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Abstract—A number of vision problems such as zero-shot learning and person re-identification can be considered as cross-
class transfer learning problems. As mid-level semantic properties shared cross different object classes, attributes have been
studied extensively for knowledge transfer across classes. Most previous attribute learning methods focus only on human-
defined/nameable semantic attributes, whilst ignoring the fact there also exist undefined/latent shareable visual properties, or
latent attributes. These latent attributes can be either discriminative or non-discriminative parts depending on whether they
can contribute to an object recognition task. In this work, we argue that learning the latent attributes jointly with user-defined
semantic attributes not only leads to better representation but also helps semantic attribute prediction. A novel dictionary learning
model is proposed which decomposes the dictionary space into three parts corresponding to semantic, latent discriminative
and latent background attributes respectively. Such a joint attribute learning model is then extended by following a multi-task
transfer learning framework to address a more challenging unsupervised domain adaptation problem, where annotations are
only available on an auxiliary dataset and the target dataset is completely unlabelled. Extensive experiments show that the
proposed models, though being linear and thus extremely efficient to compute, produce state-of-the-art results on both zero-shot
learning and person re-identification.
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INTRODUCTION

any intersection. Hence, the key problem is how to

A recent endeavour of computer vision research is to
scale the visual recognition problem to large number
of classes. This is made possible by the emergence
of large-scale datasets such as ImageNet [1] and the
advances in deep learning techniques [2], [3].
However, scalability remains an issue. This is be-
cause most existing recognition models are based on
supervised learning and require sufficient training
samples to be collected and annotated for each class.
However, beyond daily objects, collecting image sam-
ples for rare and fine-grained object classes is difficult
even with the modern image search engines. Zero-
shot learning (ZSL) [4] and person re-identification
(Re-ID) [5] are two such tasks at object category and
instance level respectively. More concretely, ZSL aims
at recognizing images from testing/unseen classes by
learning from a set of different training/seen class-
es. While the objective of person Re-ID is to match
people from one camera view (probe) to another
camera view (gallery) under the condition that the
persons in the probe and galley do not appear in
the training data. Considering the people’s identities
as classes, the main challenge of both tasks is that
the training classes and testing classes do not have
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transfer knowledge learned from a set of labelled
(seen) training classes to another set of testing classes
without any training samples, namely the cross-class
transfer learning problem.

One of the most popular approaches to cross-class
transfer learning is attribute learning. Attributes are
properties of visual objects that can be shared across
different object classes. They can thus act as a bridge
between the training/seen classes and testing/unseen
classes for knowledge transfer. Most existing works
define attributes as semantic, i.e., nameable properties
which are annotated based on a user-defined ontol-
ogy [4], [6], [7], [8], [9], [10]. Once being modelled
from the seen classes, they can be used to recognise
unseen classes at both the class and instance levels.
For the ZSL problem, each unseen class is given an
attribute “prototype” [11] and then an instance can
be recognised by comparing the prototypes with the
predicted attributes. In contrast, for the person Re-ID,
the goal of attribute modelling is to compute a mid-
level representation from low-level features [12].

Earlier attribute learning works [4], [13] learn a
binary attribute classifier for each attribute separately
and independently, whilst ignoring the existence of
correlations among them, e.g., “female” and “long-
hair” are correlated. This has been rectified by recent
approaches [6], [7], [8], [9], [10], [14], [15] which jointly
learn multiple attributes together with the object class
labels in order to exploit their correlations. However,
these joint modelling approaches focus on the user-
defined semantic attributes only, whilst ignoring the



Fig. 1: Some examples of user-defined semantic at-
tributes and latent attributes. The user-defined seman-
tic attributes are shown in the first row: (a) black
jacket and (b) jeans. While those in the second row
are two discriminative latent attributes learned by
the proposed method: (c) white shirt with an open
darker jacket and (d) white logo on the chest of
a top. We can see that these latent attributes are
often semantically meaningful and interpretable, but
in a more subtle way, and may have been ignored
by human annotators. It is clear that person A and
person B cannot be distinguished by only two user-
defined semantic attributes. But when complemented
by latent attributes, it becomes easier.

factors that (1) semantic attributes are often not ex-
haustively defined; and (2) there are also other share-
able but not nameable/semantic properties. These
properties are termed latent attributes and have been
studied as alternatives to the semantic attributes [7],
[16], [17], [18], [19], [20], [21]. In this work, we argue
that semantic and latent attributes are complementary
to each other and jointly explain away the visual data;
they thus should be jointly modelled.

Jointly learning semantic and latent attributes is
useful for both more accurately predicting semantic
attributes for ZSL and learning a more discrimina-
tive mid-level representation for instance-level object
recognition. This is due to two reasons: First, these
semantic and latent attributes can be discriminative
thus useful for object recognition. For example, Fig. 1
shows that a limited list of user-defined semantic
attributes are often inadequate for instance-level ob-
ject recognition, in this case attribute-based person
Re-ID [22]. However, when a set of complementary,
interpretable and discriminative latent attributes are
learned to augment the user-defined semantic at-
tributes, recognition can be made easier. Second, even
if predicting the user-defined attributes is the only
goal, discovering and learning these latent attributes
is still useful — it makes sure that shareable properties
irrelevant to the user-defined attributes are accounted
for in the model rather than acting as a distractor to
corrupt the learned semantic attribute predictor.

In this work, two types of latent attributes are
considered: those that are correlated to class labels
thus potentially useful for object recognition, and
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Fig. 2: Our framework for joint learning of user-
defined-attribute-correlated (UDAC), discriminative
latent attribute (D-LA), and background latent at-
tribute (B-LA) dictionary subspace. Class labels are
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those that are not. The former is called discriminative
latent attributes (D-LAs), and the latter background
latent attributes (B-LAs) which could literally be back-
ground that may appear in any object classes. The pri-
mary goal of learning D-LAs is to compute discrimi-
native representation useful for recognition. However,
when learned jointly with user-defined semantic at-
tributes, they often correspond to complementary and
interpretable visual properties (see Fig. 1). Although
B-LAs are useless for the targeted recognition task,
they have to be modelled so as to avoid corrupting
the other types of useful attributes. This makes our
approach fundamentally different from the existing
latent attribute modelling approaches which are on-
ly interested in discovering discriminative latent at-
tributes [7], [16], [17], [18], [19], [20], [21].

To jointly learn both types of latent attributes as
well as semantic attributes together with their corre-
lations with the class labels, we propose a novel dic-
tionary learning model. Given the features of training
samples, the learned dictionary subspace is decom-
posed into three parts: (1) the user-defined-attribute-
correlated (UDAC) dictionary subspace part which is
correlated to the user-defined attribute annotations,
(2) the D-LA dictionary subspace part that is subject
to the class label correlation constraint to make sure
that it is discriminative, and (3) the B-LA dictionary
subspace part that only helps data reconstruction and
is subject to no constraint. Note that since a dictionary
learning model aims to reconstruct the original signal
using all dictionary atoms together, it naturally en-
forces the learned three different types of attributes to
be complementary to each others. Figure 2 illustrates
the proposed dictionary learning framework.

Cross-class transfer learning aims to reduce or re-
move the need for both data collection and annota-
tion. No sample collection for the testing classes is
necessary; however, data from the training classes still
need to be annotated in the form of class labels and
semantic attributes. The joint attribute learning model
depicted in Fig. 2 can be trained without semantic
attributes (i.e., class labels only). Nevertheless for in-
stance recognition problems such as Re-ID, there exist
multiple domains and labelling the training sample
class labels for each domain is labor-intensive [23],



[24], [25], [26]. It is thus much desirable if attribute
learning can be carried out in an unsupervised man-
ner, i.e., neither attributes nor class labels are required
for the training samples.

This can be achieved by unsupervised domain
adaptation or cross-dataset transfer learning [27], [28],
[29], [30], [31]. More specifically, we assume that the
target domain/dataset consists of a set of unlabelled
training class samples and a set of test samples of
different classes. In addition, a set of auxiliary domain
datasets are available which are annotated with class
labels and (optionally) semantic attributes. The task is
to transfer knowledge from both the labelled auxiliary
datasets and the unlabelled target training set to
the target test set. To this end, assume all data are
represented by a fixed /pre-computed features and we
extend the proposed joint attribute learning model by
following an asymmetric multi-task learning frame-
work, where each dataset corresponds to a task. We
assume that the UDAC and some D-LA dictionary
atoms are dataset-independent, thus shared across
different datasets, whilst the B-LA atoms are dataset-
specific and unique to each dataset. Moreover, differ-
ent decompositions of dictionaries are introduced for
the auxiliary and target datasets respectively to reflect
the fact that our multi-task learning model is asym-
metric, i.e., it only aims to benefit the target task. The
key strength of our model, which also distinguishes it
from existing multi-task learning methods [32], is that
it is able to learn from unlabelled target data. This
is because our model is based on dictionary learn-
ing, which is originally designed for unsupervised
learning and can thus be naturally reformulated for
unsupervised transfer learning.

2 RELATED WORK

Learning latent attributes The idea of discovering
and modelling latent attributes has been exploited
before [7], [16], [17], [18], [19], [20], [21]. However, in
theses studies, latent attributes are not learned jointly
and thus are not necessarily complementary to user-
defined attributes. There exist a few exceptions which
learn discriminative latent attributes and user-defined
ones jointly [15], [33], [34]. In [15], the discovered
latent attributes are correlated with user-defined at-
tributes and used to predict the latter. In contrast,
our model aims to learn the latent attributes that are
complementary to the user-defined ones, thus can be
combined together for richer representation. Similar
to ours, the method in [33] learns complementary
user-defined and latent attributes jointly. However, it
requires training samples of test classes; whilst our
model does not need these training samples, making
it more scalable. The method in [34] uses a genera-
tive topic model, and it is ideal for utilising human
prior knowledge about the problem domain but weak
on learning a discriminative representation for object
recognition. In contrast, our dictionary learning based

model is discriminative and as a linear subspace
model is easier to compute, compared with [34] which
has to make approximations via variational inference
to make it tractable.

Zero-shot learning Existing zero-shot learning (ZSL)
methods differ in the semantic spaces used to em-
bed the seen and unseen classes. Most methods use
semantic attributes [9], [4], [35] and word vectors
[36], [37], [38], or a combination of both [39], [40],
[41]. In this work, we show that with the attribute
space only, state-of-the-art ZSL performance can be
achieved. Given a semantic embedding space, existing
ZSL methods fall into two types: semantic embedding
(SE) based methods and semantic relatedness (SR)
based methods [40]. The SE-based methods first map
the input image representations to the semantic space
and then determine the class labels in the space by
searching for the nearest class prototypes [4], [8], [9],
[10], [39], [42], [43], [44]. While the SR-based methods
first learn to measure the visual similarity between
a testing unseen class sample and the seen classes,
which is then compared with the semantic similarity
computed as the class prototype distance between an
unseen class and all seen classes [38], [40], [45], [46].
Similar to a recent work [47], our model fuses the SE-
and SR-based approaches seamlessly by modelling
both semantic and latent attributes. Specifically, SE-
based ZSL is performed with the learned semantic
attributes and SR-based ZSL with the D-LA; the final
result is obtained by score-level fusion.
Attribute-based person Re-ID Semantic attributes
have been exploited as a mid-level representation for
Re-ID [22], [48], [49], [50]. However, none of these
methods is competitive on benchmark datasets. This
is because (1) the user-defined attribute representa-
tions have very low dimensions (dozens vs. tens of
thousands, e.g., in [51]); and (2) no latent attributes
are exploited. Recently, user-defined attributes and
low-level features are modelled jointly in [52] for Re-
ID. However, the user-defined attributes are predicted
independently and no latent attributes are used. In
contrast, our model not only models both types of
attributes, but also is flexible in that discriminative
latent attributes can still be learned when no user-
defined attribute annotations are available. Another
relevant work is [12] which deploys a generative
model to transfer attribute annotations from auxiliary
data (fashion clothing) to the target data (surveillance
video). Again, as a generative model, it is weak in
learning discriminative representation.
Unsupervised domain adaptation for person Re-ID
Recently, unsupervised cross-dataset transfer learning
or domain adaptation has been attempted for Re-
ID in the hope that labelled data from auxiliary
datasets/domains can provide transferable identity-
discriminative information for a target dataset. Note
that this problem is very different from the same-
dataset unsupervised cross-class problems in some



early works [53], [54]. When both the dataset/domain
and the identities are different, the transfer learning
problem considered in this work is much harder.
Among the existing cross-dataset transfer learning
works, [23] adopted an SVM multi-kernel learning
transfer strategy, and both [24] and [25] employed
multi-task metric learning models. All theses works
are supervised and need labelled data in the target
dataset. As far as we know, the only existing unsu-
pervised cross-dataset transfer learning model for Re-
ID is [26], which utilised cross-domain ranking SVMs.
However, an SVM-based model can not learn from
completely unlabelled data. As a result, their target
dataset is not exactly unlabelled because negative data
are given for the target dataset. Therefore, strictly
speaking, the model in [26] is a weakly-supervised
rather than an unsupervised model. In contrast, our
model is completely unsupervised without requiring
any labelled data from the target dataset.

Dictionary learning Beyond attribute learning, dic-
tionary learning [55], [56] has been studied exten-
sively. Originally designed for unsupervised learning,
it has been extended to supervised learning tasks
such as face recognition [57] and person Re-ID [58],
[59], [60]. Our model is related to these models in
that discriminative latent attributes are learnt through
the dictionary subspace. However, only our model is
able to additionally learn user-defined attributes and
background latent attributes for better representation.

Contributions Our contributions are summarised as
follows: (1) A unified framework for learning both
user-defined semantic attributes and discriminative
latent attributes is proposed. (2) We further develop
a novel dictionary learning model which decompos-
es the learned dictionary subspace into three parts
corresponding to the semantic, discriminative latent
as well as background latent attributes respectively.
An efficient optimisation algorithm is also formulated.
(3) The proposed method is extended to a novel
asymmetric multi-task learning framework to address
the unsupervised cross-dataset transfer learning prob-
lem when the target dataset is completely unlabelled.
Extensive experiments are carried out on benchmark
ZSL and person Re-ID datasets. The results show
that our method generates state-of-the-art results on
both tasks. Preliminary versions of this work on mod-
elling semantic and latent attributes jointly in a same
domain dataset [61] and learning a discriminative
representation by unsupervised domain adaption [62]
have been presented. Compared with them, this study
presents a unified framework that tackles both prob-
lems and thus yields better performance.

3 METHODOLOGY
3.1 Joint attributes modelling

Assume that a set of training data are given which are
labelled with some user-defined (semantic) attributes’
and (training) classes. We aim to model user-defined
semantic and latent attributes jointly so that they can
be predicted on test samples which belong to different
(test) classes. Adopting a dictionary learning model,
the learned dictionary is decomposed into three parts
corresponding to three different types of attributes
(see Fig. 2): (1) D* corresponding to the user-defined-
attribute-correlated (UDAC) sub-dictionary, (2) D¢
corresponding to the discriminative latent attributes
(D-LA) sub-dictionary which is correlated to the class
labels and (3) D’ corresponding to the background
latent attributes (B-LA) sub-dictionary which captures
all the residual information in the training data. D" is
uncorrelated to either user-defined attributes or class
labels and thus is learned without any supervision.
Formally, let Y€eR™*"™ be a data matrix for n train-
ing samples, where each column y; corresponds to an
m-dim feature vector representing the i*" data. A is a
p X n matrix where each column a; € {0,1}"” indicates
the absence or presence of all p binary user-defined
attributes®. The proposed joint attributes model is for-
mulated as a regularised dictionary learning model:

{Du, D?, Db, W} = arg min
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where matrices X%, X% and X? are codes/ coefficients
corresponding to sub-dictionaries D%, D¢ and D°
respectively; W represents the linear transformation
between the codes obtained using D* and the user-
defined attribute annotation matrix 4; d¥, d¢, d? and
w; are the i** columns of D%, D¢ D! and W re-
spectively; x¢ is the ' column of X¢; o and fj
are free parameters controlling the strengths of two
regularisation terms to be explained later; ||.||z de-
notes the Frobenious norm of a matrix; m;; is an
element of an affinity matrix A/ indicating the class-
relationships (same/different class) among different
training samples. Specifically, m; ; = 1 if z{ and z¢
are of same class, and m; ; = 0 otherwise.

There are four terms of three categories in the cost
function which are now explained in detail:
(1) The first two terms are reconstruction errors that
make sure the learned dictionaries can encode the
data matrix Y well. Note that the two reconstruction

1. We will show later that the requirement on the availability of
user-defined attributes can be removed.
2. Continuous attribute vectors can also be used here.



error terms are stepwise ordered. Specifically, the
minimisation of the first reconstruction error term
enables D% and D? to encode Y as much as possible,
while the minimisation of the second reconstruction
error term enables D to encode and align the residual
part of Y that cannot be coded using D* and D<.
This stepwise formulation is important to prevent
the background latent attribute dictionary D° from
dominating the reconstruction error and consequently
leading to trivial solutions for D" and D?.

(2) The third term can be rewritten as

2
ol o = mecix,

n
E : Mi,j
i,j=1

where L = QQ — M and @ is a diagonal matrix whose
diagonal elements are the sums of the row elements
of M. It is thus a graph Laplacian regularisation term
dictating that the projections of columns of Y in the D-
LA subspace, ie., X 4 are close to each other if the cor-
responding data points belong to the same class. This
term is thus to make the D-LA subspace, parametrised
by D¢, to be discriminative (class-dependent).

(3) The last term is the constraint for learning the U-
DAC subspace part. Note that we attempt to establish
a linear transformation W between the projection in
that subspace, X", and user-defined attribute annota-
tions A, rather than simply setting them to be equal,
ie, X* = A. This is because each learnt dictionary
atom is additive, that is, each data point y; is comput-
ed/reconstructed as a weighted sum of these atoms.
Thus directly setting each user-defined attribute as a
dictionary atom is inappropriate — the relationship be-
tween different user-defined attributes is complicated.
For example, in Fig. 1(a), summing “long hair” and
“trousers” to explain away the person’s appearance
makes sense but adding them with “female” makes
less sense. Thus introducing the linear transformation
overcomes this problem and also implicitly performs
attribute selection.

Unlike conventional dictionary learning for sparse
coding, our model has no I/;-norm sparsity penalty
term on the code matrices X“, X¢ and X°. Empir-
ically, we find that less-sparse codes contain richer
information thus more suitable to be used as represen-
tation for recognition. Moreover, removing these ;-
norm terms leads to a simpler optimisation problem.

Note that the proposed method can still work with-
out the user-defined attribute annotations A in the
training data. In this case, D%, W and X" will be
dropped and only D-LA and B-LA are learned:
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3.2 Unsupervised domain adaptation

The proposed joint attribute modelling approach can
work without user-defined attribute annotation, but
the training samples’ class labels have to be provided
which still hinders its scalability for certain cross-
class transfer learning tasks such as person Re-ID.
Here we consider an extension of the model for a
more challenging unsupervised domain adaptation
setting. Under this setting, the training samples are
completely labelled. However, we assume a set of
auxiliary datasets/domains exist, which are labelled
and related to the target dataset/domain consisting of
the unlabelled training data and test data of different
classes. Here the auxiliary and target datasets should
share user-defined attributes if annotated and some
D-LAs. This condition is easily satisfiable, e.g., in
person Re-ID, different domains are different camera
networks which contain different person identities but
can be described using a same set of attributes.

We adopt a multi-task learning approach because it
is widely used for cross-datasets and additive models
such as dictionary learning are naturally suited [63],
although no attempt has been made for unsupervised
domain adaptation. Here we consider learning the
attribute model for each dataset as a task. We wish
to learn all tasks jointly so that they can benefit each
other. Importantly, since we are only concerned with
the target dataset, the multi-task model is asymmetric
and biased towards the target dataset.
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Fig.\éf A schematic illustration of the\}‘ﬁi'g)posed multi-
task dictionary learning model.

Formally, assume Y;€R™*"¢ is a data matrix with
each column y;; corresponding to an m-dim feature
vector in the dataset ¢ (¢t = 1,---,T) consisting of n,
samples. Let T" be the index for the target dataset and
the others are auxiliary datasets. Here the dictionary is
decomposed into two types of sub-dictionaries: those
shared between tasks/datasets, i.e., UDAC and D-
LA, and the task-specific ones that capture dataset-
unique aspects, i.e., B-LA. Moreover, the decomposi-
tion should be different for the auxiliary and target
datasets to reflect that we only care about the target
one. Based on these considerations, four types of sub-
dictionaries are modelled: (1) D* corresponding to the
UDAC sub-dictionary which is shared by all datasets,
(2) D% corresponding to the D-LA sub-dictionary
which is also shared by all datasets, (3) D% corre-
sponding to the D-LA sub-dictionary which is unique



to the target dataset, and (4) D! corresponding to the
B-LA which is task-specific. Note that the auxiliary
and target datasets are treated differently: For the
target dataset, an additional dictionary D9 is needed
to account for D-LA unique to the target dataset,
making the decomposition biased towards the target
dataset. Different components of our model and their
relationships are illustrated Fig. 3 and the formulation
of the model is:

[D“,DdS,Dd“,Di',--. ,DbT,W] = arg min
T-1
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Similar to (1), matrices X, X{°, X%and X} are
codes/coefficients corresponding to dictionaries D%,
D, D and D! respectively. Fj.,.(-) and FL, (-)
are the data reconstruction terms for the auxiliary and
target datasets respectively and they are defined as:
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Fa ,A4() and FE | () are the constraints of D-LA
for the auxiliary and target datasets respectively:
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M, is an affinity matrix among different training sam-
ples in dataset ¢. Specifically, for the labelled auxiliary
datasets, m;; ; = 1 if y;; and y, ; are of the same class
and m;;; = 0 otherwise. For the unlabelled target
dataset, M is initialised as a zero matrix and updated
iteratively as explained later.

Fhac() and FE, .o () are the constraints of U-
DAC for the auxiliary and target datasets respectively.
Since the user-defined attribute annotations are only
available in the auxiliary datasets, we utilise the affin-
ity matrix in Fp 4, as follows:

Ffpac(Xi, W) = 2| X — WA%,

T u el u u 2 (7)
Fipac(X§)=a Y mr; ’xT,z‘ - “”T,J‘H :

j=1

Note that the proposed method can again work
without the user-defined attribute annotations A; for

2 2
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the auxiliary datasets. In this case, D“, W and X}* will
be dropped and only D%, D% and D’ are learned.

3.3 Optimisation

Since (1) can be solved as a special case of (4) when
T = 1, we only detail how the the optimisation
problem in (4) is solved. Substituting (5), (6) and (7) to
(4), the solution is achieved by solving the following
subproblems iteratively:

(1) Computing X%, X% and X%  Given fixed DY,
D4, D%, D? and X?, the coding problem of the task
t(t=1,---,T) becomes:

~ ~ o~ |2 ~ ~
min HYf - DXtH + aTr(X Ly X)), 8)
F
where for the target dataset:

X’lt
> _ [ Yr 5_ [ D*. D%, D™ | & _ as
= { Yr — DX, } P [ pv, pds, pav | XT = ﬁﬁu
and for the auxiliary dataset:

- Y; — DU Xu - Dcls - d
Yi= [ YT—Du)EZ"—Dé)th :|’D: |: Dds :|7Xt:[ th }

L, is calculated as similar as (2). Let the derivative of
(8) equal to 0 and the analytical solution of #;; (the
it" column of X;) can be obtained as:

Fyi = (ﬁ'ﬁ + 2)\lt,z‘,i1> o (Dlﬂt,i -2« Z@t,kh,k,i) )
ki
where [ 1, ; is the (k, i) element of L,, I is the identity
matrix and 7, ; is the i*" column of X;.
(2) Computing X, (t=1,---,T—1) Fix other terms,
X} is solved as:

~ ~ 2
minHYt fDXZ‘HF, )
where
B Y: — Ddsx;is } DU
Y:=| Y, —Ddsxds —DVX} | ,D=| D* |.
BW Ay BI

I is the identity matrix. Let the derivative of (9) equal
to 0 and the analytical solution of X}* is:

X¥ = (D’D)_l D', (10)

(3) Computing X}  Fix other terms, X} is solved as:
For the target dataset:

2
min | Yy — DX} — DU XF - Dxg — Dy xh| a

and for the auxiliary datasets:
d d byb 2

min HYt — DUx{ — Disxds _ pbxt HF
Let the derivative of (11) equal to 0 and the analytical
solution of X! can be obtained as:
For the target dataset:

b b/t b’ wyru ds yrds du yrdu
Xb = (DT DT) Db, (YT—D X4 — pdsxds _ pduxd )
and for the auxiliary datasets:

-1
Xt = (Df’D?) DY (Yt — DUX} — DdSX,{lS) .



(4) Updating sub-dictionaries ~ When other terms are

given, D" is optimised as:

min ||V — D"X|%, st [|dP]3 < 1,(Vi), (12)

where
YV=[v1—D¥X . Yr_ — DXL vy — DX
DYXY, . Yr_y —D¥X¢s | — DY Xh | Yy — DB XE-
D Xd Yp — DU X4 — D Xde — Dh XY
X o= [XP, L XE X L XSy, X3 XY
(13)

(12) can be optimised by the Lagrange dual, and
the analytical solution of D" can be computed as
D¥ = (YX')(XX'+A)"", where A is a diagonal
matrix constructed from all the dual variables.
Similar to D%, D% is optimised by:
min dds (14)

’y—DdSXH2 s.t ‘ <1, (vi)
F7 i 2— b I

where
Y=[Yi - D“X¥ ... Yp_i — DX} |, Y] — DXV~
DYXY .. Yp_ —DUX% | —D5% Xt | Yp— DUX¥-—
D X4 Y — D"XY — DJ X3 — DY x5]
X = [X{lsv sy X’%S—l»Xiis’ '“»X%S—DXYd“S’XId“S}'
(15)
Then, for the target dataset, fix other terms and Ddu
can be updated by:

min HyT - Dd“XTHZF, s.t. ( ddv E <1, (V0), (16)

where

Vr= [YT — D"X% — DU X4* Yp — D"XY, — DY X4 — D} X%,

ap =[x, xge, xg]. W)
17

At last, the objective function to solve D?
(t=1,..,T)is:

2 2
min ‘yt - DfoHF, s.t. deﬂv L < 1), (18)
where
For the target dataset:
Yr =Yy — DX} — D¥X¢ — DI x g, (19)

and for the auxiliary datasets:

Vi =Y; — DUXP — DX,
(14), (16) and (18) can be solved similarly as (12).
(5) Updating W Similar to the dictionary updating
in Step 3, fix other variables and solve W by:

min [|X = WA|Z, st [lwill3 < 1(v3). (20)

where

X=X, X% ], A=Ay, Ap_q). (21)

The analytical solution of W is given by: W=(XA")
(AA"+A)~", where A is a diagonal matrix construct-
ed from all the dual variables.

Alg. 1 summarizes our algorithm. It converges after
a few (< 50) iterations in our experiments.

Algorithm 1: Unsupervised domain adaptation
algorithm for attribute learning

Input: Y;; initialize D“, Dds pdu and Df randomly; Xf — 0;
Output: D%, D%,D% Db, D¥ and W (¢t = 1, ..., T).
while Non-convergence do
fort=1—T do
if Auxiliary dataset then
Compute code X2° by (8).
Compute code X}* by (9).

if Target dataset then
L Compute code X 4%, X% and X4* by (8).
Compute code X? by(11).
Update D* by (12).
Update D? by (14).
fort=1— T do
if Auxiliary datasets then
| Update D? by (18).
if Target dataset then
L Update D by (16).

Update D? by (18).

Iterative Updating M7 After running Alg. 1, each
training sample yr; from the target dataset can be
estimated (using (22) to be detailed below) as a code
vector. With this code, we can measure the similar-
ity between each pair of target data samples and
recompute Mr. This matrix now captures the soft
relationship among the training samples in the target
dataset. Specifically, if xr ; is among the k-nearest-
neighbors of z7; and x7; is also among the k-nearest-

1 . .. TT,i"TT,j . :
neighbors of xr;, mr,; Ter sl otherwise,

"mr;; = 0 (k =1 in our experiments and we obtain

similar results when k& < 5). With the updated My, we
re-run Alg. 1 to enter the next iteration. This iterative
procedure stops when the value of cost function (4)
converges (i.e., the difference divided by the value
over consecutive iterations is smaller than 0.01), and
the number of iterations is typically less than 5 in our
experiments.

3.4 Attribute prediction

Once the various sub-dictionaries are learned, each
test image y from an unseen test class can be encoded
as [z*,2%,2%] via D", D* and D" respectively. The
encoding problem under the unsupervised domain
adaptation can be formulated as:

|:xu7 l,ds7 Idu7 Ib]

2
= arg min Hy — DUz — D3sgds _ pdugdu _ D%asz
2

2 2 2
e+ 1)
2 2 2

where z%, 2%, x4 and 2’ are the projections of y
using the UDAC, shared D-LA, and target dataset
unique D-LA and B-LA sub-dictionaries respectively,
and v is a weight for the regularisation terms. (22)
can be solved easily with a linear system. Under the

(22)

(113 + e



supervised setting (1), D% and 2% will be dropped,

and D% and 2% will be replaced by D% and z%
correspondingly.

After we obtain z*, the user-defined attribute vector
a can be predicted via the linear constraint W:

(23)

a = argmin " — Wall3 + v all3.

4 APPLICATIONS
4.1 Zero-shot learning

It is a supervised cross-class transfer learning prob-
lem. Let A°={aj};*, and A“={a}}X"’, be semantic
attribute prototypes of K seen classes and K, unseen
classes respectively. They can be obtained through
human annotations following an attribute ontology.
L*={1}}7+, is the D-LA prototypes of K seen classes.
Specifically, we first calculate the D-LA code z¢ of all
samples from the seen class k by (22), and then use
the mean as the D-LA prototype of the seen class k.
For a test image y from an unseen class, it is
represented by its semantic attribute vector a and D-
LA vector z¢ estimated using (23) and (22). The class
label of y can be assigned using either of them:
Semantic attributes based ZSL In this semantic
embedding (SE) based approach, y is recognised by
comparing the prototypes { A} X", with the predicted
semantic attributes a by nearest neighbour search:

k* = arg max %.

ko llallaflak]l,
D-LA based ZSL In this semantic relatedness (SR)
based approach, we first measure the semantic relat-
edness between each unseen class and all the seen
classes by attempting to reconstruct the unseen class
prototype using all the seen class prototypes, resulting
in a SR vector r} for the k-th unseen class. Specifically,
this SR vector is obtained by solving the following
least square regression problem:

(24)

(25)

Meanwhile, the D-LA z? of y can be used to
measure the visual similarity between y and all the
seen classes. The resultant visual similarity vector is
obtained by solving another regression problem:

ry, = argmin ||a} — ASTZHg + v HrzHg .

2
x" :argmin”xde“mT 2+'nyT|\§ (26)

Finally, y can be recognised by comparing the visual
similarity vector z” and semantic relatedness vector
ri* of each unseen class and assigning the class label
to the one with smallest distance:

Ty

k* = argmax ————~——. 27
e PN B @7)

Since the semantic attributes and D-LA are com-
plementary to each other, these two approaches are

combined by score-level fusion as our final approach:

.
aak

||a||2”“%“2

T u
x Tk

+ . 28
||m7"||2||r}j||2) (28)

k* = arg max
k

Approaches | AwWA CUB
ALE [9] 43.5 18.0
UME [8] 486 182

CSHAP [10] 45.6 17.5
SC [47] 72.9 54.5
DAP* [4] 57.5 -
SSE* [42] 763 304
SJE* [39] 73.9 51.7

JLSE* [38] 80.5 42.1

MSS* [44] - 56.5

LatEm* [43] 76.1 47.4
Ours 82.9 57.1

TABLE 1: Comparative results on zero-shot Learning
(recognition accuracy in %). “*” means that the same
VGG features are used.

4.2 Person Re-ID

For Re-iD, each test sample can be represented as the
predicted semantic attributes a and D-LA z?. Simply
treating the two types of attributes as features, person
Re-ID could be performed by summing the cosine
distance of a and x? respectively between the attribute
vectors of a probe sample and a gallery one.
Different from ZSL, the proposed method can still
work for Re-ID without user-defined attribute annota-
tions A in the training data, based on (3). In this case,
the test sample y is represented only by its D-LA ¢
only. Another difference is that unsupervised domain
adaptation can be performed for Re-ID, making our
method applicable to unlabelled datasets/domains.

5 EXPERIMENTS
5.1 Zero-shot learning

Datasets and settings Two widely-used benchmark
datasets are chosen in this experiment. AWA is com-
posed of 30,475 images from 50 animal classes and
each class is annotated with 85 user-defined attributes.
Following the default split [4], we divide the dataset
into two parts: 40 classes (24,295 images) as the seen
classes for training and the remaining 10 classes (6,180
images) as unseen classes for testing. CUB contains
11,788 images of 200 bird classes and each class is
annotated with 312 attributes. Again we use the same
data split as in most other ZSL works (i.e., 150 seen
classes for training and the rest 50 unseen target
classes for testing). For both datasets, the 4,096-dim
VGG deep features provided by [42] are used to
compare other methods fairly. As for the parameter
setting, the sizes of D%, D% and DY are set to 400,
400 and 100 respectively for both datasets. The other
free parameters, o« and § in (1) and ~ in (22), are set
as 30, 1.5 and 3 respectively for both datasets. These
parameters are all obtained using cross-validation.

Baselines We compare our method with 10 state-of-
art methods. They fall into two groups. Methods in
the first group project the input image representation
to a semantic space, and the projections are then
compared with the class labels embedded in the same
space (class prototypes) for recognition. These include
DAP [4], ALE [9], CSHAP [10] and UMF [8]. The



Approaches | AwWA CUB
ALE [9] 65.7 60.3
CSHAP [10] | 743 687
DAD* [4] 728 618
IAP* [4] 721 -
TBOS* [15] 70.5 68.1
Ours 75.8 78.3

TABLE 2: Comparative results on predicting user-
defined attributes.

second group of methods learn a joint embedding
space for both the visual feature and semantic spaces,
including SSE [42], SJE [39], JLSE [38], SC [47], LatEm
[43], and MSS [44]. Most of these compared methods
use the user-defined attributes as the semantic space.
The only two exceptions are SJE [39] and LatEm
[43], which additionally use other spaces obtained by
natural langauge processing such as Word2Vec [64].
Comparative results The results are shown Table 1.
All baselines use the same train-test split and most
use the same features as ours. The results show that
our method achieves the best performance on both
datasets even though a number of the compared
methods utilise additional information. For example,
MSS [44] utilises visual parts annotations. SJE [39] and
LatEm [43] combine the user-defined attributes with
other semantic spaces. Futhermore, JLSE [38] is under
the transductive setting which requires the access to
the full test dataset for model adaptation.

Ablation study One of the key reasons for the su-
perior ZSL performance is the more accurate attribute
prediction. To verfiy that, the user-defined attribute
prediction accuracy is reported in Table 2, measured
using mean area under ROC curve (mAUC). It clearly
shows that the proposed method achieves state-of-
the-art performance on both datasets for attribute
prediction. To find out which part of the proposed
model contributes to the good performance for both
attribute prediction and ZSL, we examine the con-
tributions of the key components in our model (see
(1)), including: (1) two types of latent attributes: D-
LA (D% and B-LA (D) are learned together with
the user-defined attributes, and (2) instead of learning
the user-defined attributes directly as a sub-dictionary,
we model a linear transformation (W) from the user-
defined attributes A to the UDAC dictionary subspace
(D*). Table 3 compares our full model (Ours_full)
with various striped-down versions. The results show
that all these components contribute positively to the
final performance of the model. Further evaluations
on the complementarity of the semantic and latent
attributes can be seen in the Supplementary Material.

ZSL A_Pre
AWA CUB | AWA CUB
Without D 81.6 50.7 73.6 74.4
Without D 80.2 48.9 71.2 72.6
Without W 74.4 42.6 68.9 69.8
Ours_full 82.9 57.1 75.8 78.3

TABLE 3: Evaluation on the contributions of different
components to ZSL and attribute prediction (A_Pre).

5.2 Person Re-ID

5.2.1 Supervised person Re-ID

Datasets Four widely-used person re-ID benchmark
datasets are chosen. VIPeR [65] contains 1,264 images
of 632 individuals from two distinct camera views
(two images per individual) featured with large view-
point changes and varying illumination conditions.
All individuals are randomly divided into two equal-
sized subsets for training and testing respectively
with no overlapping in identity. This random parti-
tion process is repeated 10 times, and the averaged
performance is reported. For fair comparison, we use
the same data splits as in [66]. PRID [67] consists
of images extracted from two surveillance cameras.
Camera view A contains 385 individuals, camera
view B contains 749 individuals, with 200 of them
appearing in both the two views. The single shot
version and data splits of the dataset are used in
our experiments as in [66]. In each data split, 100
people with one image from each view are randomly
chosen from the 200 persons present in both camera
views as the training set, while the remaining 100
persons of View A are used as the probe set, and
the remaining 649 persons of View B are used as
gallery. Experiments are repeated over the 10 splits.
CUHKO3 [68] contains 13,164 images of 1,360 iden-
tities, captured from six cameras with each person
only appearing in two views. It provides pedestrian
bounding boxes manually labelled by human and
automatically detected by a deformable-part-model
(DPM) detector. We report results on both cases.
The 20 training/test splits provided in [68] are used
under the single-shot setting as in [51]. Market-1501
[69] contains 32,668 detected person images of 1,501
identities. Each identity is captured by six cameras at
most, and two cameras at least. We use training and
test sets provided in [69], under both the single-query
and multi-query evaluation settings.

Attribute annotation  The training sets of al-
1 datasets have labels indicating the identities of the
people. In addition, a total of 105 binary user-defined
attributes have been annotated for VIPeR and PRID
in [14]. We remove the user-defined attributes which
do not appear in each dataset, and the numbers of
the remaining attributes are 85 and 56 for VIPeR and
PRID respectively. Note that attribution annotation is
unavailable on CUHKO3 and Market-1501. As men-
tioned in Sec. 3, our model works with and without
the user-defined attributes. For fair comparison with
the existing methods which do not use attribute an-
notations, we report results of our model both with
and without user-defined attributes.

Features and evaluation metric Both hand-crafted
low-level features and deep CNN features are con-
sidered for fair comparison with various published
results. For hand-crafted feature, the 26,960-dim Local



Maximal Occurrence (LOMO) features [51] are used.
In addition, deep features are used in our experiment.
Specifically, we extract the 1024-dim CNN feature
from the “pool5” layer in the GoogLeNet model [3]
which is pre-trained on ImageNet dataset [70] and
then fine-tuned on “non-target” person Re-ID dataset-
s. For example, when extracting features on VIPeR
dataset, we fine-tune the model on PRID, CUHKO03
and Market datasets®. For evaluation, we compute
Cumulated Matching Characteristics (CMC) curves.
Due to space constraint as well as for easier com-
parison with published results, we only report the
cumulated matching accuracy at selected ranks in
tables rather than depicting the actual CMC curves.
The only exception is the Market-1501 dataset. Since
there are on average 14.8 cross-camera ground-truth
matches for each query, we additionally use mean
average precision (mAP) as in [69].

Parameter settings The sizes of D%, D% and D’ are
all set to 300. We found that the performance of our
model is insensitive to the dictionary size when it is
between 200 to 400. The other free parameters in our
model, o and  in (1) and + in (22), are obtained using
four-fold cross-validation.

Baselines  Twelve state-of-the-art Re-ID methods
are selected for comparison. They fall into four cat-
egories: (1) Distance metric leaning based methods:
RPLM [73], Mid-level Filter [74], LADF [75], and
Similarity Learning [76]; (2) Kernel-based Discrimi-
native subspace learning methods: MFA [77], kKLFDA
[77], kCCA [66], XQDA [51], and MLAPG [78]; (3)
Deep learning based: Improved Deep [79], Wang et
al [80], FI-JSTL+DGD [81], Zhang et al [72], TCP [82]
and Gated S-CNN [71]; (4) Attribute-based method:
aMTL-LORAE [52], which is the most relevant to
ours as it also utilises the user-defined attributes.
Note that aMTL-LORAE requires multiple images
of each person for training, hence they apply data
augmentation to generate more training samples on
VIPeR and utilises the multi-shot setting of PRID
rather than the single-shot one adopted by most
other methods including ours. Furthermore, aMTL-
LORAE cannot work without user-defined attributes.
For fair comparison, we use the same features and the
same training-test splits for the compared methods
whenever possible (i.e. when the code is available
we use the same features as ours). Three versions of
our models are evaluated: (1) “Ours_U” which means
only user-defined attributes are used, (2)“Ours_L”
which means only latent attributes are learned as rep-
resentation without requiring user-defined attribute
annotation, and (3) “Ours_AIl” which means both the
user-defined and latent attributes are used. The used
feature type is indicated in bracket, e.g., “Ours_L(L)”
means low-level hand-crafted features are used.

3. It is a common practice to pretrain a deep CNN on auxiliary
Re-ID datasets [71], [72].
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(a) VIPeR

Rank 1 5 10 20

RPLM [73] 270 553 69.0 83.0
Mid-level [74] 29.1 523 659 799
Similarity Learning [76] | 36.8 704 83.7 917
LADF [75] 302 647 789 904
kCCA* [66] 302 627 760 868
MFA* [77] 39.7 692 805 89.0
KLFDA* [77] 386 692 804 892
XQDA* [51] 40.0 - 80.5 91.1
MLAPG* [78] 40.7 - 823 924
NFST* [83] 423 715 829 921
Ours_L(L) 415 734 826 905
aMTL-LORAE [52] 423 722 816 89.6
Ours_U(L) 171 538 653 75.6
Ours_All(L) 443 746 842 925
Improved Deep [79] | 348 636 756 845
Wang et al [80] 358 665 825 -
FT-JSTL+DGD [81] | 386 - - -
Zhang et al [72] 43.0 - 87.3 94.8
TCP [82] 478 747 848 91.1
Ours_L(CNN) 498 776 901 959
(b) PRID

Rank 1 5 10 20
RPLM [73] 15.0 32.0 42.0 54.0
kCCA* [66] 143 374 476 625
MFA* [77] 223 456 572 682
KLEDA* [77] 224 465 581 686
NFST* [83] 298 529 660 765
Ours_L(L) 289 503 637 740

aMTL-LORAE [52] | 180 374 50.1 66.6
Ours_U(L) 145 33.6 452 613
Ours_All(L) 31.8 543 675 774

Ours_L(CNN) 375 641 726 812
(c) CUHKO3 (Manual)

Rank 1 5 10 20
XQDA* [51] 522 822 921 963
NEFST* [83] 589 856 925 963
Ours_L(L) 608 875 933 972

Improved Deep [79] | 547 865 939 98.1

Wang et al [80] 522 825 - -
FI-JSTL+DGD [81] | 753 - - -
Zhang et al [72] 570 850 935 97.0
Ours_L(CNN) 775 924 965 99.2
(d) CUHKO3 (Detected)

Rank 1 5 10 20
XQDA* [51] 463 789 88.6 943
NFST* [83] 53.7 83.0 93.0 948
Ours_L(L) 58.4 85.7 93.2 96.3

Improved Deep [79] | 450 76.0 835 932

Zhang et al [72] 512 80,5 90.0 945

Ours_L(CNN) 642 891 934 96.1

(e) Market-1501

Query singleQ multiQ

Evaluation metrics | Rank-1 mAP | Rank-1 mAP
MFA* [77] 457 182 - -

kLFDA* [77] 514 24.4 52.7 27.4
XQDA* [51] 43.8 22.2 54.1 28.4
NFST* [83] 55.4 29.9 68.0 419
Ours_L(L) 61.1 32.3 73.2 45.8
Gated S-CNN [71] 65.8 39.5 76.0 484
Ours_L(CNN) 65.7 43.1 76.5 51.4

TABLE 4: Supervised Re-ID results. ** means that the
same features are used. ‘-’ means no reported result
is available.



Comparative results From the results shown in
Table 4, we have the following observations: (1) Even
without using the additional attribute annotation, our
method Ours_L(L) achieve better or comparable per-
formance in comparison against the state-of-the-art
alternatives using hand-crafted features. (2) Ours_All
outperforms Ours_L on all datasets. This indicates
that the learned user-defined attributes and discrimi-
native latent attributes are indeed complementary to
each other. (3) If only user-defined attributes are used
to represent a person, Ours_U has a much weaker
performance than Ours_L, suggesting that the user-
defined attributes alone are limited in representing a
person discriminatively. (4) Compared to the alterna-
tive attribute-based Re-ID model aMTL-LORAE, our
model (Ours_All) is clearly better. In particular, our
method outperforms aMTL-LORAE by a large margin
even when they used more training data on PRID.
In addition, aMTL-LORAE can only be applied when
there are user-defined attribute annotations, whilst
our model is not restricted by that. (5) Our model can
be considered as a discriminative subspace learning
based method. Compared with the alternative sub-
space learning based methods such as kLFDA [77] and
XQDA [51], our model’s performance is clearly supe-
rior. (6) With deep CNN features as input, the results
are much better than low-level features. It indicates
that our method can benefit from stronger deep fea-
tures. Also, our model with the CNN feature outper-
forms all the recent deep Re-ID models even without
additional attribute annotations (Ours_L(CNN)) on all
four datasets. These results suggest that even an end-
to-end deep Re-ID model can benefit from projecting
the deep features into a lower dimensional latent
discriminative attribute space using our model. Some
visualisation of the learned D-LAs and an ablation
study on the contributions of different model compo-
nents can be found in the Supplementary Material.

5.2.2 Unsupervised person Re-ID

Under this setting, the training data from the target
dataset is completely unlabelled. We assume there
exist a number of auxiliary datasets labelled with
identities and (optionally) user-defined attributes. A
discriminative feature representation is then learned
using both the auxiliary and target datasets using our
asymmetric multi-task learning model (Sec. 3.2).

Datasets and settings The same four datasets
(VIPeR, PRID, CUHKO3 (manual) and Market) are
used but the settings are different. Specifically, one
dataset in turn is chosen as the target dataset and
the other three are used as the auxiliary datasets. All
the persons’ identities in the auxiliary datasets are
labelled and used for model training, while the target
dataset is split into the training and test sets as in
the supervised setting above. To compare with the
reported results with other methods [84], [85] fairly,
we utilise the 5132-dim hand-crafted feature [66].
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Parameter settings The sizes of UDAC DY, B-LA,
shared and unique D-LA sub-dictionaries are all set
to 200 in all experiments. We found that the model’s
performance is insensitive to the different dictionary
sizes. Other parameters (a and § in (4)) are set auto-
matically using three-fold cross-validation with one of
the three auxiliary datasets as the validation set and
the other two as the training set.

Baselines  The compared methods can be cate-
gorised into two groups: (1) Single-task methods. With-
out transfer learning, the training data of these un-
supervised methods are only the unlabelled data
from the target dataset. Some state-of-the-art unsu-
pervised Re-ID methods are selected for compari-
son, including the hand-crafted-feature-based method
SDALF [86], the saliency-learning-based eSDC [87],
the graphical-model-based GTS [88], the sparse-
representation-classification-based ISR [84] and the
dictionary-learning-based DLLR [85]. We also report
results of the single-task version of our model by re-
moving all auxiliary data related terms in (4), denoted
as Ours_S. (2) Multi-task methods. There are few multi-
task learning methods, or unsupervised transfer learn-
ing methods in general, available for the unsupervised
setting. AdaRSVM [26] is the only unsupervised cross-
data transfer learning work for person Re-ID that
we are aware of. However, AdaRSVM assumes the
availability of negative pairs in the target dataset,
thus using more supervision than our method. We
also use the subspace alignment based unsupervised
domain adaptation method SA_DA [89] to align the
data distributions of the auxiliary and target datasets
first. Then a supervised Re-ID model, KLFDA [77], is
trained on the labelled source datasets and applied
to the aligned target dataset. This method is denoted
as SA_DA+KkFLDA. Note that as an unsupervised
domain adaptation method, SA_DA assumes that the
auxiliary and target domains have the same classes,
which is invalid for cross-dataset transfer learning. In
addition, we compare with a naive transfer approach,
by learning kFLDA on the auxiliary datasets first
and applying it directly to the target dataset without
any model adaptation. It is denoted as kLFDA_N.
Adversarial [28] is the deep unsupervised domain
alignment model using gradient reversal and adver-
sarial learning.

Comparative results Table 5 reports the result-
s. From these results, it is evident that: (1) Com-
pared with existing unsupervised methods including
SDALEF, eSDC, GTS and ISR, our model is significantly
better. This shows that transfer learning indeed helps
for unsupervised Re-ID. (2) The difference between
the results of “Ours_S” and “Ours” models shows
exactly how much the target dataset has benefited
from the auxiliary datasets using our unsupervised
asymmetric multi-task transfer learning method. (3)
The results of KLFDA_N is very poor, showing that



(a) VIPeR
Rank 1 5 10 20
SDALF [86] 199 389 494 657
eSDC [87] 26.7 507 624 764
GTS [88] 251 500 625 758
ISR* [84] 270 498 612 730
DLLR* [85] 296 548 648 773
Ours_S 269 50.6 623 712
kLFDA_N [77] 159 424 500 60.7
SA_DA [89] + KLFDA [77] | 15.2 414 498 58.7
AdaRSVM [26] 109 237 331 445
Adversarial [28] 228 386 503 639
Ours_L 315 572 681 782
Ours_All 34.6 601 695 79.7

(b) PRID
Rank 1 5 10 20
SDALF [86] 163 296 38.0 487
ISR* [84] 17.0 344 420 543
DLILR* [85] 211 437 558 648
Ours_S 141 285 374 463
kLFDA_N [77] 9.1 273 350 467
SA_DA [89] + KLFDA [77] | 8.7 264 348 462
AdaRSVM [26] 49 131 184 263
Ours_L 24.6 478 59.2 68.5
Ours_All 25.6 479 58.5 68.1

TABLE 5: Unsupervised Re-ID results on VIPeR and
PRID. ‘- means no reported result is available.

the knowledge learned from the labelled auxiliary
datasets cannot be directly used to help match the
target data. This is due to the drastically different
viewing conditions and illumination changes across
views in the target dataset compared to those in the
auxiliary datasets. A naive transfer learning approach
such as KLFDA_N would not be able to cope with
the domain shift/difference of this magnitude. (4)
Importantly, it is noted that when an existing unsu-
pervised domain-adaptation based transfer learning
model is applied to alleviate the domain shift problem
(SA_DA+KkLFDA), the result is even worse. This is not
surprising as the existing unsupervised domain adap-
tation methods are designed under the assumption
that the auxiliary and target domains have the same
recognition task (i.e. having the same set of classes)
— an invalid assumption for our unsupervised Re-ID
problem as different datasets contain different person
identities. Also, the experimental results of Adversar-
ial [28] suggest that the domain adaptation problem
for Re-ID poses unique challenges that cannot be
tackled by simple domain alignment. (5) The results
of the only existing cross-dataset unsupervised Re-ID
method AdaRSVM is actually the worst. Note that
since its code is not available, these are the reported
results in [26]. Since different feature representation
and two instead of three source datasets were used,
this comparison is only indicative. However, by ex-
amining some additional results (see Supplementary
Material), we can conclude that indeed AdaRSVM is
able to transfer very little useful information from the
source datasets even when they use more supervision
on the target dataset than our model. (6) It is also
noted that on the two small datasets (VIPeR and
PRID), our unsupervised results are not far off the best
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reported results using the existing supervised methods
(see Table 4). In addition, our model is also extremely
efficient to compute (see Supplementary Material for
running cost details and additional results).

6 CONCLUSION

We have proposed a novel attribute learning mod-
el for addressing the cross-class transfer learning
problem. Our model learns user-defined semantic at-
tributes jointly with discriminative and background
latent attributes. The model is based on dictionary
learning. An efficient algorithm is then formulated to
solve the resultant optimisation problem. This model
is further extended to deal with the unsupervised
domain adaptation problem whereby the need of
labelling training class samples is removed. Extensive
experiments show that the proposed method pro-
duces state-of-the-art results on both zero-shot learn-
ing and person re-identification. One of the limitations
of the proposed model is that it takes a fixed (either
hand-crafted or deep) feature representation as input.
With a fixed feature input, the learned attribute based
representation could be sub-optimal; thus an end-
to-end joint feature and attribute learning approach
would be more desirable. End-to-end dictionary learn-
ing has been attempted [90]. However, integrating
the proposed multi-task dictionary learning model
into an end-to-end framework is non-trivial. Part of
the ongoing work is on formulating the proposed
model as neural network layers in an end-to-end deep
learning model, particularly under an unsupervised
setting.
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