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Statement of translational relevance 

The clinical management of small cell lung cancer (SCLC) has remained largely unchanged for over 30 

years due in part to the lack of model systems that predict clinical outcomes.  SCLC prognosis 

remains dismal.  Our recent introduction of SCLC circulating tumor cell derived explant models (CDX) 

that can be generated from a simple patient blood draw before treatment and again after treatment 

upon disease relapse offers research opportunities to test new therapies and explore predictive 

biomarkers.  Here we report promising data in multiple CDX models that supports a combination of 

PARP and WEE1 inhibitors in SCLC that is superior in efficacy to standard of care chemotherapy.   We 

also identify a 'super-responder' CDX model that provides molecular insights into strategies for 

patient selection for this drug combination. 
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Abstract 

Purpose: Introduced in 1987, platinum-based chemotherapy remains standard of care for small cell 

lung cancer, a most aggressive, recalcitrant tumor.  Prominent barriers to progress are paucity of 

tumor tissue to identify drug targets and patient relevant models to interrogate novel therapies. 

Following our development of circulating tumour cell patient-derived explants (CDX) as models that 

faithfully mirror patient disease, here we exploit CDX to examine new therapeutic options for small 

cell lung cancer.  

Experimental Design:  We investigated the efficacy of the PARP inhibitor olaparib alone or in 

combination with the Wee1 kinase inhibitor AZD1775 in ten phenotypically distinct SCLC CDX in vivo 

and/or ex vivo. These CDX represent chemosensitive and chemorefractory disease including the first 

reported paired CDX generated longitudinally before treatment and upon disease progression.  

Results: There was a heterogeneous depth and duration of response to olaparib/AZD1775 which 

diminished when tested at disease progression.  However, efficacy of this combination consistently 

exceeded that of cisplatin/etoposide with cures in one CDX model.  Genomic and protein analyses 

revealed defects in homologous recombination repair and oncogenes that induce replication stress 

(such as MYC family members), predisposed CDX to combined olaparib/AZD1775 sensitivity though 

universal predictors of response were not noted. 

Conclusions: These preclinical data provide a strong rationale to trial this combination in the clinic 

informed by prevalent, readily accessed circulating tumor cell based biomarkers. New therapies will 

be evaluated in SCLC patients after first line chemotherapy and our data suggest that the 

combination of olaparib/AZD1775 should be used as early as possible and prior to disease relapse.  
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Introduction  

Small cell lung cancer (SCLC) is an aggressive and recalcitrant neuroendocrine tumor which 

metastasizes early (1). The 5 year survival rate for SCLC has been less than 5% for over 30 years, 

despite multiple phase I clinical trials with a variety of molecularly targeted agents. While platinum-

based therapies yield objective response rates in the majority of patients, this benefit is usually 

transient with relapse frequently occurring in less than one year from initial diagnosis (2). Recent 

large scale genome sequencing efforts have failed to identify recurrent actionable mutations in SCLC 

and the failure to improve survival rates has largely been attributed to the fact that few patients 

undergo surgery, and thus the amount of tissue available for research is limited and tumor biopsies 

at disease relapse after chemotherapy are rarely obtained (1).   

We recently reported the generation of CTC-derived explant (CDX) models in which circulating tumor 

cells from extensive stage SCLC patients are grown subcutaneously in immunocompromised mice 

(3). CDX models provide additional material to examine the biology of SCLC and serve as a robust 

and relevant preclinical pharmacology platform to examine the efficacy of new potential therapies.  

Importantly, the in vivo response to standard of care chemotherapy in CDX models closely resembles 

that of the corresponding donor patient, suggesting that preclinical results for experimental 

therapies may be more robust for translation to the clinic than conventional cell line-based 

xenografts. 

Proteomic profiling in lung cancer cell lines revealed elevated levels of poly (ADP-ribose) polymerase 

(PARP) specifically in SCLC (4). PARP is recruited to DNA single strand breaks (SSBs) where it 

PARylates multiple substrates including histones to facilitate the relaxation of chromatin, as well as 

itself. The auto-modification of PARP is required for its dissociation from DNA and subsequent 

repair. The mechanism of action for PARP inhibitors with single agent activity has been proposed to 

involve the trapping of PARP onto the DNA single-strand breaks preventing their repair and 

generating a potential block for cellular DNA replication (5,6).  An important consequence of this and 

the proposed basis of monotherapy activity is the generation of DNA double strand breaks (DSBs) 

that would normally be repaired by the Homologous Recombination Repair (HRR) pathway. In 

cancers with HRR deficiency, PARP trapping will result in significant genomic instability until it is no 

longer sustainable and tumor cell death results (7). Although deficiencies in the breast and ovarian 

cancer associated genes BRCA1 and BRCA2 are the most investigated examples of defective 

components of HRR that lead to increased PARP inhibitor activity, mutations in other HRR pathways 

genes, including ATM, ATR, and PALB2, can also convey sensitivity to PARP inhibitors (8). 
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Wee1 is a kinase that regulates both S-phase and G2/M progression by phosphorylating and 

inhibiting the cell cycle dependent kinases CDK2 and CDK1 respectively. Wee1 control of CDK2 

activity in S-phase is an important component of the replication stress response, whereas the 

control of CDK1 and the G2/M checkpoint is critical for ensuring proper DNA repair before initiating 

cell division (9). Initially, it was hypothesized that cells deficient for the tumor suppressor p53 were 

hyper-reliant on Wee1 function and the G2/M checkpoint, and that efficacy of the Wee1 inhibitors 

could be linked to TP53 status (10). Subsequent experiments revealed that this correlation was not 

universally true, although Wee1 inhibitor activity is still likely linked to G1/S checkpoint deficiencies 

in one form or another (11). Recent reports suggest that cells overexpressing potent oncogenes, 

such as MYC or CCNE1, that induce replication stress are also more sensitive to Wee1 inhibition, but 

again does not appear to be a universal pre-requisite for response (9). 

Given the potential for PARP inhibitors to induce S-phase damage and a subsequent dependency on 

Wee1 S-phase and G2/M checkpoint activities, coupled with the high mutagenic burden and 

proliferative rate of SCLC, we examined the efficacy of the PARP inhibitor olaparib and the Wee1 

inhibitor AZD1775 in our SCLC CDX models. The most important advantage of the CDX approach is 

the ability to assess biology and therapy responses not only in patient derived models generated at 

baseline prior to any treatment, but also in CDX derived from the same patient at disease 

progression after treatment. Here, we examine the novel combination of olaparib and AZD1775 for 

the first time in ‘paired’ CDX, providing a clinically relevant test-bed for the introduction of new 

therapeutic options following first line chemotherapy.    

Our studies reveal that SCLC CDX tumors exhibit a range of sensitivities to drugs targeting PARP and 

Wee1 as single agents, but with clear indications of enhanced efficacy when given in combination. 

Moreover, these studies have revealed the presence of previously unappreciated DNA damage 

response deficiencies in a subset of SCLC tumors. These results therefore provide a strong rationale 

for the clinical development of AZD1775 in combination with olaparib or other DNA damaging 

agents, as well as candidate biomarkers to explore in tandem towards a precision medicine approach 

for this disease. 
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Materials and methods 

Study design 

The primary goal of this study was to assess the efficacy of olaparib and AZD1775 montherapies, as 

well as the combination, in mouse models of SCLC.  Sample sizes (n = 7-11 mice per cohort) was 

determined to detect statistically a two-fold difference in tumor response between the various 

treatments. Once tumours reached enrollment size, animals were allocated to different cohorts via 

stratified randomization in which attempts were made to evenly distribute initial tumour volume 

sizes.  Data collection was stopped at ethical endpoints, including deterioration in health or when 

tumors reached ≥ four times the initial tumor volume at enrollment.  If animals became ill within 3 

days of enrollment, they were excluded from the experiment, regardless of which treatment they 

received.  No other data were excluded.   

CDX establishment 

CDX models were generated as previously described (3). Briefly, 10ml of peripheral blood was 

collected from SCLC patients into EDTA tubes in accordance with the ethically approved CHEMORES 

protocol (07/H1014/96), processed via RosetteSep CTC Enrichment Cocktail (15167, Stemcell 

Technologies), and resuspended in 100µl of a 1:1 solution of HITES medium and Matrigel (354234, 

BD Biosciences).  Cells were then subcutaneously implanted into flanks of 8-16 week old female 

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice (Charles River). All procedures were carried out in 

accordance with Home Office Regulations (UK) and the UK Coordinating Committee on Cancer 

Research guidelines and by approved protocols (Home Office Project license nos. 40-3306/70-8252 

and Cancer Research UK Manchester Institute Animal Welfare and Ethical Review Advisory Board).  

In a parallel patient blood sample, CTC burden was quantified via CellSearch according to 

manufacturer’s instructions. 

In vivo pharmacology studies 

Therapeutic studies were carried out essentially as previously described (3). 100,000 viable CDX cells 

in 100µl 1:1 RPMI:matrigel were injected subcutaneously into the right flank of procedure/treatment 

naïve, 8-10 week old (20-25g) female C.B-17/lcrHsd-PrkdcscidLystbg-J mice (Envigo). When tumors 

reached 150–250 mm3, they were allocated via stratified randomisation into cohorts to be treated 

each morning with vehicle(s), olaparib (50 mg kg-1 unless indicated otherwise), AZD1775 (120 mg kg-

1), the combination, or topotecan using tolerated dosing regimens previously shown to optimally 

achieve target inhibition. Olaparib (AstraZeneca) was formulated at 10 mg ml-1 in 10% DMSO/30% 

KLEPTOSE® HPCD and AZD1775 (AstraZeneca) was formulated at 12 mg ml-1 in 0.5% 

methylcellulose. Compounds were orally dosed at 5 ml kg-1 daily (olaparib) or 10 ml kg-1 on a 5-on, 2-
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off (AZD1775) schedule for 21 days. On days when both drugs were administered, olaparib was 

administered 1 hour after AZD1775. Topotecan (The Christie NHS Foundation Trust) was 

administered at 3 mg kg-1 daily for three days via intraperitoneal injection.  Cisplatin and etoposide 

(The Christie NHS Foundation Trust) were administered as previously described (3), and these 

studies were performed separately from studies on olaparib and AZD1775.  Mice were observed for 

a period of time post dose to ensure no adverse effects were seen. Tumors were measured twice a 

week by caliper until they reached four times initial tumor volume (4×ITV), as determined by the 

formula V=(L x W2)/2, or until animal health deteriorated. For pharmacokinetic and 

pharmacodynamic studies, mice were sacrificed two or 24 hours after a single dose of indicated 

drugs were administered and relevant tissues were collected.  Statistical assessment of tumor 

response was performed as described (12).  Tumor growth delay (TGD) measures the normalized 

time to quadrupling of initial tumor growth, and therefore a higher TGD value is indicative of more 

robust tumor growth inhibition. 

Pharmacokinetic analysis 

25µl plasma was prepared using an appropriate dilution factor, and compared against an 11 point 

standard calibration curve (1-10,000 nM) prepared in DMSO and spiked into blank plasma. 100µl 

acetonitrile was added with the internal standard, followed by centrifugation, and supernatants 

were then diluted 1:7 in water and analysed via UPLC-MS/MS using a Xevo TQ-S mass spectrometer 

(Waters) and the system and optimization parameters listed (Supplementary Table 1, 2) . 

Ex vivo studies 

CDX tumors were dissociated as previously described (13) and cells were grown in HITES medium 

supplemented with 5 M Y-27632 (Selleckchem) and 2.5% FBS. CDX-derived cells were seeded into 

96 well plates, incubated for 48 hours, and treated with increasing concentrations of the 

compound(s) of interest. Seven days after treatment, cell viability was assessed via Cell-Titer Glo 3D 

assay (Promega). Single dose response curves were computed with the open source CRUK software 

Combenefit (14). Combinatorial activity was assessed using the Loewe additivity model (15) and 

computed using the R package synergyfinder (16).  For radiosensitization assays, cells were 

irradiated with indicated doses using a Gulmay Bipolar 320kV X-ray source. After irradiation cells 

were plated into fresh media and viability was measured after five days. 

Rad51 focus assay 

CDX-derived cells were irradiated with 10Gy and incubated for the indicated times. After incubation, 

cells were cytospun at a concentration of 150,000 cells per slides , fixed in 4% PFA for 20 min at 

room temperature, permeabilized with 0.2% triton X-100 (Sigma), and washed with 10% FBS 0.2% 
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Tween20 in PBS. Samples were then blocked with avidin/biotin blocking solution (VECTOR 

laboratories, SP-2001) and 10% goat serum (Dako). Sections were then incubated with primary 

antibodies (Supplementary Table 3) overnight at 4oC overnight, washed, and incubated with 

secondary antibodies for 1 hour at room temperature. Slides were mounted in ProLong DAPI (Life 

Technologies) and left dry in the dark. Images were acquired with a Leica gated Stimulated Emission 

Depletion microscope and cells were scored as HR-proficient if there were ≥5 foci per nucleus. 

Immunohistochemistry 

4µm formalin fixed paraffin embedded tumor sections were stained for the indicated antigens using 

the BondMax autostainer and Bond polymer refine detection system (Leica Biosystems), Venatana 

Discovery Ultra, or I6000 BioGenex autostainer and Dako EnVision system HRP (Dako)  

(Supplementary Table 3). For these antigens, digital images of whole tissue sections were acquired 

using a Leica SCN400 histology scanner (Leica Microsystems). Images were analysed using Definiens 

Developer XD and the Tissue Studio Portal version 4.4 (Definiens AG). 

Immunoblot analyses 

Flash frozen CDX tumors were homogenized in Fastprep tubes with matrix A using a TissueLyser LT 

(Qiagen) in ice cold lysis buffer (10mM HEPES pH 7.1, 50mM NaCl, 0.3M sucrose, 0.1mM EDTA, 0.5% 

Triton X-100, 1mM DTT; or 20mM Tris, 137mM NaCl, 10% Glycerol, 50mM sodium fluoride, 1mM 

activated sodium orthovanadate , 1% SDS, 1% NP40 substitute) in the presence of Protease Inhibitor 

Cocktail and Phosphatase Inhibitor Cocktail I and III (Sigma-Aldrich). Protein concentration was 

determined by BCA protein assay reagent kit (Thermo Scientific). Protein extracts were resuspended 

in NuPAGE LDS sample buffer 4x (Invitrogen) and 10x NuPAGE sample reducing agent (Invitrogen). 

Total protein was resolved on a NuPAGE 4-12% Bis-Tris 1.0 mm gel (Invitrogen). After transfer onto 

PVDF or nitrocellulose membranes, blots were incubated with the appropriate primary antibody 

(Supplementary Table 3) and the corresponding horseradish peroxidase-coupled secondary IgG. 

Detection was obtained with the Supersignal West Dura extended duration substrate 

(ThermoFisher) on a ChemiGenius Imaging System (Syngene) or film. 

PAR ELISA 

Flash frozen CDX tumor tissue was homogenized for 3x30 seconds at speed 6.0 in Fastprep tubes 

with matrix A using ice cold lysis buffer (20mM Tris, 137mM NaCl, 10% Glycerol, 50mM sodium, 

1mM activated sodium orthovanadate, 1% SDS, 1% NP40 substitute in the presence of protease 

inhibitor cocktail (Roche) and phosphatase inhibitor cocktails 2 & 3 (Sigma-Aldrich). Lysates were 

sonicated, incubated on ice for 30 minutes, centrifuged, and supernatants were boiled for five 

minutes. They were then cooled on ice for one minute, centrifuged, and protein concentration was 

Research. 
on August 17, 2018. © 2018 American Association for Cancerclincancerres.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on June 25, 2018; DOI: 10.1158/1078-0432.CCR-17-2805 

http://clincancerres.aacrjournals.org/


 
 

9 
 

estimated using a Pierce BCA assay. 2µg lysate was used to quantify total PAR levels according to 

manufacturer’s recommendations (Trevigen). Samples were quantified on a Tecan Safire II 

microplate reader (Tecan) and absolute values were determined via interpolation from a standard 

curve. 

RNAseq 

Total RNA was extracted from three independent RNAlater (Qiagen) -treated tumors from each 

model with RNeasy mini kits (Qiagen) and quantified by Qubit (Thermo Fisher). RNA with an RNA 

integrity number (RIN) > 8 (Agilent 2100 Bioanalyzer) was used to generate libraries with SureSelect 

poly A samples (Agilent) and sequenced on the NextSeq 500 using 75 bp paired end reads. RNASeq 

data was aligned to Human GRCh38 and Mouse GRCm38 assembly using Mapsplice (version 2.1.6).  

Xenograft data was filtered via a novel algorithm to distinguish human and mouse reads (17). The 

filtered reads are then used to generate counts data using Rsubread package (version 1.16.1) with 

Ensembl 77 GTF file in R. The counts were converted into RPKM values using edgeR (version 3.10.5). 

Whole exome sequencing (WES) 

Genomic DNA was extracted from a representative flash frozen CDX tumor from each model with 

DNeasy Blood and Tissue kits (Qiagen) and quantified by Qubit.  150 base pair paired-end reads were 

obtained from samples assessed on a NextSeq 500 High run (Illumina).  The WES data was aligned to 

Human GRCh37 and Mouse GRCm37 assembly with bwa-mem (version 0.7.12). Deduplication, 

realignment and recalibration were performed on the aligned data using Picard (version 1.96) and 

GATK tools (version 3.3), as stated in the GATK best practices. The reads aligning to mouse genome 

were removed using an in-house developed algorithm (17). Somatic mutation calling was done on 

the filtered reads using Mutect (version 1.1.7) and the mutation calls were annotated using Ensembl 

Variant Effect Predictor. 

Statistics 

All statistical analyses were performed on Prism v7.04 (GraphPad) using one-way ANOVA or 

Student’s t-test for multiple or single pairwise comparisons, respectively.  Single and double asterisks 

denote p < 0.05 and p < 0.005, respectively.  The absence of an asterisk means that there is no 

statistically significant difference between groups. 
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Results 

To examine the efficacy of olaparib and AZD1775 in SCLC, we first treated two previously 

characterised CDX models representative of chemosensitive and chemorefractory patient donors (3).  

The chemosensitive CDX3 and chemoresistant CDX4 models were generated from baseline blood 

samples taken from a patient that lived for 9.7 months and 0.9 months, respectively, following 

treatment with platinum-based therapies.  Treatment of mice bearing CDX3 tumors with either 

olaparib or AZD1775 monotherapy led to complete or modest regression, with tumors rapidly 

recurring after treatments ended (Fig. 1, Supplementary Fig. 1a). Remarkably, combination therapy 

in CDX3 promoted complete and durable regressions with 5/7 mice remaining tumor-free for over 1 

year.  Conversely, CDX4, a model completely resistant to cisplatin/etoposide, showed no response to 

olaparib whereas treatment with either AZD1775 monotherapy or the combination led to disease 

stabilization during the treatment period (Fig. 1, Supplementary Fig. 1b). 

Topotecan, a DNA damaging agent that is the only approved second-line therapy for SCLC, was more 

effective than cisplatin/etoposide against CDX4, eliciting a median 66% tumor regression 

(Supplementary Fig. 1e). Furthermore combination of topotecan with AZD1775 yielded impressive 

tumor regression in this model, with median 83% tumor regression. These data indicate that 

AZD1775 can cooperate with an effective DNA damaging agent even in a platinum-resistant model.    

The majority of SCLC patients present with chemosensitive disease followed by rapid acquisition of 

chemoresistance and disease progression. To examine the efficacy of the olaparib/AZD1775 

combination in patients with acquired chemoresistance, we utilised a pair of CDX models, CDX8 and 

CDX8p, which were derived from blood samples from the same patient taken at baseline and upon 

disease progression after platinum treatment (Supplementary Fig. 2a). Treatment of CDX8 tumors 

with cisplatin/etoposide induced a partial response (median 47% regression) and rapid relapse 

(median tumor growth delay (TGD)=1.9), whereas mice bearing CDX8p received little benefit from 

cisplatin/etoposide treatment (median 15% growth and TGD=1.3), consistent with the outcome of 

chemotherapy in the donor patient (Fig. 1, Supplementary Fig. 2b, c). When these models were 

treated with olaparib or AZD1775, CDX8 exhibited relatively stable disease during the treatment 

period, whereas CDX8p tumors grew at the same rate as the vehicle control cohort (Fig. 1, 

Supplementary Fig. 1c, d). Similar to that seen in CDX3, the combination exhibited synergistic 

activity against CDX8 with many complete regressions. Although CDX8 tumors recurred more quickly 

than CDX3 tumors (Fig. 1b), olaparib/AZD1775 yielded a more durable response than 

cisplatin/etoposide (median TGD=1.9) (Fig. 1). Consistent with reports of reduced olaparib efficacy 
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against platinum-resistant ovarian cancer (18), treatment with olaparib alone or in combination with 

AZD1775 achieved only tumor growth delay rather than regression in CDX8p (Fig. 1, Supplementary 

Fig. 1d). Taken together these results indicate that although the efficacy of olaparib/AZD1775 was 

model dependent, the activity of the combination is consistently superior to that achieved with 

conventional cisplatin and etoposide in chemosensitive models.  Furthermore, the combination of 

AZD1775 and an active DNA damaging agent has activity in a chemoresistant model.  

As platinum-based regimens are initially quite effective in treating SCLC, it is unlikely that 

olaparib/AZD1775 or any other new agent will be used clinically in treatment-naïve patients. We 

therefore sought to examine the efficacy of olaparib/AZD1775 in a second-line setting following 

initial treatment with cisplatin/etoposide. Toward this end, we treated mice bearing CDX3 tumors 

with a single cycle of cisplatin/etoposide to induce an initial tumor response. After a three week 

drug holiday during which tumors began to re-grow, mice were randomized to receive vehicle, 

olaparib, AZD1775, or the combination. In this setting, only 1/12 combination-treated mice 

remained tumor free and the median time to initial tumor volume was 101 days following 

completion of dosing (Supplementary Fig. 3), suggesting that this combination is still active after 

initial treatment with cisplatin/etoposide but may prove most beneficial as a first-line option if the 

proper patient cohort could be identified. 

In vivo pharmacology experiments are both time consuming and expensive, so we sought to use an 

in vitro platform to expedite drug screening as previously reported for colorectal and breast cancers 

(19,20).  Using an ex vivo SCLC CDX culture system that faithfully recapitulates in vivo drug response 

in CDX models (21), we investigated the in vitro efficacy of olaparib, AZD1775, and the combination.  

Both monotherapies as well as the combination correlated with in vivo response, with evidence of 

synergy in CDX3 and CDX8, but not CDX4 or CDX8p (Fig. 2a-d, Supplementary Fig. 4).  We therefore 

decided to screen additional CDX models with varying sensitivity to platinum, derived from baseline 

and relapse patients (Table 1). Examination of ex vivo cultures derived from CDX2, CDX3p, CDX10, 

CDX14p, CDX15p, and CDX15p2 revealed a range of sensitivity to cisplatin and olaparib 

monotherapies, whereas most models were relatively sensitive to AZD1775 with submicromolar 

GI50’s. Similarly, the majority of models were sensitive to olaparib/AZD1775, although CDX4 and 

CDX8p were among the most resistant in vitro (Fig. 2e). These results from a broader panel of CDX 

models tested in vitro, support our findings that olaparib/AZD1775 is an effective combination and 

may represent a promising treatment for SCLC. 

It has previously been reported that olaparib is a CYP3A substrate and that AZD1775 is a CYP3A4 

inhibitor (22), therefore it was possible that the combination effect seen in some CDX models could 
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be attributed to a drug-drug interaction in which elevated levels of olaparib result from inhibition of 

CYP3A by AZD1775. To examine this possibility we administered 50 mg kg-1 olaparib (olaparib low) 

both alone and in combination with AZD1775 as previously described, or 100 mg kg-1 olaparib alone 

(olaparib high) to CDX3-bearing mice. Increasing the dose of olaparib to 100 mg kg-1 had no 

significant effect on anti-tumor efficacy against CDX3 (Fig. 3a), and pharmacokinetic analysis of 

olaparib and AZD1775 indicates that mice dosed with the combination are not exposed to plasma 

drug concentrations significantly different to mice receiving monotherapies (Fig. 3b, c). Therefore 

the efficacy of the olaparib/AZD1775 combination is unlikely to be due to altered olaparib exposure. 

To examine the molecular mechanism of olaparib and AZD1775 efficacy, we treated parallel cohorts 

of mice with a single dose of drug and examined intra-tumor signal transduction pathways and 

cellular behaviour. Wee1 kinase regulates G2/M progression by directly phosphorylating and 

inhibiting the cell cycle kinase CDK1 and this has been used both preclinically and clinically as a 

pharmacodynamic biomarker of Wee1 inhibition (9).  Consistent with Wee1 inhibition, phospho-

CDK1 levels were reduced and the number of mitotic cells was increased in cohorts treated with 

AZD1775 either alone or in combination with olaparib (Fig. 4a, c; Supplementary Fig. 5). Similarly, 

global PAR levels were decreased in all cohorts treated with olaparib (Fig. 4b). Together these data 

indicate that the different levels of efficacy in different CDX models cannot be attributed to 

differential target inhibition. Examination of cleaved caspase 3 levels revealed that increased levels 

of apoptosis correlated with anti-tumor efficacy (Fig. 4d; Supplementary Fig. 5). Since treatment 

with both olaparib and AZD1775 promoted increased DNA damage, we investigated several 

pathways associated with the DNA damage response. 

CHK1 phosphorylation by ATR is induced by the formation of regions of single strand DNA (ssDNA) 

either resulting from the processing of DNA double strand breaks (DSBs) or stalled DNA polymerase 

during DNA synthesis due to replicative stress (9). The extended ssDNA is coated by replication 

protein A (RPA) which binds ATR and associated proteins that initiate the replication stress response 

that includes the phosphorylation and activation of CHK1. The inability to resolve replication stress-

induced fork stalling can lead to replication fork collapse, the generation of a single-ended DSBs, and 

ATM-induced H2AX phosphorylation.  Consistent with previous reports, treatment with AZD1775 

promoted potent CHK1 phosphorylation, indicative of Wee1 inhibition increasing replication stress 

(23). However, this effect was similar in all models examined and did not correlate with efficacy (Fig. 

4e, Supplementary Fig. 1). Conversely, induction of γH2AX more closely correlated with in vivo 

efficacy and highest levels were seen when AZD1775 was combined with olaparib in CDX3 and CDX8, 

the two most sensitive models (Fig. 4f, Supplementary Fig. 1). 
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The BRCA1 and BRCA2 gene products are key DDR proteins that play different but pivotal roles in 

DNA DSB repair (DSBR). Both proteins have been shown to play key roles in the replication stress 

response as well through replication fork stabilisation and restart, and deficiencies in either lead to 

PARP inhibitor sensitivity (24).  Given this association, we were interested to know the DSBR status 

in our CDX models. BRCA and broader HRR deficiencies have been identified via a variety of 

mechanisms including transcriptional or mutational impairment of genes that regulate homologous 

recombination repair, the accumulation of ’genomic scars‘, or functional assays such as DNA 

damage-induced Rad51 focus formation (24). Analysis of RNAseq data on CDX models did not reveal 

an obvious HRR mutation signature that correlated with sensitivity, nor did whole exome sequencing 

reveal an elevated mutation burden associated with impaired DSBR (Supplementary Fig. 6a, b).  

Despite the absence of an HRR mutation signature, CDX3 is exquisitely radiosensitive compared to 

CDX4, indicating that CDX3 is potentially deficient in DSBR (Fig. 5a). Functional assessment of HRR 

status via examination of ionizing radiation-induced Rad51 focus formation revealed that CDX3 

displayed signs of HRR deficiency, suggesting this model may harbour a mutation in a gene that 

mediates HRR (Fig. 5b). PALB2 is a BRCA2-associated DDR protein required for effective HRR (9). 

Whole exome sequencing of CDX3 revealed a somatic mutation in PALB2 that resulted in a stop-gain 

at E178 leading to premature truncation of the protein (Fig. 5c, d).  Analysis of RNAseq data 

indicates that all PALB2 reads harbour this mutation, suggesting a complete loss of the wild type 

allele (Supplementary Fig. 6c).  Therefore it is highly likely that the exquisite sensitivity of CDX3 to 

both platinum and olaparib can be attributed to the PALB2 mutation. 

Several additional mechanisms of acquired resistance to olaparib have been reported, including 

activation of PI3K or Met signalling (25,26), decreased expression of PARP1 or SLFN11 (27-30), and 

restoration of DNA end resection (31). We did not find any consistent differences in MET or PI3K 

signaling, suggesting that activation of these kinases is not a recurrent mechanism of olaparib 

resistance in SCLC (Supplementary Fig. 7a).  PARP-trapping is now recognized as the primary 

mechanism of PARP inhibitor-mediated cytotoxicity, and loss of expression of PARP1 is thus 

associated with resistance. However, expression analysis did not reveal any alteration in PARP1 

expression in either CDX4 or CDX8p (Supplementary Fig. 7b). SLFN11 binds to RPA, and it has been 

postulated that high SLFN11 levels inhibit homologous recombination repair by promoting the 

destabilization of the interaction between RPA and ssDNA (32). Although CDX4, the most olaparib-

resistant model, exhibits the lowest SLFN11 levels, this correlation does not extend to CDX8p 

(Supplementary Fig. 7c). End resection is the process of creating stretches of ssDNA necessary for 

Rad51-induced strand invasion and subsequent repair via homologous recombination. In the context 

of functionally relevant BRCA1 mutations, decreased expression of the non-homologous end joining 
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(NHEJ) proteins 53BP1 and Rev7 have been reported to result in restoration of end resection 

activation of HRR and consequently resistance to PARP inhibitors (33,34). However, neither CDX4 

nor CDX8p have decreased expression of either protein compared to CDX3 or CDX8 (Supplementary 

Fig. 7c).  Although CDX8 harbours a C342F mutation in FANCD2, a key player in the Fanconi anaemia 

pathway that includes BRCA, this mutation is still present in CDX8p and, in the absence of any 

TP53BP1-associated mutation, is unlikely to explain the acquired chemoresistance manifest in 

CDX8p.  Neither whole exome sequencing nor RNAseq has identified likely candidates of resistance, 

and we are actively pursuing additional strategies to discover the mechanism of acquired drug 

resistance in CDX8p. 

One proposed predictive biomarker of AZD1775 sensitivity is the absence of a G1/S checkpoint (35).  

It has been hypothesized that cells with a compromised G1/S checkpoint are more dependent on the 

G2/M checkpoint, and therefore sensitive to Wee1 inhibition. Given the role for p53 in regulating 

the G1/S checkpoint, multiple studies have investigated whether p53 mutations are stand-alone 

biomarkers for AZD1775 sensitivity (10,36). Although all SCLC models tested harbour deleterious 

mutations in TP53, chemoresistant models tend to retain relatively high levels of the cyclin 

dependent kinase inhibitor p21CIP1, a primary mediator of p53-dependent cell cycle arrest (Fig. 6a, 

b).  Although treatment does not induce expression of p21CIP1 (Supplementary Fig. 8), p53-

independent activation of p21CIP1 may partially mediate resistance to AZD1775 by maintaining the 

G1/S checkpoint in p53-deficient cells. The majority of SCLC cells also possess mutations in RB1, 

which regulates entry into S-phase.  We therefore investigated whether RB1 status correlates with 

AZD1775 sensitivity.  Whole exome sequencing and RNAseq revealed RB1 mutations in CDX3 (splice 

mutation at 5’ of exon 17, c.1499-1G>T), CDX4 (87bp deletion in exon 1 and intron 1, 

c.99_137+48del), and CDX8/8p (G509*), and none of the models used in this study express pRB as 

determined by western blotting (Fig. 6a). Moreover, there is no consistent correlation between 

cyclin/CDK expression and sensitivity to AZD1775.  This does not rule out the potential importance of 

deregulation of the G1/S checkpoint but does suggest that, at least in SCLC, regulators of G1/S CDKs 

alone do not appear to be predictive biomarkers of AZD1775 sensitivity. 

Low expression of PKMYT1, a cell cycle kinase that is functionally redundant to Wee1, can 

predispose cancer cells to AZD1775 sensitivity by lowering the threshold of kinase inhibition (37).  

However, while the most sensitive models do have the lowest levels of PKMYT1 RNA, there is no 

correlation between PKMYT1 levels and CDK1 phosphorylation, suggesting this is unlikely to be a 

major factor governing AZD1775 sensitivity (Fig. 4a, Supplementary Fig. 9a). 
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Several studies have reported a link between sensitivity to Wee1 inhibition and replication stress 

(38).  Replication stress is a general term used to describe situations that result in stalled replication 

fork progression and the generation of extended regions of ssDNA (39). Replication stress can be 

induced by overexpression of oncogenes such as MYC family members or cyclin E, which can both 

deplete nucleotides as a result of deregulated origin firing and promote collisions between the 

transcription and replication machinery (40).  Wee1 plays a key role in the replication stress 

response by regulating CDK2 and markers of replication stress such as pRPA have been shown to 

increase upon treatment with a Wee1 inhibitor (41). Immunoblot analysis revealed that CDX3, the 

model that is most sensitive to AZD1775, expressed high levels of L-Myc, cyclin E1, and phospho-RPA 

(Fig. 6c).  Consistent with a recent report that tumors deficient for the histone methyltransferase 

SETD2 and ribonucleotide reductase subunit RRM2 are synthetic lethal with AZD1775 treatment 

(42), CDX3 expressed approximately half as much SETD2 and RRM2 compared to CDX4 and 

treatment with AZD1775 either alone or in combination with olaparib lead to modest reductions in 

RRM2 levels (Supplementary Fig. 9a, b)   Moreover, AZD1775 treatment further increased pRPA 

levels in CDX3 but not CDX4 (Fig. 6d).  Together these data suggest that both baseline and 

treatment-induced replication stress may predict sensitivity to AZD1775. 
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Discussion 

SCLC is a cancer of high unmet need and, despite promising preclinical (43) and early clinical results 

(44) utilizing a DLL3-targeted antibody-drug conjugate, there have been no improvements in 

systemic therapy in three decades. Whilst approximately 100 SCLC trials have been registered on 

clinicaltrials.gov since 2007, strikingly few involved more than 100 patients, many are single arm 

studies, and correlative biomarker assessment is rarely obtained largely due to the difficulties in 

obtaining serial tumor biopsies. The statement in the US Recalcitrant Cancer Act 2012 that “more 

knowledge of the biology at different phases of SCLC is needed” can partially be attributed to the 

lack of relevant models.  Indeed, the recently reported “patient-derived tumor encyclopedia” that 

contains over 1000 PDX does not contain a single SCLC model (45) and 21/26 SCLC PDX that have 

been published were derived prior to treatment of the donor patient with chemotherapy (43,46,47).  

Our CDX models and notably those obtained both at baseline and at progression after chemotherapy 

and reported here for the first time, offer a new approach to study acquired treatment resistance 

and test novel therapies in both first and second line settings. Utilizing these patient-relevant models 

derived from liquid biopsy, we demonstrated here that the combination of olaparib and AZD1775 

exerted significant activity against a panel of SCLC CDX models that span the spectrum of responses 

to standard of care chemotherapy, with some demonstrating a profound and extended response to 

this novel combination.   

The PARP inhibitor olaparib is currently being investigated in clinical trials, however the genetic 

determinants of drug sensitivity remain incompletely defined. Our CDX models offer the opportunity 

to investigate both predictive biomarkers and mechanisms of drug resistance. We observed the 

most striking combination efficacy in models where both monotherapies had some effect. Olaparib 

was most efficacious against CDX3, a model that failed to express homologous recombination repair 

protein PALB2. Although damaging PALB2 mutations are reported to account for outlier responses to 

PARP inhibitors in other cancer types (48,49), targeted therapies that work in one cancer type do not 

necessarily work in another cancer type, even if the genetics are similar (e.g. vemurafenib in BRAF-

mutant melanoma vs colorectal cancer (50)). To our knowledge this is the first report correlating a 

PALB2 mutation to combined olaparib/wee1 inhibition in SCLC. Moreover, SCLC tumors are not 

typically associated with defects in homologous recombination repair, a known predictive biomarker 

for PARP inhibitor sensitivity, and our data suggest further research into this area is warranted.  

Multiple studies have shown that olaparib efficacy is significantly reduced against tumors pre-

treated with chemotherapy. We sought to address this by examining the efficacy of 

olaparib/AZD1775 against a model generated from a patient who progressed on a platinum-based 
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therapy. Consistent with patient progression, CDX8p was resistant to treatment with 

platinum/etoposide. Although CDX8p was also relatively insensitive to olaparib/AZD1775, this 

combination elicited a more durable response than platinum/etoposide. Similarly, pre-treatment of 

CDX3 with platinum/etoposide blunted the response of chemonaive CDX3 to olaparib/AZD1775. 

Given the deep, though short lived response to patient standard of care platinum-based 

chemotherapy, it may be challenging to administer an olaparib/AZD1775 combination to treatment-

naive SCLC patients.  However, consideration should be given to minimising the number of 

chemotherapy cycles given to debulk the disease prior to testing this novel combination. 

The exquisite sensitivity of CDX3 to combination therapy is likely due to the fact that both olaparib 

and AZD1775 exhibited single agent efficacy against this model. AZD1775 can both compromise the 

ability to restrain mitotic commitment in response to DNA damage and promote catastrophic DNA 

damage in G1/S via inappropriate activation of the MUS81-SLX4 nuclease (51).  Thus, combinatorial 

activity of olaparib/AZD1775 may stem from AZD1775-induced inappropriate cleavage of stalled 

replication forks stemming from PARP trapping.  However, our understanding of the biology of 

inappropriate induction of these pathways in S phase remains in its infancy and a detailed 

mechanistic understanding of what role PARP may play in this process remains beyond the scope of 

this study. 

In addition to affecting sensitivity to olaparib, the PALB2 mutation could potentially explain the 

response of CDX3 to AZD1775. BRCA2 and PALB2 function has been linked to replication fork 

stabilization/restart as part of the replication stress response. CDX3, the model that is most sensitive 

to AZD1775 single treatment, already has significantly elevated levels of replicative stress as 

indicated by elevated levels of L-Myc, cyclin E, and pRPA compared to the lesser responsive models. 

Moreover, we have demonstrated that following AZD1775 treatment there is a further increase in 

pRPA. Phosphorylated RPA can recruit PALB2 and BRCA2 to the stalled fork, and PALB2 loss has been 

associated with defects in the recovery of the stalled fork and therefore increased DNA damage (52). 

Additionally, BRCA2 and PALB2 are key regulators of the G2/M cell cycle checkpoint upon DNA 

damage (53). Therefore, the absence of PALB2 in combination with the inhibition of Wee1 could 

increase premature mitotic entry and therefore genomic instability in CDX3 cells. Together, these 

data suggest the efficacy of the olaparib/AZD1775 combination is likely to involve both an increase 

in replication stress response in S-phase as well as carryover of S-phase induced damage into 

mitosis. 

Combination trials using PARP inhibitors are already in early phase development, including a second 

line study comparing temozolomide and veliparib with temozolomide and placebo where the 
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combination reported increased response rates but no significant difference in 4 month progression 

free survival (54). The ongoing Phase 1/2 trial of olaparib and temozolomide in patients progressing 

after chemotherapy also reported a 46% response rate for the combination compared to 14% for 

temozolomide alone (55). Olaparib/AZD1775 has demonstrated preclinical activity against AML(56), 

and a phase I clinical trial utilizing olaparib and AZD1775 has been initiated in patients with 

refractory solid tumors (https://ClinicalTrials.gov/show/NCT02511795), including SCLC, and an 

extended cohort in SCLC is planned. 

Conversion of improved clinical response rates to lengthened progression free and overall survival 

will likely require development of robust predictive biomarkers. Our preclinical CDX data suggest 

that predicting the depth and duration of responses to olaparib and AZD1775 in SCLC patients is 

unlikely to be straightforward; the speed with which acquired chemotherapy resistance occurs, the 

genomic instability and heterogeneity of this devastating disease all point to the need for 

development of broad biomarker panels for the optimal use of this combination therapy, where 

different patients’ tumors may acquire resistance via different and multiple molecular mechanisms. 

Further characterization of the DNA damage response status across a wide range of SCLC tumors, as 

well as functional validation of potential biomarkers is ongoing.  Our results raise the possibility that 

a subset of SCLC may have defects in DNA damage response pathways that could be exploited by the 

combination of PARP and Wee1 inhibitors.  Moreover, replication stress is often associated with 

oncogene overexpression and MYC family members, which are known to be amplified in 

approximately 20% SCLC and the role of MYC as a predictive biomarker of response to olaparib and 

AZD1775 can now be studied further in our burgeoning panel of 45 CDX models  (57-59). The CDX3 

cellular context represents a ‘super responder’ to the olaparib/AZD1775 combination and has 

revealed important molecular insights that we can now take forward in an assessment in the larger 

CDX panel. 

Surgical specimens and archival biopsies are unlikely to reflect the disease after 1st or 2nd line 

treatments. We previously reported the prevalence of CTCs in SCLC (60), their prognostic 

significance and their potential as a readily obtained and repeatable source of pharmacodynamic 

and predictive biomarkers. Moreover, mutations in a panel of genes associated with DNA damage 

response measured in circulating tumor DNA may also assist patient selection. These liquid biopsy 

approaches should now be fully exploited in upcoming trials of novel therapies in SCLC where 

promising data in patient relevant preclinical models is forthcoming. 
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Table 1 

Model Pt treatment Tumor 

response1 

Chemosensitivity Pt survival 

(days)1 

CellSearch 

count2 

2 carbo/etop PR refractory 108 1625 

3 carbo/etop PR sensitive 295 507 

3p  relapse  295 463 

4 carboplatin PD refractory 27 1375 

8 carboplatin PR refractory 181 388 

8p  relapse  181 1796 

10 carbo/etop PR sensitive 317 160 

14p  relapse  227 362 

15p  relapse  556 361 

15p2  relapse  556 165 

1 Survival is defined as the time from diagnosis until death 
2 The number of EpCAM+/CK+ CTC’s in a parallel 7.5ml blood sample taken from the same 
patient bleed that yielded the corresponding CDX. 
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Figure Legends 

Figure 1. Combination treatment with olaparib/AZD1775 is superior to cisplatin/etoposide.  a) The 

cohort average best response (+/- sd) is shown for cisplatin/etoposide (white), AZD1775 (red), 

olaparib (green), or the AZD1775/olaparib (blue). b) The cohort average benefit (+/- sd) of each 

treatment over vehicle is shown for each treatment.  Cohort sizes are > 7. * p<0.05; ** p<0.005 vs. 

cisplatin/etoposide treatment. 

Figure 2. AZD1775 and olaparib are synergistic in vitro. CDX3 (a), CDX4 (b), CDX8 (c), or CDX8p (d) ex 

vivo cultures were treated with AZD1775 and olaparib for 1 week and relative cell viability was 

assessed.  One representative experiment of at least three is shown. For the combinatorial index, 

red is indicative of synergy and green is indicative of antagonism between drugs.  e) GI50 values for 

various CDX ex vivo cultures treated with cisplatin, etoposide, AZD1775, or olaparib are shown after 

1 week of drug treatment.  For the combination we have shown the GI50 values for olaparib at 150 

nM AZD1775.  

 

Figure 3. Pharmacokinetic analyses.  a) Mice were treated with 100 mg kg-1 (dark green) or 50 mg kg-

1 (dashed green) olaparib, or with a combination of low dose olaparib and AZD1775 (blue) for 21 

days and tumor volumes were measured biweekly.  Individual relative tumor volumes are depicted.  

Tumor lysates from cohorts of mice bearing different CDX models treated with AZD1775 (red), 

olaparib (green), or the combination (blue) were analysed and quantified for AZD1775 (b) or olaparib 

(c) at 2 hours after a single dose.    Dashed lines represent the reliable limits of detection. Cohorts of 

> 4 tumors were used. 

 

Figure 4. Pharmacodynamic analyses.  Tumor lysates from cohorts of mice bearing different CDX 

models treated with a single dose of vehicle (white), AZD1775 (red), olaparib (green), or the 

combination (blue) were analysed and quantified.  Cohorts of > 4 tumors were used. a) pCDK1 levels 

were measured by immunoblotting 2 hours after a single dose and normalised to both total CDK1 

and vinculin in each sample. b) Total PAR levels were measured by ELISA 2 hours after a single dose. 

The dashed line indicates the limit of detection (2pg/ml). Proof of concept and proof of mechanism 

biomarkers were measured by quantitative immunohistochemistry for pHH3 at 2 hours (c), CC3 at 24 

hours (d), pCHK1 at 2 hours (e), and γH2AX at 24 hours (f) after dosing. * p<0.05, **p<0.005 

 

Figure 5. Deficient double strand break repair in CDX3.  a) CDX3, CDX4, CDX8, and CDX8p ex vivo 

cultures were irradiated at indicated doses in triplicate and relative cell viability was assessed 5 days 

later.  One of three representative experiments is shown.  b) At indicated times following irradiation, 
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CDX3 and CDX4 cultures were assessed for Rad51 focus formation. Geminin and DAPI staining was 

used to identify cells in G2, and these results were quantified by a semi-automated computer 

algorithm.  The dashed line indicates a threshold above which cells are considered positive for 

damage-induced focus formation. **p<0.005 c) Sanger sequencing identified the E178* PALB2 

mutation in CDX3, but not CDX4. d) Schematic of PALB2 with protein-protein interaction domains 

shown in grey and the E178* mutation shown in red. 

 

Figure 6. Sensitivity to AZD1775 correlates with markers of replication stress. a) Immunoblot analysis 

of duplicate tumor lysates for indicated proteins. The p53 mutation associated with a given model is 

indicated.  The positive control for RB is the H1694 cell line. b) Representative images and 

quantification of p21CIP1 IHC from CDX3, CDX4, CDX8, and CDX8p.  p21CIP1 levels are plotted against 

tumor regression values for each model.  c) Immunoblot analysis of duplicate tumor lysates for 

indicated proteins. Corresponding average RPKM values for L-Myc and C-Myc in each model are 

indicated below immunoblots.  N-Myc expression was not investigated, however RPKM values below 

5 suggest it is not expressed in the models investigated.   d) Immunoblot analysis of duplicate lysates 

from CDX3 and CDX4 tumors treated with vehicle or AZD1775 for 24 hours.  The positive control for 

L-Myc is the H1694 cell line. 
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