UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Developing an approximation of a natural, rough gravel riverbed both physically and numerically

Stubbs, A; Stoesser, T; Bockelmann-Evans, B; (2018) Developing an approximation of a natural, rough gravel riverbed both physically and numerically. Geosciences , 8 (12) , Article 449. 10.3390/geosciences8120449. Green open access

[img]
Preview
Text
geosciences-08-00449.pdf - Published version

Download (2MB) | Preview

Abstract

Near-bed and pore space turbulent flows are beginning to be understood using new technologies and advances in direct numerical simulation (DNS) and large-eddy simulation (LES) techniques. However, the riverbed geometry that is used in many computational studies remains overly simplistic. Thus, this study presents the development of an artificial representation of a gravel riverbed matrix, and the assessment of how well it approximates a natural riverbed. A physical model of a gravel riverbed matrix that was 120 mm deep, 300 mm wide, and 2.048 m long was manufactured from cast acrylic. Additionally, a numerical approximation of the physical model was created and used for analysis. The pore matrix of the artificial riverbed was found to be comparable to that of a natural gravel riverbed in terms of its porosity and void ratio. The diameters of the artificial riverbed’s surface particles were found to vary less, with fewer irregularities, than those found for natural gravel riverbeds; yet, they were normally distributed similarly to natural riverbeds. A power spectral density function showed that the artificial riverbed exhibited a degree of roughness that was much lower than that found in nature. Thus, the hydraulic resistance and friction factor will both be lower than desired. These findings suggest that the novel methods that have been developed in this study can offer both the physical and numerical approximation of a gravel bed surface that is comparable to a natural gravel riverbed with low surface roughness, reduced particle size variance, and typical particle distribution and porosity.

Type: Article
Title: Developing an approximation of a natural, rough gravel riverbed both physically and numerically
Open access status: An open access version is available from UCL Discovery
DOI: 10.3390/geosciences8120449
Publisher version: https://doi.org/10.3390/geosciences8120449
Language: English
Additional information: This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
Keywords: near-bed turbulence; pore space turbulence; gravel-bed river; artificial riverbed; spectral roughness density
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Civil, Environ and Geomatic Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10064900
Downloads since deposit
31Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item