihood (MLTR-EB) algorithm has been developed to es-
timate attenuation from scattered data. Reconstruction has
been performed by relying on the L-BFGSB-B algorithm
[16] (limited-memory Broyden-Fletcher-Goldfarb-Shanno with
boundary constraints), which requires an explicit formulation
of the log-likelihood �(µ) and its gradient5�(µ), which
has been analytically derived from the forward model and
then implemented in STIR. The implementation uses caching
and other techniques in order to signiÞcantly reduce the
computational time both in the likelihood and the gradient
calculation. The gradient implementation has been validated
with Þnite differences.

Starting from a guessµ0, the reconstruction algorithm
attempts to recover aµ-map which is as close as possible
to µtrue:

µ = arg max
µ�0

�(g | �, µ) (3)

where�(g | �, µ) represents the log-likelihood function of the
measured scattered datag.

At the moment the reconstruction algorithm uses segment
0 only, but it can be easily extended to other segments.

In the reconstruction simulations the lower energy window
range has been set to L=350-460keV and an the upper energy
window has been set to U=460-570keV. A single energy
window O=350-570keV has been also investigated as a com-
parison.

Poisson noise has been added to simulated data.
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Fig. 3. Single scatter sinograms obtained with different energy window
simulations.Note the different maxima used for color scale.

Fig. 4. Sinograms corresponding to three different lower energy windows.

III. R ESULTS

A. Point Source Simulations

Fig. 3 visualizes scatter sinograms obtained for the point
sources phantom. When the same energy window is used for
both detectors, only a very small amount of counts is detected
in the lower energy window LL (Fig. 3c), while the UU
window (Fig. 3b), only detects scatter angles close to zero.

On the other hand, UL (Fig. 3a) and LU (Fig. 3d) out-
comes shows two key advantages: the number of counts is
signiÞcantly increased over LL, and two different sinograms
can be obtained (with each giving spatial information on one
of the emission point sources), indicating that some additional
information on the annihilation position lies in scatter coinci-
dences.

We also observed that by varying the lower energy window,
it is possible to select counts from different scattering angles
(Fig. 4).

B. MLTR-EB Reconstruction

The iterative reconstruction algorithm requires an initial
guess of the attenuation map to estimate. Therefore, we
Þrstly chose a uniform phantom as initialization image, which
corresponds to the case where no anatomical information are
available.

With a low level of noise (number of counts = 1.4E+08) both
LL and UL+LU seem to be able to estimate an attenuation map
from scattered data, even though with a low spatial resolution
(Fig. 5).

However, when initializing from the MRAC (no arms, 20%
lower lung attenuation coefÞcient), the reconstructed image
shows detailed anatomical information as well as a higher
spatial resolution.

The reconstruction method is also able to recover the arms,
that were absent in the initialization and to compensate for
errors due to the wrong assignment of population based density
values in the lung.

Fig. 5. Reconstructed attenuation map from different initialization for two
energy window pairs. Low noise.

Fig. 6. Attenuation recovery in the arms and in the lung for LL and UL+LU
energy window pairs.

We therefore investigated the attenuation recovery in two
different regions of interest respectively in the lung and in the
arms, and both energy window conÞguration seems to lead to
quantitative accurate results (Fig. 6).

Simulations with a higher level of noise (number of counts
= 1.4E+07) show that the LL performance decreases tremen-
dously, and this can be explained with the small amount of
counts that this energy window pair detects.

By contrast, the UL+LU performance remains quite stable
even in a high noise scenario (Fig. 7).

As a further investigation, we assessed the effects on quan-
tiÞcation when accurate anatomical information are available.
Fig. 8 shows results relative to ROIs respectively in the
mediastinum and the lung.

Without any anatomical information, the estimated atten-
uation value overall approaches the ground truth over the
iterations, and the UL+LU conÞguration (red curve) has the
best performance. The LL pair (blue curve) remains quite far

Fig. 7. Reconstructed attenuation map from different initialization for two
energy window pairs. High noise.



4

Fig. 8. Attenuation recovery in two different ROIs (mediastinum -Þrst row-
and lung -second row-),without anatomical information - Þrst column, and
with anatomical information - second column

from the ground truth, according to what has been shown
with images. The single energy window (yellow curve) has
been added as a comparison, and seems to have a similar
performance to UL+LU.

When adding anatomical information, and therefore initial-
izing from reasonable values, the reconstruction performance
improves considerably.

IV. CONCLUSION

Scatter coincidences yield information on the emission and
attenuation images even when dealing with realistic energy
measurements. Detection probability and SNR strongly depend
on the energy window selection.

Results from simulations show that it is possible to obtain
an attenuation map from scattered PET data only, albeit with
a low spatial resolution. Adding MR information makes it
possible to improve the spatial resolution and to see accurate
anatomical features in the reconstructed image.

The current study is limited to single scatter only, whereby
the lower energy window would likely have to be chosen to
avoid too large contributions of multiple scatter at very low
energies. We expect that multiple scatter events will contribute
more to the lower energy window-pair (LL).

Another limitation of this study is that the simulation only
included coincidence where one of the photons scattered. In
practice, the presence of unscattered counts will need to be
taken into account via a modiÞcation of the forward model
and its gradient.

This work motivates incorporation of multiple energy win-
dow pairs into a joint emission and attenuation estimation
algorithm as future work.
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