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Abstract

Pavlovian influences are important in guiding decision-making across health and psychopa-
thology. There is an increasing interest in using concise computational tasks to parametrise
such influences in large populations, and especially to track their evolution during develop-
ment and changes in mental health. However, the developmental course of Pavlovian influ-
ences is uncertain, a problem compounded by the unclear psychometric properties of the
relevant measurements. We assessed Pavlovian influences in a longitudinal sample using a
well characterised and widely used Go-NoGo task. We hypothesized that the strength of
Pavlovian influences and other ‘psychomarkers’ guiding decision-making would behave like
traits. As reliance on Pavlovian influence is not as profitable as precise instrumental deci-
sion-making in this Go-NoGo task, we expected this influence to decrease with higher 1Q
and age. Additionally, we hypothesized it would correlate with expressions of psychopathol-
ogy. We found that Pavlovian effects had weak temporal stability, while model-fit was more
stable. In terms of external validity, Pavlovian effects decreased with increasing 1Q and
experience within the task, in line with normative expectations. However, Pavlovian effects
were poorly correlated with age or psychopathology. Thus, although this computational con-
struct did correlate with important aspects of development, it does not meet conventional
requirements for tracking individual development. We suggest measures that might improve
psychometric properties of task-derived Pavlovian measures for future studies.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006679 December 31,2018

1/26


http://orcid.org/0000-0002-4751-0425
http://orcid.org/0000-0003-0229-0091
http://orcid.org/0000-0003-3476-1839
https://doi.org/10.1371/journal.pcbi.1006679
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006679&domain=pdf&date_stamp=2018-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006679&domain=pdf&date_stamp=2018-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006679&domain=pdf&date_stamp=2018-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006679&domain=pdf&date_stamp=2018-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006679&domain=pdf&date_stamp=2018-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006679&domain=pdf&date_stamp=2018-12-31
https://doi.org/10.1371/journal.pcbi.1006679
http://creativecommons.org/licenses/by/4.0/

BIOLOGY

©'PLOS

COMPUTATIONAL

Change and stability of Pavlovian bias from adolescence to young adulthood

in receipt of a National Institute for Health Research
(NIHR) Senior Investigator Award (NF-SI-0514-
10157). PF was, in part, supported by the NIHR
Collaboration for Leadership in Applied Health
Research and Care (CLAHRC) North Thames at
Barts Health NHS Trust. The views expressed are
those of the authors and not necessarily those of
the NHS, the NIHR or the Department of Health. PD
was funded by the Gatsby Charitable Foundation
and the Max Planck Gesellschaft. The funders had
no role in study design, data collection and
analysis, decision to publish, or preparation of the
manuscript.

Competing interests: MM, RJD, IMG, PF, PBJ, and
PD have no competing interests to declare. Of the
other authors including the NSPN Consortium, ETB
declares that he is employed part-time by
GlaxoSmithKline and holds stock in GSK.

Author summary

Choice behaviour is guided by Pavlovian influences, so that particular features of a situa-
tion, e.g. if one seeks to gain rewards vs. to avoid losses, privilege certain decisions over
others-here, to be active versus vs. inactive respectively. Such privileging may be useful
but may also impair optimal instrumental behaviour. We examined the balance of Pavlov-
ian and instrumental guidance of choice in healthy, 14-24-year-old participants and
found that young people with higher IQ relied less on Pavlovian guidance. Experience
with a task changed Pavlovian guidance in a rational manner, so that it was used less
when unnecessary. On the other hand, the degree of Pavlovian influence was not a highly
stable trait and did not depend on age or mood. The degree of unpredictability in choice
emerged as a crucial individual characteristic, associated with stronger Pavlovian influ-
ences yet more stable than them as a disposition.

Introduction

A leitmotif in the nascent field of computational psychiatry [1-4] is that carefully curated cog-
nitive tasks can be used to identify latent dimensions of decision-making. These parametrize
process accounting for how the tasks are solved, and are identified according to the models
that best fit behaviour. Individuals are characterized according to their coordinates in these
dimensions and it is by this means that dysfunction is delineated. A number of such dimen-
sions, quantifying features such as reward and punishment sensitivity [5,6], uncertainty [7,8],
exploration [9], metacognition [10], interpersonal modelling [11] have been extensively inves-
tigated in laboratory tasks.

However, to characterize individuals in a psychometrically competent manner, it does not
suffice to have external validity in terms of indices of development and pathology. Temporal
stability is also crucial [12,13].Stability and related psychometric properties are increasingly
important as computational psychiatry moves from describing differences between selected
groups of individuals, for example well vs. ill groups, to describing individual change attribut-
able to development, vulnerability to psychopathology, and recovery from psychiatric disor-
der. Stability is also crucial if computational parameters are to guide diagnosis and
personalized psychiatry. Unstable measures may have predictive value [14,15], especially if
their variability can be understood [16], but cannot easily characterise individual trajectories.
It is unclear whether computational tasks that have been well validated in the laboratory, and
which are starting to be used in epidemiological samples studies [17,18], have psychometric
properties sufficient to pinpoint individual dispositions. In particular, while learning tasks are
amongst the most popular in computational psychiatry, it is not clear if they bear repetition,
for instance whether the identity of the best fitting process model remains the same when they
are applied again. Furthermore, we often do not know if parameters inferred by using these
best models are psychometrically reliable, covarying with traits, or change with the individual’s
state and experience.

Here, we study the population distribution and psychometrics of a paradigmatic computa-
tional measure, namely the extent to which an individual’s decision-making is guided by Pav-
lovian influences [19]. This is the direct predisposition to prefer particular actions in response
to features of a stimulus, such as the appetitive or aversive consequences that it predicts. This
predisposition can help or hinder instrumental behaviour, which is defined in terms of the
contingency between action and outcome. Pavlovian biases have often been studied because of
their translational relevance for anxiety, post-traumatic stress, and other disorders [20-23].
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The incidence of psychiatric symptoms where Pavlovian influences have been implicated rises
in adolescence. For example, we recently described a peak in mood symptoms in a large non-
clinical sample around the age of 16 in females [13]. It is thus important to examine how Pav-
lovian influences vary with age as well as characteristics such as mood, sex and IQ [1]. This in
turn makes psychometric questions related to tasks assessing Pavlovian phenomena particu-
larly pressing.

Pavlovian influences elicited by predictions of reward and punishment have been exten-
sively studied through variants of a Go-NoGo task [19,24-26]. Here, subjects prefer to execute,
rather than withhold, actions in proportion to their expectations of winning money. This Pav-
lovian ‘bias’ is quantified as a perturbation of a standard reinforcement learning model, using
a form of bonus that is proportional to the predicted value associated with the stimuli con-
cerned [25]. This rewards ‘Go’ actions in the face of ‘potential win’ stimuli and ‘No-Go’ actions
in the face of ‘potential loss’ stimuli.

To assess Pavlovian bias and associated decision-making characteristics, we used an ortho-
gonalised Go-NoGo task, wherein optimal decisions (Go vs. NoGo) are independent of the
goal outcome (winning vs. avoiding loss). This has been extensively validated to assess Pavlov-
ian bias, while much is known about neural function in this task [19,24,25,27]. We adminis-
tered it on two occasions (termed ‘baseline’ and ‘long follow-up’) in a large, naturalistic,
epidemiologically informed sample of 14 to 24 year olds [28]. We first validated the class of
reinforcement-learning models developed in the laboratory in this population. In the process,
we asked which model best described behaviour and ascertained that estimates of Pavlovian
bias were robust with respect to secondary modelling details. We considered a model with dif-
ferential sensitivity to wins and losses, which Guitart-Masip et al, 2014, found to fit behaviour
best (‘valenced-sensitivity’ model). We also considered variants, particularly equal sensitivity
to wins and losses, but differential learning to these outcomes (‘valenced-learning model’). We
then compared the psychometric properties of the best models using real but also simulated
data. We examined the external validity of the best models by assessing correlations between
parameter values and the variables of age, IQ and mood. Calendar age is a key variable in
development, albeit not the same as developmental time [29-31]. IQ is also an important yard-
stick, as theoretical [32] and experimental [33] findings motivate further examination of its
relationship with Pavlovian tendencies. Specifically, we argued that in the orthogonalized Go-
NoGo task used here, efficient instrumental learning rather than reliance on non-instrumental
Pavlovian biases is most profitable. Therefore, participants with higher IQ might be expected
to rely less on Pavlovian guidance. Finally, we used the ‘Mood and Feelings Questionnaire’, or
MEQ for external validation. This was motivated by two considerations: first, research has sug-
gested links between Pavlovian bias and so-called internalizing disorders [20,21,26]. Second,
we have found that MFQ is a good simple proxy for the ‘general psychopathology factor’ (see
S1 Fig and [13]). It may thus shed light into how Pavlovian bias contributes to psychiatric vul-
nerability or resilience in general, although further research should address associations with
other, specific dimensions of psychopathology.

We examined longitudinal changes and correlations, particularly concerning the best fitting
model and the trajectory of Pavlovian parameters. First, we performed a ‘short follow-up’
study over an interval of 6 months. This is short in developmental but not in test-retest terms.
It helped us to subsequently interpret the results of our main, ‘long follow-up’ study, about 18
months post-baseline. Over and above model parameters, model-fit was of over-arching
importance, as it assessed how well a specific cognitive model captures individual behaviour.
We then explored the dependence of model-fit on age, task repetition and IQ.

We tested three hypotheses for the trajectory of the Pavlovian parameter. One is that the
bias characterising an individual was a trait that remained stable over the time of our study.
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Alternatively, it might reflect a slowly changing developmental disposition, specifically one
where younger participants were more strongly guided by Pavlovian biases. A third possibility
is that Pavlovian biases reflected prior beliefs not only dependent on the context of ‘opportu-
nity’ (appetitive trials) or ‘threat’ (aversive trials), but also dependent on other features of the
context, such as ‘task taking place in a particular laboratory’. In the latter case, participants
could update their prior beliefs about a link between appetitiveness and the appropriate action
across test sessions.

Results

Key descriptive characteristics of participants at baseline are shown in Table 1.

Short time interval follow-up study

We tested 61 participants at baseline, and then after an interval of 6 months (Fig 1), using the
task briefly described above (and fully in Methods; very similar to [26]). We thus first explored
temporal individual stability and group-level change over a time scale which was short in
developmental terms. We report uncorrected Pearson r for approximately Gaussian quantities
and Spearman p for non-Gaussian ones, using parameters inferred from the preferred model
variant that emerged from model-comparisons. This was the ‘valenced learning’ variant, quite
similar but not identical to the established one [19,24]. Please see the Methods section for
details.

For the overall propensity to choose action over inaction, parametrized by the ‘Go Bias’,
baseline estimates were significantly correlated with short follow-up estimates, as hypothesized
(r=0.30, p =0.018; Fig 2). However, this was not true for the other parameters. The Pavlovian
bias, parametrizing the propensity to action in the context of opportunity and inaction in a
context of loss, had p = 0.54. The motivational exchange rate, which measures how strongly
likelihood of a choice depends on its value, had p = 0.55. For the learning rates for the appeti-
tive and aversive contexts, p was 0.13, and 0.52 respectively. The irreducible noise parameter,
quantifying decision variability that could not be reduced by learning motivating actions, had
r = 0.24, p = 0.052. The extent to which the model accounted for behaviour, the integrated like-
lihood measure, was the most inter-correlated variable between baseline and short follow-up, r
=0.43, p = 0.00047. As we shall see below, similar results obtained in the larger, long follow-up
study, suggesting that developmentally, individuals largely maintain their rank within the
cohort with respect to this measure.

Next, we tested whether each of the parameters increased or decreased with task repetition.
As we had no a priori hypotheses, we applied a Bonferroni correction for 6 tests, so that a cor-
rected threshold of p = 0.05 corresponded to uncorrected p = 0.0083. We found that outcome
sensitivity clearly increased (uncorrected Wilcoxon p = 5.5e-7) over the 6-month interval.

Table 1. Age, sex, ethnicity, mood and WASI total IQ distributions.

Age at baseline Age at short follow-up | Age at long follow-up | Mood at baseline (MFQ) | IQ (WASI) at baseline |Sex Ethnicity (UK convention)
Mean: 18.95 Mean: 19.38 Mean: 20.29 Mean: 18.39 Mean: 110.4 Female: 426 | Asian: 70
Quartile 1: 16.45 Quartile 1: 17.39 Quartile 1: 17.69 Quartile 1: 8.00 Quartile 1: 103.0 Male: 392 Black: 34
Quartile 3: 21.23 Quartile 3: 21.30 Quartile 3: 22.51 Quartile 3: 24.00 Quartile 3: 118.0 Mixed: 54
Range: 14.10-24.00 | Range: 14.93-24.91 Range: 15.11-26.49 Other: 18
White: 591

https://doi.org/10.1371/journal.pcbi.1006679.t001

Undisclosed: 51
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Anticipation Action  Outcome Inter-trial

_ Interval
Stimulus 0.25 to 0.8 L 0.25to
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2,400 Volunteer, English community sample
|

Volunteering for cognitive testing, Inclusion / exclusion screening
|
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gualitative feedback
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self-report Mood and Feelings Questionnaire
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N =261 Go-NoGo datasets
B total attrition Mood & IQ as per ‘baseline’ testing
[}
Fig 1. Study task and longitudinal structure. A. Go-NoGo task. Modified with permission from (26). Participants are presented with four stimuli for

36 trials each in fully randomized order. After a short ‘wait’ interval, they implement a decision of either to press or not press a button. Subjects discover
by trial and error the two possible outcomes for choice of each stimulus (win/nothing or nothing/loss) and across trials learn which decision, ‘Go’ or
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‘NoGo’, most often (with probability 0.8) leads to the best outcome. B. Longitudinal study structure, summarizing and illustrating the stages described
in Methods.

https://doi.org/10.1371/journal.pcbi.1006679.9001

There was weak evidence that Pavlovian bias decreased (from a median on 0.20 to 0.12;
uncorr. t-test p = 0.024).

There was no significant change in the other parameters over the short follow-up, but there
was good evidence that the median integrated likelihood increased (from -66.4 to -53.7, uncor.
Wilc. p = 0.0038). 54 of the short-interval participants were also included in the long follow-up
sample (Fig 1). They are included in the long follow-up analyses below, but their exclusion
results in minimal change. For example, the baseline vs. long follow-up correlation p of Pavlov-
ian bias does not change, while its p-value would drop slightly from 0.017 to 0.020.

Key results from the short-follow up study thus were that model fit was longitudinally the
most stable measure, while the group shifted its outcome sensitivity and Pavlovian bias in the
direction of benefitting performance, and it improved its model-fit.

Large naturalistic study

In the large naturalistic study, we first collected data from N; = 817 participants (‘baseline’
sample). Of these, N, = 556 (68%) also provided valid data at a follow-up session, on average
18 months later (‘long follow up’ sample). We first analysed performance simply in terms of
the proportion of correct responses that participants achieved in each task condition, time dur-
ing the task and session (Fig 3).

The characteristic ‘Pavlovian bias’ interaction pattern was seen, with Pavlovian-incongruent
conditions showing worse performance than the corresponding congruent ones (Go to
Win > NoGo to Win, NoGo to Avoid Loss > Go to Avoid Loss) at all stages. As shown in Fig
3A (‘early trials’ panel, second vs. third pair of boxes), G2AL showed a clearly better level start-
ing level of performance than the other pavlovian-incongruent condition, NG2W (baseline
difference: 18%, p.or < le-10; long follow-up difference: 16%, p o, < le-10). However, for the
‘late’ trials (Fig 3B) the improvement in median fraction of correct responses in G2AL was
modest compared to those of NG2W. Hence, median performance in the latter now matched
the former (baseline difference: -0.6%, p.or < 0.05; long follow-up difference: -0.6%, pcor =
NS). This pattern suggests that not only Pavlovian congruency, but action and/or valence
biases in learning and decision making need to be considered.

p =0.30, p=0.018 0 =0.078, p=0.54

1.0

0.0
I

05
L

6-month Go-bias
In (6-month Pav. Bias)

T T T T T
1.0 05 00 05 10 15 3 2 1 0 1

T T T T T ]

A baseline Go-bias B In ( baseline Pav. Bias)

Fig 2. Parameter time dependency for the short follow-up study, baseline vs. 6 months later. A. Go Bias B. (log)
Pavlovian bias. Statistically significant correlation is observed for the Go-bias but not for the Pavlovian bias.

https://doi.org/10.1371/journal.pchi.1006679.9002
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Fig 3. Raw performance in the all conditions. The middle two quartiles are in solid color, with the ‘avoid loss’ conditions in pink/purple and ‘win’ in gold/yellow.
Just non-overlapping notches represent p = 0.05 for the uncorrected difference between two medians. One star denotes p <0.05 corrected for 8 comparisons; Five
stars denote p.,, < le-10. Long follow-up is shown next to baseline. A. Performance weighted towards early trials, the weighing decreasing linearly to 0 for the
middle of the task. No-Go to win (NG2W) showed median success rate slightly below chance, in line with the literature. B. Late trials. Performance reaches
maximum for at least a quarter of participants in both appetitive conditions, but a quarter (long follow-up) or more (baseline) participants still perform below
chance in NG2W. Long follow-up shows better performance than baseline in all except the easy Go-to-Win (G2W) conditions.

https://doi.org/10.1371/journal.pchi.1006679.g003

As descriptive statistics do not distinguish clearly the roles of Pavlovian bias and other pro-
cesses of interest, we fitted a range of computational models capable of these distinctions to
the data. We used the integrated likelihood (iL) and Bayesian Information Criterion (iBIC) to
quantify complexity-corrected accuracy (Fig 4) and thereby compare models [24]. We assessed
whether the identity of the best-fitting model remained the same over testing sessions, and
whether estimates of Pavlovian bias were robust to secondary modelling considerations. We
expected correlations for each task parameter across time to be positive. Accordingly, we
report uncorrected p’s for Spearman correlations and Wilcoxon paired t-tests. We were also
interested in the direction of any systematic change. Here, in the absence of a priori hypothe-
ses, we report Wilcoxon tests, applying a Bonferroni correction for as many comparisons as
there were parameters.

In the baseline sample, the valenced-learning model performed best (Fig 4, leftmost), with
the valenced-sensitivity model 255.7 BIC units behind. Importantly, these two models pro-
duced very similar estimates for the parameters of interest here (r = 0.88 between models for
the Pavlovian parameters, r = 0.93 for Go-bias, p <<1e-05). A variant of the valenced-senstiv-
ity model, the ‘sensitivity ratio’ model, also furnished highly similar Pavlovian bias estimates
(e.g. r=0.93, p <<1e-05 with valenced-learning). As a quality check, the ‘irreducible noise’
parameters, which quantify lack of attention and motivation-independent lapses, were reassur-
ingly low (5-7%). In the long follow-up sample the valenced-learning model again obtained an
advantage, here of 275.6 BIC units over the second-best, valenced-sensitivity model.
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Fig 4. Comparison of fit quality for 6-parameter (left three) and 7-parameter (right three) models, using the baseline data. The

‘valenced learning’ (leftmost) model performs best, i.e. had the lowest integrated Bayesian Information Criterion score. Adding
forgetting parameters (right three bars) worsened the fits due to the complexity penalties involved.

https://doi.org/10.1371/journal.pcbi.1006679.9004

However, the mean advantage of the winning model per participant was only 0.15 BIC
units at baseline, while the typical individual uncertainty in iBIC, estimated as the SD of BIC
scores refitted to data generated using the exact mean population value of each parameter for
the winning model, was 7.9 units. Thus, while evidence of >250 BIC units is considered over-
whelming by conventional standards [34], we asked if in studies with N>>500 it might arise by
chance and, as importantly, what difference in predictive power it signifies. Using a paired
Wilcoxon test to compare fits for the two models for the data obtained in the first (baseline)
testing session gave p = 0.09, while for the long follow-up Wilcoxon p was 1.7e-4, overall pro-
viding evidence against a false positive finding. Similarly, using integrated likelihood estimates
at the individual level yielded values of approximate protected exceedance probabilities of
0.569 for baseline and 0.974 for long follow-up in favour of valenced-learning [35]. However,
when we asked if having a greater likelihood for the one model at baseline implied a similar
ordering at long follow-up, a chi-square test showed no evidence (p = 0.38). Numerical studies
later showed that even if individuals’ employment of a particular model [valenced learning or
sensitivity] remained fixed, and so constituted a ‘type’, our relatively brief experiment would
be under-powered to allocate individuals to their type reliably (see S1 Appendix, ‘In silico sim-
ulated agents’ reliability and biases’).

We then estimated predictive power. First, we expressed the difference in BIC in terms of
the probability of the model better predicting a participant’s decision per trial. Even at long fol-
low-up, this difference was very small, mean APpt = 0.0011, compared to a grand mean predic-
tion probability per trial, Ppt = 0.64. We also introduced a new out-of-sample, or ‘left out
likelihood” (LOL) comparison method, suitable for tasks involving learning which present
challenges for predictive tests. This is important, as predictive tests do not rely on the approxi-
mations inherent in the BIC and become more and more powerful as datasets become larger
(interested readers are referred to the Methods section for validation and details). LOL testing
confirmed in an unbiased manner that the likely difference in predictive power between the
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two best models was very small, interquartile range of APpt -0.012 to 0.0026. Here the mean
predictability per trial was 0.73 (see Fig 5 and Methods).

To further assess model quality, we examined correlations between parameters within each
of the best models. The ones remaining significant after correction for multiple comparisons
for the valenced-learning model are shown in Table 2 (valenced-sensitivity is similar). Four
within-model significant correlations were consistently found at baseline and long follow-up.
The Pavlovian bias was anticorrelated with both learning rates, while the motivational
exchange rate correlated with the Go-bias and anticorrelated with irreducible noise. The moti-
vational exchange rate is also known as reward sensitivity or inverse decision temperature. It
can be seen as the power that a unit of additional reward (or loss) has to shift behaviour off
indifference between choices. The correlations were also significant in the long follow-up sam-
ple (Pav. bias vs. appetitive and aversive learning rates: p = -0.14, -0.19, p = 0.016, 0.00011;
motiv. Exchange rate vs. irreducible noise and Go bias: p = -0.13,0.14, p = 0.043, 0.020). S2
Table shows similar results for the valenced sensitivity model.

We then examined stability in the quality and nature of the performance, which is the main
focus of the study. We started with descriptive measures. As suggested in Fig 3, while there was
no overall change in G2W performance between baseline and follow-up (uncorr. Wilcoxon
p = 0.31) the other three conditions did improve (G2AL by a median of 5.5%, p< le-5 cor-
rected for 4 comparisons; NG2W by 2.8%, p = 5.4e-4; No-Go to avoid loss (NG2AL) by 2.8%,
p = 1.78e-4). Next, we used these changes to compare an estimate of Pavlovian bias in follow-
up vs. baseline. This estimate showed modest stability across time (Spearman p = 0.146,

p = 5.4e-4; Fig 6A) but there was a significant reduction in its mean (p = 0.0019), largely attrib-
utable to a closing of the gap between G2ZW-NG2W (Fig 6B). Cross-sectionally, at baseline the
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Fig 5. Model comparison based on Mean Prediction probability per trial (Ppt) in the long follow-up sample, showing that the difference in Ppt
between the two best models is similar if one uses model-fitting vs. out-of-sample based methods A. APpt estimated through a model fit measure,
namely mean integrated likelihood per trial, N, = 556. Both models have mean Ppt about 0.64. B. APpt estimated by out-of-sample prediction of the
48" and 96™ trials for each participant on a test subsample of N = 255, This out-of-sample comparison is more variable, but the resampling-based
95% confidence interval (CI) of the median difference is -0.0012 to 0.0026, consistent with A. If it were desirable to further reduce this CI, the
estimate could be averaged over rotated out-of-sample trials, at the very considerable computational cost of re-estimating the entire model fit for

each left-out sample.

https://doi.org/10.1371/journal.pchi.1006679.g005
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Table 2. Spearman correlation coefficients between the peak posterior parameter estimates at the 0.05 level, corrected for 6*5/2 comparisons, for the baseline sam-

ple (N = 817). Correlation values below the diagonal, corrected p-values above.

motiv.exch.rate appet.Irn aver.lrn pav.bias irr.noise | Go.bias
motiv.exch.rate - ns ns ns p=0.015 p =0.0081
appet.lrn - ns p<le-10 ns ns
aver.Irn - p=83e-5 ns ns
pav.bias r=-0.29 r=-0.16 - ns ns
irr.noise r=-0.11 - ns
Go.bias r=0.12 -

https://doi.org/10.1371/journal.pchi.1006679.t002
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first three conditions showed no significant linear or quadratic dependence on age (uncorr.
regression p: G2W, 0.22; G2AL, 0.16; NG2W, 0.65). For NG2AL, the linear regression
explained 1.0% of the variance, p = 0.021 corrected for 8 comparisons, with positive linear
dependency on age. At long-follow-up, again the first three conditions showed no significant
dependency at the uncorrected level (regression p: 0.98, 0.096, 0.73). However, at this time
there was trend evidence for a positive linear and negative quadratic dependence of NG2AL
performance with age (regression p = 0.093 corr. for 8 comparisons, adj. r* = 0.012; S2 Fig).
To explore the evolution of the component cognitive processes, we examined the stability
of the parameter values extracted from the fits of the winning computational model. To put
the results that follow in perspective, the Pearson correlation for IQ between sessions was 0.77,
Peor << 1le-05 while for the mood measure it was 0.61, p.,, << le-05. A modest correlation
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((G2W-NG2W)+(NG2AL-G2AL))/2. A. Stability assessed by baseline vs. long follow-up estimates. A positive correlation is detectable, rho~0.15, p = 5.4e-4. B.
Difference in performance between the appetitive (two left) and aversive (two right) conditions. The horizontal lines show the median appetitive bias at baseline
(G2W-NG2W; first violin plot; salmon) vs. long follow-up (second plot, in green). This significant difference (p = 0.0027) drives an overall reduction in the
estimate of Pavlovian bias (p = 0.0019). The aversive context, NG2AL-G2AL, shows no significant change on its own (blue and mauve; p = 0.35). White boxes are

interquartile ranges.

https://doi.org/10.1371/journal.pcbi.1006679.9006
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across time points was detected for the Pavlovian bias (r = 0.10, p = 0.017; Fig 6A). A more
salient result was an overall reduction in Pavlovian influences with session (from a median of
0.205 at baseline to 0.142 at long follow-up, p.,r < le-5). We found evidence that the short-fol-
low-up participants changed their Pavlovian bias as much in the 6-month interval as the rest
did in the mean-18-month interval. The scaled-information Bayes factor in favour of no differ-
ence was 4.01 (JZS scaled Bayes factor = 7.15, t = 0.76, p = 0.45). Decreases in Pavlovian bias
between baseline and long follow-up were strongly correlated with improvements in perfor-
mance in the Pavlovian-incongruent conditions, and anticorrelated with improvements in the
Pavlovian-congruent conditions (S3 Table).

We then performed a set of latent change score (LCS;S3 Appendix) analyses, useful for
describing longitudinal change [36]. The most complex multivariate-normal model that can
be fitted to the data, known as the just-identifiable model’, showed a significant dependence
of change on baseline (regr. beta = -0.878, p<1le-3), with higher-bias individuals at baseline
reducing their bias more at long follow up (visible in Fig 5A). This model was superior to one
assuming that change only represented regression-to-mean (> = 7.63, df = 1, p = 0.0057) and
also to one assuming the same mean and variance at long follow-up vs baseline (% = 6.37,
df =2, p = 0.041). See S3 Appendix for illustration and more details.

We found a substantial temporal correlation for the motivational exchange rate (In(beta); r
=0.253, p = < le-5; Fig 7B) and especially for the model fit measure, the integrated likelihood,
(r=0.37,p < le-15; Fig 8A). The latter increased at long follow-up, from a median of -68.9 to
-64.4, peor = 0.023. There was evidence for a temporal correlation in learning rates, in both the
appetitive and aversive domains (r = 0.09, p =0.045 and r = 0.11, p = 0.011 respectively). Both
increased significantly from baseline to long follow up (median differences of 0.028 and 0.027
respectively; both p,,,< le-05). There was trend evidence of temporal correlation for the bias
parameter favouring action over all trials (‘Go bias™ r = 0.082, p = 0.054) and the lapse rate
parameter (r = 0.077, p = 0.068). Go-bias decreased (median 0.73 to 0.57, p.., = 0.014), but the
most significant change was a decrease in lapse rate (median 0.069 to 0.055, p,, < le-05).

For none of the parameters; or their change, did we find evidence of correlation with partic-
ipant age at baseline (correcting for seven comparisons). We also examined whether the base-
line parameters depended on gender, mood (the ‘Mood and Feelings Questionnaire’) or IQ
(WASTI total IQ). Correcting for multiple comparisons, we found no significant dependency of
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Fig 7. Parameter time dependency, long follow-up study, baseline vs. 18 months (mean) later. A. Pavlovian Bias.
The most prominent feature was a reduction in the group mean. B. Motivational exchange rate (log beta). Here there is
little shift in the modal tendency. Note that log-units are used and the contours are estimated by axis-aligned, bivariate
normal kernel density estimation.

https://doi.org/10.1371/journal.pchi.1006679.9007
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Fig 8. The distribution of model fit over the population is bimodal and best described by four Gaussian
components. A. Kernel density contours are shown, while the inset plots peaks of the landscape in 3D. B.
4-component mixture-of-Gaussians fitted to this joint distribution of integrated likelihoods, with participants
clustered according to the Gaussian they are most likely to belong to. As can also be seen in the 3D rendering. Apart
from the prominent peaks (cluster3, green, N3 = 176 participants, and 4, blue, N4 = 171) there are somewhat less
prominent concentrations (1, black, N.; = 94 and 2, red, N, = 113).

https://doi.org/10.1371/journal.pcbi.1006679.g008

baseline parameters on gender or mood and consequently did not analyse for such dependen-
cies further.

IQ was significantly related to the parameters, decreasing with increasing Pavlovian bias at
baseline (r = -0.13, p.,, = 0.007) as hypothesized. Other parameters also related significantly to
IQ, notably motivational exchange rate (r = 0.27, p.,,< le-10), appetitive learning rate (r =
0.11, p.or = 0.044) and aversive learning rate (r = 0.19, p., < le-05). IQ strongly correlated
with overall model fit (r = 0.28, p,, < 1le-10). In the long follow-up sample the model fit (r =
0.31, por < le-10), motivational exchange rate (r = 0.24, p.,, < le-05), and lapse rate (r =
-0.14, pcor = 0.014), but no other parameter, correlated with IQ. Regressing IQ on the (log)
appetitive and aversive sensitivities of the valenced-sensitivity model obtained a multiple r-
squared of 6.1%, whereas the single beta of the valenced-learning model absorbed 7.6% of the
variance in IQ.

We then examined the distributions of parameters and of model fit for evidence of sub-
grouping. We used the baseline data for this screening, as it was epidemiologically most repre-
sentative. There was no evidence for sub-grouping in the parameters, but there was for the fit
measures, where a bimodal distribution was evident (Fig 8A). This motivated analysis of the
joint distribution of baseline and long follow-up model-fit measures. This was best described
by a mixture of two major, approximately equipopulous, Gaussian components and two some-
what less prominent ones (Fig 8B). This means that the behaviour of the high-likelihood clus-
ters is much more predictable (less random) according to our models.

We performed a mixed-effects analysis (here, controlling for re-test) to draw out differences
between the clusters in terms of Mood, IQ and task parameters. As expected, we found differ-
ences between sub-groups in integrated likelihood (by construction) and motivational
exchange rates and irreducible noise, which are closely related. More interesting, we found a
consistent pattern across parameters and IQ, where the cluster which fit worse at both time
points (blue or 4 in Fig 8) did significantly worse than most in all performance-sensitive mea-
sures, and had increased Pavlovian bias compared to clusters 2 and 3 (2 and 3 had the better fit
at follow-up, Fig 8B). Pavlovian bias did not differ amongst the other clusters, while cluster 4
had greater IQ than the others. See ‘S2 Appendix: Clustering analyses’, for statistical details
and illustration.
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Finally, we performed in silico analyses to determine whether the fitting procedure could reli-
ably recover known parameters, and whether it might introduce spurious correlations between
them (see S1 Appendix, ‘In silico simulated agents’ reliability and biases’ for details). Recover-
ability in silico was much better than stability in vivo, suggesting that the former is not a limiting
factor in our study. Similarly, no spurious correlation was observed between the Pavlovian bias
and learning rates, which means that the associations between them seen in the real data are
likely to reflect a true feature of the study population rather than a modelling artefact.

Discussion

We report the first longitudinal assessment of the psychometric properties of a key computational
parameter, namely the Pavlovian bias. We did this in a large, epidemiologically-based study of
young people. The Go-NoGo task that we used yielded informative results in terms of the cogni-
tive process likely to operate, the evolution over time of the parameters of that process, the con-
struct validity of the model parameters in question and also useful methodological considerations.

We found behaviour was well fit by two models, the winning one having two different
learning rates for reward and loss but a single sensitivity to returns, and the other having a sin-
gle learning rate, but two different sensitivities. This is consistent with, but also finesses, recent
results stressing the dependence of learning rates on outcome valence, especially in young peo-
ple [37,38]. We compared models not only on the basis of approximations to the statistical evi-
dence for each, but also on their ability to predict left-out decisions. The dual-learning model
fit better, but there was no evidence for a clear allocation of model type to individuals. Model-
fit improved with practice and was greater for subjects with higher IQ. Estimates of the Pavlov-
ian bias were robust to model type, but their test-retest stability was weak, limiting inferences
about individual development. At the group level, Pavlovian bias decreased when participants
were re-tested 1-2 years post-baseline.

Pavlovian bias changed over test sessions, but not over age, in a characteristic pattern. In
terms of hypotheses we set out to test, we interpret this as strong evidence against this parame-
ter, as measured by this task, being a fixed stable trait. Second, we interpret a longer follow-up
resulting in the same reduction in Pavlovian bias as the short one as modest evidence against
this bias being a disposition slowly changing with development. The pattern is most strongly
supportive of a hypothesis that Pavlovian bias approximates an experience-dependent prior
expectation. Of course, our models do not directly compute the ‘probability that in an appeti-
tive context, the correct decision is to act’, which would formally be a belief. However, an
agent using such a belief would prefer Pavlovian-congruent actions, and a weakening of such a
belief with experience would lead to weakening of this preference, so the evolution of Pavlov-
ian parameters approximates beliefs or expectancies about contingency. The fact that model-
fit was good and improved with time, yet parameters changed, argues against a fixed disposi-
tion. The virtual absence of cross-sectional age dependency of the parameters, and shifts being
as pronounced after 6 months as after 1-2 years, argues against spontaneous slow development
and for an effect of practice. Lack of strong age dependency of performance has been observed
in other reinforcement learning tasks (e.g. [37] in adolescents vs. adults), but both perfor-
mance and cognitive parameter age dependencies very much depend on the specific details of
the task at hand [39,40]. Practice effects may have affected the improvement in the extent to
which people were described by our models. Selective attrition may also have affected our
data, though a follow-up rate of 68% is reassuring here. However, attrition may have rendered
the long follow-up sample epidemiologically less representative than the baseline one.

In this task, the Pavlovian bias aids performance in two conditions, and harms it in the other
two. If one interprets the bias as a heuristic that is generally useful, the fact that it reduces with
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repeated testing is consistent with its approximating a prior belief which can be at least partially
overwhelmed by evidence, rather than being rigidly hard-wired by genetics and the early-child-
hood environment. This may apply more generally to other cognitive biases, and may happen
over multiple timescales. Our study only employed a limited number of follow-up occasions,
making it difficult to discern longitudinal changes not due to practice effects. In this study, any
age, gender or mood dependency of Pavlovian bias, if present, was too subtle to resolve.

Psychometrically, the orthogonalized Go-NoGo task had the capacity to provide reliable
estimates of Pavlovian bias, in that parameter recovery in silico was greater than 80%. At the
same time, in human participants stability was reduced down to ~ 10-15%. The return sensi-
tivity parameter was more stable. However, the stability of task measures was considerably
lower than those for IQ and even mood, and lower than that conventionally required for trac-
ing developmental trajectories [41].

Model fit emerged as important, over and above individual parameters, being the most sta-
ble task measure. It classified participants into clusters with discernible longitudinal trajecto-
ries (Fig 8 and S2 Appendix). The most striking differences were observed between a cluster
consisting of people who showed poor at both time points (4 in Fig 8B and S2 Appendix) and
the rest. These participants were characterized by a higher Pavlovian bias and lower IQ than
the rest, as well as by higher decision-noise parameters. Mood did not differ between any clus-
ters. Poorly fitting participants may have followed a strategy less well captured by our models,
or may have been irreducibly more stochastic. In either case, model-fitting causes decision-
variability parameters to absorb this high variance, whether its cause is hidden cognitive vari-
ables that are as yet not represented in the models, or random noise. It would be interesting to
use less constrained machine-learning models to estimate the upper limit on the amount of
variance in the data that cognitive-mechanism models like ours hope to explain, and thus help
interpret decision variability parameters [42]. Overall, model-fit emerged as a potentially
important measure to classify developmental trajectories in future research.

We found that IQ correlated with motivational exchange rates, and indeed model fit. That
is, the behaviour of those with higher IQ was more affected by a unit improvement in objective
outcome, over and above differences in learning and bias. This is what one would expect if IQ
test scores were themselves dependent on how motivating the participants considered finding
the correct answers in the IQ tests. This is in turn consistent with evidence that IQ test scores
can be increased by material incentives and that motivation in the absence of additional incen-
tives predicts real-life outcomes [43]. Likewise, confidence is linked to both IQ and motivation
[44]. Our motivational exchange rates may thus reflect ability-dependent confidence, impor-
tant for development during youth. Tasks involving simple inference about counter-intuitive
contingencies, building on our Go-NoGo task, may be useful in exploring these relations. Fur-
thermore, the neural process underpinning reductions in Pavlovian bias would be interesting
to elucidate, as it has been suggested that top-down processes actively suppress this bias in
more able participants [45]. Alternatively, reductions in Pavlovian bias occurring over time or
across 1Q groups in young people may relate to differences in fixed, for the duration of the
experiment, Pavlovian parameters integral to associative-learning systems (b, in Eq 3) like
those of our models.

Though not affecting our central hypotheses, model-comparison analyses raised important
questions as to how young people learn differentially from loss and gain events. The fact that
behaviour could be explained almost equally well either by recourse to valenced-learning or to
valenced-sensitivity, merits further study. Learning rates and sensitivities can be distinguished
[46], but the present task was not optimized to do so. A larger number of trials, for example,
could help resolve this ambiguity. In terms of our models, subjects behaved either as if volatil-
ity were higher for loss compared to gain contexts (faster aversive learning), or were loss averse
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(higher aversive sensitivity). If appetitive and aversive sensitivities are valid concepts, they
should be similar in comparable but learning-free settings, such as well-learnt versions of this
task (improved from [26]). Based on the present results, we hypothesize that in a task capable
of simultaneously resolving the valence-dependence of preference (valenced sensitivity) and of
learning (valenced learning), the two sensitivities would be closer to each other than suggested
by a pure valenced-sensitivity model, but would not be identical, as they would also be
informed by loss aversion.

We studied the orthogonalized Go-NoGo task because it is well established, widely used,
specialized to assess Pavlovian bias, and could provide insights (especially about decision noise
and model fit) likely to be relevant to other computational tasks. However, the findings
reported here should be used with caution in other contexts. Further insights about Pavlovian
bias may be provided by existing paradigms [47], but testing for the putative experience-inde-
pendent core of this bias with a brief task, suitable for developmental research, could be facili-
tated by an adaptive design. We suggest maximizing the number of plateau-performance trials
by adaptively looking for the true indifference point between the effective values of the actions
(g, not Q, in Eq 3). An experience-independent Pavlovian bias would mean that in the appeti-
tive domain, the reward for the ‘No-Go’ action has to be (adaptively) boosted by an amount
proportional to the mean reward of ‘Go’ and ‘No-Go’ in order to achieve indifference between
these two choices. Similarly, in an aversive context the value of ‘No-Go’ has to be adaptively
penalized by an amount proportional to the average of the loss returns for the two choices to
achieve indifference. For symmetric average returns, the mean of the (absolute) adaptive boost
and adaptive penalty components would be proportional to the Pavlovian bias, and the differ-
ence between these adaptive amounts would be the ‘Go bias’.

Methodologically, the present work extends the use of left-out-likelihood based model com-
parisons. These furnish outcomes that are directly intuitive and convenient for further statisti-
cal comparisons, as well as being free of approximations inherent in the BIC. On the other
hand, they are much more computationally intensive and will require further refinement to
render their use routine.

In conclusion, we show that Pavlovian influences characterizing young people are well
described at the epidemiological level by established reinforcement-learning models. Practice
and higher IQ correlated with weaker Pavlovian influences, while higher IQ scores were also
associated with higher motivation to attain a given reward, suggesting important neurodeve-
lopmental relationships. However, neither the Pavlovian bias parameter nor other key task
measures met conventional psychometric standards for temporal stability or for external valid-
ity with respect to age and psychiatric symptoms, attributes useful in characterizing individual
variability and individual change. It is a matter for further research whether similar problems
affect other computational tasks, but our study does give urgency to the work of establishing
the psychometric properties of such tasks and the parameters associated with computational
models them. Studies aiming to characterize individual trajectories of decision-making will
benefit from psychometrically improved computational tasks, which better exclude experi-
ence-dependent components, as well as designs that include more follow-up points.

Methods
The Go-NoGo task

We used an orthogonalized Go-NoGo task that contrasts a propensity to act, rather than not
to do so, in context involving opportunity (‘win’) versus threat (‘avoid loss’). Participants were
presented with four different abstract stimuli each of which had a constant, but unknown,
association with a correct policy. The correct policy was either to emit (‘Go’) or to withhold
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(‘NoGo’) an action, here involving a button press. If the correct decision was made, the better
of two outcomes was realised with probability 0.8. This better outcome was null (as opposed to
a loss) for two stimuli and positive (as opposed to null) for the other two. The task closely fol-
lowed a previously published paradigm [25], with some slight simplifications, unrelated to the
core biases assessed by the task. These simplifications helped deliver it to a community sample,
on a large scale and in the context of a multi-task battery. First, implementing the decision
‘Go’ was simpler, i.e. not dependent on any target features, unlike the original task in which
the ‘Go’ action could be either ‘left’ or ‘right’ depending on the location of a target. This
allowed trials to be shorter. However, time pressure from the remaining task battery (to be
reported separately), meant that subjects performed a more restricted sample of 144 trials. Sec-
ond, task clarity was improved by informing participants before performing the task that the
outcome probabilities were 0.8 and 0.2. Third, motivation was made explicit by telling partici-
pants that they were playing for real money, that random performance would attract zero
extra fee and excellent performance could be worth about five pounds sterling additional earn-
ings. These changes were supported by piloting the whole battery in which the task was
embedded, as we describe next.

We took precautions to ensure that the fact that the task was delivered as part of a battery
did not affect the power for testing the hypotheses in question. The battery of which this task
was part of consisted of 7 tasks and took over 2.5 hours to complete, whereas the task analysed
here took about 23 minutes to complete, longer than the average in the battery. We first exam-
ined data from previous, longer versions of the task and performed a pilot of 15 participants.
In addition to quantitative data, these participants were de-briefed in detail by trained research
assistants (RAs) who interviewed them as to whether they found the tasks tiring, interesting or
difficult. Although quantitative data were in line with the literature, qualitative data suggested
that some participants might, subjectively, be affected by tiredness but most importantly some
found the task hard to work out and felt discouraged by this. Therefore, first, the randomiza-
tion of the order of tasks in the battery was constrained, so that this task took place within the
first hour of testing. Second, research assistants were assertive in enforcing short breaks
between tasks and emphasizing the importance of attending to the task. Third, they reminded
participants that they were playing for real money and that all decisions counted approxi-
mately equally, in monetary terms, encouraging attention to each decision rather than assume
that shorter tasks paid as much as longer ones. Fourth, participants were reassured that they
should not be discouraged if the best answers were not clear to them as the task progressed,
but on the contrary they should proceed by trial and error and the best answers were then
likely to gradually ‘sink in’. This is consistent with the Rescorla-Wagner model that we used to
analyse the data. After the first 50 participants were tested under careful RA supervision, an
interim analysis of the whole battery and more limited feedback from RAs was reviewed. This
gave no cause for concern with respect to the present task and the quantitative parameters
extracted were reassuringly compatible with those from historical laboratory samples (as well
as the Results reported here).

Participants were thoroughly informed about the task, including a veridical performance-
related pay component.

Participants

Community dwelling participants were recruited from within the volunteer database of the
Neuroscience in Psychiatry Network Study [28].

1. Large naturalistic study. This consisted of N1 = 817 participants who provided task data
of adequate quality for analysis. They were spread evenly across gender-balanced, two-year
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age bins. Age bins were used to ensure evenly spread recruitment by age, but not for analy-
ses, where age was treated as a continuous variable. All participants formed the ‘baseline’
sample. Of these, 33 were treated for major depressive disorder (‘depression cohort’)
whereas 784 were not in contact with primary or secondary mental health services, and
were invited to re-attend on average 18 months later (realized interval mean = 17.79
months, SD = 3.55 months; ‘non-clinical cohort’). This non-clinical cohort was approxi-
mately representative of the local population in this age range as it was (i) balanced for sex
and evenly distributed through the age range, by construction (ii) avoided high concentra-
tions of students and used, instead, a range of representative community settings for
recruitment. The follow-up rate was 71%, N2 = 557 of which 542 provided good quality
data.

2. Short follow-up study. We tested 61 participants 6 months after baseline. These were
also invited to participate in the ‘long follow-up’ (of 18 months), and 54 of them did so.
There were equal numbers of participants in 5 x 2-year age bins, 14-16 years, 16-18 years
etc. Each bin was balanced with respect to sex.

Volunteers were invited to be approximately equally distributed by gender and age,
between the ages of 14 and 24 years old, from Cambridgeshire (60% of sample) and North
London (40%). We excluded those with moderate or severe learning disability or serious neu-
rological illness. Recruitment continued until a total sample of 820 young people agreed to par-
ticipate at baseline. The Cambridge Central Research Ethics Committee approved the study
(12/EE/0250). Participants gave informed consent themselves if they were at least 16 years of
age, otherwise the participant was fully informed and agreed to the study, but their parent or
legal guardian provided formal informed consent.

Modelling

We explored variants of the core (here called valenced-sensitivity) model that [25] used to
describe behaviour. First, the values of actions (‘Q values’) were calculated based on a learning
rate 1,. We use v’ subscripts to indicate that, in different variants of the model, the parameter
in question may be valenced, i.e. different for ‘win’ and ‘avoid-loss’ trials. In the valenced-sen-
sitivity model all trial types shared the same learning rate but different motivational exchange
rates p, were used depending on trial valence:

Qt+1 = Qt(aﬁst) =+ /lv(pvrt - Qt(at’st)) (1)

Only Q values pertaining to realized stimuli and actions were updated, with all others being
carried forward from the previous trial. The model also kept track of the state values pertaining
to each stimulus using the same parameters:

Vt+1 T Vt(sz) + j'v(pvrt - Vt(sz)) (2)

Crucially, the conventional Q values were biased by two terms representing an overall ten-
dency towards action (‘Go bias’) and a Pavlovian bias (towards action or inaction) that
depended on valence (state value):

qt(at?st) = Qt(at?st) + bga(at) + bpuv(at)vt(st) (3)

where the two bias coefficients b are zero unless a, = Go. In effect this means that the No-Go
action was taken as a comparator, and the Go action was either penalized (in aversive contexts)
or boosted (in appetitive ones) proportional to the value of the respective stimulus. Finally, the
policy probability for choosing an action was given by the softmax function, modulated by a
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lapse rate parameter &

plajs) = (1-9) Z(pﬂ( STas: @

k

Thus the motivational exchange rates p,, acted as an inverse temperature parameter for the
softmax by scaling the outcome values in Eq 1, which then fed into Eq 4 via Eq 3.

Several model variants were explored. First, separate learning rates were used depending on
valence (‘valenced-learning model’) with a single outcome sensitivity.

Second, an additional memory/forgetting parameter was introduced such that Q values per-
taining to unexperienced state-action pairs decayed by a constant fraction per trial, rather than
being carried forward intact (‘forgetting model’), quantified by an additional ‘memory’ or ‘for-
getting’ parameter [48]. In these ‘forgetting models’ models, we argued that during long peri-
ods when, by chance, a particular stimulus was not observed, the associated actions might drift
back to zero if participants brought to the task a (strictly unjustified, but common-sensical)
assumption that values might be subject to non-zero volatility. The other models assumed that
the value of stimuli not seen in a particular trial would not change.

Third, the appetitive and aversive sensitivities of the valenced-sensitivity model were trans-
formed into an overall sensitivity and an appetitive/aversive ratio (‘sensitivity ratio model’).
This had two motivational exchange parameters, just like the valenced sensitivity model, but
formulated them as an appetitive sensitivity and a sensitivity ratio. Therefore, at the level of the
individual it was identical to the valenced sensitivity model. At the group level, the expecta-
tion-maximization fit used prior distributions for the parameters that were independent of
each other. In the case of the valenced sensitivity model, this means that the distribution of
appetitive sensitivity over the population was modelled as independent to the aversive one. For
the sensitivity-ratio model, a positive mean for the population distribution of the eponymous
parameter would encode a positive correlation between appetitive and aversive exchange rates.
Model fits favoured the former model.

Generative model fitting

We used hierarchical type-2-ML model-fitting, assuming that each wave of data could be
described by a set of independent prior distributions for the mean and spread of each parame-
ter. Waves of testing were fitted independently. Individuals’ parameters were optimized given
point estimates of the mean and spread of the group they belonged to, which were themselves
re-estimated. Specifically, we used the expectation-maximization algorithm in [25], modifying
MATLAB [49] code provided by Dr. Quentin Huys. We estimated the ‘integrated likelihood’
and ‘integrated BIC’ measures used in that work (Eq 5), using the same sampling technique.

ln/p 10, M)p(0]©)do

(5)
iBIC = —22 iL,, + N, In(n,n,)

Where iL,, is the integrated likelihood for participant pt, d,, the data provided by this partici-
pant, 0 the ‘micro’ parameters of that participant according to model M, © the ‘macro’ param-
eters describing the population distribution of 6, N, the length of ©, n,, the length of d (same
for each participant) and n,, the number of participants.

For the purposes of model-fitting each parameter was transformed according to theoretical
assumptions and the group distribution approximated by a Gaussian in the transformed space.
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For example, following [25] we assumed that b,,,

whereas parameters having both an upper and lower bound were logistic-transformed. We
tested whether the model-fitting procedure was robust to assumptions about the distribution

> 0 so this parameter was fitted in log space,

of parameter values in the population (S1 Appendix). We tested two assumptions that were
particularly relevant to Pavlovian bias. First, we allowed the population distribution of Pavlov-
ian bias to be normal rather than log-normal. Using mean and variance population estimates
derived from the real data, this translated to the presence of a small tail of negative values (S1
Appendix). Second, we tested whether model-fitting was sensitive to the precise form of the
population distributions used, e.g. gamma rather than log-normal. Recovery of Pavlovian bias
parameters was reassuringly robust in the face of such twists (S1 Appendix).

Out-of-sample testing

In order to go beyond comparing models by using simple approximations like the BIC, we
argued that better models should provide a higher likelihood for data on which they were not
trained, compared to less good models. To do this, we fitted models as best as possible to every-
one, leaving out certain test trials. Then we compared the sum-log-probability of the actual
responses participants provided on these left-out trials, thus performing paired left-out-likeli-
hood (LOL) comparisons. Confidence intervals around this difference of predictability-per-
trial provide an intuitive measure of how much better one model is than another, especially
when compared to the average predictability-per-participant-decision.

For the LOL comparison to be optimal, models must be given the best possible chance to
describe the individuals whose parameters are used to derive the LOLs. In order to do this, we
first divided the sample into a 300-strong ‘group training’ set and a test set. The ‘group training
set’ was used to provide the best possible descriptive statistics of the entire population in terms
of the means and variances of each (transformed) parameter. These were the group-level
parameters fitted by the type-2 maximum-likelihood procedure (S3 Fig).

We then used these group-level parameters to provide priors for fitting the remaining ‘test
set’, from which the ‘test trials’ were left out. Markov-chain monte-carlo (MCMC) fitting at
the level of the individual participant was performed, using the sum-log-posterior over the
included, non- left-out, trials only to derive posterior beliefs about parameters for each partici-
pant in the test sample. During fitting, MCMC efficiently provided sum-log-likelihood samples
over the left-out-trials, thus forming the integrated LOL. Two trials were left-out, as described
below. LOLs were not taken into account for parameter estimation, to avoid double-dipping.
We repeated the procedure with different candidate models, thus obtaining (paired) model
comparisons of their predictive power over the hidden trials only.

For optimal performance, we first decided how many trials to leave out (left-out trials,
LOTs). When a limited amount of data per participant is available, greater numbers of LOT's
result in noisier parameter estimates for each model, making it more difficult to detect differ-
ences between models. Furthermore, it is not a priori known how model fit may deteriorate as
a function of the number of LOTs for different models. Hence, it makes sense to use the mini-
mum number of LOTs and rely on our high number of participants to power model compari-
sons. In order to assess whether these considerations were important in practice, we generated
synthetic data using the valenced-sensitivity model, the best in the literature. Using synthetic
data we compared LOL using the procedure above with the true LOL according to the genera-
tive parameters. S4 Fig shows how increasing the number of LOTs significantly degraded the
power of the true generative model to explain LOT data.

Next, we assessed the effect of learning on LOL estimation. Because learning occurs in
every trial, learners follow different trajectories in the included trials depending on what
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happens in the left-out trials. Thus, even if the LOL is not used during model fitting, informa-
tion from the LOTs may influence the fitted parameters, thus potentially biasing fitted parame-
ters towards values most consistent with the participant’s choices (and hence high likelihood
thereof) in the LOTs. Thankfully, we do not have to guard against every possible such influ-
ence, but only to make sure that using information from the LOTs (which stimuli where
shown, which responses were performed and which returns were obtained) does not unduly
bias the estimation of parameters based on the included trials towards values that make the
LOTs appear more likely. In order to reassure ourselves about this, we performed a series of
numerical experiments where we compared using the information above, to marginalizing
over the above responses and rewards.

Consider a model M with a single parameter £. Assume, furthermore, that we have a flat
prior p,(€)~1 over this parameter. If h is the left-out, or hidden, decision data and v is the

included, or visible to the model, data, taking into account the flat prior gives:

p(hlv,M) = theth

The question is how p(v|e,M) ought to be calculated in order not to bias estimation of how
good model M is, i.e. not to bias p(h|v,M). As learning takes place from trial to trial, should the
"gaps’ in v be filled in with the veritable choices of the participant, or be marginalized over? To
investigate this matter, we first performed a numerical experiment with a simple Rescorla-Wag-
ner model with learning parameter £, making binary choices between alternatives via a softmax
function of known parameter t = 0.1 (i.e. a bare-bones version of our models). We generated
10000 x 28 trial epochs, for three levels of € = 0.05, 0.15 and 0.25. Returns were deterministic
returns (actionl — 1, action2 — 5), starting values for each run: Qy(actionl) = Qy(action2) =
The first 8 trials were hidden. We looked for bias by examining how our estimate of p(h|v,M)
depended on whether p(v|e,M) is estimated using ‘informed’ visible trials, p(;(v|e,M), or ‘agnos-
tic’ ones (i.e., marginalizing over hidden trials), p(,)(v|e,M). A typical example of how p;(vle,
M) may differ from p(,(v|e,M) is shown in S5 Fig. Although they gave different results for each
individual subject, there was no difference (and no bias) with respect to the estimates over the
hidden trials for any level of € examined. This is shown in S6A Fig. It is interesting to note that
some simple measures were biased in the expected way; for example, the maximum-likelihood
estimate of the learning rate based on the ‘informed’ method was closer to the maximum-likeli-
hood estimate over the hidden trials compared to the equivalent ‘agnostic’ estimate. In the case
of € = 0.15 this was by 0.03 log units, Wilcoxon p < 1le-08.

We then examined two further models, an 7-greedy learner and an ‘observation-violating
n-greedy’ learner. The latter was similar to the former, but, importantly, only updated action
values for exploratory actions if they furnished a better-than-expected prediction error. We
did not detect any bias in the simple 77-greedy but we found a very small bias in the expected
direction for the observation-violating model. The bias corresponded to 0.45% of the grand
mean prediction probability. Given that this sequence of models was designed to showcase a
difference between the more rigorous agnostic and the more practical informed approach, we
concluded that any bias introduced by using the informed approach on our real data would be
negligible.
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Longitudinal change models

We first compared longitudinal change with paired nonparametric tests. We also examined
change using latent-change-score (LCS) models [36]. To do this we transformed the distribu-
tions of each (already transformed as above) parameter at each timepoint to normal as
described below. LCS models formulate the change between baseline and follow-up as a latent
variable, and estimate its mean, variance but also its possible dependence on baseline values.
Pure regression towards the mean endows this change parameter with a value of -1. We used
BIC and the likelihood ratio test to compare this model with nested, simpler models of change
in the population distribution of parameters. Before we applied the latent-change-score formu-
lation (S3 Appendix), we forced the marginal distributions of the transformed parameters into
a Gaussian form. This further transformation-to-Gaussian to was achieved by first, estimating
the mean and SD of the parameter distribution in question. Second, estimating an empirical
(stepped) cumulative distribution function for this parameter with the R function edcf [50].
Third, applying an inverse-gaussian-cdf with the same mean and SD as the original. We then
applied the just-identified univariate latent change score model.

This formulation does not extract from the data more than the statistics we might otherwise
estimate—i.e. the means, variances and covariance of the baseline and long follow up measures, if
we assume a bivariate normal distribution. It is however convenient in order to focus on change
and phrase different hypotheses in terms of model comparison (BIC, likelihood ratio etc.).

Measures of general intelligence and symptoms

We used the ‘Mood and Feelings Questionnaire’ (MFQ) as measure of mood and the Revised
Children’s Manifest Anxiety Scale—2 (RCMAS) as a measure of anxiety [28,51,52]. General
intelligence was measured by the full-scale IQ of the Wechsler Abbreviated Scale of Intelli-
gence [53]. Measurements of IQ were performed on the same day as the task for the naturalis-
tic longitudinal study. We used MFQ measurements taken near to the baseline testing session.

Supporting information

S1 Fig. In this sample, the ‘Mood and Feelings Questionnaire’ shares over 90% of the vari-
ance of the ‘general psychopathology factor’ (St. Claire et al, 2017). The relationship is
monotonic and the linear part of the relationship already captures 83% of the variance, but
here the minor but still highly significant quadratic and cubic components are included in
green. We are thus justified to use MFQ itself as a simple and easier to interpret proxy for gen-
eral propensity to experience psychiatric symptoms.

(PDF)

S2 Fig. Age dependence of performance. Here, performance in ‘No-Go to avoid Loss’ is
shown. There is an overall increase in performance with age.
(PDF)

S3 Fig. Schematic of the algorithm used to ensure that the out-of-sample likelihood to be
used for model comparison was tightly constrained but did not itself inform estimation of
parameters used for its own derivation. Some steps are ‘good enough’ rather than fully opti-
mal (but computationally very costly). For example, the derivation of priors on the test group
parameters could have used the individual-fit trials, but to very little benefit.

(PDF)

S4 Fig. Quality of fit as a function of number of left-out-trials. Blue lines: 95% bootstrap
confidence interval (BCI) for the likelihood of included trials according to the true, valenced-
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sensitivity model as the number of left-out trials increases. 300 synthetic ‘training’ participants
and 100 ‘test’ participants are used. The included trial likelihood is not significantly affected
within this range, whose high end corresponds to 25% of all trials. Red lines: The BCI excludes
the true LOL as soon as more than 2 trials per participant are left out.

(PDF)

S5 Fig. Typical example of the dependence of the estimate of the likelihood on whether the
estimation is informed by the actual choices in the hidden trials or marginalized.
(PDF)

S6 Fig. Example distributions of the difference in predictability of the hidden trials for two
ways of accounting for the decisions over hidden trials when estimating parameters.
(PDF)

S1 Appendix. In silico simulated agents’ reliability and biases.
(PDF)

S2 Appendix. Clustering analyses.
(PDF)

$3 Appendix. Latent change score modelling.
(PDF)

S1 Data. Data file with baseline Pavlovian Bias in Youth task data. This includes all the raw
data on which the analyses are based, from the ‘Baseline sample’. See text for details. The key
matlab scripts for these analyses, provided below, operate on the unzipped data (i.e. ‘mat’
files).

(Z1P)

$2 Data. Data file with short follow-up Pavlovian bias in Youth task data. As above, but for
the 62 participants that participated in the 6-month follow up.
(Z1P)

$3 Data. Data file long follow-up Pavlovian bias in Youth task data. As for S2 Data, but for
the large, 18-month long follow up sample.
(Z1P)

$4 Data. Zip file with matlab analysis scripts’. This includes the ‘master script’ GNGmodel-
Fit2, that can be used to fit a number of different models by expectation maximization and
forms the core of the analyses in the main paper. It can be used with a number of models also
provided. These are functions that provide the likelihood (Il) for different models. For exam-
ple, ‘lI2baepxbm’ stands for ‘two-beta, one-learning-rate alpha, one lapse rate ‘¢’, one pavlovian
bias ‘p’, one go-bias (the second ‘b’), one memory parameter ‘m’. In contrast, 1lb2a. . " is the
model with two learning rates, called ‘valenced learning’ in the text. Finally, three functions are
provided to generate simulated data and re-fit them. simGNG1b2a simulates valenced learn-
ing, and simGNG1bba valenced sensitivity data. The function GNGmodelFit_4sims is can be
used to re-fit generated data, either with the ‘correct’, generative, or an alternative model.
(ZIP)

S1 Table. Neuroscience in Psychiatry Network Study & consortium author list.
(PDF)

S2 Table. Posterior spearman correlations at the 0.01 level, corrected for 6*5/2 compari-
sons, for the baseline sample, for the valenced sensitivity model. Correlation values below
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the diagonal, corrected p values above. Note the absence of significant correlation between
appetitive and aversive sensitivity, in line with the worse fitting of the sensitivity-ratio model
compared to the valenced-sensitivity one.

(PDF)

S3 Table. Support for the theoretically expected relationship between Pavlovian bias and
performance. Other things being equal, a decrease in Pavlovian bias should improve perfor-
mance in the Pavlovian-inconsistent conditions (+ve pearson r by convention in this table)
and decrease performance in the Pavlovian-consistent conditions (-ve r). To test this, we tested
the hypothesis on each condition separately, adopting a multiple comparison threshold of

p = 0.05/4 = 0.0125. We found significant evidence for all expected correlations.

(PDF)
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