UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Maximising Achievable Rates of Experimental Nonlinear Optical Fibre Transmission Systems

Elson, Daniel John Trevor; (2019) Maximising Achievable Rates of Experimental Nonlinear Optical Fibre Transmission Systems. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of aThesis2019DJElson.pdf]
Preview
Text
aThesis2019DJElson.pdf - Accepted Version

Download (3MB) | Preview

Abstract

It is generally expected that the demand for digital data services will continue to grow, placing ever greater requirements on optical fibre networks which carry the bulk of digital data. Research to maximise achievable information rates (AIR) over fibre has led to increasing spectral efficiency, symbol rate and bandwidth use. All of these contribute to transmission impairments due to the nonlinear nature of the optical fibre. This thesis describes research performed to investigate the effects of nonlinear impair- ments on the AIRs of experimental optical fibre transmission. To maximise throughput, the entire available optical bandwidth should be filled with transmission channels. An investigation into large bandwidth transmission through the use of spectrally shaped amplified spontaneous emission noise (SS-ASE) was con- ducted. The enhanced Gaussian noise model is used to analytically describe this tech- nique, and SS-ASE was experimentally shown to provide a lower bound on the AIR. Nonlinear interference (NLI) was modelled from an inter-symbol interference (ISI) model to characterise the noise and was experimentally verified. This new understand- ing helps quantify potential gain available from nonlinearity mitigation. Multicore fibres offer an alternative route to improve AIR, and are susceptible to another noise source known as crosstalk. This inter-core crosstalk can be controlled by suitable design of the fibre, hence in the limiting case, NLI rather than crosstalk will limit AIR. Nonlinearity compensation was, for the first time, experimentally demon- strated in the presence of crosstalk in a homogeneous 7-core fibre and shown to provide an increase in AIR. The results of this thesis can be used to evaluate future transmission systems for maximising information rates. It was shown that experimentally, SS-ASE is a viable transmission tool to evaluate system performance, NLI can be characterised using an ISI model and nonlinearity mitigation is possible in MCF systems limited by crosstalk.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Maximising Achievable Rates of Experimental Nonlinear Optical Fibre Transmission Systems
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms.
UCL classification: UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Electronic and Electrical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10064740
Downloads since deposit
271Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item