
Understanding the Syntactic Rule Usage in Java

Dong Qiua, Bixin Lia,∗, Earl T. Barrb, Zhendong Suc

aSchool of Computer Science and Engineering, Southeast University, China
bDepartment of Computer Science, University College London, UK

cDepartment of Computer Science, University of California Davis, USA

Abstract

Context: Syntax is fundamental to any programming language: syntax defines valid programs. In the 1970s, computer scientists
rigorously and empirically studied programming languages to guide and inform language design. Since then, language design has
been artistic, driven by the aesthetic concerns and intuitions of language architects. Despite recent studies on small sets of selected
language features, we lack a comprehensive, quantitative, empirical analysis of how modern, real-world source code exercises the
syntax of its programming language.
Objective: This study aims to understand how programming language syntax is employed in actual development and explore their
potential applications based on the results of syntax usage analysis.
Method: We present our results on the first such study on Java, a modern, mature, and widely-used programming language. Our
corpus contains over 5,000 open-source Java projects, totalling 150 million source lines of code (SLoC). We study both independent
(i.e. applications of a single syntax rule) and dependent (i.e. applications of multiple syntax rules) rule usage, and quantify their
impact over time and project size.
Results: Our study provides detailed quantitative information and yields insight, particularly (i) confirming the conventional wisdom
that the usage of syntax rules is Zipfian; (ii) showing that the adoption of new rules and their impact on the usage of pre-existing
rules vary significantly over time; and (iii) showing that rule usage is highly contextual.
Conclusions: Our findings suggest potential applications across language design, code suggestion and completion, automatic
syntactic sugaring, and language restriction.

Keywords: Language syntax, empirical study, practical language usage

1. Introduction

Syntax and semantics define a programming language. Infor-
mally, a language has many features. A language’s syntactic
rules provide the most direct means to measure the use of a
language’s features. Thousands of programming languages ex-
ist; each embodies a different set of possible language features.
Language designers usually have limited knowledge on how
programmers actually use a language [1]. This leads to many
unnatural and rarely used features being introduced, while ex-
pected ones not introduced [2, 3]. In addition, many language
features, especially language syntax, remain a significant barrier
to novice programmers [4, 5].

We tackle the question of how to systematically understand
these features and their usage. Rather than ad-hoc characteri-
zations of features, we propose the use of language grammars
to precisely and systematically characterize language features.
Indeed, most programming language features quite directly map
onto syntactic constructs. Therefore, we study how programmers
use language features by analyzing their use of the language syn-
tax.

∗Corresponding author.
Email addresses: dongqiu@seu.edu.cn (Dong Qiu),

bx.li@seu.edu.cn (Bixin Li), e.barr@ucl.ac.uk (Earl T. Barr),
su@cs.ucdavis.edu (Zhendong Su)

Knuth conducted the first study to understand how program-
mers use FORTRAN over 40 years ago [1]. Similar studies were
subsequently performed on COBOL [6, 7], APL [8] and Pascal [9]
between the 1970s and 1980s. In recent decades, there has been
little quantitative study demonstrating how a modern program-
ming language is used in practice, especially from the perspec-
tive of language syntax. Previous studies have investigated the
use of subsets of language features (e.g., Java generics [10] and
Java reflection [11]). Although Dyer et al. [12] investigated the
use of newly-introduced features over three main language re-
leases, they only examined a relatively small subset of language
features and did not consider pre-existing features.

Studying how a large number of real-world programs use lan-
guage syntax may help validate or disprove the many popular
"theories" about what language features are most popular, most
useful, easiest to use, etc. that abound in popular literature about
programming and on the Internet. In addition, the gap between
language features and their actual usage may guide pedagogy,
giving teachers insight into how to teach a programming lan-
guage in a better way. Language designers may leverage data on
actual syntactic rule usage to optimize the design of languages,
e.g. simplifying unpopular features or identifying boilerplate
that could be eliminated. We will provide concrete examples
when presenting our detailed study results.

Preprint submitted to Elsevier September 23, 2016

To this end, we perform a large-scale empirical study on a
diverse corpus of over 5, 000 real-world Java projects to gain
insight into how syntactic rules are used in practice. We gener-
ate abstract syntax trees (ASTs) for approximately 150 million
SLoC, and tabulate and analyze the occurrences of all syntactic
rules. In particular, to understand how syntax rules are used over
time, we have checked out over 13, 000 versions from the studied
projects’ revision histories to understand rule usage evolution.

We also perform depth-2 bounded nesting analysis to inves-
tigate dependent rule usage. Indeed, when using a grammar
to parse a string, some nonterminals in the grammar can be
reached only after another nonterminal has been traversed. For
X,Y ∈ N , the set of nonterminals, and α, β ∈ (N ∪T)∗ where
T is the set of terminals, we write X ∗→ αY β to denote that
Y depends on X . We bound this dependency because, in the
limit, all nonterminals vacuously depend on the grammar’s start
symbol. In this work, we consider k = 2 and report our depen-
dency results for X 2→ αY β, as these short range dependencies
are closer to the sentences that programmers write and think
about and thus are better candidates for identifying idioms.

In summary, this paper makes the following contributions:

• It presents the first effort in 30 years to conduct a large-
scale, comprehensive, empirical analysis of the use of
language constructs in a modern programming language,
namely Java;

• This work is the first to study dependent rule usage and
quantify its contextual nature. This is also the first to study
the evolution of rule usage over time, the adoption of new
rules, and how new rules impact the usage of pre-existing
ones.

• The results show that: (i) 20% of the most-used rules ac-
count for 85% of all rule usage, while 65% of the least-used
rules are used < 5% of the time and 40% only < 1% of the
time; (ii) 16.7% of the rules are unpopular and are adopted
in < 25% of the projects (e.g. assert statement, labeled
statement, and empty statement); and (iii) for dependent rule
usage, 6% of the combinations exhibit strong dependency
with > 50% probability.

Taken together, our results permit language designers to em-
pirically consider whether new constructs are likely to be worth
the cost of their implementation and deployment. They also iden-
tify boilerplate (i.e. repetitive rule usage) that new constructs
may profitably replace. For example, we have observed a re-
duced use of anonymous class declarations, while an increased
use of the enhanced-for constructs w.r.t. all syntactic rule usage.
We believe that work like ours enables data-driven language
design, analogous to how Cocke’s study at IBM in the 1970s on
the actual usage of CISC instructions eventually led to the RISC
architectures.

2. Study Design and Results

This section describes our methodology in detail, with special
attention given to the study subject and the research questions,
followed by our general findings.

2.1. Study Subject
Java Syntax. To understand how programmers adopt syntax,
we selected Java, a modern, mature and widely-used program-
ming language as our research subject. Java’s syntax is the set
of rules defining how a Java program is written and interpreted;
it is essentially a dialect of C/C++. Major releases of the Java
Language Specification (JLS) track its constant evolution.

In this paper, we survey 132 syntactic rules in total, distributed
in JLS1∼JLS41 [13–16]. Table 1 lists the distribution, including
the release date and corresponding updates. In contrast to the
study by Dyer et al. [12], which focuses on the newly imported
language syntax rules, we concentrate on the complete set of the
syntactic rules. The details of the rules can be found online2.

Table 1: Overview and evolution of the JLSs.

Version Release Date #Added Rules #Updated Rules

JLS1 1996 115 -
JLS2 2000 4 -
JLS3 2005 12 16
JLS4 2013 1 2

Code Corpus. Our corpus is a large (around 150 million
SLoC) collection of open-source real-world Java programs con-
taining 5, 646 projects retrieved from Github, one of the most
popular repositories. The projects were selected based on their
popularity (i.e. size of watchers, stars and forks). The corpus
contains not only widely-used Java projects maintained by rep-
utable open-source organizations (e.g. Tomcat, Hadoop, Derby
from the Apache Software Foundation and JDT, PDT, EGIT
from the Eclipse Foundation), but also small projects developed
by novice programmers. All these projects are managed by Git,
one of the most popular version control systems in the open-
source community. Table 2 provides summary statistics on the
corpus.

The corpus is also diverse, covering projects of different size
and development history. It contains small, medium and large
projects, where the number of Java files within projects ranges
from 1 to 39, 247. The corpus also includes projects with short,
medium and long lifecycles, where their development years span
from 1 to 17 and the commits with each repository range from 1
to 123, 938. The corpus thus provides a wide and comprehensive
range of projects on which to study the evolution of syntactic
rule usage.

Many projects contain duplicate source files. Such duplica-
tions probably distort the statistics of the syntactic rule usage. To
tackle this problem, we take the following measures. For each
Git repository, we only analyze the main branch to avoid the
redundant computation on a project with multiple copies. Also
the duplicated files may still exist within a project. A search
program we wrote helps us to automatically identify such func-
tionally equivalent source files. Our tool only detects type-1 file
clone (which may differ in whitespace, comments and layout).

1For simplicity, JLS1, JLS2, JLS3 and JLS4 are used to represent the 1st
edition, 2nd edition, 3rd edition and Java SE 7 edition of the JLS, respectively.

2It is available at: http://dong-qiu.github.io/papers/lang_syntax/appendix.pdf

2

http://dong-qiu.github.io/papers/lang_syntax/appendix.pdf

Table 2: Summary statistics on the Java code corpus.

Corpus Summary

Repository Github
of Projects 5, 646
of Files 1, 392, 528
Lines of Code 144, 081, 228
Project Scale Range (# of files) 1∼39, 247
Project History Range (# of years) 1∼17
Project Commits Range (# of commits) 1∼123, 938

Tool Support. We developed a tool, named the Java Syntactic
Rule Extractor (JSRExtractor), that collects all the syntactic
rules from our source code corpus. JSRExtractor uses Eclipse
EGit [17] to interact with Git project repositories and automat-
ically check out source code versions. It leverages the Eclipse
JDT [18] parser, which parses Java code and builds its abstract
syntax tree (AST). The tool integrates Neo4j [19], a popular
graph database, to store and manage the extracted ASTs. It can
quickly traverse ASTs and obtain the usage of syntactic rules,
including their dependency usage. For instance, JSRExtractor
supports performing a depth-2 bounded search on ASTs to cal-
culate syntactic rule dependencies. To analyze the distribution
of syntactic rule usage over time, we used JSRExtractor to check
out multiple versions of each project’s source code to study the
year-by-year evolution of syntax rule usage. Based on this highly
optimized and well tested tool, processing the whole corpus took
approximately 2 days of computing on a dual-Xeon server with
16GB of main memory.

2.2. Research Questions and Key Findings

This study aims to answer how language syntax is adopted
in real open-source projects. To this end, we designed three
specific research questions (RQ) for investigation. This section
also lists summary results to provide an overview.

RQ1: How are syntactic rules used in practice?

For each project, we determine how many syntactic rules it
used. In addition, we compute the popularity of each rule, i.e.,
how much of the projects use it. We are also interested in the
concrete usage of different syntax rules within the code corpus.
This data tells us which syntactic rules are most used and which
are least used, highlighting some unpopular rules as possible
candidates for language designers to continuously improve their
designs, and finally achieve the goal of simplifying the language
to ease its maintenance, especially to reduce its cognitive load
on developers.

Findings: (i) The usage of syntax rules obeys Zipf’s law [20]:
some rules are used frequently, while others rarely; (ii) most
projects use only a subset of syntax rules; and (iii) project size,
measured in size of Java files, correlates with the adoption of
syntactic rules. Section 3 explains these findings in detail.

RQ2: How are syntactic rules used in practice over time?

This RQ sheds light on the evolution of the syntactic rule usage.
For each project, we investigate the frequency of syntactic rules

changed during the project’s development life-cycle. For each
rule, we report its historical adoption rate by projects. The
data shows syntactic rules becoming popular or unpopular. We
are also interested in understanding how the usage of evolved
syntactic rules after language updates, e.g., how the new, or
updated rules impact the usage of pre-existing rules?

Findings: (i) The use of most existing syntactic rules remains
stable over time, with some exceptions whose usage is declining;
(ii) most newly introduced rules were adopted by developers
gradually but some have been widely used in projects. However,
not all of them were used as expected; and (iii) newly added
rules do impact the use of the existing relevant rules. Section 4
details our findings.

RQ3: How strongly do rule usage in practice depend on con-
text?

In contrast to RQ1, which studies the syntactic rules in isolation,
this RQ helps us understand syntactic rule usage dependencies
in real-world code, and answer questions like “What rules tend
to follow a certain type of “parent” rule?” In particular, we
calculate the conditional probability of dependent rule usage to
investigate what rules are likely to be adopted together.

Findings: (i) Syntactic rules exhibit nontrivial dependency (e.g.,
6% of rule combinations show strong dependency with > 50%
probability); and (ii) rule usage is contextual and helps identify
potential syntactic sugar to simplify a language or guide syn-
tactic (rather than lexical) refactoring or code completion and
suggestion. Section 5 explains our findings in detail.

3. Single Rule Usage in Practice

Notation. First, we formalize the measures that we use. Each
project Pi = {f1, f2, · · · } is a set of files. Our source code
corpus is a set of projects: C = {P1, P2, P3, · · · }. When ri is a
syntactic rule, R = {r1, r2, · · · , rn} is the set of syntactic rules
under analysis. We use O(Pi) to denote the multiset of rules
used in project Pi. We letmX denote multiplicity function of the
multiset X; the multiplicity mO(P)(r) returns the multiplicity,
i.e. the count of uses, of the rule r ∈ P . We elide X , when
its binding is clear from context. R(P) denotes the set that
underliesO(P) whose indicator function returns 1 for every rule
in O(P) with multiplicity > 0. Likewise, we use multiset O(f)
to record the usage of rules in the file andR(f) to denoteO(f)’s
underlying set, for f ∈ P .

3.1. Aggregate Results

From the perspective of syntactic rule, we study how rules are
used in our corpus, tallying their popularity and frequency. To
this end, we defined three measures:

1. PP(r) represents the Percentage of the Projects that adopt the
syntactic rule r:

PP (r) =
|C ′|
|C|

,where C ′ = {Pi | r ∈ R(Pi)}

3

PP(r) measures a rule’s popularity across the projects in a
corpus. The value is larger when more projects adopt r; when
all projects in a corpus adopt r, PP(r) = 1.

2. PF(r) represents the Percentage of the Files that adopt the
syntactic rule r:

PF (r) =

∑
Pi∈C

|P ′i |∑
Pi∈C

|Pi|
(P ′i ⊆ Pi,∀fi ∈ P ′i , r ∈ R(fi))

PF(r) measures the popularity of rule use across files, which
is a finer-grained perspective to measure the rule adoption.
The value is larger when more files adopt r; when all files
adopt r, PF(r) = 1.

3. PO(r) is the Percentage of Occurrences of the rule r com-
puted as the count of uses of r over the count of all rule
uses:

PO(r) =

∑
P∈C

mO(P)(r)∑
r∈R

∑
P∈C

mO(P)(r)

PO(r) evaluates the rule use frequency among the corpus. The
value would be larger if the occurrences of rule r is higher in
the source code.

From the perspective of the software projects, we further won-
der how projects use the syntactic rules. Namely, how much
of the syntactic rules are enough to construct a project in com-
mon? In addition, from a finer-grained angle, we wish to learn
how much of the syntactic rules are used to construct a file in
common. To this end, we define two values to measure:

4. PSRP(Pi) represents the Percentage of the Syntactic Rules
that are used in Project Pi. PSRP(Pi) evaluates efficiency of
the current language grammars. The value would be larger
if more syntactic rules are adopted in project Pi. When all
syntactic rules are adopted in Pi, PSRP(Pi) = 1.

PSRP (Pi) =
|R(Pi)|
|R|

5. PSRF(fi) represents the Percentage of the Syntactic Rules
that are used in File fi. PSRF(fi) also evaluates the grammar
efficiency from a finer-grained perspective. The value would
be larger if more syntactic rules are adopted in file fi. When
all syntactic rules are adopted in fi, PSRF(fi) = 1.

PSRF (fi) =
|R(fi)|
|R|

To investigate how a single syntax rule is used in practice, we
calculated PP, PF, PSRP and PSRF values based on the latest
snapshot of every repository. Figure 1 shows the distributions
of these values. Regarding the PP values in Figure 1(a), most
of the rules were adopted in around 50%∼80% of the projects.
More than half of the rules (53.8%) were used in over 75%
of the projects, in which only 3 rules (compilation-unit, class

●

●

0%
25

%
50

%
75

%
10

0%

PP(r) PF(r)
(a)

P
P

/P
F

 V
al

ue
s ●

●

0%
25

%
50

%
75

%
10

0%

PSRP PSRF
(b)

P
S

R
P

/P
S

R
F

 V
al

ue
s

●

●

●

0%
25

%
50

%
75

%
10

0%

Small Medium Large
(c)

P
S

R
P

 V
al

ue
s

Figure 1: Boxplot of the syntactic rule usage. (a) shows the
distribution of PP/PF values ; (b) shows the distribution of PSR-
P/PSRF values; (c) shows the impact on PSRP values by project
scale.

declaration and identifier) were used in all projects. Instead,
the PP value of some syntactic rules were quite small. More
than 15% of the syntactic rules were adopted in less than 25%
projects (e.g. the label statement). Regarding the PF values,
most of the rules were adopted 5%∼30% of the files. A tiny
subset of the rules (9%) were used in over 75% of the files. The
same 3 rules were also indispensable to construct a Java file.

Regarding the PSRP value in Figure 1(b), not all the syntac-
tic rules are adopted in the project development. Programmers
usually employed a subset of the rules to develop the software
projects. Most projects adopted around 60%∼80% of all syn-
tactic rules. Small group of the projects (13.8%) adopted over
85% of the rules, in which only 3 projects used the complete
set of the rules. In contrast, 16.5% of the projects adopted only
less than 50% of the syntactic rules. Some outlier projects in
our corpus used extremely few rules. For instance, the project
Templatebread developed by haxzamatic only adopted 8 syntac-
tic rules. Regarding the PSRF value, around 20%∼30% of the
syntactic rules were adopted to construct a Java file. Only 3%
of the files required more than 50% of the rules. The file with
maximum PSRF value covered 85% of the syntactic rules.

It is natural to speculate the PSRP values are tightly related
with the project scales. Our hypothesis is that projects with larger
scale adopt more syntactic rules since large-scale systems usu-
ally involve more diverse characteristics, which requires more
language features, i.e. syntactic rules to complete its functionali-
ties. To verify our intuitive conjecture, we classified the corpus
into three groups3 and analyzed the distribution separately. Fig-
ure 1(c) confirms the results. Small-scale projects adopt around
60% of all syntactic rules. Projects in the medium-scale groups
use around 80% of all rules. Large-scale projects do not adopt
all rules, in which around 10% of the rules are not adopted. The
results also confirm that syntactic rules are selectively used.

It is also interesting to validate whether the syntactic rule
usage obey the Pareto principle. Figure 2(a) shows that a small
number of syntactic rules account for most rule usage. The top
20% of the rules account for 85% all rule usage. The heavy tail

3We use the number of Java files to measure the project size. The projects
with less than 100 Java files belong to the small-scale group. The projects
containing between 100 and 1000 Java files belong to the medium-scale group.
The rest projects belong to the large-scale group.

4

●

●

●

●

●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●

●●●
●●●●

●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

(a)

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

● ●●
●
●
●
●

●
●

●

●

●

1e+02 1e+04 1e+06 1e+08

0.
01

0.
05

0.
20

0.
50

(b)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

power−law
log−normal

Figure 2: Rule usage distribution based on the PO values. (a)
shows the cumulative percentage of the rule usage; (b) shows the
cumulative distribution function of the rule usage. The points
are data, solid line is best-fit log-normal and the dashed line is
best-fit power-law.

covers many unpopular syntactic rules, 65% of the least-used
rules account for less 5% of all rules usage; the 40% for less 1%.
The heavy tail in our data indicates the possibility for optimizing
the design of the language syntax, e.g. removing or refactoring
the extremely unpopular syntax, instead of adding new syntax
continuously. We also fit the rule usage data to some candidate
distributions. Figure 2(b) shows that the log-normal distribution
has a much better fit than the power-law distribution [21].

3.2. In-Depth Study of Interesting Rules

To further investigate the usage of the syntactic rules, we
present the PP, PF and PO values of most representative rules
in detail, which are divided into four groups: declaration, state-
ment, expression and type/annotation. Table 3 shows the results.

Declaration. Regarding the group of the declaration related
rules, the class, method, import and package declarations ap-
peared in (almost) every project. They also had high probability
of appearing in Java files. It is obvious as the class and method
declaration are fundamental rules to implement the essential
functionalities. The import declaration is the basic rule to intro-
duce external functionalities, together with the method invocation.
The package declaration is also indispensable as it assigns names-
paces for programs to prevent name conflicts. The constructor
declaration also had very high PP value, but it only appeared
in about half of the Java files. Contrarily, the annotation-type
and enum declaration were used much less than other declara-
tions. This might be because both of the rules were introduced
in JLS3, which caused developers have less time to be famil-
iar with and adopt them. We also found that the PF and PO
values of annotation-type, anonymous-class, enum and interface
declarations had big decreases w.r.t. PP values. It indicates that
although these rules were adopted in many projects, the use
frequencies were quite low.

Statement. Regarding the group of the statement related rules,
the expression statement was the most commonly used rule,
which had both high PP and PF values. The usage is as expected
since it is in charge of wrapping expressions into statements. The
variable-declaration, return and if statements were posteriori

frequently used where the first rule is the essential way to gen-
erate variables (in which most are objects, the key elements in
Object Oriented Programming) and the last two rules are both
fundamental constructs to affect the control flow of the pro-
gram’s execution. The do, empty, labeled and type-declaration
statements were used much fewer than other statements.

Expression. Regarding the group of the expression related
rules, the PP value of most rules reached over 80%, except the
super-field access. The method invocation was heavily used as
expected since it is the key mechanism to introduce internal and
external functionalities. More than half of the files adopted the
class-instance creation, assignment and infix expression. Other
rules were used in 10%∼30% of the files.

Type. Regarding the group of the type related rules, the usage
of the simple type and primitive type covered a large portion.
The parameterized type, which was introduced in JLS3 to repre-
sent the generic type, was also used considerably. Conversely,
the union type and the wildcard type were used much less cur-
rently, although the wildcard type had been adopted in many
projects. In the annotation group, marker annotation was used
much more than the normal annotation and single-member anno-
tation. The data from [12] also confirmed that the top two used
annotations, i.e. @Override and @Test, which covered more than
55% usage of all annotations, were all marker annotations.

In addition, we have some other interesting findings from the
following three perspectives:

Rule Use Preferences

1. The do, while, for and enhanced-for statement are alternative
loop statements in Java. The usage of for statement is 2.5
times the usage of while statement, and 23 times the usage of
do statement. The enhanced-for statement is a syntactic sugar
designed for for statement, which was introduced in JLS3.
Its PP and PF values exceeded the corresponding values of
the for statement and its PO value also approached for’s PO
value. This may be because the enhanced-for statement is rec-
ommended for programmers to adopt over the for statement
in practice [22]. We discuss more on the evolution of these
rules in the RQ2.

2. The if and switch statement are both decision-making syn-
tactic rules. The usage of if statement is 40 times the usage
of switch statement. This might be caused by the restriction
of applying switch statement. In addition, a switch state-
ment involves 6 switch cases in average from the PO val-
ues, which indicates that switch statement was applied in the
complex scenarios with more selective execution paths. The
conditional expression is the short form of the if statement as
the conditional operator behaves like a simple if-else. From
the PO values, the usage of the conditional expression was
1/15 of the if statement. Using the conditional expression
to implement the structure with multiple decisions would
reduce the readability of source code.

3. The anonymous and local class are two special kinds of inner
classes in the nested classes. The anonymous-class decla-

5

Table 3: Usage of the main syntactic rules.

Syntactic Rules PP(r) PF(r) PO(r)

Declarations
Annotation Type Declaration 28.9% 0.9% 0.0045%

Anonymous Class Declaration 80.7% 11.1% 0.1448%

Class Declaration 100% 87.5% 0.5147%

Constructor Declaration 96.1% 50.8% 0.3909%

Enum Declaration 54.5% 2.7% 0.0147%

Field Declaration 99.3% 63.0% 1.8740%

Import Declaration 99.9% 86.4% 3.3996%

Interface Declaration 72.7% 11.6% 0.0587%

Method Declaration 99.9% 91.1% 3.9261%

Package Declaration 99.0% 97.5% 0.4353%

Statements
Assert Statement 24.4% 1.7% 0.0286%

Break Statement 74.1% 7.2% 0.2212%

Continue Statement 52.9% 3.6% 0.0430%

Do Statement 35.3% 1.1% 0.0115%

Empty Statement 26.6% 0.6% 0.0051%

Enhanced For Statement 83.5% 15.2% 0.2113%

For Statement 82.7% 15.0% 0.2583%

If Statement 98.6% 47.4% 2.6462%

Labeled Statement 16.4% 0.5% 0.0076%

Return Statement 98.9% 67.2% 2.8310%

Switch Statement 64.9% 5.0% 0.0677%

Synchronized Statement 39.2% 2.1% 0.0420%

Throw Statement 81.4% 19.3% 0.3777%

Try Statement 90.8% 21.5% 0.3645%

Type Declaration Statement 9.2% 0.2% 0.0018%

Variable Declaration Statement 99.5% 58.3% 3.7576%

While Statement 77.6% 9.7% 0.1077%

Syntactic Rules PP(r) PF(r) PO(r)

Expressions
Array Access 82.9% 14.5% 0.7587%

Array Creation 82.9% 15.9% 0.3019%

Assignment 99.1% 58.3% 3.0832%

Cast Expression 94.8% 30.3% 0.8407%

Class Instance Creation 99.5% 60.4% 2.4410%

Conditional Expression 78.9% 12.5% 0.1718%

Constructor Invocation 59.3% 4.9% 0.0356%

Field Access 91.8% 32.5% 1.1060%

Infix Expression 99.1% 54.4% 4.9584%

Instanceof Expression 69.7% 11.8% 0.1872%

Method Invocation 99.9% 75.0% 16.8744%

Parenthesized Expression 92.0% 24.4% 0.8323%

Postfix Expression 83.8% 15.7% 0.3504%

Prefix Expression 93.4% 28.0% 0.7396%

Super Constructor Invocation 83.6% 22.9% 0.1558%

Super Field Access 6.8% 0.2% 0.0027%

Super Method Invocation 78.6% 11.8% 0.1282%

This Expression 96.3% 38.8% 1.4251%

Variable Declaration Expression 82.4% 14.6% 0.2394%

Types & Annotations
Array Type 92.2% 29.0% 0.9293%

Parameterized Type 93.4% 40.2% 1.4523%

Simple Type 99.9% 95.9% 15.3843%

Union Type 2.7% 0.1% 0.0004%

Wildcard Type 64.3% 8.4% 0.1598%

Marker Annotation 98.0% 48.5% 1.1805%

Normal Annotation 56.2% 5.7% 0.1100%

Single Member Annotation 82.2% 11.5% 0.1298%

ration and type-declaration statement correspond to them
separately in the syntactic rules. From the PO values, the
anonymous-class declaration was used far beyond (83 times)
the type-declaration statement. In most cases, the adoption
of the anonymous-class declaration concentrated on imple-
menting the Listerner or Runable interfaces.

4. The infix, prefix and postfix expressions are three different
formats to compute values where the last two rules can only
adopt unary operators. The infix expression covered most
cases. The usage of prefix expression is 2 times than the
usage of postfix expression as more unary operators can be
used in the prefix expression.

Software Shapes

1. The type declaration4 involved around 3 field declarations,
7 method declarations and 6 import declarations in average,
which indicated the approximate structure and scale of a
Java class; The enum declaration involved 6 enum-constant
declaration averagely in practice;

4The Java type declaration can be normal class declaration, enum declaration
and interface declaration in JLS4.

2. 41.9% of classes did not have any declared constructor based
on the PF value of the class declaration and constructor
declaration. They used default constructors that were auto-
matically generated without defining any constructors.

3. The constructor declaration invokes existing constructors
or super constructors to improve the code reuse in gen-
eral. According to the PO values of constructor declara-
tion, constructor invocation, and super-constructor invoca-
tion, we found that 9% of the constructor declaration reused
constructors and 40% reused super constructors.

4. 13.6% of the Java files did not involve any import declaration.
One possible situation is that all the types used were fully
qualified by programmers; Another is that these files were
independent, without relying on any external functionalities.

Bad Practice

1. Based on the PF values, 97.5% of the Java files contained
the package declaration. That means the remaining 2.5% of
the Java files exhibited the bad practice of failing to specify
their package declarations5.

5Java packages group related types, providing access protection and name
space management. In general, types are suggested to belong in named packages.

6

Findings:

1. The usage of syntax rules is Zipfian; It fits the log-
normal distribution.

2. Not all the syntactic rules were adopted to construct a
project simultaneously. Project scale correlates with the
adoption of the syntactic rules.

3. Statistics hidden among the syntactic rule usage data are
interesting, including programmer’s preferences on rule
usage (e.g. if v.s. switch statement), software shapes
(e.g. the constitution of a Java class) and bad practices
(e.g. no package declaration is specified in a Java file)

4. Rule Usage Over Time

In RQ1, we analyzed the use of the syntactic rules on a single
version of each project, i.e. the most recent one in our corpus.
Here, we study their use over time. To better understand the use
evolution of the syntactic rules under the project lifecycle, we
would answer the following questions: (i) how did the usage of
the existing syntactic rules evolve over time; (ii) how did the
usage of the newly added syntactic rules evolve after they were
introduced; (iii) how did the newly-introduced rules impact the
usage of the existing rules. To this end, we checked out multiple
snapshots of the source code for each project in the corpus and
calculated the same measurements in RQ1 on multiple versions.
To facilitate observing the change trend of the evolution data,
we selected one year as the time interval to sample the multiple
snapshots.

4.1. Evolution of Existing Rules
JLS1 was the baseline version of the Java language. It pub-

lished 115 syntactic rules, which still covered 87% of the rules
in Java syntax even if the JLS has moved forward to JLS4. It is
interesting to learn if the use of syntactic rules defined in JLS1
continue the domination after new rules had been introduced.
To this end, we calculated the PO value of syntactic rule set
for different JLS versions. Table 4 shows the results based on
the following equation. It is obvious the use of syntactic rules
mainly converge at JLS1, although the value of PO(RJLS1) shrunk
by 4.5% in 2014. The use of rules in JLS3 steadily increased
over time. The rules proposed in JLS2 and JLS4 were still rarely
used.

PO(RS ⊆ R) =

∑
r∈RS

∑
P∈C

mO(P)(r)∑
r∈R

∑
P∈C

mO(P)(r)

To measure the change trend of the rule use, we adopt CAGR
(Compound Annual Growth Rate) to calculate the smoothed
change rate per year within the given time period [23]. Taking
PP value as an example, suppose PP(r, t) is the PP(r) value at
time point t, we use PP(r, t1, t2) to represent the change rate of
PP(r) per year between time points t1 and t2. Hence, we have

CAGRPP (r, t1, t2) = (
PP (r, t2)

PP (r, t1)
)(

1
t2−t1

) − 1

Table 4: The use of rules grouped by JLS versions.

Year 2002 2006 2010 2014

PO(RJLS1) 99.98% 99.67% 97.45% 95.42%
PO(RJLS2) 0.02% 0.01% 0.02% 0.02%
PO(RJLS3) 0% 0.32% 2.52% 4.55%
PO(RJLS4) 0% 0% 0% 0.01%

We applied the CAGRPP to evaluate the change of rule pop-
ularity, and the CAGRPO to evaluate the change of rule use
frequency. We chose 2004 as the start year, and 2014 as the
end year to calculate both of the values. Figure 3 presents the
results. Considering the CAGRPP value, 27% (31/115) of the
syntactic rules sustained growth over the 10 years, though their
growth rates per year were slow. This might be because most
of the rules are popular among the developers and their PP val-
ues essentially remained over 80%, which reduced their growth
space. The CAGRPP value of 73% of the rules were negative, in
which 42% of the rules dropped by less than 2%. Around 15%
of the rules were down over 5% per year. Figure 4(a) shows
some cases with rapid decline on PP values. The empty state-
ment dropped steadily, fell from 71% to 27%, a total decrease
of 162% in 10 years. The synchronized statement, the labeled
statement and the do statement also had the similar downward
trend. The synchronized statement is specific for multi-threaded
applications, which restrict its usage. The labeled statement is
always a controversial rule although it would not suffer from
the problems caused by the goto statement [24][25]. Developers
still had many debates [26], which greatly affect using this rule.
For the do statement, we discuss more below.

Regarding the CAGRPO, 26% (30/115) of the syntactic rules
sustained growth over the 10 years, in which some of the rules
increased by more than 5%, e.g. the anonymous-class declaration.
When combining the CAGRPP and CAGRPO, we found that
24% (28/115) of the rules have contrary change trend in which
half of them (14/115) had positive CAGRPP values and negative
CAGRPO values. This means although they were adopted in
more proportion of projects, the occurrence proportion in the
source code dropped. The package declaration is the case. The
remaining 12 rules had negative CAGRPP values and positive
CAGRPO values. The switch statement is the case.

4.2. Adoption of New Rules

JLS3 was a major release that introduced many important
features, including generic, enumeration and annotation. Com-
pared to JLS3, JLS2 and JLS4 were small update releases. As
JLS4 was released not long ago, we concentrate on the syntactic
rules introduced in JLS2 and JLS3.

Annotations were used to provide metadata for source code.
They have no direct effect on the execution of the code they
annotate. All annotation related rules were introduced in JLS3,
involving the annotation-type declaration and three types of an-
notations, i.e. the normal annotation, the marker annotation and
the single-member annotation. To measure the acceptance among
the projects, we monitored the PP values of these rules for 10
years. Figure 4(b) shows their evolution after 2004. The PP

7

−2
0%

−1
0%

0%
10

%
20

%

0 50 100115
(a)

C
A

G
R

 o
f P

P
(r

)

−2
0%

−1
0%

0%
10

%
20

%

0 50 100115
(b)

C
A

G
R

 o
f P

O
(r

)

Figure 3: The change of the syntactic rule usage. (a) shows the
distribution of the CAGRPP values; (b) shows the distribution
of the CAGRPO values. The x-axes in both subfigures list ev-
ery syntactic rule r defined in JLS1, and the y-axes represent
corresponding CAGR value of each rule.

values of three annotations grew fast from 2006 and exceeded
50% in 2014. The marker annotation was always the most pop-
ular annotation in use, which was adopted in almost all (98%)
projects in 2014. The use growth of the single-member annota-
tion and the normal annotation were slower, but their PP values
still achieved 82% and 56%, separately. In contrast, the use
growth of annotation-type declaration was much slower than
the annotations. This means developers preferred to use existing
annotations instead of defining a new annotation type.

Certainly, not all the newly-added syntactic rules were used as
expected. The assert statement is the case. The assertion enables
the developers to verify their code. After the assert statement
was introduced in JLS2, its PP values stayed between 20% and
40%. Many projects did not adopt it at all. The possible reason
is that using the assert statement has many restrictions [27].

4.3. Impact of New Rules on Existing Rules

The enhanced-for statement is a popular syntactic rule intro-
duced in JLS3. As an alternative option for for statement and
other loop-related rules, e.g. while statement and do statement,
it simplifies the code by its simple structure, which can be con-
sidered as a syntactic sugar. To look into how the enhanced-for
statement impact the use of other loop-related rules, we calcu-
late the POL for each loop rule based on the following equation
where L = {rfor, rwhile, rdo, renhanced-for}.

POL(r ∈ L) =

∑
P∈C

mO(P)(r)∑
r∈L

∑
P∈C

mO(P)(r)

Figure 4(c) shows the evolution of the four rules. It depicts
that the POL value of enhanced-for statement increased from
0% to 36%, which caused the decrease of the POL value of the
for statement (from 70% to 43%) and the while statement (from
31% to 18%). The usage of enhanced-for statement already ap-
proached the usage for statement. The possible reason is that
enhanced-for statement allows you to iterate through a collection
without having to create an Iterator or without having to calcu-
late beginning and end conditions for a counter variable, which
reduces writing the repeated code for developers and makes the

code easier to read and understand. In addition, the POL values
of do statement stayed fairly low all the time. It never became
popular among the loop-related rules. As the decrease of the
while statement in use, the for and the enhanced-for statement
covered almost 80% usage. We calculate the correlation coef-
ficient (cc) between the enhanced-for and other loop rules. The
table below shows the results, which indicates that enhanced-for
and for, enhanced-for and while are inversely correlated.

enhanced-for for cc = −0.989
enhanced-for while cc = −0.948
enhanced-for do cc = 0.021

Generic mechanism is a significant update in JLS3. It enables
types (classes and interfaces) to be parameters when defining
classes, interfaces and methods. The generic code has many
benefits, including provide strong type checks at compile time
and eliminate the use of casts [15]. From the PP values of
the parameterized type (99.0% in 2014), the generic has been
adopted in most projects. To further understand the use of the
generic in classes, interfaces and methods, we look into the
generic adoption in related generic-enabled rules, e.g. the class
declaration and the class-instance creation. To this end, we
calculate the proportion of the rules that apply the generic. Fig-
ure 4(d) shows the results. The use of generic class-instance
creation reached 12.5%, which was higher than the use of three
kinds of generic declarations. The use of the generic type (in-
cluding parameterized type and wildcard type in Java syntax)
also approached 10%, w.r.t. all simple types. The use proportion
of the generic interface declaration is 3 times than the use of
the generic class declaration. Instead, the use of the generic
method declaration and the generic method invocation remained
relatively low, compared to the other rules. On the whole, the
use generic maintained rapid growth. In addition, as the code
using generic can reduce the usage of casts, we confirmed this
benefit from the PO value of cast expression, which decreased
from 1.69% (in 2004) to 0.63% (in 2014).

Findings:

1. The use of most existing syntactic rules remained stable.
Some of the rules were losing their attraction, e.g. the
empty, labeled and do statement;

2. Most newly-introduced rules were adopted by program-
mers gradually and some have been widely used in
projects (e.g. the marker annotation). Exceptions also
existed (e.g. the assert statement).

3. The newly-added rules did impact the use of the exist-
ing relevant rules. The enhanced-for statement greatly
reduced the use of other loop related rules.

5. Dependent Rule Usage

The use of syntactic rules is dependent. In practice, we might
have the experience that the switch statement is often applied

8

● ● ●

● ●

●
●

●

●
●

0%
25

%
50

%
75

%
10

0%

2006 2008 2010 2012 2014
(a)

P
P

 v
al

ue
s

● Do Statement

Empty Statement

Labeled Statement

Super Field Access

Synchronized Statement

Type Declaration Statement

●
●

●

●
● ● ● ●

● ●

●

0%
25

%
50

%
75

%
10

0%

2004 2006 2008 2010 2012 2014
(b)

P
P

 v
al

ue
s

● Annotation Type Declaration

Marker Annotation

Normal Annotation

Single Member Annotation

● ● ● ● ● ● ● ● ● ● ●

0%
25

%
50

%
75

%
10

0%

2004 2006 2008 2010 2012 2014
(c)

R
el

at
iv

e
P

O
 v

al
ue

s

● Do Statement

Enhanced For Statement

For Statement

While Statement

●
●

● ● ●
●

●
● ●

● ●

0%
5%

10
%

15
%

2004 2006 2008 2010 2012 2014
(d)

%
 o

f G
en

er
ic

 U
sa

ge

● Generic Class Declaration

Generic Class Instance Creation

Generic Interface Declaration

Generic Method Declaration

Generic Method Invocation

Generic Type

Figure 4: The evolution of the rule usage across ten years. (a) shows the change trend of the existing unpopular rules where its y-axis
represents the PP value; (b) shows the change trend of the annotation-related rules where its y-axis represents the PP value; (c) shows
the change trend of the loop-related rules where its y-axis represents the POL values; (d) shows change trend of the generic-related
rules where its y-axis represents the percentage of the generic usage.

under the while statement, but rarely under the for statement.
Another accessible example is that nested loops are often ob-
served from the source code. However, no study has focused on
this aspect. Hence, it is significant to investigate dependencies
among syntactic rules.

In RQ1 and RQ2, we have analyzed the use of syntactic rules
individually. In RQ3, we analyze syntax rule dependencies and
various nesting depth constraints in real-world code. To this end,
we use bounded depth rule dependencies to capture contextual
dependencies. As discussed earlier in Section 1, we consider
depth 2. That is, for a pair of rules (r1, r2), if r1 is fired, we
calculate how likely r2 is fired. Hence, we compute the condi-
tional probability Pr(r2|r1) to express depth-2 dependencies.
Figure 5 gives a concrete example for calculating Pr(r2|r1).

5.1. Aggregate Results

We calculate Pr(r2|r1) for all possible usage dependencies
among 132 syntactic rules. Figure 6 shows the heat map of the
rule usage dependencies, which illustrates that strong dependen-
cies do exist.

Overall, we have found 1273 kinds of usage dependencies
with Pr(r2|r1) > 0, which cover 7% of all possible combina-
tions. Around 6% (80/1273) of the usage dependencies have

Pr(r2|r1) > 50%. In addition, we discover that 23% (31/132)
of the syntactic rules are used dependently. Figure 7 provides the
depth-2 dependencies of some interesting syntactic rules. For
each selected rule r1, we only list five rules r2 that have higher
Pr(r2|r1).

Besides nested loops, which we consider in detail later, we
have also found some interesting nesting cases: (i) over 1/5
of the if statements contain if statements in their bodies; (ii)
In 13.54% of method invocations, other method invocations are
nested in either the caller expressions or the method arguments;
(iii) 1.8% of the class declaration contain another class declara-
tion.

Returning null is considered a bad practice in most cases
except when null is the expected result under certain condi-
tions [22, 28]. We have found that 5.4% of the return statements
return null. We next present some interesting examples based
on Pr(r2|r1) values.

5.2. Case Studies

Exception Handling. In Java, errors are usually managed
by an exception object. The syntactic rule try statement is
used to handle exceptions. We have found that 13.1% of the
try statements adopt the try-finally structure, without using a

9

R2

R1

R1: E -> E + E
R2: E -> E * E
R3: E -> (E)
R4: E -> num
R5: E -> id

S1: num + num

E

+E E

num num

S2: num * id

#R1=1

Pr(R4 | R1)
= (Pr(R4 for E@1 | R1) + Pr(R4 for E@2 | R1)) / 2
= (1 + 0.5) / 2 = 0.75

Pr(R5 | R1)
= (Pr(R4 for E@1 | R1) + Pr(R4 for E@2 | R1)) / 2
= (0+0.5) / 2 = 0.25

1. Generating
the AST tree

2. Counting the Rule Usage

E

*

E E

num id

Rules
#R2=1 #R3=0 #R4=3 #R5=0

0. Input

Source code

@2@1

@2@1

R
4

R
4

R
4

R
5

3. Calculating the
Conditional Probability

Figure 5: An example of calculating the rule use dependency.

catch-clause. Such usage is reasonable when the programmer
cannot handle the exception locally and must clean up the re-
sources when the exception is triggered.

Within the use of the standard try-catch-finally structure, 27%
of the try statements catch exceptions and re-throw them from
a catch-clause, where 85% of the exceptions are wrapped be-
fore being thrown. We also find that 16% of catch-clause does
nothing in handling exceptions. The behavior of catching an
exception and ignoring it is usually a bad practice [22, Item 65].

Nested Loop. A loop is a fundamental structure that allows
code to be repeatedly executed. A nested loop is a loop inside the
body of another loop, which is often applied to more complex
structures, e.g. accessing a matrix. It is interesting to study the
probability of using nested loops in practice. Hence, we calculate
P (r2|r1) where r1, r2 ∈ {rfor, rwhile, rdo, renhanced−for}.
The following table shows the results. Around 10% of the for
statements are nested loops, containing other loop-related rules,
most of which are for statements. For enhanced-for statements,
while statements and do statements, 7%∼8% of the rules contain
other looping structures. Like for statements, the enhanced-for
statements and while statements usually contain themselves as
inner loops. In contrast, do statements favor one of the other
three rules. In total, 8.77% of the loops contain nested loops.

Pr(r2|r1)
r2

for enhanced-for while do total

r1

for 8.94% 0.73% 0.88% 0.10% 10.65%

enhanced-for 1.09% 5.71% 0.46% 0.02% 7.28%

while 2.52% 1.40% 2.93% 0.43% 7.28%

do 2.71% 2.12% 2.16% 0.67% 7.66%

Enhanced-for Loop. Before the enhanced-for statement was
introduced, programmers usually select the for statement to
iterate over a range of values. When we traverse a list called
items, we would likey use the following code:

for(int i=0; i<items.size(); i++){...}

It is natural that when developers adopt the for statement, the
expression in the for initialization part is usually fired by the
variable-declaration statement (int i=0); the for termination
part is usually fired by infix expression (i<items.size()) and

Syntactic rule r1

S
yn

ta
ct

ic
 r

ul
e

r2 P(r2|r1)

0.25

0.50

0.75

1.00

Figure 6: The heat map of the rule use dependency.

the for update part is usually fired by postfix (or prefix) expres-
sion (i++). The data in Figure 7 confirm our intuition. The use
of the variable-declaration, infix, prefix and postfix expres-
sions in the for statement covers 93.1%, and their proportion is
close to 1:1:1. The data indicate a rule usage pattern that the
variable-declaration, infix, postfix and postfix expressions
are bundled with the for statement. This provides strong evi-
dence for language designers to construct a new syntactic rule
(sugar) to facilitate coding. Hence, the enhanced-for statement
was proposed in JLS3 to let programmers concentrate on the
logic inside the loop body and not worry about managing loop in-
dexing. The data in Figure 4(c) also confirm that the introduction
of the enhanced-for statement has changed how programmers
select looping constructs.

Findings:

1. Syntactic rules exhibit nontrivial dependency. For exam-
ple, 6% of rule combinations show strong dependency
with > 50% probability.

2. Rule usage is contextual and helps identify potential
syntactic sugars to simplify a language or guide syntac-
tic level, instead of the usual lexical level, code comple-
tion and suggestion.

6. Applications

The main purpose of our study is to understand programming
language usage from the perspective of syntactic rules. We have
investigated characteristics of both independent and dependent
rule usage and how rule usage evolves. Our results suggest
several potential applications, which we discuss next.

Language design and restriction Programming language de-
sign has been largely artistic, driven by language architects’
aesthetic concerns and intuitions. Typically language designers
have limited knowledge on how programmers may actually use
a language. As languages (such as Java and C++) may gradually
introduce new features, they become more complex and impose
additional obstacles for novices to learn. Recall that the PSRP
values discussed in Section 3.1 show that not all, but a subset
of syntactic rules is adopted in a single project. Inspired by the

10

Type

Assignment
exp -> exp op exp

identifier (47.2%)
method invoc (13.4%)
field access (9.5%)
class-inst creation (5.4%)
qualified name(4.0%)

= (94.4%)
+= (3.6%)
|= (0.7%)
-= (0.6%)
*= (0.2%)

CastExpression
exp -> (type) exp

simple type (65.0%)
byte primitive (13.9%)
int primitive (6.2%)
parameterized type (3.3%)
float primitive (2.8%)

method invoc (38.1%)
identifier (33.2%)
number literal (12.6%)
parenthesized exp (6.6%)
array access (2.8%)

ConditionalExpression
exp -> exp ? exp : exp

infix exp (20.0%)
method invoc (18.8%)
identifier (15.7%)
number literal (9.6%)
parenthesized exp (8.8%)

FieldAccess
exp -> exp . id

this exp (90.0%)
method invoc (3.9%)
field access (2.3%)
array access (1.9%)
parenthesized exp (1.9%)

InfixExpression
exp -> exp op exp { op exp }

identifier (34.1%)
number literal (12.5%)
method invoc (11.1%)
null literal (10.2%)
infix exp (8.8%)

+ (20.8%)
== (20.1%)
!= (15.3%)
&& (7.6%)
< (7.1%)

InstanceOfExpression
exp -> exp instanceof (type)

simple type (97.1%)
array type (1.8%)
parameterized
type (1.1%)

identifier (87.8%)
method invoc (8.1%)
array access (1.8%)
qualified name (1.0%)
field access (0.7%)

ParenthesizedExpression
exp -> (exp)

infix exp (62.5%)
cast exp (17.7%)
conditional exp (4.8%)
instanceof exp (3.4%)
assignment (3.3%)

PostfixExpression
exp -> exp op

identifier (90.5%)
qualified name (7.3%)
field access (1.6%)
array access (0.5%)
parenthesized exp (0.01%)

++ (86.8%)
-- (13.2%)

PrefixExpression
exp -> op exp

number literal (36.9%)
method invoc (33.8%)
identifier (21.4%)
parenthesized exp (5.1%)
qualified name (1.6%)

! (52.0%)
- (38.9%)
++ (6.0%)
~ (1.3%)
-- (1.2%)

Array Access
exp -> exp [exp]

identifier (65.4%)
number literal (17.5%)
infix exp (5.4%)
array access (2.9%)
postfix exp (2.4%)

ClassInstanceCreation
exp -> [exp.] new [< type { , type } >]

type ([exp { , exp }])[anonymous class decl]

simple type (88.1%)
parameterized type (11.9%)

[empty] (34.1%)
identifier (21.5%)
string literal (12.3%)
method invoc (8.2%)
number literal (5.5%)

MethodInvocation
exp -> [exp.] [<type {,type}>] id ([exp { , exp }])

[empty] (99.9%)
simple type (0.1%)

identifier (57.2%)
method invoc (13.5%)
string literal (6.7%)
[empty] (6.0%)
qualified name (3.9%)

ThrowStatement
stmt -> throw exp;

DoStatement
stmt -> do stmt while (exp) ;

stmt -> for ([exp { , exp }]; [exp] ;
[exp { , exp }]) stmt

ForStatement

if stmt (60.1%)
var decl stmt (36.1%)
switch stmt (23.8%)
try stmt (5.2%)
break stmt (4.1%)

WhileStatement
stmt -> while (exp) stmt ;

infix exp (49.7%)
method invoc (32.2%)
prefix exp(6.2%)
true (10.1%)
identifier (1.1%)

ReturnStatement
stmt -> return [exp];

identifier (27.2%)
method invoc (24.4%)
false (6.2%)
class-inst creation (5.7%)
[empty] (5.7%)

stmt -> assert exp [: exp];
AssertStatement

stmt -> for (FormalParameter : exp) stmt
EnhancedForStatement

stmt -> if (exp) stmt [else stmt]
IfStatement

infix exp (62.3%)
method invoc (16.5%)
prefix exp (8.3%)
identifier (5.7%)
instanceof exp (4.4%)

return stmt (25.8%)
if stmt (21.4%)
var decl stmt (12.9%)
throw stmt (8.1%)
try stmt (2.1%)

infix exp (48.8%)
parenthesized exp (19.2%)
method invoc (15.6%)
prefix exp (4.5%)
string literal (4.9%)

if stmt (45.8%)
var decl stmt (40.8%)
try stmt (6.9%)
switch stmt (4.0%)
while stmt (2.9%)

infix exp (46.4%)
true (25.9%)
false (10.0%)
method invoc (8.34%)
prefix exp (5.75%)

if stmt (40.8%)
var decl stmt (38.2%)
for stmt (8.9%)
assignment (3.2%)
try stmt (2.5%)

var decl exp (31.6%)
infix exp (31.5%)
postfix exp (26.2%)
prefix exp (3.8%)
method invoc (2.4%)

identifier (57.6%)
method invoc (37.8%)
qualified name (2.0%)
field access (1.2%)
cast expression (0.4%)

if stmt (45.0%)
var decl stmt (27.1%)
en-for stmt (5.7%)
try stmt (3.7%)
for stmt (1.1%)

class-inst creation (84.9%)
method invoc (6.7%)
identifier (5.8%)
cast exp (1.9%)
parenthesized exp (0.4%)

SynchronizedStatement
stmt -> synchronized (exp) { {stmt} }

identifier (61.6%)
this exp (22.4%)
method invoc (8.8%)
field access (3.0%)
type literal (2.3%)

if stmt (43.0%)
var decl stmt (24.5%)
return stmt (20.0%)
try stmt (5.4%)
en-for stmt (4.9%)

Expression Statement

ArrayType
type -> type []

simple type (51.3%)
byte primitive (16.8%)
int primitive (8.8%)
long primitive (5.3%)
array type (0.4%)

ParameterizedType
type -> type <type{,type}>

simple type (91.3%)
wildcard type (5.2%)
parameterized type (3.0%)
array type (0.5%)

WildcardType
type -> ?[(extends|super) type]

[empty] (67.6%)
simple type (30.2%)
parameterized type (2.1%)
array type (0.1%)

Figure 7: Cheat sheet of rule dependency use.

concept of compact profiles6 defined in Java 8, we envision the
construction of syntactic rule subsets from mined rule usage
information. A programmer may adopt a proper subset for a
given scenario. In addition, rarely used syntactic rules or ones
with significantly decreased usage over time can guide language
designers in optimizing/redesigning the rules. Programmers can
also be warned so that they can use these rules more judiciously.

Programming languages contain not only good features, but
also bad features. Poorly-designed features usually induce pro-
grammers to write bad code, which may further impact the
quality of the software. In Java, for example, the super-field
access expression permits customers to visit the fields of its
super class directly. However, the use of this rule meanwhile
violates the principle of information hiding. In this study, we
found many bad practices in using the syntactic rules, e.g. ig-
noring caught exceptions (see Section 5.2, also check the list
in Section 3.2). In order to prevent language customers from
abusing these features, restricting the use of certain bad features
is indispensable. By analyzing the usage of the syntactic rules,
we can learn and construct this subset (without restricted rules)
by given requirements (e.g. performance, reliability, security)
from existing practical code and enforce employees/developers
to use.

6A compact profile is a subset of the full Java SE API, which has a smaller
storage footprint and enables Java applications to run on resource-constrained
devices [29].

Identification of syntactic sugars Our results on depth-2 de-
pendent rule usage have already motivated the automatic genera-
tion of syntactic sugars based on programmers’ usage patterns.
As discussed in Section 5.2, although the syntax of for-each
has been applied in other programming languages, the use of
the for statement in Java provides strong evidence that confirms
the necessity of introducing the enhanced-for statement as a syn-
tactic sugar. Our results also capture some potential syntactic
sugars. For instance, the if statement always appear in the else
part of another if statement, it would be significant to add a
syntactic rule of elseif, like the elseif in PHP. In this study, we
found 80 pairs of the rules that have strong use dependencies.
It is interesting investigate and mine possible syntactic sugars.
Moreover, deeper depth bounded dependent rule analysis may
yield further opportunities for rule usage patterns.

Code recommendation and completion The strong contex-
tual nature of syntactic rule usage promises a new potential
code recommendation and completion technique based on struc-
tured syntax, rather than lexical tokens. As the depth-2 rule use
dependencies have been calculated in Section 5, we adopt the
conditional probability to predict the possible child rules that
can be derived from the parent rule. Figure 8 shows an imagi-
nary scenario that how syntax-based code recommendation is
executed. When a user is entering a while statement, the system
lists in-place candidate rules that user may adopt next, ranked by
their contextual dependencies with the while statement. The user

11

WhileStatement

stmt -> while (exp) stmt ;

while () {

}

1. infix expression …………………… 49.7%

2. method invocation ………………… 32.2%

3. true ………………………………… 10.1%

4. prefix expression…………………… 6.20%

5. identifier…………………………… 1.10%

6. …

1. if statement………………………… 45.8%

2. variable declaration statement …… 40.8%

3. try statement ……………………… 6.90%

4. switch statement ………………… 4.00%

5. while statement …………………… 1.10%

6. …

Ctrl Space+

Figure 8: An example of syntax-based code recommendation.
When a user types the keyword while, presses the a recommenda-
tion command (such as Ctrl+Space here), and the candidate rules
are enumerated for both inner expression part and statement part
in the while statement.

can select the appropriate rule and the recommendation process
is iterative. In addition, we found, a parent rule derives, on aver-
age, only 20 syntactic rules, in which top 3∼5 of them dominate.
That means, the user only need to lookup within a relatively
small scope and consume less time and energy. We believe, this
completion technique is lightweight; it only completes the skele-
ton of source code and leaves the concrete implementation to
the programmers. It is also a worthwhile complement to current
completion techniques.

7. Threats to Validity

Construct validity The construct validity of our study rests on
the measurements performed, in particular related to the corpus
construction, evolution analysis of rule usage.

Regarding the corpus construction, we select and download
over 5, 000 projects with different characteristics, such as project
size and domain. All projects are from GitHub, as it is easier to
programmatically checkout multiple snapshots of the projects by
Git. GitHub is one of the most popular project hosting service
and hosts a great number of diverse projects. Thus, there is no
indication that the projects we selected are biased toward any
specific project types. In addition, many projects, which contain
multiple languages in their implementations and are not domi-
nated by Java are also included in our corpus. In some extreme
cases, projects only involve 1 Java file. However, these are not
toy projects since we selected them based on their popularity
in Github. Hence, it is hard to filter and eradicate them on the
premise of not including bias.

Regarding the evolution analysis of rule usage, to obtain the
per year rule usage data, we automatically check out multiple
versions from the code repository. By default, we select the first
commit after a given time as a project’s representative version
for the year. However, not every project has a continuous de-
velopment history. Some projects were interrupted by several
months, even several years in some cases. This may cause the
time of the snapshots that we checked out to be inconsistent with
expectations. However, it is unavoidable to some extent. Based
on our observations, only a few projects suffer from this issue,
which does not affect the overall results.

External validity Threats to external validity are concerned
with whether the results are applicable in general. The 5, 646
projects we study are all from open-source communities, our
conclusions on syntactic rule usage may deviate from the results
on commercial projects. In addition, all projects under analysis
are implemented in Java; no other language is studied. However,
the study process is general, which can be easily applied for
other languages. For the future work, it would be desirable to
analyze more kinds of projects (including commercial projects),
developed in different programming languages to confirm our
general conclusions.

8. Related Work

Relatively few studies empirically analyze language syntax
usage in recent years. Fewer focus on the evolution of the syntax
adoption and syntactic rule dependency usage.

Studies of Programming Languages. As with many other
things, Knuth was one of the first to conduct an empirical study
of how programmers use syntax on 440 Fortran programs [1].
He obtained the distribution of statement types through static
analysis and project profiles through dynamic analysis. Based
on the obtained knowledge on how Fortran was actually used
by developers, he provided several strategies to optimize the
compiler. Knuth’s study has inspired additional researchers to
consider how a programming language is used by developers. A
variety of languages were studied, e.g. COBOL [6, 7], APL [8]
and Pascal [9], through similar mechanisms. Our work can be
viewed as a modern follow-up to Knuth’s work to study a pop-
ular, mature and widely-used programming language. Besides
the conventional analysis of independent rule usage, we further
conducted more comprehensive studies, including the evolution
of the rule usage and dependent rule usage.

Dyer et al. conducted a large-scale study on Java features
usage [12, 30]. We have identified some of the same results, e.g.
some of the features are most popular while several ones are
rarely used by developers. In essence, however, our work differs
in several ways: (i) their work mainly focused on the usage of the
newly-introduced syntactic rules of Java’s three newest editions,
while we examined all syntactic rules, including the rules they
studied; (ii) We studied rule usage evolution of all syntactic
rules, while their work concentrated on the adoption of the
newly-added rules by developers; and (iii) We studied dependent
rule usage while theirs did not. Some other studies focused on a
small set of selected language features, e.g. generics adoption
in Java [31–33] and C++ [34], the reflection usage in Java [11].
Instead, we comprehensively studied language features from the
perspective of language syntax.

Baxter et al. [35] presented the first in-depth study of the
structure of Java programs through analyzing 56 projects. They
measured the key structural attributes to check whether they
follow power-laws. Grechanik et al. also mined structural usage
in more than 2,000 Java projects [36]. In addition, Collberg
et al. presented a study of the static structure of Java byte code
programs [37]. They obtained both simple counts, e.g. methods
per class, instructions per method and instructions per basic
block, and complex structure metrics, e.g. the complexity of

12

CFGs. In contrast to their work, we formulated such structure
attributes as syntactic rule usage dependencies, and conducted a
more comprehensive analysis. Furthermore, we also analyzed
usage of the newly introduced rules and their impact on existing
rules, which they did not consider.

Kim and Yi [38] studied the usage of syntactic sugar in Java
and C#. They focused on the for and enhanced-for statements,
and analyzed their usage in 10 C# projects and 10 Java projects.
They found that C# developers preferred to use syntactic sugar
while Java developers use relatively less syntactic sugar. In our
study, we analyzed the evolution of the usage of loop-related
rules. We found that the usage of the enhanced-for statement has
approached the usage of the for statement, and the introduction
of the enhanced-for statement greatly reduced the usage of the
other loop rules.

Meyerovich and Rabkin identified the factors that lead to pro-
gramming language adoption [39], e.g. prior language skills,
availability of open source tools. Ray et al. studied how pro-
gramming language impacts the code quality from multiple
dimensions [40]. They found language design did have a signifi-
cant, but modest effect on software quality. Their work inspired
an interesting question that how syntax impact the language
adoption and the code quality.

Studies of Software Characteristics. As more open source
repositories (e.g. Github, Sourceforge) have been publicly avail-
able, many researchers have started to learn software charac-
teristics through empirical approaches. Gabel and Su studied
software uniqueness [41]. They found that software generally
lacks uniqueness which most code snippets we need to write
already exist. Hindle et al. studied naturalness that actual code
is "regular and predictable", like natural language utterances
[42]. They followed the uniqueness study and confirmed the
"syntactic redundancy" of software. Tu et al. further studied
the localness that human-written programs were localized [43].
They introduced a cache language model that optimized the
n-gram model by involving local regularities of the code to im-
prove code suggestion accuracy. Our study studied software
from the perspective of the language syntax, and found many
syntactic rule usage is predictable. Allamanis and Sutton used
nonparametric Bayesian probabilistic tree substitution to mine
idioms from source code [44]. Their idioms are rules in a tree
substitution grammar inferred from ASTs; our rule dependencies
directly study the actual usage of the rules of a programming
language’s grammar; studying the relationship between these
two views of ASTs is future work. Many other studies mined
the vocabularies of the programming language to obtain the
"word" usage statistics [45, 46]. Instead, we learned the usage
distribution of the syntax rules.

Programming Language Education. Recent studies have
shown evidences that syntax of a programming language remains
a significant barrier to novice computer science students [5].
Denny et al. conducted a study to investigate the language syn-
tax barrier for novice programmers [4]. They collected syntax
errors from students’ course exercises during a drill and practice
activity. They found students often struggled with language
syntax, even when writing short fragments of code. Stefik et al.

also performed a controlled experiment to analyze what syn-
tactical elements from programming languages have effects on
the correctness of the novice programmer’s use of language
constructs [5]. Our study analyzed more programs in practice,
exhibited the actual use of the language that can be applied by
language designer to better optimize the design of the language.
We followed the same objective to ease the barrier for language
learners.

9. Conclusion and Future Work

We have presented a large-scale study of how Java’s language
syntax is used in practice using more than 5, 000 open-source
Java projects. Our study has exposed interesting quantitative
information to help understand how Java’s syntactic rules have
been used, both individually and considering contextual depen-
dencies. This work enables and promotes a data-driven approach
to language design.

There are several interesting directions for future work. First,
we plan to conduct a more comprehensive study with other pro-
gramming languages to increase the external validity of our
findings. Second, we are interested in investigating the possi-
bility of using rule dependencies to facilitate syntax-based code
completion. Third, we plan to provide additional suggestions on
improving language design, e.g. by constructing more easy-to-
use syntactic sugar. Finally, we would like to understand how
different language syntax features are used from more perspec-
tives, e.g. does the number of developers in the project correlate
with the number of rules used; does the project category affect
the distribution of the rule usage; does the adoption of one or
several specific rules improve the defect rate and reduce the code
quality.

Acknowledgment

The work is supported by the National Natural Science Foun-
dation of China under Grant No.61572126, the Huawei Innova-
tion Research Program (HIRP) under Grant No.YB2013120195
and the Scientific Research Foundation of Graduation School of
Southeast University Grant No.YBJJ1313.

References

[1] D. E. Knuth, An empirical study of fortran programs, Software: Practice
and Experience 1 (2) (1971) 105–133.

[2] Strangest language feature, http://stackoverflow.com/questions/1995113/
strangest-language-feature.

[3] Your language sucks, https://wiki.theory.org/YourLanguageSucks#Java_
sucks_because.

[4] P. Denny, A. Luxton-Reilly, E. Tempero, J. Hendrickx, Understanding the
syntax barrier for novices, in: Annual Joint Conference on Innovation and
Technology in Computer Science Education (ITiCSE), 2011, pp. 208–212.

[5] A. Stefik, S. Siebert, An empirical investigation into programming lan-
guage syntax, Trans. Comput. Educ. 13 (4) (2013) 19:1–19:40.

[6] A. Salvadori, J. Gordon, C. Capstick, Static profile of COBOL programs,
SIGPLAN Not. 10 (8) (1975) 20–33.

[7] R. J. Chevance, T. Heidet, Static profile and dynamic behavior of COBOL
programs, SIGPLAN Not. 13 (4) (1978) 44–57.

[8] H. J. Saal, Z. Weiss, An empirical study of APL programs, Computer
Languages 2 (3) (1977) 47–59.

13

http://stackoverflow.com/questions/1995113/strangest-language-feature
http://stackoverflow.com/questions/1995113/strangest-language-feature
https://wiki.theory.org/YourLanguageSucks#Java_sucks_because
https://wiki.theory.org/YourLanguageSucks#Java_sucks_because

[9] R. P. Cook, I. Lee, A contextual analysis of Pascal programs, Software:
Practice and Experience 12 (2) (1982) 195–203.

[10] C. Parnin, C. Bird, E. Murphy-Hill, Java generics adoption: How new fea-
tures are introduced, championed, or ignored, in: 8th Working Conference
on Mining Software Repositories (MSR), 2011, pp. 3–12.

[11] B. Livshits, J. Whaley, M. S. Lam, Reflection analysis for Java, in: Asian
Conference on Programming Languages and Systems (APLAS), 2005, pp.
139–160.

[12] R. Dyer, H. Rajan, H. A. Nguyen, T. N. Nguyen, Mining billions of
AST nodes to study actual and potential usage of Java language features,
in: International Conference on Software Engineering (ICSE), 2014, pp.
779–790.

[13] J. Gosling, B. Joy, G. L. Steele, The Java Language Specification, Addison-
Wesley Longman Publishing Co., 1996.

[14] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language Specification,
Second Edition, Addison-Wesley Publishing Co., 2000.

[15] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language Specification,
Third Edition, Addison-Wesley Professional, 2005.

[16] J. Gosling, B. Joy, G. L. Steele, Jr., G. Bracha, A. Buckley, The Java
Language Specification, Java SE 7 Edition, Addison-Wesley Professional,
2013.

[17] Eclipse EGit, http://www.eclipse.org/egit/.
[18] Eclipse JDT, http://www.eclipse.org/jdt/.
[19] Neo4j, http://www.neo4j.org.
[20] D. M. W. Powers, Applications and explanations of zipf’s law, in: Proceed-

ings of the Joint Conferences on New Methods in Language Processing
and Computational Natural Language Learning, NeMLaP3/CoNLL ’98,
1998, pp. 151–160.

[21] C. V. Lopes, J. Ossher, How scale affects structure in java programs, in:
Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2015, pp. 675–694.

[22] J. Bloch, Effective Java (2nd Ed.), Prentice Hall, 2008.
[23] Compound Annual Growth Rate, http://en.wikipedia.org/wiki/Compound_

annual_growth_rate.
[24] E. W. Dijkstra, Letters to the editor: Go to statement considered harmful,

Commun. ACM 11 (3) (1968) 147–148.
[25] B. Eckel, Thinking in Java (4th Ed.), Prentice Hall, 2005.
[26] Java Labels, http://programmers.stackexchange.com/questions/185944/

java-labels-to-be-or-not-to-be.
[27] Programming with assertions, http://docs.oracle.com/javase/7/docs/

technotes/guides/language/assert.html.
[28] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship,

Prentice Hall, 2008.
[29] Compact profiles, https://docs.oracle.com/javase/8/docs/technotes/guides/

compactprofiles/compactprofiles.html.
[30] R. Dyer, H. A. Nguyen, H. Rajan, T. N. Nguyen, Boa: A language and in-

frastructure for analyzing ultra-large-scale software repositories, in: Inter-
national Conference on Software Engineering (ICSE), 2013, pp. 422–431.

[31] H. A. Basit, D. C. Rajapakse, S. Jarzabek, An empirical study on limits of
clone unification using generics, in: International Conference on Software
Engineering and Knowledge Engineering (SEKE), 2005, pp. 109–114.

[32] M. Hoppe, S. Hanenberg, Do developers benefit from generic types?:
An empirical comparison of generic and raw types in Java, in: ACM
SIGPLAN International Conference on Object Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2013, pp. 457–474.

[33] C. Parnin, C. Bird, E. Murphy-Hill, Adoption and use of Java generics,
Empirical Software Engineering 18 (6) (2013) 1047–1089.

[34] A. Sutton, R. Holeman, J. Maletic, Identification of idiom usage in C++
generic libraries, in: 2010 IEEE 18th International Conference on Program
Comprehension, ICPC ’10, 2010, pp. 160–169.

[35] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser,
H. Melton, E. Tempero, Understanding the shape of Java software, in:
ACM SIGPLAN Conference on Object-oriented Programming Systems,
Languages, and Applications (OOPSLA), 2006, pp. 397–412.

[36] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi, D. Poshy-
vanyk, C. Fu, Q. Xie, C. Ghezzi, An empirical investigation into a large-
scale Java open source code repository, in: ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM),
2010, pp. 11:1–11:10.

[37] C. Collberg, G. Myles, M. Stepp, An empirical study of Java bytecode
programs, Software: Practice and Experience 37 (6) (2007) 581–641.

[38] D. Kim, G. Yi, Measuring syntactic sugar usage in programming languages:
An empirical study of C# and Java projects, Advances in Computer Science
and its Applications Lecture Notes in Electrical Engineering 279 (2014)
279–284.

[39] L. A. Meyerovich, A. S. Rabkin, Empirical analysis of programming lan-
guage adoption, in: ACM SIGPLAN International Conference on Object
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), 2013, pp. 1–18.

[40] B. Ray, D. Posnett, V. Filkov, P. Devanbu, A large scale study of pro-
gramming languages and code quality in github, in: ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE),
2014, pp. 155–165.

[41] M. Gabel, Z. Su, A study of the uniqueness of source code, in: ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE), 2010, pp. 147–156.

[42] A. Hindle, E. T. Barr, Z. Su, M. Gabel, P. Devanbu, On the naturalness of
software, in: International Conference on Software Engineering (ICSE),
2012, pp. 837–847.

[43] Z. Tu, Z. Su, P. Devanbu, On the localness of software, in: ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE),
2014, pp. 269–280.

[44] M. Allamanis, C. Sutton, Mining idioms from source code, in: ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE), 2014, pp. 472–483.

[45] D. P. Delorey, C. D. Knutson, M. Davies, Mining programming language
vocabularies from source code, in: 21st Conference of the Psychology of
Programming Group (PPIG), 2009.

[46] E. Linstead, L. Hughes, C. Lopes, P. Baldi, Exploring Java software
vocabulary: A search and mining perspective, in: Workshop on Search-
Driven Development-Users, Infrastructure, Tools and Evaluation, 2009,
pp. 29–32.

14

http://www.eclipse.org/egit/
http://www.eclipse.org/jdt/
http://www.neo4j.org
http://en.wikipedia.org/wiki/Compound_annual_growth_rate
http://en.wikipedia.org/wiki/Compound_annual_growth_rate
http://programmers.stackexchange.com/questions/185944/java-labels-to-be-or-not-to-be
http://programmers.stackexchange.com/questions/185944/java-labels-to-be-or-not-to-be
http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html
https://docs.oracle.com/javase/8/docs/technotes/guides/compactprofiles/compactprofiles.html
https://docs.oracle.com/javase/8/docs/technotes/guides/compactprofiles/compactprofiles.html

	Introduction
	Study Design and Results
	Study Subject
	Research Questions and Key Findings

	Single Rule Usage in Practice
	Aggregate Results
	In-Depth Study of Interesting Rules

	Rule Usage Over Time
	Evolution of Existing Rules
	Adoption of New Rules
	Impact of New Rules on Existing Rules

	Dependent Rule Usage
	Aggregate Results
	Case Studies

	Applications
	Threats to Validity
	Related Work
	Conclusion and Future Work

