UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Distance construction and clustering of football player performance data

Akhanli, Serhat Emre; (2019) Distance construction and clustering of football player performance data. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of thesis.pdf]
Preview
Text
thesis.pdf - Accepted Version

Download (18MB) | Preview

Abstract

I present a new idea to map football players information by using multidimensional scaling and to cluster football players. The actual goal is to define a proper distance measure between players. The data was assembled from whoscored.com. Variables are of the mixed type, containing nominal, ordinal, count and continuous information. In the data pre-processing stage, four different steps are followed through for continuous and count variables: 1) representation (i.e., considerations regarding how the relevant information is most appropriately represented, e.g., relative to minutes played), 2) transformation (football knowledge as well as the skewness of the distribution of some count variables indicates that transformation should be used to decrease the effective distance between higher values compared to the distances between lower values), 3) standardisation (in order to make within-variable variations comparable), and 4) variable weighting including variable selection. In a final phase, all the different types of distance measures are combined by using the principle of the Gower dissimilarity (Gower, 1971). As the second part of this thesis, the aim was to choose a suitable clustering technique and to estimate the best number of clusters for the dissimilarity measurement obtained from football players data set. For this aim, different clustering quality indexes have been introduced, and as first proposed by Hennig (2017), a new concept to calibrate the clustering quality indexes has been presented. In this respect, Hennig (2017) proposed two random clustering algorithms, which generates random clustering points from which standardised clustering quality index values can be calculated and aggregated in an appropriate way. In this thesis, two new additional random clustering algorithms have been proposed and the aggregation of clustering quality indexes has been examined with different types of simulated and real data sets. In the end, this new concept has been applied to the dissimilarity measurement of football players.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Distance construction and clustering of football player performance data
Event: University College London
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Statistical Science
URI: https://discovery.ucl.ac.uk/id/eprint/10065964
Downloads since deposit
1,151Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item