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1. Playing Field

Let M be a connected 4-manifold without boundary. We will work with 2-columns

v : M → C
2 of complex-valued half-densities (a half-density is a quantity which

transforms as the square root of a density under changes of local coordinates).

The inner product on such 2-columns is defined as 〈v, w〉 :=
∫
M
w∗v dx, where

x = (x1, x2, x3, x4) are local coordinates, dx = dx1dx2dx3dx4 and the star stands

for Hermitian conjugation.

Let L be a formally self-adjoint first order linear differential operator acting on

2-columns of complex-valued half-densities. Our initial objective will be to examine

the geometric content of the operator L. In order to pursue this objective we first

need to provide an invariant analytic description of the operator.

In local coordinates our operator reads

L = Fα(x)
∂

∂xα
+G(x), (1)

where Fα(x), α = 1, 2, 3, 4, and G(x) are some 2×2 matrix-functions. The principal

and subprincipal symbols of the operator L are defined as

Lprin(x, p) := iFα(x) pα , (2)

Lsub(x) := G(x) +
i

2
(Lprin)xαpα(x) , (3)

where p = (p1, p2, p3, p4) is the dual variable (momentum); see Ref. 3. The principal

and subprincipal symbols are invariantly defined 2× 2 Hermitian matrix-functions

on T ∗M and M respectively which uniquely determine the operator L.

Further on in this paper we assume that the principal symbol of our operator

satisfies the following non-degeneracy condition:

Lprin(x, p) �= 0, ∀(x, p) ∈ T ∗M \ {0}. (4)

Condition (4) means that the elements of the 2 × 2 matrix-function Lprin(x, p) do

not vanish simultaneously for any x ∈M and any nonzero momentum p.
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2. Lorentzian Metric and Orthonormal Frame

Observe that the determinant of the principal symbol is a quadratic form in the

dual variable (momentum) p :

detLprin(x, p) = −gαβ(x) pαpβ . (5)

We interpret the real coefficients gαβ(x) = gβα(x), α, β = 1, 2, 3, 4, appearing in

formula (5) as components of a (contravariant) metric tensor.

The following result was established in Ref. 2.

Lemma 2.1. Our metric is Lorentzian, i.e. it has three positive eigenvalues and

one negative eigenvalue.

Furthermore, the principal symbol of our operator defines an orthonormal frame

ej
α(x). Here the Latin index j = 1, 2, 3, 4 enumerates the vector fields, the Greek

index α = 1, 2, 3, 4 enumerates the components of a given vector ej and orthonor-

mality is understood in the Lorentzian sense:

gαβ ej
αek

β =

⎧⎪⎪⎨⎪⎪⎩
0 if j �= k,

1 if j = k �= 4,

−1 if j = k = 4.

(6)

The orthonormal frame is recovered from the principal symbol as follows. De-

composing the principal symbol with respect to the standard basis

s1 =

(
0 1

1 0

)
, s2 =

(
0 −i
i 0

)
, s3 =

(
1 0

0 −1
)
, s4 =

(
1 0

0 1

)
in the real vector space of 2× 2 Hermitian matrices, we get Lprin(x, p) = sjcj(x, p).

Each coefficient cj(x, p) is linear in momentum p, so cj(x, p) = ej
α(x) pα .

The existence of an orthonormal frame implies that our manifold M is paral-

lelizable. We see that our analytic non-degeneracy condition (4) has far reaching

geometric consequences.

3. Gauge Transformations and Covariant Subprincipal Symbol

Let us consider the action (variational functional)
∫
M
v∗(Lv) dx associated with

our operator. Take an arbitrary smooth matrix-function

R : M → SL(2,C) (7)

and consider the following transformation of our 2-column of unknowns:

v �→ Rv. (8)

We interpret (8) as a gauge transformation because we are looking here at a change

of basis in our vector space of unknowns v : M → C
2.
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The transformation (8) of the 2-column v induces the following transformation

of the action:
∫
M
v∗(Lv) dx �→ ∫

M
v∗(R∗LRv) dx . This means that our 2 × 2

differential operator L experiences the transformation

L �→ R∗LR . (9)

This section is dedicated to the analysis of the transformation (9).

Remark 3.1. We chose to restrict our analysis to matrix-functions R(x) of deter-

minant one, see formula (7), because we want to preserve our Lorentzian metric

defined in accordance with formula (5).

Remark 3.2. In non-relativistic theory one normally looks at the transformation

L �→ R−1LR (10)

rather than at (9). The reason we chose to go along with (9) is that we are thinking

in terms of actions and corresponding Euler–Lagrange equations rather than opera-

tors as such. We believe that this point of view makes more sense in the relativistic

setting. If one were consistent in promoting such a point of view, then one would

have had to deal with actions throughout the paper rather than with operators. We

did not adopt this ‘consistent’ approach because this would have made the paper

difficult to read. Therefore, throughout the paper we use the concept of an oper-

ator, having in mind that we are really interested in the action and corresponding

Euler–Lagrange equation.

Remark 3.3. The transformations (9) and (10) coincide if the matrix-function

R(x) is special unitary. Applying special unitary transformations is natural in

the non-relativistic 3-dimensional setting when dealing with an elliptic system, see

Ref. 1, but in the relativistic 4-dimensional setting when dealing with a hyperbolic

system special unitary transformations are too restrictive.

The transformation (9) of the differential operator L induces the following trans-

formations of its principal (2) and subprincipal (3) symbols:

Lprin �→ R∗LprinR , (11)

Lsub �→ R∗LsubR+
i

2
(R∗

xα(Lprin)pαR− R∗(Lprin)pαRxα) . (12)

Comparing formulae (11) and (12) we see that, unlike the principal symbol, the

subprincipal symbol does not transform in a covariant fashion due to the appearance

of terms with the gradient of the matrix-function R(x).

It turns out that one can overcome the non-covariance in (12) by introducing

the covariant subprincipal symbol Lcsub(x) in accordance with formula

Lcsub := Lsub +
i

16
gαβ{Lprin, adjLprin, Lprin}pαpβ

, (13)
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where {F,G,H} := FxαGHpα − FpαGHxα is the generalised Poisson bracket on

matrix-functions and adj is the operator of matrix adjugation

F =

(
a b

c d

)
�→

(
d −b
−c a

)
=: adjF (14)

from elementary linear algebra.

The following result was established in Ref. 2.

Lemma 3.1. The transformation (9) of the differential operator induces the trans-

formation Lcsub �→ R∗LcsubR of its covariant subprincipal symbol.

Comparing formulae (3) and (13) we see that the standard subprincipal sym-

bol and covariant subprincipal symbol have the same structure, only the covariant

subprincipal symbol has a second correction term designed to ‘take care’ of special

linear transformations in the vector space of unknowns v : M → C
2. The standard

subprincipal symbol (3) is invariant under changes of local coordinates (its elements

behave as scalars), whereas the covariant subprincipal symbol (13) retains this fea-

ture but gains an extra SL(2,C) covariance property. In other words, the covariant

subprincipal symbol (13) behaves ‘nicely’ under a wider group of transformations.

4. Electromagnetic Covector Potential

The covariant subprincipal symbol can be uniquely represented in the form

Lcsub(x) = Lprin(x,A(x)), (15)

where A = (A1, A2, A3, A4) is some real-valued covector field. We interpret this

covector field as the electromagnetic covector potential.

Lemma 3.1 and formulae (11) and (15) tell us that the electromagnetic covector

potential is invariant under gauge transformations (9).

5. Adjugate Operator

Definition 5.1. The adjugate of a formally self-adjoint non-degenerate first

order 2× 2 linear differential operator L is the formally self-adjoint non-degenerate

first order 2 × 2 linear differential operator AdjL whose principal and covariant

subprincipal symbols are matrix adjugates of those of the operator L.

We denote matrix adjugation by adj , see formula (14), and operator adjugation

by Adj . Of course, the coefficients of the adjugate operator can be written down

explicitly in local coordinates via the coefficients of the original operator (1), see

Ref. 2 for details.

Applying the analysis from Sections 2–4 to the differential operator AdjL it is

easy to see that the metric and electromagnetic covector potential encoded within

the operator AdjL are the same as in the original operator L. Thus, the metric

and electromagnetic covector potential are invariant under operator adjugation.

It also easy to see that AdjAdjL = L, so operator adjugation is an involution.
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6. Main Result

We define the Dirac operator as the differential operator

D :=

(
L mI

mI AdjL

)
(16)

acting on 4-columns ψ =
(
v1 v2 w1 w2

)T
of complex-valued half-densities. Here

m is the electron mass and I is the 2× 2 identity matrix.

The ‘traditional’ Dirac operator Dtrad is written down in Appendix A of Ref. 2

and acts on bispinor fields ψtrad =
(
ξ1 ξ2 η1̇ η2̇

)T
. Here we assume, without loss

of generality, that the orthonormal frame used in the construction of the operator

Dtrad is the one from Section 2.

Our main result is the following theorem established in Ref. 2.

Theorem 6.1. The two operators, our analytically defined Dirac operator (16) and

geometrically defined Dirac operator Dtrad , are related by the formula

D = | det gκλ|1/4Dtrad | det gμν |−1/4 . (17)

Consider now the two Dirac equations

Dψ = 0, (18)

Dtradψtrad = 0. (19)

Formula (17) implies that the solutions of equations (18) and (19) differ only by a

prescribed scaling factor: ψ = | det gμν |1/4 ψtrad . This means that for all practical

purposes equations (18) and (19) are equivalent.

7. Spin Structure

Let us consider all possible formally self-adjoint non-degenerate first order 2 × 2

linear differential operators L corresponding, in the sense of formula (5), to the pre-

scribed Lorentzian metric. In this section our aim is to classify all such operators L.

Let us fix a reference operator L and let ej be the corresponding orthonormal

frame (see Section 2). Let L be another operator and let ej be the corresponding

orthonormal frame. We define the following two real-valued scalar fields

c(L) := − 1

4!
(e1 ∧ e2 ∧ e3 ∧ e4)κλμν (e1 ∧ e2 ∧ e3 ∧ e4)

κλμν , t(L) := − e4α e4
α .

Observe that these scalar fields do not vanish; in fact, c(L) can take only two values,

+1 or −1. This observation gives us a primary classification of operators L into

four classes determined by the signs of c(L) and t(L). The four classes correspond

to the four connected components of the Lorentz group.

Note that

c(−L) = c(L), t(−L) = −t(L),
c(AdjL) = −c(L), t(AdjL) = t(L),
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which means that by applying the transformations L �→ −L and L �→ AdjL to a

given operator L one can reach all four classes of our primary classification.

Further on we work with operators L such that c(L) > 0 and t(L) > 0.

We say that the operators L and L̃ are equivalent if there exists a smooth matrix-

function (7) such that L̃prin = R∗LprinR. The equivalence classes of operators

obtained this way are called spin structures.

The above 4-dimensional Lorentzian definition of spin structure is an extension of

the 3-dimensional Riemannian definition from Ref. 1. The difference is that we have

now dropped the condition trLprin(x, p) = 0, replaced the ellipticity condition by

the weaker non-degeneracy condition (4) and extended our group of transformations

from special unitary to special linear.

One would hope that for a connected Lorentzian 4-manifold admitting a global

orthonormal frame (see (6) for definition of orthonormality) our analytic definition

of spin structure would be equivalent to the traditional geometric one. Unfortu-

nately, we do not currently have a rigorous proof of equivalence in the 4-dimensional

Lorentzian setting.
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