
Fast Phonetic Similarity Search over
Large Repositories

Hegler Tissot, Gabriel Peschl, and Marcos Didonet Del Fabro

Federal University of Parana, C3SL Labs, Curitiba, Brazil
{hctissot,gpeschl,marcos.ddf}@inf.ufpr.br

Abstract. Analysis of unstructured data may be inefficient in the pres-
ence of spelling errors. Existing approaches use string similarity methods
to search for valid words within a text, with a supporting dictionary.
However, they are not rich enough to encode phonetic information to
assist the search. In this paper, we present a novel approach for effi-
ciently perform phonetic similarity search over large data sources, that
uses a data structure called PhoneticMap to encode language-specific
phonetic information. We validate our approach through an experiment
over a data set using a Portuguese variant of a well-known repository, to
automatically correct words with spelling errors.

Keywords: Phonetic Similarity, String Similarity, Fast Search

1 Introduction

A large amount of unstructured data is being produced by different kinds of
information systems [8], as free text from the medical records. String similarity
algorithms are used to identify concepts when text is loaded with misspellings [4].
Edit Distance (ED) [9] and Jaro-Winkler (JW) distance [14] are two well known
functions that can be used to compare the elements of some input data source
with an existing dictionary. Princeton WordNet (PWN) is a lexical database that
provides an intuitive combination of dictionary and thesaurus to support text
analysis [10]. However, PWN should be modified in order to support similarity
search.

The existing string similarity algorithms coupled with a supporting dictio-
nary may be very inefficient, in particular when the analyzed text has spelling
errors [11], because they do not necessarily handle application aspects related to
spelling errors. In these cases, it is necessary to use phonetic similarity metrics.
Phonetics are language-dependent [12] and solutions for this sort of problems
must be designed for each specific language. In addition, similarity algorithms
are often slow when executed over large databases, though fast search methods
have been implemented.

In this paper, we present an approach of fast phonetic similarity search
(FPSS) over large repositories. First, we define a novel string similarity met-
ric. Second, we present an indexed data structure called PhoneticMap, which

2 Hegler Tissot, Gabriel Peschl, and Marcos Didonet Del Fabro

is used by our novel fast similarity search algorithm. Finally, we integrate the
previous contributions with PWN to implement the fast phonetic search. We
validate our approach through an experiment in which we try to promote an
automatic correction of spelling errors using the Portuguese language.

This article1 is organized as follows: Section 2 proposes a method to search
for phonetic similarities; Section 3 describes the experiments; Section 4 refers to
the related work and Section 5 concludes with final remarks and future work.

2 Fast Phonetic Similarity Search

In this section we describe our approach to perform fast phonetic similarity
search. We present novel string and phonetic similarity functions that uses
PhoneticMaps to support finding similar words in the PWN repository.

2.1 String Similarity

We present a novel algorithm to calculate string similarity. The Stringsim func-
tion illustrated in Figure 1 measures the similarity between two input strings
w1 and w2, resulting a similarity value between 0 (completely different) and 1
(exactly equal).

in: String w1, String w2

out: Number similarity

1: g1 ← CharsFound(w1, w2);
2: g2 ← CharsFound(w2, w1);
3: Ω ← 0.975;

4: p1 ← ΩPositionPenalty(w1,w2);

5: p2 ← ΩPositionPenalty(w2,w1);
6: similarity ← avg(g1 × p1, g2 × p2);
7: Υ ← 0.005;
8: SMAX ←MAX(length(w1), length(w2));
9: smin ← min(length(w1), length(w2));

10: if (SMAX > smin) then
11: b← 1 + (SMAX − smin)× Υ ;
12: f ← ln(SMAX − smin + 1);

13: c← SMAX−smin
2

;
14: similarity ← similarity × (1

(bf)c
);

15: end if;
16: return similarity;

Fig. 1. Stringsim: A proposed string similarity function pseudocode

1 Extended version at http://www.inf.ufpr.br/didonet/articles/2014_FPSS.pdf

Fast Phonetic Similarity Search over Large Repositories 3

Stringsim function calculates the average percentage between w1 characters
found in w2 and w2 characters found in w1 (lines 1–6). CharsFound(a, b) return
the number of characters of a found in b, not taking into account the characters’
position. For each character found in a different string position, a reduction
penalty is calculated based on the constant Ω (lines 3–5). PositionPenalty(p, q)
returns the number of characters of p found in q but not in the same string
position. Penalty calculated based on Ω guarantees, for example, that strings
“ba” and “baba” will NOT result a similarity = 1. When the lengths of both
strings (SMAX and smin) are different, there is a result adjustment in order to
provide another penalty in the similarity level, based on the difference on the
length of words and the factor Υ (lines 7–15). Ω (=0.975) and Υ (=0.005) were
manually adjusted after testing the proposed function in an application that
searches for similar names of people and companies.

2.2 Phonetic Similarity

When considering phonemes, a straightforward string comparison of characters
may not be enough. In order to support indexing phonemes for a fast search, we
present a structure called PhoneticMap and we define the PhoneticMap Simi-
larity. Given a word w, the generic function PhoneticMap(w) results a Phonet-
icMap tuple M = (w,P,D), where: w is the word itself, P = {p1, p2, . . . , pn} is
a set of n phonetic variations of word w, and D = {d1, d2, . . . , dn} is a set of n
definitions, where di is the definition of variation pi. Given two PhoneticMaps
M1 and M2, PhoneticMapSim(M1,M2) is a generic function that results a
similarity value (ranging from 0=different to 1=equal) between M1 and M2.

PhoneticMap(w) and PhoneticMapSim(M1,M2) are language-dependent.
We develop two variations to support the Portuguese language. The function
PhoneticMapPT (w) returns a map of 11 entries that encodes phonetic infor-
mation. Table 1 describes a PhoneticMap generated for a Portuguese word.
The function PhoneticMapSimPT (M1,M2) calculates the phonetic similarity
between PhoneticMaps M1 and M2 as the string similarity weighted average
between some phonetic variations of M1 and M2 (Formula 1), where: a) Sw =
Stringsim((M1.w,M2.w), and b) S(i) = Stringsim((M1.pi,M2.pi). We manually
adjusted weights used in PhoneticMapSimPT , in order to give more importance
to similarities of consonant phonemes.

1× Sw + 2× S(1) + 5× S(2) + 1× S(3) + 3× S(5) + 2× S(7) + 2× S(9)

1 + 2 + 5 + 1 + 3 + 2 + 2
(1)

2.3 Phonetic Search

To perform a fast phonetic similarity search (FPSS), we propose a method for
indexing PhoneticMaps (using single column indexes in a relational database)
and phonetically searching the words. FPSS must locate phonetically similar
words in the repositories based on the indexed phoneme variations, returning not

4 Hegler Tissot, Gabriel Peschl, and Marcos Didonet Del Fabro

Table 1. PhoneticMapPT (”arrematação”)

Entry i Definition di Phonetic variation pi

w Word arrematação
1 Word with no accents arrematacao
2 Word phonemes aRematasao
3 Vowel phonemes only aeaaao
4 Vowel phonemes (reverse) oaaaea
5 Consonant phonemes Rmts
6 Consonant phonemes (reverse) stmR
7 Articulation manner EABC
8 Articulation manner (reverse) CBAE
9 Articulation point FACD
10 Articulation point (reverse) DCAF

only similar words but also the similarity level of each one. Given a word w and a
minimum desirable similarity level l, PhoneticSearch(w, l) is a generic function
that results a set of tuples (r, s), where r is a phonetically similar word, and s
is the similarity level resulted between PhoneticMap(w) and PhoneticMap(r),
where s ≥ l. Similarity level ranges from 0 to 1. We develop PhoneticSearchPT

function, an extended version of the PhoneticSearch function. Figure 2 shows
PhoneticSearchPT pseudocode2.

PhoneticSearchPT returns a set of similar words in Portuguese for a given
input word w, considering the minimum desirable similarity level l. Additional
parameters p and s set the number of extended consonant phonemes that can
be considered as prefix and suffix when searching for similar words. p and s
have default values 0 (zero). When p > 0, then PhoneticSearchPT uses the
reverse indexed PhoneticMaps entries to locate similar words (entries 4, 6, 8
and 10 described in Table 1). Function DBPhoneticMapSearch(i, v, e) finds
records in the PhoneticMap table, searching for PhoneticMap entry i equals
to value v (exact match), or entry i like value v with up to e characters added
(“like” match), when e > 0. PhoneticSearchPT results a exact match when
l = 1 (lines 2–3). Otherwise, it creates a dataset combining results of different
DBPhoneticMapSearch executions (line 5). In lines 6–8, phonetic variations 4,
6, 8, and 10 are used whether it is necessary to perform search over the reverse
PhoneticMap entries (p > 0). After creating a result set of candidate words, the
phonetic similarity between each found word and the search word is calculated
(line 10). Words that does not satisfy the minumum similarity level l are removed
from the result set (lines 10-11).

2 The approach is presented as an instance of Portuguese language. However, it is
tailored to be adapted for different languages, as English and Spanish.

Fast Phonetic Similarity Search over Large Repositories 5

in: String w, Number l, Integer p, Integer s
out: Dataset result

1 : pm← PhoneticMapPT (w);
2 : if l = 1 then
3 : result← DBPhoneticMapSearch(0, pm.w);
4 : else;
5 : result←

DBPhoneticMapSearch(1, pm.p1) ∪
DBPhoneticMapSearch(2, pm.p2) ∪
DBPhoneticMapSearch(3, pm.p3, s) ∪
DBPhoneticMapSearch(5, pm.p5, s) ∪
DBPhoneticMapSearch(7, pm.p7, s) ∪
DBPhoneticMapSearch(9, pm.p9, s);

6 : if p > 0 then
7 : result← result ∪

DBPhoneticMapSearch(4, pm.p4) ∪
DBPhoneticMapSearch(6, pm.p6, p) ∪
DBPhoneticMapSearch(8, pm.p8, p) ∪
DBPhoneticMapSearch(10, pm.p10, p);

8 : end if;
9 : foreach (fWord in result)

10 : if PhoneticMapSimPT (pm,PhoneticMapPT (fWord))
< l then

11 : result.remove(fWord);
12 : end if;
13 : end if;
14 : return result;

Fig. 2. PhoneticSearchPT pseudocode

3 Experiments

In this section we describe the experiments conducted to validate our approach.
First, we compare our string similarity algorithms with two well-known ones.
Second, we compare the performance of our full search method with a search
using the indexed PhoneticMaps.

3.1 String Similarity

We performed an experiment to verify the efficiency of Stringsim in automatic
error correction compared with other functions. We extracted a set of 3,933 words
containing spelling errors from a sample of medical record texts in Portuguese.
Each word was manually annotated with the correct spelling form (reference
words). We used the Stringsim function to search for the 10 most similar words
for each incorrect word, based on the returned similarity values. We used a
Portuguese version of PWN dictionary containing 798,750 distinct words. The
resultsets for each word were ranked from 1 (most similar) to 10 (less similar). We

6 Hegler Tissot, Gabriel Peschl, and Marcos Didonet Del Fabro

store the rank in which each reference word is found in each resultset. The two
previous steps were repeated using Edit Distance (ED) and Jaro-Winkler (JW)
functions. Lastly, we compared the results of Stringsim against ED and JW, as
shown in Table 2. Stringsim had more reference words with top-1 ranking, which
is the objective of the approach. In 75.5% of cases (2,970 words), both functions
find the reference word in the dictionary as a top-1 ranking (the most similar).
For the remaining cases, Stringsim performs better (finds the reference word in
a better rank) than ED in 16.9% of cases (666 searches with better ranking)
while ED is better than Stringsim in only 5.8% (230 searches). These results are
similar to those found when comparing Stringsim against Jaro-Winkler function.

Table 2. Stringsim (SS) x Edit Distance (ED)

SS ED Rank Not
Rank 1 2 3 4-5 6-10 Found

1 2970 420 51 30 25 26
2 127 51 37 15 18 13
3 32 12 8 8 3 7

4-5 17 8 7 4 6 3
6-10 14 1 2 4 4 0

Not Found 2 0 0 1 1 6

3.2 Full and Fast Similarity Search

We compared the performance of full and fast similarity search methods. One
PhoneticMap for each PWN entry (798,750 words) and 11 single-column indexes
were created – one for the Word entry and one for each of the 10 phonetic
variations in the PhoneticMap. The same set of 3,933 were used. A Full Search
was executed – each input word was compared with each dictionary entry using
the Stringsim (Figure 1), searching for words with a similarity level ≥ 0.8; the
spent search time and the number of found words were computed in the result
– PhoneticMapSimPT function was not used in the Full Search due to its high
processing time (60 seconds in average). A Fast Search was executed – each
input word was submitted twice to PhoneticSearchPT , with two different set
of parameters: a) similarity level ≥ 0.9, and parameters p and s both equal to
0 (similar words might have the same number of consonant phonemes); and b)
similarity level ≥ 0.8, and parameters p and s both equal to 1 (similar words
could have one additional consonant phonemes as prefix or suffix); Full Search
and Fast Search results were compared based on the total amount of spent time
to execute each search, and the number of words obtained in the result.

Fast Phonetic Similarity Search over Large Repositories 7

3.3 Comparing Results

We observed that Fast Search can be 10-30 times faster than Full Search. Al-
though a Full Search is complete in terms of the resulting words, both search
methods did not use the same similarity function, and they do not return the
same number of similar words. Even with a different result in the fast method,
PhoneticSearchPT is able to find the reference word for each spelling error. Ta-
ble 3 compares accuracy between Stringsim (SS) and PhoneticSearchPT (PS).
In 80.6% of cases (3.170 words), both functions find the reference word as a top-1
ranking. Stringsim performs better in 10.2% of cases (402 searches) while PS is
better in 8.1% (317 searches).

Table 3. PhoneticSearchPT x Stringsim

PS SS Rank Not
Rank 1 2 3 4-5 6-10 Found

1 3170 189 50 31 14 5
2 143 37 10 7 1 0
3 57 13 1 2 0 1

4-5 46 9 6 4 5 0
6-10 47 6 0 0 2 1

Not Found 59 7 3 1 3 3

4 Related Work

Edit Distance (ED) (or Levenshtein Distance) [9] calculates the minimum num-
ber of operations (single-character edits) required to transform string w1 into w2.
ED can be also normalized to calculate a percentage similarity instead of the
number of operations needed to transform one string to another. Jaro-Winkler
[3] is another example of string distance function. [5] presents a survey with
the existing works on text similarity. [3] compares different string distance met-
rics for name-matching tasks, including edit-distance like functions, token-based
distance functions and hybrid methods. In addition, other examples of string
similarity functions can be found in the literature, as in [7, 13, 1]. Soundex is a
phonetic matching scheme initially designed for English that uses codes based
on the sound of each letter to translate a string into a canonical form of at most
four characters, preserving the first letter [15]. As the result, phonetically simi-
lar entries will have the same keys and they can be indexed for efficient search
using some hashing method. However, Soundex fails to consider only the initial
portion of a string to generate the phonetic representation, which impairs the
phonetic comparison when words have more than 4-5 consonants [6]. Fast Sim-
ilarity Search [2] is an ED-based algorithm designed to find strings similarities
in a large database.

8 Hegler Tissot, Gabriel Peschl, and Marcos Didonet Del Fabro

5 Conclusions and Future Work

We presented an approach of fast phonetic similarity search coupled with an ex-
tended version of the WordNet dictionary. Our main contribution is the definition
of an indexed structure, called PhoneticMap that stores phonetic information to
be used by a novel string similarity search algorithm. The experiments showed
that the algorithm has good precision results and that it executes faster than one
version not using th PhoneticMap. We also presented a string similarity algo-
rithm based on the notion of penalty. We plan to use our solution to address the
problem of dealing with spelling errors in an information extraction system. We
also plan to explore methods to optimally tune the parameters involved in the
proposed hybrid similarity metrics, and adapt it to other languages, as English
and Spanish.

Acknowledgments: This work is partially financed by CAPES.

References

1. Allison, L., Dix, T.I.: A Bit-String Longest-Common-Subsequence Algorithm. In:
IPL, vol. 26, pp. 305–310 (1986)

2. Bocek, T., Hunt, E., Stiller, B., Hecht, F.: Fast similarity search in large dictionaries.
Department of Informatics, University of Zurich (2007)

3. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance met-
rics for name-matching tasks. In: IIWeb, pp. 73–78 (2003)

4. Godbole, S., Bhattacharya, I., Gupta, A., Verma, A.: Building re-usable dictionary
repositories for real-world text mining. In: CIKM, pp. 1189-1198. ACM (2010)

5. Gomaa, W.H., Fahmy, A.A.: A Survey of Text Similarity Approaches. In: IJCA,
vol. 68, pp. 13–18. Foundation of Computer Science, New York (2013)

6. Hall, P.A.V., Dowling, G.R.: Approximate String Matching. In: ACM Comput.
Surv., vol. 12, pp. 381–402. New York (1980)

7. Hamming, R.: Error Detecting and Error Correcting Codes. In: Bell System Tech-
nical Journal BSTJ, vol. 26, pp. 147–160 (1950)

8. Jellouli, I., Mohajir, M.E.: An ontology-based approach for web information extrac-
tion. In: CIST, pp. 5 (2011)

9. Levenshtein, V.I.: Binary codes capable of correcting insertions and reversals. Soviet
Physics Doklady, vol. 10, pp. 707–710 (1966)

10. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM, vol. 38, pp.
39–41. New York (1995)

11. Stvilia, B.: A model for ontology quality evaluation. First Monday, vol. 12 (2007)
12. Mann, V.A.: Distinguishing universal and language-dependent levels of speech per-

ception: Evidence from Japanese listeners’ perception of English. Cognition, vol. 24,
pp. 169 - 196 (1986)

13. Paterson, M., Dancik, V.: Longest Common Subsequences. In: 19th MFCS, pp.
127–142. Springer (1994)

14. Winkler, William E.: String Comparator Metrics and Enhanced Decision Rules
in the Fellegi-Sunter Model of Record Linkage. In: Proceedings of the Section on
Survey Research, 1990, S. 354–359

15. Zobel, J., Dart, P.W.: Phonetic String Matching: Lessons from Information Re-
trieval. In: SIGIR, pp. 166-172. ACM (1996)

