
 

MAPPING PERCEPTUAL DECISIONS 
TO CORTICAL REGIONS 

 

 

PETER N. ZATKA-HAAS 

 

 

A dissertation submitted in partial fulfilment 

of requirements for the degree of 

 

 

Doctor of Philosophy 

 

 

UCL 

Institute of Neurology 

 

 

Supervisors: 

Prof. Kenneth D. Harris 

Prof. Matteo Carandini 

 

December 2018 

  



2 

  



3 

 

 

 

 

 

 

 

 

 

 

 

 

I, Peter Zatka-Haas, confirm that the work presented in this thesis 

is my own. Where information has been derived from other 

sources, I confirm that this has been indicated in the thesis. 

  



4 

  



5 

ABSTRACT 

Perceptual decisions involve a complex interaction of several brain areas. The 

neocortex is thought to play a major role in this process, but it is unclear which 

cortical areas are causally involved, and what their individual roles are. 

To explore this problem, we trained head-fixed mice to perform a two-alternative 

unforced-choice visual discrimination task. Mice were rewarded with water for 

turning a wheel to indicate which of two stimuli had higher contrast, or for 

holding the wheel still if no stimuli were present. 

We developed a hierarchical Bayesian model of the choice behaviour and used this 

to quantify mouse behaviour in terms of perceptual states such as choice biases 

and stimulus sensitivities. We also used this model framework to quantify how 

these perceptual states vary across individual mice and across sessions. 

Using widefield calcium imaging, we found robust sequential activation in primary 

visual, secondary visual, secondary motor, primary motor and somatosensory 

cortices in response to stimulus presentation. Optogenetic inactivation revealed 

that only the first two regions: visual (VIS) and secondary motor (MOs) areas, were 

causally relevant. VIS inactivation was effective earlier than MOs inactivation, 

which suggests a sequential causal role for these regions. 

We observed a surprising effect of VIS inactivation which could only be explained 

by a downstream subtractive process which integrates information between the 

two hemispheres. We tested this idea by developing a mechanistic model which 

was fit to widefield fluorescence data, using the same Bayesian hierarchical 

framework used earlier. In this model, VIS activity enhances the decision variable 

associated with contraversive movements and suppresses the decision variable 

associated with ipsiversive movements. By contrast, activity in MOs enhances 

both. This model could predict average psychometric behaviour, trial-by-trial 

variation in choices within a stimulus condition, as well as simulate the effect of 

optogenetic inactivation. 

This thesis therefore shines light on the cortical contributions towards visual 

discrimination behaviour. This work has implications for the neural processes 

underlying perceptual decision making more broadly.   
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CHAPTER 1 INTRODUCTION AND BACKGROUND 

Decision making is a foundational component of animal cognition. Broadly 

speaking, decision making is defined as the process of evaluating among different 

alternatives based on some criteria and then committing to one alternative by 

making a choice. Decisions come in several different forms, depending on the 

nature of the alternatives being evaluated. This thesis is concerned with 

perceptual decision making, a decision process where sensory evidence in favour 

of each alternative is perceptually ambiguous.  

A hallmark of perceptual decision making is the finding that for the same sensory 

stimulus, the choices a subject makes vary considerably. This is a striking 

observation, because it reveals fundamental limits inherent in a subject’s 

perceptual experience. Psychophysics has an illustrious history in using perceptual 

decision tasks to quantify perceptual experience from purely behavioural data. 

However, we are interested in moving on from this, to understand the neural 

processes underpinning this experience. If we can understand the neural basis of 

perceptual decision making, we will therefore gain insight into the neural basis of 

perception itself.  

The neural basis for perceptual decision making has attracted significant scientific 

interest over the past three decades. This has been due to technological 

innovation in neural recording and perturbation coupled with the development of 

sophisticated psychophysical tasks in animals. Furthermore, theoretical models of 

optimal decision making have made it possible to ascribe computational principles 

to patterns of activity observed in neural tissue. Despite great progress, the field 

is still in its infancy and many questions remain unanswered.  

In this Chapter, we will summarise relevant background literature and discuss 

some gaps in the knowledge which motivate this research project. Finally, we will 

define the questions driving this thesis. 

1.1 Philosophical preamble 

Studies investigating the neural basis of perceptual decision making adopt a few 

important philosophical stances which are shared in systems neuroscience more 

broadly. Here we will briefly mention two important stances: the idea of 

reductive mechanistic explanations, and the idea of 
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computationalism/representationalism. We will outline their broad claim and 

mention some caveats. 

Many systems/computational neuroscientists attribute ‘understanding the brain’ 

to establishing mechanisms of function (Kaplan, 2011). Mechanistic explanations 

focus on the idea that the model system has a ‘purpose’ or ‘function’ (a 

teleology), and explanation amounts to identifying the components and their 

causal relations which come together to achieve the function. These types of 

explanations in turn rely on reductionism: the idea of explaining a complex 

process in terms of constituent parts and relations between parts (Bechtel et al., 

2001). Countless studies in neuroscience adopt this view, for example accounting 

for behaviour in terms of neural circuitry (e.g. Carandini, (2012)). Within this 

philosophy, “understanding” a system amounts to being able to manipulate the 

parts to achieve some goal. This framework also delineates how one can link 

statements which operate at different levels of description. For example, 

cognitive features of perceptual decision making may be ‘reduced’ to elementary 

cognitive processes. These cognitive processes may in turn be ‘reduced’ to 

patterns of neural network activation. This process continues, all the way down to 

fundamental physical laws, relying on bridge laws to link the levels together. 

However, this framework may break down if this reductive assumption doesn’t 

hold true or the phenomena relies on circular causality. This is exemplified in the 

concept of emergence. Emergent phenomena are phenomena which do not appear 

to be reducible to constituent parts. For example, groups of birds or fish 

coordinate together to move group even though no individual bird or fish makes 

the decision. It is an open question whether complex phenomena observed in the 

brain and elsewhere are truly emergent, or instead may be reducible with great 

effort (Chalmers, 2006). 

Another major stance is computationalism/representationalism (Kriegeskorte and 

Douglas, 2018; Marr, 1982). This school of thought proposes that the brain can be 

understood as processing information as in a computational device. Computation 

requires two primary concepts: representation of information, and 

transformations which can be applied to representations to yield new 

representations which serves a function. Many studies ascribe neural activity to 

representations by showing that that neural activity correlates with an external 

variable, and carries this information forward through a causal chain (deCharms 

and Zador, 2000). One critique levied against the computational stance is that this 
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method would identify ‘representations’ in many non-cognitive physical structures 

(Grush, 2001). For example, the system of ion channels embedded within a cell 

membrane could be considered to ‘represent’ the electrochemical gradient across 

it because features of the membrane (e.g. channel density) correlates with the 

gradient, and this gradient causally impacts electrical functions of the cell. As 

another example, vibration in the air molecules between two people speaking 

shows both features of representation. Air molecule vibration correlates with the 

words spoken by the speaker. This vibration moves through the air and is a causal 

factor for someone to hear the speech. However, we would argue that this is not 

an interesting kind of representation. This therefore raises the question of 

whether representations truly exist, or instead exist as a useful metaphor in 

human study of these systems.  

1.2 Decision making as a model of perception 

Perceptual experience is unobservable as it is subjective. However, in the 19th 

century, Fechner (1860) introduced psychophysics as a discipline aimed at 

quantifying perceptual experience from observed behaviour. This approach relies 

on training subjects to distinguish perceptually-ambiguous stimuli and report their 

percept with a behavioural choice. The perceptual features of the subject could 

therefore be inferred by monitoring the decision behaviour. Decision tasks 

therefore form a bedrock upon which perception can be studied (Shadlen and 

Kiani, 2013). Furthermore, these tasks make it possible to identify neural 

correlates of perceptual states, because psychophysics simplifies this to 

identifying neural correlates of behaviour. 

Numerous tasks have been developed, all sharing a common framework. An animal 

is presented with a stimulus, and then in response it must perform a specific 

action. This stimulus-response association is trained using reinforcement, in the 

form of rewards for correct actions and/or punishments for incorrect ones. The 

experimenter then presents stimuli of different ambiguity/difficulty and observes 

how the response varies in the animal – termed the ‘psychometric curve’. 

Psychophysics assumes that the observed psychometric curve shape reflects the 

perceptual limits of the animal, and therefore measures of the psychometric 

curve shape are measures of perception (Fechner, 1860).  

Tasks are categorised by the set of actions used by the animal in signalling a 

choice. In Go/NoGo tasks, animals perform one action (e.g. a button press) when 
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a specific stimulus (e.g. a visual grating) is presented and do nothing otherwise 

(NoGo). While this type of task is simple, using them to make inferences about 

perception is problematic because NoGo behaviour could either reflect perception 

of stimulus absence or disengagement with the task itself. In two-alternative 

forced-choice tasks (2AFC), animals instead make an action on every trial, 

between two choices. 2AFC tasks therefore do not suffer from the same problem 

as Go-NoGo tasks when inferring perceptual states as disengagement with the task 

is reflected in a distinctive absence of action (Stüttgen et al., 2011). Hybrids of 

this include two-alternative unforced choice tasks (2AUC) which train animals on a 

2AFC task but permit NoGo responses (Sridharan et al., 2014).  

In 2AFC tasks, several perceptual features can be measured from the 

psychometric curve. For example: bias, sensitivity and lapse rate (Figure 1-1). 

Bias is quantified here as a shift in the psychometric curve and it reflects a 

tendency of the subject to choose one action over another independent of the 

stimulus. Sensitivity is quantified as the slope of the curve, and it reflects how 

sensitive the subject is to small changes in the stimulus. Lapse rate is quantified 

as the plateau performance on the easiest conditions, and it reflects an apparent 

irreducible error in task performance caused by confusion or disengagement in the 

task. 

The time that a choice is made is also informative of the underlying perceptual 

process. In tasks where the subject is trained to make a rapid response soon after 

stimulus onset (a ‘reaction time task’), longer reaction times are associated with 

more difficult stimulus conditions. Similarly, reaction time for error trials are 

typically longer than for correct trials (Ratcliff et al., 2016). The difference in the 

amount of time taken to reach a decision between two stimulus conditions is 

therefore informative about the means by which the two stimulus conditions 

impact the decision circuitry differently. Another approach to exploring the role 

of time in decision tasks is to limit the presentation time of the stimulus to pulses 

of varying duration (Gold and Shadlen, 2000). In these kinds of tasks, choices for 

trials with briefer stimulus viewing durations are associated with higher rates of 

error. 
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Figure 1-1 The psychometric function 

This function quantifies the proportion of trials where the animal makes a choice 
A as a function of different stimulus strengths. Assuming that the proportion of 
choices varies smoothly with stimulus strength, the shape of this curve implies 
several perceptual features. The horizontal shift of the curve corresponds to a 
decision bias, the slope at the mid-point of the curve corresponds to perceptual 
sensitivity, and the asymptote of the curve reflects a lapse rate typically 
assumed to arise from task disengagement or confusion. From Gold and Ding, 
(2013). 

 

1.2.1 Theoretical models of decision making 

The concepts of bias, sensitivity, and lapse rate are idealised metrics of the 

perceptual process which rely on an assumption that the fraction of choices varies 

smoothly with stimulus strength. Several theories of decision making have been 

proposed which define a theoretical framework within which to understand 

decisions. Two approaches have been particularly insightful in the neural study of 

decision making: normative signal theory, and normative economic theory. Both 

seek to define how an optimal ‘ideal observer’ should solve the task but differ in 

how they account for uncertainty in the decision-making process.  

Normative signal theories of decisions place the source of uncertainty in 

perceptual input (Lynn et al., 2015). Signal detection theory (SDT) proposes the 

existence of a Gaussian-distributed random decision variable (DV) represented 

within a deciding agent. The DV can be interpreted as the amount of evidence in 

favour of making a specific choice. The expected value of the DV is determined by 

sensory evidence in favour of that choice, while the variance reflects perceptual 

noise. A decision event is modelled as a sample from the DV distribution. If the DV 

value exceeds a pre-specified criterion, the choice is made (Tanner and Swets, 
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1954). By knowing the prior probability of a choice being correct, the reward 

amount for each choice, the decision criterion can be placed optimally to 

maximise expected reward (Lynn and Barrett, 2014).  

Signal detection theory models decisions when stimuli are static, but what if 

stimuli are presented continuously in time? The drift-diffusion model (DDM) 

defines a decision variable (DV) whose value reflects the integrated evidence in 

favour of one choice over another (Laming, 1968; Ratcliff et al., 2016). This 

framework has been utilised extensively in models of decision making as it is 

accounts for decisions and deliberation time. Perceptual uncertainty arises from 

the DV random walk, as well as variability in the DV increment magnitudes from 

instantaneous stimulus events. A choice is made when the DV value reaches a 

threshold. These models account for the time that a decision is made as the time 

when the DV breaches threshold. The value of this threshold sets a trade-off 

between response time and accuracy. A high threshold value will ensure that 

choices are only made when evidence is strong relative to noise, but this may take 

a long time to accumulate and therefore response time will be long. A low 

threshold will produce quick decisions but will lead to high error rates because 

brief sampling of the evidence will be noisy. Consequently, DDM defines a 

mathematical framework for relating choice identity and choice timing (measured 

by reaction time), and this framework is highly applicable for tasks requiring 

accumulation of evidence. In this case, both choice and choice timing data are 

crucial to constraining parameters of these models. This approach can also be 

utilised in tasks which do not have explicit accumulation of evidence. Decision 

field models are DDMs which model decisions arising from a static stimulus but 

accumulating internal ‘urgency’ signal, which predicts response times (Busemeyer 

and Townsend, 1993). DDMs could also be applied in tasks where subjects make 

repeated ‘observations’ of a fixed and perceptually-ambiguous stimulus, and 

where the number of repeated observations trades off with the accuracy in 

choice. In this sense, the subject is integrating static evidence over time. 

However, since the ‘observation’ events are neither measured nor experimentally 

predetermined, it may be difficult to sufficiently constrain a DDM which requires 

knowledge of the timing for each instantaneous observation event. 

Perceptual features such as bias and sensitivity emerge explicitly from 

components of these theoretical decision models. In classic SDT, bias relates to 

the position of the criterion, and sensitivity arises from separation of the DV 
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distributions (Sridharan et al., 2014). In DDM, bias arises from offset in the initial 

DV value, and sensitivity arises from the gain of the stimulus increments. Lapse 

rate is not specified in either DDM or SDT model forms because lapses are thought 

to reflect disengagement with the task itself, not something internal to evaluating 

evidence. This relationship between psychometric bias and sensitivity, and 

components of theoretical models, makes it possible to understand observed 

behaviour in terms of states of an underlying theoretical process. 

Normative economic theories of decisions place the source of uncertainty in 

choice payoff (Lynn et al., 2015). An agent makes a choice among unambiguous 

alternatives but is uncertain about the amount of reward that will be obtained for 

making that choice. However, with knowledge of the reward probabilities, 

optimal behaviour can be defined. The earliest normative economic decision 

theory of this kind is maximised expected value (MEV). This theory states that the 

optimal decisions are made by selecting the choice with the largest expected 

reward (an average of all possible reward states, weighted by the probability of 

that reward state occurring). However, two problems became clear: 1) this theory 

cannot account for individual preferences under identical expected values (e.g. 

risk aversion varies among individuals), and 2) under some probability 

distributions the expected value is infinite (St. Petersburg paradox). These 

problems led to its disuse. A new theory took its place which passes reward value 

through an individual-specific subjective utility function, and optimal behaviour 

(under a utility function) is achieved by maximising expected utility (MEU) 

(Hansson, 1994). Neumann et al. (1944) showed that, under four axioms of 

rational decision making, the deciding agent’s behaviour is equivalent to MEU. 

These axioms are: completeness (preference is spread over a predefined set of 

possible choices), transitivity (if you prefer A to B, and B to C, then you prefer A 

to C), continuity (choice preference is a smoothly varying value), and 

independence of irrelevant alternatives (IIA - the relative preference between 

two choices is unchanged by the existence of other choices; Luce, (1959)). Under 

this theory, if animal behaviour obeys these axioms then they are necessarily 

performing MEU.  

These normative models have been employed extensively in behavioural studies 

ranging from simple perceptual tasks in monkeys to financial risk decision making 

in humans. However, the fact that each approach assumes a single source of 

randomness could be considered a weakness. It is likely that both perceptual 
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uncertainty and economic/decision uncertainty play a role in behaviour. For 

example, if a ‘signals’ theory of decision is true, then behavioural variability 

should arise only from ambiguity in the stimulus. However in situations with 

identical stimuli, choices are biased by increasing the reward on one side 

(Summerfield and Tsetsos, 2012). These problems can be reduced by studying 

simple behaviours where uncertainty is specified to either perception or economic 

valuation. For example, if we want to study perceptual uncertainty, animals must 

be over-trained on fixed reward contingencies in the hope that they are not 

uncertain about potential payoff. Ultimately we want a unified understanding of 

decisions arising through uncertainty both in perception and in economic 

valuation, and so future modelling approaches will likely need to find a clean 

integration of the two sources of uncertainty (Lynn et al., 2015). An integrated 

framework is especially important as it is unclear whether sensory and economic 

uncertainty have distinct neural bases – these theoretical concepts might be two 

views of the same stochastic neural process.  

The integration of normative signal and economic decision theories has generated 

some insight which the individual approaches lacked. For example, classic SDT 

decomposes the perceptual decisions into two distinct components: stimulus 

sensitivity, and choice bias. These two quantities are thought to be independent 

(Sridharan et al., 2014; Tanner and Swets, 1954). Consequently, studies have 

sought to identify separate neural signatures associated with each of these 

components. However, Lynn and Barrett (2014) showed that by framing SDT in 

terms of maximising expected utilities, bias and sensitivity are no longer 

orthogonal. Under situations with unequal base rates or payoffs, agents with a low 

sensitivity should be more biased than agents with high sensitivity. Similar work 

found a dependence between bias and sensitivity when redefining the problem in 

a Bayesian efficient coding framework (Wei and Stocker, 2016). 

The normative signal models discussed above are models of decisions with two 

alternatives. This therefore makes the models applicable to 2AFC task regimes, 

but not applicable to tasks with multiple alternatives. Many choice situations an 

animal may face involve more than two choice options (Churchland et al., 2008), 

however there is no equivalent optimal decision rule as in the SPRT. Despite this, 

several attempts have been made to generalise SDT to multi-alternative decisions 

(Sridharan et al., 2014), and to generalise DDMs to multi-alternative choices (Roe 

et al., 2001). However, work is ongoing in decision theoretical work to define 
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models of multi-alternative decisions which are grounded in a normative 

framework. 

1.3 Methods for studying the neural bases of decision 

making 

Establishing the neural basis of perceptual decision making is challenging due to 

the difficulty in separating cause from effect. However, we can be more confident 

in our understanding by attacking this problem from multiple directions: 1) 

Establish a precise correspondence between neural variability and perceptual 

variability and 2) Fit this correspondence into a broader theoretical framework for 

decision process. In this section we will introduce these approaches. Afterwards, 

we will review literature which has used different combinations of these 

approaches to investigate the neural basis of decision making in monkeys and 

rodents. 

1.3.1 Correspondence between neural and perceptual variability 

As sensory information arrives in the brain, this information is transformed into a 

decision. Tracing this transformation through the brain requires identifying 

putative signals which correlate with the stimulus and/or decision. These 

approaches have arisen by the application of signal detection theory to 

neurophysiological data, and several breakthroughs have emerged from this union. 

Any putative signal related to the stimulus (e.g. single neuron firing rates, or a 

pattern of activity across a population) should show two features. First, the signal 

should be tuned to features of the stimulus (e.g. visual contrast, or sound 

intensity). On its own this criterion is insufficient to show that this sensory signal 

is used in the decision process. Therefore, a second feature required is that the 

dependence of the signal on the stimulus closely mirrors the psychometric 

dependence of the decision on the stimulus. This is achieved using Neurometric-

Psychometric (NP) comparison (Parker and Newsome, 1998; Stüttgen et al., 2011). 

This approach defines a putative stimulus-encoding rule for a neural signal (e.g. a 

neuron encodes a specific stimulus by its firing rate). Neurometric analysis then 

quantifies how well an ‘ideal observer’ could perform on the decision task by 

observing this neural signal alone (rather than the external stimulus). The 

decisions produced by this ideal observer can be quantified across stimulus 

conditions in a ‘neurometric’ curve. If the behavioural performance of the ideal 

observer (quantified in the neurometric curve) closely matches the behavioural 
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performance of the host animal (quantified in the psychometric curve), this 

suggests that the neural signal corresponds to a signal the animal may use. For 

example, the firing rates of neurons in visual area MT are tuned to visual motion 

stimuli. In tasks where subjects must discriminate visual motion, average choices 

vary as a function of strength of the visual motion. If an ideal observer of the MT 

signal could make decisions which match those of the host animal, this suggests a 

role for the neural activity in encoding the stimulus relevant for forming the 

decisions. 

Any putative signal related instead to the upcoming decision should show slightly 

different features. The signal should correlate with the resulting decision the 

subject makes, and this correlation should also exist prior to any action being 

produced, otherwise ongoing motor-related signals trivially correlate with the 

decision. Signals related purely to encoding the stimulus (and not decisions) will 

however spuriously correlate with the decision across stimulus conditions because 

the decisions correlate with the stimulus by design. Therefore, a further criterion 

is that any decision signal should correlate with the upcoming decision even 

within trials of identical stimulus conditions. “Choice Probability” quantifies how 

variability in neural activity mirrors variability in choices within a fixed stimulus 

condition (Britten et al., 1996; Crapse and Basso, 2015). In the case of visual 

motion discrimination, if the firing rate of an area MT neuron correlates with the 

upcoming choice within trials of identical stimuli, this further suggests that the 

MT neuron is involved in decision formation. 

We cannot assert a causal role of neurons in perception from NP-comparison or 

Choice Probability measures alone because they are correlation statements. To 

hint at a causal role, we must employ neural manipulation. If a neural structure 

and neural code forms the causal mechanism of decision formation, then 

artificially stimulating the structure in a manner consistent with the neural code 

should act as a complete replacement of the sensory stimulus. Similarly, 

disrupting activity in these structures should disrupt task performance. Lesions, 

microstimulation, pharmacological inactivation, and optogenetics are all examples 

of these approaches. However, two caveats should be made clear with this 

approach: due to the massively parallel circuitry of the brain, neural manipulation 

will likely have broad off-target effects in many brain areas (Otchy et al., 2015) or 

may be compensated for by other neural structures (Li et al., 2016), therefore 

unequivocal statements of causality restricted to a single neural structure cannot 
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be made. Also, this approach rests on a general assumption that neural structures 

perform distinct roles and therefore manipulation affects individual steps within a 

serial causal chain. This suffers from the mereological fallacy: ascribing to a part 

what only applies to the whole (Smit and Hacker, 2014). The neural bases, if they 

are distinct, almost certainly rely on each other’s’ existence to operate 

(deCharms and Zador, 2000). This critique seems to apply more to situations 

where neural manipulation affects behaviour. If neural perturbation has no effect 

on behaviour, this arguably suggests that the structure is not necessary for 

producing the behaviour.  

1.3.2 Relating neural signals to theoretical models of decision 

The complexity of the system makes correlational and perturbational studies hard 

to interpret. Therefore, a further requirement is that the signals observed and 

perturbed within the system should relate to a theoretical account of the decision 

process. A theory ideally constrains the interpretation of the data and proposes 

new experiments which would help develop the theoretical account of the 

decision process. Theories can operate at many different levels of abstraction 

(Kriegeskorte and Douglas, 2018). For example, phenomenological models are 

mathematical accounts of the relationship between measured quantities, and 

their success is defined by how well they can summarise the data. By contrast, 

mechanistic models account for the underlying causal process producing a 

function. Their success is determined whether components of the model match 

components of a real physical system, and whether their causal interactions 

reflect causal processes also evident in the physical system. 

The normative signal and economic models described earlier are theoretical 

models defining relationships between theoretical quantities involved in a 

decision process. However, they can also be viewed as hypothetical semi-

mechanistic models of neural events underlying decision behaviour. In this view, 

the theoretical quantities are assumed to have a physical realisation in the 

animal. For example, signal detection theory and drift-diffusion models propose 

the existence of a decision variable, and therefore a mechanistic account of the 

decision process would identify the decision variable with a specific signal in the 

brain (Gold and Ding, 2013; Gold and Shadlen, 2001). Likewise economic theories 

propose an internal estimate of expected utility which drive decisions (Glimcher 

and Fehr, 2013). These theories do not propose a full mechanistic account of the 

stimulus-to-action process, and therefore retain a degree of abstraction. Other 
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work has focused on developing models which are more mechanistic, and 

therefore contain more biologically plausible components. For example, recurrent 

neural network models can be tuned to exhibit attractor dynamics which 

categorise continuous sensory input into discrete choices (Wang, 2008). These 

mechanistic models show striking similarity to the decision variable of the DDM 

described earlier. 

1.3.3 Animal models 

Much of the foundational work in the neurophysiology of decision making has been 

done in non-human primates such as monkeys (Parker and Newsome, 1998). 

Monkeys can be trained to perform sophisticated decision tasks. One example task 

is the random dot task. In this task, monkeys observe a set of dots on a screen 

moving in one direction among a set of distractor dots moving in random 

directions. The coherence of dot motion can be controlled experimentally, 

thereby adjusting the uncertainty about the dot movement direction. The task for 

the monkey is to saccade to indicate the direction of the dot movement. While 

monkeys perform this task neural activity from several brain areas can be 

monitored during task performance. One problem with monkeys however is that 

training takes many months, and this limits the amount of data that can be 

acquired. There are also fewer tools available for genetically targeting specific 

cell types for neural recording and manipulation.  

Rodents are now an attractive model to study for decision making (Carandini and 

Churchland, 2013). This is due to recent developments in high-throughput neural 

recording, cell-type-specific fluorescence imaging, and optogenetic manipulation. 

There was initially some doubt as to whether rodents could perform sophisticated 

decision tasks akin to those used in monkeys. The Carandini lab developed a visual 

discrimination task in mice where head-fixed mice turn a wheel to indicate 

whether the left or right side showed a Gabor stimulus (Burgess et al., 2017). Mice 

could perform this task very well, achieving performance which was only thought 

possible in monkeys. Additionally, training only takes about one month, which has 

increased experimental throughput. Similarly, the Brody lab developed a click-

accumulation task in rats inspired by the random-dot task. Rats are trained to 

listen to a series of auditory clicks on the left and right side, and move to a nose-

poke hole on the left or right corresponding to which side had the greater number 

of clicks (Brunton et al., 2013). The average number of clicks is experimentally 

controlled, but each trial is a random train of clicks drawn from a Poisson 
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distribution. The rat must therefore retain an accumulating measure of the 

difference in clicks from each side. These click-accumulation tasks are also 

amenable to theoretical analysis because, assuming that the behaviour follows 

from a theoretical evidence-accumulation process (e.g. DDM), the animal’s time-

varying ‘decision variable’ can be inferred from the relationship between the rat’s 

reaction time and the experimentally-determined stimulus event times (Brunton 

et al., 2013). 

1.4 The neural basis of perceptual decision making 

The decision process can be conceived of as the following chain of events: 

sensation of stimulus, formation of decision, and generation of action. Several 

landmark studies over the past few decades have explored the neural basis 

underlying each stage. In this section we will first discuss some work 

demonstrating a neural basis for sensory perception in early sensory cortical 

areas. We will follow on with studies identifying decision signals with activity in 

parietal areas. Finally, we will discuss some investigation into frontal-motor 

regions thought to be involved in action generation, emphasising a role for 

classically ‘motor’ regions in early decision formation. 

1.4.1 A correspondence between early sensory coding and perception 

Early monkey work in the 1980-1990s demonstrated that visual area MT mediated 

performance of the random dot decision task. While monkeys performed the task, 

Newsome and Pare (1988) lesioned area MT in monkeys and found that their 

psychophysical thresholds were impaired. However, thresholds for a contrast 

discrimination task were unaffected. This suggested that MT is necessary for the 

perception of motion but not visual stimuli in general. This left open the question 

of whether the uncertainty in the visual stimulus reported perceptually (via highly 

variable choices) is mirrored neurally as variability in MT firing. Britten et al. 

(1992) recorded from MT neurons in monkeys performing a similar random dot 

task. The authors found that the neurometric dependence of the neural activity 

on the dot motion coherence closely mirrored the psychometric dependence of 

choices on coherence. Additionally, on trials with identical stimulus coherence, 

trial-by-trial variability in neural activity could weakly predict variability in 

choices (Choice Probability; Britten et al. (1996)). These findings were important 

because they were one of the first to demonstrate a precise correspondence 

between perceptual experience and neural activity. However, the weak Choice 
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Probability found in this area, coupled with the fact that neurometric sensitivity 

in this area was greater than psychometric sensitivity suggested that area MT was 

not itself the seat of decision formation. Recent work in monkeys and rodents has 

shown that (albeit weak) Choice Probability in early sensory areas probably arises 

from top-down feedback from other structures which form the decision (Nienborg 

and Cumming, 2009; Yang et al., 2016). Consistent with this, Liu and Pack (2017) 

trained monkeys to discriminate drifting gratings. Muscimol inactivation of MT had 

no effect in these monkeys. The authors then trained monkeys on a random dot 

discrimination task and found that muscimol inactivation of MT now impaired 

performance of interleaved drifting grating trials. This suggests that MT confers 

information related to the stimulus, which is passed downstream to structures 

which generate the actual decision. 

In other sensory modalities, Romo and Salinas (1999) trained monkeys on a vibro-

tactile discrimination task. In this task, two vibrating mechanical stimuli are 

applied to the monkey’s finger, one after another, with a time delay in-between. 

The monkey indicates with a button press or lever pull whether the second 

stimulus was at a higher vibrational frequency than the first. Previous work 

showed that neurons in primary somatosensory area (S1) fire in response to this 

vibration stimulation. However, it was unclear whether the activity here drives 

perception. The authors stimulated neural activity in S1, and found that this could 

act as a complete replacement for the vibrational stimulus for monkey perceptual 

decisions. Hernández et al. (2000) found that the sensitivity of S1 neural firing to 

the mechanical stimulus closely matched the psychophysical sensitivity of the 

monkey to the stimulus. Therefore, just like in visual area MT, these findings 

demonstrate a close correspondence between neural activity and perception in 

early sensory areas.  

Early sensory areas therefore appear to relay information relating to the stimulus, 

but do not form the seat of decision formation. Subsequent studies have explored 

whether the downstream targets of the early sensory areas may instead relate 

more to the decision. 

1.4.2 Parietal/association cortex shows a link with decisions 

Several landmark studies identified decision-related signals in the Lateral 

Intraparietal area (LIP) of the Posterior Parietal Cortex (PPC) in monkeys 

performing the random dot task (Roitman and Shadlen, 2002; Shadlen and 

Newsome, 2001, 1996). The authors reported an important set of findings. Firstly, 
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LIP firing is topographically mapped to the target location of a saccade therefore 

seems related to action planning. Secondly, after onset of the visual stimulus, LIP 

firing ramped up gradually if the random dot stimulus moved in the direction 

associated with that LIP’s saccade receptive field. Thirdly, the slope of the 

ramping was proportional to the coherence of the visual stimulus. Fourthly, 

ramping activity appeared to reach an upper bound when the saccade was made, 

thereby predicting the reaction time of the saccade. Finally, the activity of LIP 

persisted through a delay period where the monkey waits before making a 

saccade. In this delay period, there is no visual stimulus on-screen, nor any 

saccadic movement in the monkey. Therefore, LIP activity here does not reflect 

pure sensory or motor information. The authors suggested that LIP activity 

reflects the decision process itself. Huk and Shadlen (2005) trained monkeys on a 

similar task but instead of presenting a random dot stimulus of one coherence 

value, they momentarily perturbed this value within a trial. The authors found 

that the ramping of LIP activity was consistent with an integration of variable 

‘evidence’ in favour of one choice. If LIP is the site of evidence integration, 

artificially increasing the activity should bias choices. Consistent with this, Hanks 

et al. (2006) found that choice towards one side were increased when 

microstimulating a subset of LIP neurons whose receptive fields covered one 

target. Additionally, occasional choices to the other side were slower. This is 

consistent with the evidence accumulation model of decision making. LIP activity 

also shows correlation with decision variables associated with decisions made 

under economic uncertainty (Platt and Glimcher, 1999), which suggests that LIP 

may flexibly represent different kinds of decisions. 

However, subsequent work has cast doubt on the role of LIP in forming the 

decisions in the random dot task. In the original LIP-recording studies mentioned 

above, the measured neural activity shows Choice Probability measures for 

individual cells which are far lower than what would be expected from a decision 

signal (Crapse and Basso, 2015). Additionally, pharmacological inactivation of 

monkey LIP using muscimol has no effect on this task, but does bias saccades in a 

free-choice task (Katz et al., 2016). Other findings have shown that LIP activity 

may not correspond exactly to the theoretical decision variable of the 

accumulation models. In these models, the threshold of the decision variable sets 

the speed-accuracy trade-off. If accumulation-to-bound is a good account of LIP 

activity, then when a monkey emphasises speed/accuracy differently, then we 

would predict a corresponding shift in the boundary for LIP activity prior to 
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choices. Hanks et al. (2014) explored this in a motion discrimination task where 

monkeys were cued to emphasise speed or accuracy on different trials. 

Behaviourally, the monkeys succeeded in doing this, and a DDM could capture the 

behavioural changes as a shift in the decision boundary as predicted. However, 

when the authors recorded from LIP they found that the neural firing boundary 

was unaffected between these conditions. Taken together, these studies suggest 

that LIP does not drive saccadic decisions requiring integration of motion evidence 

but may instead play roles related to goal-directed saccades in other contexts. 

Several rodent studies have helped illuminate the possible role for PPC in decision 

tasks. Many of these studies have employed the Poisson-click task outlined earlier, 

which is analogous to the random dot task in monkeys. Hanks et al. (2015) 

recorded from PPC and found neurons which showed a gradually-ramping firing 

prior to choice, akin to the ramping activity of monkey LIP in the random dot task. 

Just like LIP, high-dose muscimol inactivation of rat PPC had no effect on this 

decision task however did affect a free-choice task (Erlich et al., 2015). However 

other work points to PPC still causally relevant to some decision tasks. Licata et 

al. (2017) and Raposo et al. (2014) found that optogenetic inactivation of rat PPC 

biased visual, but not auditory, discrimination. This paints a picture where PPC 

acts as a higher visual area, not a seat of general decision making. Consistent with 

this, Goard et al. (2016) found that bilateral inactivation of mouse PPC impaired 

performance in a visual detection task, but only if inactivation was during the 

stimulus epoch.  

Other work points to PPC playing a role in memory-guided navigation. Harvey et 

al. (2012) utilised 2-photon calcium imaging of PPC in head-fixed mice. Mice walk 

down a virtual corridor with a stimulus section (grating stimuli on the walls), a 

plain grey ‘delay’ section, and then a junction. Mice should turn left or right to 

indicate which wall had the higher contrast. During this task the authors found 

that PPC activity flowed in a sequence along a chain of anatomically intermingled 

cells, over the entire period of a trial. The sequence depended on the eventual 

choice made by the mouse and was maintained during the ‘memory’ phase of the 

task. The authors found that inactivating PPC impaired mice’s ability to perform 

this task, but not on a modified task where the visual stimulus was presented 

through the entire corridor. This study offers a novel view of the PPC as mediating 

memory-guided decision making using serial information flow in long chains of 

neurons.  
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Caution must be made when interpreting the result of these inactivation studies, 

particularly in PPC. As PPC shares a border with visual areas, micro-stimulation or 

pharmacological/optogenetic inactivation may spread into these areas. If a study 

finds a positive result for PPC manipulation affecting behaviour, this may be 

entirely explained through unintended effects in visual processing. A further 

consideration is the role that inter-hemispheric communication can play in 

compensating for any unilateral perturbations of neural activity. Li et al. (2016) 

performed unilateral inactivation in mouse ALM during a tactile whisker-pole 

detection task. They show that performance in the task fully recovers after 

terminating unilateral ALM inactivation. However bilateral inactivation causes 

disruption for the rest of the trial even after inactivation is removed. When 

examining the spiking of ALM neurons, they find that neural firing recovers back 

to its pre-inactivated state for unilateral but not bilateral inactivation. 

Importantly they show that this process is dependent on signals from the other 

hemisphere via the corpus collosum, as a collosal bisection abolishes this 

compensation effect. This study demonstrates a broader point that unilateral 

inactivation of any cortical site may produce compensatory effects which may 

obscure interpretation.  

A few studies suggest that PPC may represent multiple task features 

simultaneously, suggesting a more complex role for PPC than the aforementioned 

evidence-accumulation models. Raposo et al. (2014) recorded from rat PPC during 

a multi-sensory discrimination task and found a mixture of neural tuning to 

features of the task: stimulus modality and choice. Neurons which typically would 

be labelled as selective for a task feature were really the handful of cells in the 

tail end of a population distribution centred at zero selectivity. Furthermore, the 

selectivity to a mixture of both task features among the cell population was 

consistent with random. One interpretation of this is that PPC doesn’t represent 

any specific factor in the task. However, the authors showed with modelling that 

different task features could be read-out from the population by taking different 

linear weightings of the population. Therefore, PPC seems to be capable of 

representing multiple task variables simultaneously, and this therefore makes 

cell-averaging misleading (as was done in many of the tasks mentioned earlier). 

Similar work in monkeys show individual LIP cells response to multiplexed features 

of the trial, not single features (Park et al., 2014). Both studies emphasise the 

need to shift the focus away from identifying cell representation of specific task 
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variables, instead studying how downstream targets might de-multiplex these 

quantities to support flexible behaviour. 

What about other sensory modalities? In secondary somatosensory cortex (S2), 

Romo et al. (2002) recorded from neurons in monkeys performing the vibro-tactile 

discrimination task. The authors found that pre-movement neural activity 

reflected the comparison of the mechanical stimulus frequencies and was in line 

with the subsequent choice. This pointed to a possible neural substrate for the 

decision process, akin to LIP for the random dot task. However, since the stimulus 

is not continuous in time, S2 activity here is not thought to reflect a DDM process. 

Machens et al. (2005) proposed a mechanistic model which accounts for these 

findings in S2 as emerging from modifications to fixed points of recurrent circuit 

dynamics. 

Parietal and other association cortices therefore show neural correlates expected 

of signals related to the decision. The multiple functions associated with PPC has 

led to proposals that PPC forms the seat of general decision making, independent 

of the sensory modalities present in the task. However, it remains unclear 

whether the activity causally drives the decision process. 

1.4.3 Frontal motor areas: decision formation vs action generation 

Sensation, decision and action are often viewed as distinct functions, however a 

number of studies point to a regime where these functions emerge in parallel. 

Gold and Shadlen (2000) trained monkeys on the random dot task, using saccades 

to indicate the direction of motion upwards or downwards. The frontal eye field 

(FEF) is known to mediate saccadic motor output (Schall and Thompson, 1999). 

Once the monkeys were trained on the task, the authors electrically stimulated 

the FEF to induce a saccade towards the right side. When the authors performed 

the microstimulation early into the random dot stimulus, the artificially-evoked 

saccade was deviated slightly towards the up/down target as instructed by the 

visual stimulus. The deviation increased with visual stimulus strength and viewing 

time prior to the microstimulation. This indicates that very early into the visual 

stimulus presentation, functional properties of the neural circuitry in motor areas 

are already adjusting. The stimulus-to-action sequence might therefore not 

contain an intermediate distinct ‘decision’ phase. However, this may be more 

specific to cases where the animal is over-trained, where non-trained decision 

behaviour may indeed rely on distinct decision and action formation steps. 
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Further work has shown that “decision” and “motor preparation” may actually be 

referring to the same thing. Kaufman et al. (2014) trained monkeys to perform 

complex arm movements instructed by a visual cue. After observing the cue, the 

monkeys had to wait for a delay period before starting the movement – during 

which the monkey is presumably deciding and preparing the appropriate action to 

make. The authors recorded from many neurons in dorsal pre-motor (PMd) and 

primary motor (M1) cortex during this task. They found that PMd population 

activity moved through different low-dimensional subspaces for the delay and 

movement periods. The subspace explored by the population during the delay 

period corresponded to the null space of the matrix of projections from PMd to 

M1. In other words, ongoing PMd recurrent dynamics were such that they only 

affected downstream M1 dynamics during the movement phase. This helps explain 

the finding that preparatory activity in PMd is as strong as activity during 

movement, and without any apparent inhibitory gating mechanism it was unclear 

why PMd preparatory activity doesn’t generate movement. Mante et al. (2013) 

performed a similar analysis exploring monkey population dynamics in PFC during 

a coloured random-dot discrimination task. The authors found that population 

activity occupied different subspaces depending on whether the task was to 

discriminate colour or motion. The shape of these subspaces was such that 

irrelevant information (e.g. colour information during motion discrimination) did 

not affect population dynamics concerned with achieving the task. Using 

simulations of recurrent circuitry, the authors show that the process of integrating 

evidence, and selecting an appropriate action, can all occur within the same 

neural population moving through different subspaces. Both studies demonstrate 

sophisticated computational properties of neural populations. One caveat with 

this kind of dimensionality-reduction analysis is they often rely on the assumption 

that the firing rates of individual neurons are linearly combined in the population. 

This assumption is very unlikely to hold true exactly, especially given non-

linearities observed within single cell firing (e.g. Branco and Häusser, (2011)), but 

useful approximate conclusions could be drawn from this approach nevertheless. 

These studies show that our views of decision as arising from separate sensation, 

decision and action stages may be incorrect. Instead these processes seem to 

emerge holistically, from the repeated interaction of “sensory” and “motor” 

cortical areas.  

Recent rodent work points to frontal-motor areas as mediating the emergence of 

decision (Svoboda and Li, 2018). The frontal orienting field (FOF) is thought to be 
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the rat homolog for monkey FEF, based on common thalamic, collicular and 

oculomotor projections (Barthas and Kwan, 2016). Recent studies reveal a possible 

role for this structure in decision making. Erlich et al. (2015, 2011) found that 

muscimol inactivation in FOF induced a strong contralateral neglect in an auditory 

discrimination task requiring orienting movements. The FOF inactivation effects 

could be accounted for as the biasing of the output of an evidence accumulator 

process upstream. This points towards a view of FOF as a structure concerned 

with taking a continuous DV value and discretising it into a binary value for 

initiation an appropriate action. This interpretation is corroborated by Hanks et 

al. (2015) who estimated the ongoing decision variable for each trial from 

behavioural data. PPC showed smooth tuning to DV, whereas FOF showed abrupt 

step-like tuning to DV, consistent with the idea that FOF is the output of an 

accumulator. This however doesn’t imply that FOF only plays a role ‘after’ 

evidence accumulation. Goard et al. (2016) found that optogenetic FOF 

inactivation impaired choices even when inactivating early in the stimulus epoch. 

Similarly, Kopec et al. (2015) showed that inactivating mouse FOF early into the 

stimulus epoch impaired performance in a memory-guided orienting task. Further 

emphasising an early role for FOF in decisions, Sul et al. (2011) found they could 

decode upcoming choice in rat FOF earlier than in any other brain area studied 

under a free-choice foraging task. In nearby motor areas Guo et al. (2014) found 

that inactivating anterior lateral motor cortex (ALM) biased choices in a mouse 

but only when inactivating during a delay/decision phase of a tactile decision 

task.  

These studies demonstrate an early causal role for frontal-motor areas in decision 

making. This is reminiscent of the finding mentioned earlier, that frontal 

structures show changes to their functional properties as soon as the visual 

stimulus begins (Gold and Shadlen, 2000). The early role discussed here is 

inconsistent with the idea that frontal-motor areas are concerned just with 

triggering motor actions. Instead, decisions appear to emerge from a constant 

reverberation/interaction of activity between sensory, parietal and frontal-motor 

circuitry as soon as the stimulus begins (Cisek and Kalaska, 2010).  

1.4.4 A fully distributed cortical process? 

This holistic view predicts that decision-related signals should emerge 

simultaneously in all cortical areas involved. Hernández et al. (2010) recorded 

from several cortical areas spanning the sensory-parietal-motor axis while 
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monkeys compared the frequency of two mechanical vibration phrases. The 

authors found that stimulus-selective signals emerged earliest in sensory areas 

and later in motor areas. By contrast, decision-selective signals emerged in all 

areas (except S1) simultaneously. This is consistent with the idea that sensory 

information passes feedforward up a cortical hierarchy, and then decisions arise 

from reverberation along this hierarchy. A similar observation was made in 

monkeys performing visual pattern discrimination (Ledberg et al., 2007). 

In partial agreement with this, recent work has shown decision signals to arise 

simultaneously in some regions, but at later times in other regions. Siegel et al. 

(2015) recorded from multiple cortical areas in monkeys performing a variant of 

random dot task where monkeys were cued to discriminate dot motion or dot 

colour. The authors could decode multiple aspects of the task in several cortical 

areas: cue identity, whether the monkey should discriminate motion or colour, 

the direction and colour of the dots, as well as the upcoming choice. Decoding of 

stimulus colour and motion emerged first in MT/V4, then IT/LIP, followed by FEF 

then PFC. By contrast, choice decoding followed a reverse order - first emerging 

simultaneously in LIP and PFC, and then following a serial order to FEF and 

MT/V4. This finding suggests that choice signals arise first in a fronto-parietal 

network, which are then relayed down to early sensory areas. This accounts for 

some studies claiming that decoding choice in early sensory areas is due to 

decision formation in these areas, instead this can be explained as arising from 

top-down projections from other areas. This point is made in recent papers 

exploring the origin of choice decoding in early sensory areas (Nienborg and 

Cumming, 2009; Yang et al., 2016). 

Any observation of serial information flow could be viewed as a challenge to the 

‘holistic emergence’ view discussed earlier. Nevertheless, the process of forming 

a decision and committing to an action involves a host of cortical areas engaging 

in feedforward and feedback signals. 

1.4.5 Subcortical structures 

The emphasis on cortex has largely been due to the ease of access. However, it’s 

possible that cortical manipulation effects on choice occur because of 

downstream effects in subcortical targets which form the real basis for decisions. 

For example, the striatum has been implicated in valuation of choices in decision 

making (Schultz et al., 1997), and this structure has vast bi-directional 

connections with cortex. Znamenskiy and Zador (2013) investigated whether they 
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could induce behavioural effects on auditory discrimination by just targeting those 

cortical cells which project to the striatum. The authors injected rat striatum 

with a retrograde transport virus which conditionally expressed opsins ChR2 or 

Arch in auditory cortical cells with projections to striatum. They found that 

optogenetic excitation and inhibition of these cells respectively modulated choice 

bias towards and away from choices associated with the cortical tonotopy. It’s 

therefore possible that the effects of parietal and frontal inactivation on choice 

biasing might be explained by cortico-striatal projections (Hintiryan et al., 2016).  

The organisation of striatal circuitry seems well-suited to decision making 

(Wickens et al., 2007). Cortex converges to striatum medium spiny neurons 

(MSNs), which themselves receive dopaminergic input driving plasticity. MSNs also 

laterally inhibit each other, facilitating winner-take-all dynamics. In this view, 

MSNs encode value associated with each action, lateral inhibition induces action 

selection among alternatives, and dopaminergic encoding of reward prediction 

error adjusts value estimates depending on the reward history. 

Superior colliculus (SC) also appears to play a role in perceptual decisions. Zénon 

and Krauzlis (2012) trained monkeys to detect changes to moving dot stimuli in 

specific regions of the visual field. They showed that inactivating SC impaired 

performance in this task but only to stimuli within the SC’s visual field. The 

authors conclude that SC plays a specific role in this task, as visual cortex remains 

unaffected by the perturbation. In rodents, the story is similar. Kopec et al. 

(2015) found that inactivating SC in rats impaired performance on a memory-

guided orienting task. 

1.5 Conclusion and research questions 

To conclude: we have several methods at our disposal for investigating the neural 

basis of decision making. With well-controlled behavioural tasks, we can measure 

perceptual features of an animal and link this to neural activity using recording 

and manipulation. Several papers have asserted a role for PPC in mediating 

decisions, however neural manipulation rules out PPC as being causally involved in 

some tasks. Choice decoding has been found in many cortical and subcortical 

areas, but it’s still unclear whether decisions arise from single cortical sites and 

propagate elsewhere or arise from the interaction of distributed parts of the 

brain. Theoretical models of decision making have shown great promise in 
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explaining behaviour, however work still needs to be done to develop mechanistic 

models of neural circuitry underlying the process. 

Therefore, the research questions defining my project are centred on 

investigating outstanding problems in the field:  

1. Does decision making arise from activation of distinct 
cortical regions in a temporal sequence, or instead arise in a 

distributed fashion? 

2. Which cortical areas are causally necessary for the 
decision process? 

3. What are the functional contributions of cortical areas 
towards decision making?
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CHAPTER 2 A PHENOMENOLOGICAL MODEL OF 

MOUSE VISUAL DISCRIMINATION 
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2.1 Introduction 

Perception is a fundamental feature of conscious experience. An open question in 

neuroscience is what the neural processes are which underlie perceptual 

experience. Answering this question requires identifying relations between 

perceptual states and neural activity, either through correlations or by 

establishing a causal relationship. Perceptual states are themselves unobservable, 

however by training perception-action associations in a behaving subject, we can 

infer perceptual states by observing the subject’s behaviour. 

Perceptual decision making a convenient behaviour to study because it is a 

relatively simple cognitive task with a long history in psychophysics (Fechner, 

1860). Animals can be trained with rewards to perform specific actions in 

response to experimentally-controlled stimuli. By adjusting the difficulty of the 

task, we can observe how behaviour varies over this range of difficulty, thereby 

inferring properties of the underlying perceptual process. These tasks provide a 

foundation to further studying the neural processes involved. 

Several features are desirable for a task design. Firstly, for practical purposes, 

tasks should be relatively easy to train, provide many trials per session, and be 

easily paired with neural recording and manipulation. These properties make mice 

an attractive model to study (Carandini and Churchland, 2013). Mice can be 

trained to perform a wide range of tasks involving olfaction, whisker deflection, 

audition and vision (reviewed in Hanks and Summerfield, (2017)). 

Secondly, the task should be difficult enough that choices vary substantially 

during identical stimulus conditions. This is important to disentangle the neural 

signatures associated with the stimulus and associated with choice (Parker and 

Newsome, 1998). This requirement is fulfilled in tasks where the stimulus varies 
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by a continuously graded quantity (e.g. choose the stimulus of higher visual 

contrast, or sound intensity) and not by a discrete quality (e.g. choose between 

an image of cheese or a snake). Sensory detection and discrimination tasks and 

therefore well-suited for this purpose. 

Thirdly, the type of choice action performed by the animal should sufficiently 

constrain inferred states of the perceptual system (Macmillan and Creelman, 

2004; Stüttgen et al., 2011; Tanner and Swets, 1954). Example states are stimulus 

sensitivity, choice bias, or lapse rate (Busse et al., 2011; Gold and Ding, 2013). 

Go-NoGo tasks are unsuitable for this because non-perceptual choice biases can 

arise from the unbalanced motor effort required for each choice, as well as 

variable engagement in the task. Forced-choice paradigms improve on this by 

requiring active movement on every trial, therefore every choice has similar 

motor cost and requires constant engagement. However, forced-choice paradigms 

have two problems. Firstly, they confound decision bias with uncertainty bias. 

Decision bias arises when subjects choose one choice over another because their 

perception of the stimulus may be biased. Uncertainty bias, by contrast, arises 

when subjects opt for one “default” choice whenever they are uncertain of the 

correct option (García-Pérez and Alcalá-Quintana, 2013). Forced-choice paradigms 

also confound two types of bias induced by a neural manipulation. For example, if 

neural manipulation induces a choice bias in a 2AFC regime, this could arise from 

either biasing the detection of one stimulus alone, or from biasing the process of 

comparing between both stimuli. One task paradigm which addresses these 

problems is the two-alternative unforced-choice design. The design is similar to 

the forced-choice paradigm except subjects can abstain from selecting an option 

(NoGo) if they believe no option is correct. Previous work has shown that it is 

possible to distinguish choice bias and stimulus sensitivities in this task design if 

the task involves sensory discrimination and not sensory detection (Sridharan et 

al., 2014). 

A further concern is in the quantification of perceptual states like bias and 

sensitivity. Estimating these quantities requires fitting a model to behavioural 

data, and the estimates may differ session to session and subject to subject. It is 

unclear whether this variation arises because of sampling noise, or because of 

true variation in the states across sessions and subjects. Hierarchical Bayesian 

models make it possible to estimate the variation associated with sampling noise, 
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and the variation due to real differences between sessions and subjects (Gelman 

et al., 2013; Lee, 2011; McElreath, 2018).  

In this Chapter we will outline a two-alternative unforced visual discrimination 

task in mice. This task develops upon a previous forced-choice version of the task 

used in the Carandini/Harris lab, and forms part of a publication in Burgess et al 

(2017). We will then describe work done towards developing a phenomenological 

choice model which could describe the behaviour in terms of perceptual features 

such as stimulus sensitivity and choice bias. We will first outline a simple form of 

the model based on multinomial logistic regression, which extends the binary-

choice logistic model of Busse et al. (2011) to tasks which permit multiple 

decision options. We will then expand this model to provide estimates for 

behavioural variation between subjects and sessions. This behavioural task and 

model form a foundation for the rest of this dissertation, as the task and models 

are used repeatedly in subsequent Chapters.  

2.2 Methods 

2.2.1 Ethics 

The experimental procedures contained within this Chapter and the rest of the 

dissertation were conducted at UCL according to the UK Animals Scientific 

Procedures Act (1986) and under personal and project licenses granted by the 

Home Office following appropriate ethics review. 

2.2.2 Surgery 

Mice were implanted with a head-fixation plate and clear skull cap similar to that 

of Guo et al. (2014) and described previously in Burgess et al (2017). This 

permitted optical access to the neocortex through the skull useful for later 

imaging and inactivation experiments. The implantation surgery proceeded as 

follows. The dorsal surface of the skull was cleared of skin and periosteum, and 

the junction between cut skin and skull was sealed with cyanoacrylate. The 

exposed skull was prepared with a brief application of green activator to ensure 

strong connection between cement and bone (Super-Bond C&B, Sun Medical Co, 

Ltd, Japan). The junction between skin and skull was again covered, using dental 

cement (Super-Bond C&B). In most cases, a 3D printed ‘cone’ was attached to the 

head with cyanoacrylate and dental cement at this stage, surrounding the exposed 

skull and providing light isolation useful for later imaging/inactivation 

experiments. A thin layer of cyanoacrylate was applied to the skull and allowed to 
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dry. Two to four thin layers of UV-curing optical glue (Norland Optical Adhesives 

#81, Norland Products Inc., Cranbury, NJ; from ThorLabs) were applied to the 

skull and cured (~10 s per layer) until the exposed skull was covered (thin layers 

were used to prevent excessive heat production). A head-plate was attached to 

the skull over the interparietal bone with SuperBond polymer. 

2.2.3 Water control 

Mice were water deprived and their weight was kept no less than 80% of their pre-

water-deprivation weight. After each day of performance on the behavioural task, 

mice were given surplus water (hydrogel) to meet the weight-dependent minimum 

requirements each day of 40µl/mg/day. If mice showed any signs of dehydration 

or ill-health, they were given water ad libitum and re-entered into water 

deprivation several days later. 

2.3 A behavioural task in mice 

Water-deprived mice were trained to perform a visual discrimination task. The 

task requires mice to discriminate between two visual grating stimuli of varying 

contrast levels and indicate which side has the higher contrast, or to abstain from 

moving if no stimulus is present. 

Mice were head-fixed with their forepaws resting on top of a wheel which could 

be rotated leftwards or rightwards (Figure 2-1; Figure 2-2A). Surrounding the 

mouse were three screens positioned to the left, front and right side, and plastic 

tubing was positioned near the mouth for delivering water rewards. Trials began 

after 0.2-0.6sec of no wheel movement. A visual stimulus was then presented, 

comprising two visual gratings spanning 30 degrees (0.1 cycles per degree, 

oriented at 45 degrees) on the left and right screens. The left and right stimuli 

were located 180 degrees (azimuth) apart and therefore were positioned within 

the lateral field of each eye. Each grating could take on one of four contrast 

levels, and therefore both gratings together formed 16 stimulus conditions (Figure 

2-2B). On each trial, one of the 16 conditions were presented randomly but with 

non-uniform probability. Trials with zero contrast on both sides were over-

represented, making up ~30% of trials. Trials with equal contrast on both sides 

made up ~10% of trials. All other stimulus conditions were presented uniformly 

among the remaining 60% of trials. Onset of the visual stimulus also coincided 

with the onset of an auditory ‘go cue’ (12 kHz tone, 100 msec duration), marking 

the time at which the mouse could start responding. 
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Figure 2-1 The behavioural setup 

(Left) Head-fixation mount. Mice are head-fixed with the forepaws on a wheel. 
A plastic half-cylinder is placed on top to further restrain mice and prevent the 
tail from moving near the head during neural recording/manipulation. In red is 
an articulated arm which holds thin plastic tubing to position near the mouse’s 
mouth for water delivery.  
(Right) The head-fixation mount is placed in the centre. Surrounding this 
mount are three iPad screens displaying the visual stimuli. On each screen is a 
Fresnel lens to ensure uniform light intensity to the mouse’s eyes from all 
pixels on the screen. A photodiode is mounted facing one of the screens, to 
measure the timing of the screen frame updates. Image created by Lauren 
Wool 2018. 

 

Wheel rotation was linked to the visual stimulus, such that wheel turns to the 

right would move the contents of both monitors the right, and vice versa (Figure 

2-2C). Mice were rewarded with 0.7-2.5μl water for turning wheel (‘Left’ or 

‘Right’) to bring the grating stimulus of higher contrast into the central screen, or 

for abstaining from turning the wheel (‘NoGo’) on zero contrast trials (Figure 

2-2D). Left or Right responses were registered if the position of one grating 

stimulus entered the central screen within 1.5seconds, otherwise a NoGo was 

registered (Figure 2-2E). On trials with equal contrast, mice were rewarded 

randomly for turning Left or Right. If the response was incorrect, a 1 second 

white-noise sound timeout was played. After the trial ends, there was an inter-

trial interval of 1 second. 
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Figure 2-2 Task design 

(A) Schematic of the head-fixed mouse. The forepaws rest on a wheel which 
can turn left and right. Screens display Gabor stimuli on the left and right 
sides. A water spout delivers 0.7-2.5μl water rewards for correct choices.  
(B) The full set of contrast conditions displayed to the mouse. Each grey square 
represents the stimulus configuration spanning both left and right screens.  
(C) Movement of the wheel is coupled to movement of the stimuli.  
(D) Reward contingency for this task. Mice were rewarded with water for 
bringing the stimulus of higher contrast into the central screen (“Left” or 
“Right). If no stimulus was present, then mice were rewarded for holding the 
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wheel still (“NoGo”). If the two contrasts were equal, then mice were 
rewarded randomly for making a Left or Right wheel turn.  
(E) Task timeline. Trials began with a period of 0.2-0.6 seconds of no wheel 
movement. After this, the visual stimulus was presented alongside an auditory 
go cue. At this point the mice could respond immediately. Left or Right 
responses were registered if the wheel angle breached a threshold. A 1.5 
second response window was used, and if no Left or Right responses was 
registered in this window then NoGo was registered. At the response time, a 
water reward or 1sec white noise timeout was given. 

 

If mice made errors on easy Go trials (high contrast on one side only), this was 

assumed to arise because of confusion about the task rule or disengagement from 

the task itself. To ensure that mice maintained the task rule as well as stay 

engaged, easy trials were repeated until performance was correct. If mice 

mistakenly performed NoGo for more than 10 consecutive repeat trials, the 

session was stopped, and mice were returned to their home cage. Zero contrast 

trials were also repeated until mice correctly performed NoGo. This was an 

additional test to check that mice knew the task rule. In subsequent analyses, 

trials were excluded if the trial was a repetition trial. Mice were able to learn this 

task within 4 weeks (See Burgess et al, (2017) for training information).  

After training, mice showed robust performance in the task (Figure 2-3, Figure 

2-4). On easy trials (high left or right contrast), mice were 96.9% correct on 

average across 91 sessions. Trial counts for each session varied, ranging from 245 

to 405 trials (25th and 75th percentile). Average reaction time for correct Left or 

Right choices was 258 ± 39msec (median ± median absolute deviation across trials 

pooled over sessions). Reaction time was calculated as the time when wheel 

movement was first detected, which was prior to the time when a response was 

registered. 
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Figure 2-3 Psychometric data for 5 mice 

The grey-scale map shows the fraction of Left, Right and NoGo choices as a 
function of visual contrast on the left (vertical axis) and right (horizontal axis). 
Each row corresponds to session-averaged data from one mouse, and the last 
row is the average across mice. 
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Figure 2-4 Alternative pedestal representation of the psychometric data 

On each row is plotted the proportion of Left, Right and NoGo choices (vertical 
axis, spanning 0 to 1) as a function of contrast deviation from a minimum 
contrast value (horizontal axis). Negative contrast values correspond to stimuli 
on the left hemifield, and positive contrast values are stimuli on the right 
hemifield. Top row are the choices on trials where the minimum contrast on 
either side is 0. Second row is where the minimum contrast is 0.1. Third row is 
0.24, and fourth row is 0.54. Large dots and thick connecting lines correspond 
to the average psychometric data plotted in Figure 2-3, small dots and thin 
lines are the data for each of 91 sessions in 5 mice. 

 

2.4 Logistic regression model of choice behaviour 

We developed a model of choice behaviour in order to summarise behaviour in 

terms of perceptual features such as choice bias and stimulus sensitivity. Note 

that the model only makes predictions for the choice the mouse makes, and not 

the decision time associated with the choice. While decision timing is an 

important and informative feature of the perceptual process, we chose to ignore 

reaction time within the model. This was because models accounting for reaction 

time (e.g. drift-diffusion models) are more applicable to tasks with sensory 

evidence accumulated over time, rather than static sensory stimuli. In addition, 

drift-diffusion models for multi-alternative decisions have typically employed 
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independent accumulators for each choice, but it is unclear how this would apply 

to tasks with NoGo as these choices have no associated decision time. 

The model can be derived from normative economic theory and is equivalent to 

multinomial logistic regression. On each trial 𝑖, each choice (Left, Right, NoGo) 

has an associated unobserved random utility, 𝑢𝐿, 𝑢𝑅, 𝑢𝑁𝐺 (Greene, 2011). The 

expected utility for each choice is set by a fixed variable 𝑧𝐿, 𝑧𝑅, 𝑧𝑁𝐺 which 

captures the amount of subjective value of each choice to the deciding agent. For 

example, in our task, the expected utility of each choice is determined by the 

visual contrast, as that determines the payoff each choice would provide. There is 

an additional random component 𝜀𝐿, 𝜀𝑅, 𝜀𝑁𝐺 which captures all unmodeled 

features which determine the subjective utility on each trial.  

𝑢𝐿 = 𝑧𝐿 + 𝜀𝐿 

𝑢𝑅 = 𝑧𝑅 + 𝜀𝑅 

𝑢𝑁𝐺 = 𝑧𝑁𝐺 + 𝜀𝑁𝐺 

This therefore makes the implicit assumption that variation in choices arises from 

the unmodeled features and not variation in expected utility. This contrasts with 

signal detection models which model variation in behaviour as noise in the 

decision variable coupled with a noise-less decision rule. However these models 

end up being mathematically equivalent (Lynn et al., 2015). Variation in 

behaviour can be attributed either to variation in perception of the stimulus, or 

variation in the subjective utility associated with the actions. In this framework, 

the unmodeled effects 𝜀𝐿, 𝜀𝑅, 𝜀𝑁𝐺 are given a Type-1 Extreme Value (Gumbel) 

distribution. 

Given the utility associated with each choice, the agent makes the choice with 

the largest utility. For example, the probability of Left choices 𝜋𝐿 can be derived, 

𝜋𝐿 = 𝑝(𝑢𝐿 > 𝑢𝑅 𝑎𝑛𝑑 𝑢𝐿 > 𝑢𝑁𝐺) 

= 𝑝(𝑢𝐿 − 𝑢𝑅 > 0 𝑎𝑛𝑑 𝑢𝐿 − 𝑢𝑁𝐺 > 0) 

= 𝑝(𝑧𝐿 + 𝜀𝐿 − (𝑧𝑅 + 𝜀𝑅) > 0 𝑎𝑛𝑑 𝑧𝐿 + 𝜀𝐿 − (𝑧𝑁𝐺 + 𝜀𝑁𝐺) > 0) 

= 𝑝(𝑧𝐿 − 𝑧𝑅 > 𝜀𝐿 − 𝜀𝑅 𝑎𝑛𝑑 𝑧𝐿 − 𝑧𝑁𝐺 > 𝜀𝐿 − 𝜀𝑁𝐺) 

Therefore, the probability of choosing Left is entirely determined by the 

difference in expected utility 𝑧𝐿 − 𝑧𝑅 and 𝑧𝐿 − 𝑧𝑁𝐺. Therefore, adding a constant 

to each utility will have no effect. Subtracting 𝑧𝑁𝐺 from each expected utility 

gives a new utility, 



47 

𝑍𝐿 = 𝑧𝐿 − 𝑧𝑁𝐺 

𝑍𝑅 = 𝑧𝑅 − 𝑧𝑁𝐺 

These two variables 𝑍𝐿 and 𝑍𝑅  are interpreted as the expected utility of Left 

relative NoGo and Right relative to NoGo. Additionally, since the unmodeled 

effects 𝜀 are distributed with a Type-1 Extreme Value distribution, their 

differences 𝜀𝐿 − 𝜀𝑅 and 𝜀𝐿 − 𝜀𝑁𝐺 follow a logistic distribution, making this process 

equivalent to logistic regression. 

Therefore, it can be shown that the probability associated with each choice is 

derived from the softmax function of the expected utilities 𝑍𝐿 and 𝑍𝑅, 

𝜋𝐿 =
𝑒𝑍𝐿

1 + 𝑒𝑍𝐿 + 𝑒𝑍𝑅
 

𝜋𝑅 =
𝑒𝑍𝑅

1 + 𝑒𝑍𝐿 + 𝑒𝑍𝑅
 

𝜋𝑁𝐺 =
1

1 + 𝑒𝑍𝐿 + 𝑒𝑍𝑅
 

Rearranging the expressions shows that 𝑍𝐿 is equivalent to 𝑙𝑛 (
𝜋𝐿

𝜋𝑁𝐺
) and 𝑍𝑅 is 

equivalent to 𝑙𝑛 (
𝜋𝑅

𝜋𝑁𝐺
). This is equivalent to two independent binary logistic 

regression models for Left vs. NoGo and Right vs. NoGo. This model therefore 

assumes that the two log odds ratios are independent. This assumption is also 

known as the ‘independence of irrelevant alternatives’ assumption, and it 

assumes that the presence or absence of an extra choice does not change the 

relative pairwise preferences between all other choices (Luce, 1959). For 

example, the ratio of preference between Left and NoGo is unaltered by adding 

Right choices as an alternative. 

This model framework can be used to fit arbitrary regressors to predict the 

behavioural choice on each trial (Figure 2-5). A simple model form is, 

𝑍𝐿 = 𝑏𝐿 + 𝑠𝐿 × 𝑓(𝑐𝐿) 

𝑍𝑅 = 𝑏𝑅 + 𝑠𝑅 × 𝑓(𝑐𝑅) 

Where 𝑐𝐿 and 𝑐𝑅 are the visual contrast on the left and right hemifields. The 

contrast is passed through a chosen function 𝑓(. ) and then multiplied by a free 

parameter 𝑠𝐿 and 𝑠𝑅 which scales the contrast into Z-space (log odds space). 

Another free parameter 𝑏𝐿 and 𝑏𝑅 adds to this value. With this simple model form, 

the 𝑠𝐿 and 𝑠𝑅 parameters capture how much the visual stimulus impacts the log 
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odds ratios. These parameters therefore are referred to as ‘sensitivity’ 

parameters because they capture the effect of the perceptual stimulus sensitivity 

on behaviour. The parameters 𝑏𝐿 and 𝑏𝑅 capture the choice preference 

independent of the stimulus, and therefore are referred to as ‘bias’ parameters. 

 

Figure 2-5 Schematic of the phenomenological model 

The choices Left, Right, NoGo are treated as draws from a probability 
distribution over these choices. The probability mass for each choice is 
computed from the softmax computation of two decision variables 𝑍𝐿 and 𝑍𝑅. 
𝑍𝐿 represents the log odds of Left vs. NoGo, 𝑍𝑅 represents the log odds of Right 
vs. NoGo. Each decision variable is parameterised with a bias parameter 𝑏𝐿 and 
𝑏𝑅, and a sensitivity parameter 𝑠𝐿 and 𝑠𝑅 which multiplies the visual contrast 
on the appropriate hemifield. The effect of the visual contrast on the decision 
variables can be modelled with different functions with different shape 
parameters. 

 

Our first objective was to determine which function 𝑓(. ) may be suitable. We 

assessed different kinds of functional representation. We tested three different 

models (Table 2-1) which differed in the contrast transform 𝑓: linear 𝑓(𝑐) = 𝑐, 

saturating non-linear 𝑓𝑛(𝑐) = 𝑐𝑛, and Naka-Rushton (NR) saturating non-linear 

𝑓𝑛,𝑐50
(𝑐) =

𝑐𝑛

𝑐𝑛+𝑐50
𝑛   . The non-linear transformations contain shape parameters, in 

addition to the standard bias and sensitivity parameters. The Naka-Rushton 
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transformation has been used before to model the dependence of retinal (Evans 

et al., 1993) and V1 (Boynton et al., 1999) firing rate on visual contrast. The NR 

transformation is parameterised by two shape parameters: 𝑛 and 𝑐50, which 

control the slope and position of the input contrast 𝑐 required to achieve 𝑓(𝑐) =

0.5 transformed contrast. 

Model 
name 

Model form 
Contrast 

transformation 
Parameter 
constraints 

B 
𝑍𝐿 = 𝑏𝐿 
𝑍𝑅 = 𝑏𝑅 

N/A 
𝑏𝐿 
𝑏𝑅 

[−∞,∞] 
[−∞,∞] 

 

B & C 
𝑍𝐿 = 𝑏𝐿 + 𝑠𝐿. 𝑐𝐿 
𝑍𝑅 = 𝑏𝑅 + 𝑠𝑅 . 𝑐𝑅 

 

𝑏𝐿 
𝑏𝑅 
𝑠𝐿 
𝑠𝑅 

[−∞,∞] 
[−∞,∞] 
[0,∞] 
[0,∞] 

 

B & CN 
𝑍𝐿 = 𝑏𝐿 + 𝑠𝐿. 𝑐𝐿

𝑛 
𝑍𝑅 = 𝑏𝑅 + 𝑠𝑅. 𝑐𝑅

𝑛 

 

𝑏𝐿 
𝑏𝑅 
𝑠𝐿 
𝑠𝑅 
𝑛 

[−∞,∞] 
[−∞,∞] 
[0,∞] 
[0,∞] 
[0, 1] 

 

B & 
NR 

𝑍𝐿 = 𝑏𝐿 + 𝑠𝐿.
𝑐𝐿

𝑛

𝑐𝐿
𝑛 + 𝑐50

𝑛  

𝑍𝑅 = 𝑏𝑅 + 𝑠𝑅.
𝑐𝑅

𝑛

𝑐𝑅
𝑛 + 𝑐50

𝑛  

 
(𝑛 = 1) 

𝑏𝐿 
𝑏𝑅 
𝑠𝐿 
𝑠𝑅 
𝑛 

𝑐50 

[−∞,∞] 
[−∞,∞] 
[0,∞] 
[0,∞] 
[0.3, 20] 
[0.001, 3] 

 

Table 2-1 Behavioural models which differ in the function applied to the 
visual contrast. The non-linear functions (rows 3 and 4) are parameterised 
with shape parameters. 
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The three models captured the primary characteristics of the psychometric data 

(Figure 2-6). The inclusion of a saturating non-linear function of contrast improves 

the fit and this can be seen by eye. However, the two non-linear models make 

very similar predictions and are difficult to distinguish.  

 

Figure 2-6 Example fits of the three phenomenological models 

The contrast conditions are separated according to the minimum contrast on 
either side (pedestal) as in Figure 2-4. The dots are empirical fraction of Left, 
Right and NoGo choices for one session. The solid line is the prediction from 
the model fit. 

 

To select the best model, we used two strategies. The first is out-of-sample 

prediction. Many models are able to overfit the data, which occurs when a model 

is capturing characteristic features of the data-generating process but also the 

noise. These types of models produce excellent fits to the data the model is fit to 

but will generalise poorly to other datasets which have the same ‘signal’ but 

different ‘noise’. To avoid this, the performance of a model can be tested on data 

which was not used to fit the model. Out-of-sample prediction achieves this 
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through several means: cross-validation and information criteria. Cross-validation 

involves fitting the candidate models to a subset of the data and testing them 

against held-out data. This process is repeated for different folds of the dataset, 

such that the model is eventually tested on every datapoint (but never 

simultaneously trained on it). This works very well for many models but becomes 

computationally intractable for models which take a long time to fit. For models 

such as these, another method is to utilise information criteria. These are 

quantities derived from information theory which estimate the out-of-sample 

prediction performance. One example information criteria which will be used 

later in this Chapter is the Widely Applicable Information Criterion (WAIC; Vehtari 

et al.(2017)). A general philosophical note about cross-validation and information 

criteria is that they assess the ability for models to account for the data in a 

phenomenological sense. They do not assess anything about the models’ 

mechanistic explanatory power (Churchland and Kiani, 2016). 

The second strategy is Occam’s razor. This strategy can be applied to select 

among models which show an equal ability to fit the data (e.g. quantified by out-

of-sample prediction) but which vary in the number of free parameters. Applying 

Occam’s razor in this situation amounts to selecting the model with the fewest 

number of parameters.  

We assessed the ability for these models to fit data on a held-out test set by using 

20-fold cross-validation. We found that the two non-linear models (B & CN and B & 

NR) offer improved fitting over the linear model (B & C) for most mice (Figure 

2-7). However, we find that the two non-linear models were equally able to 

capture the dataset. Given that the B & CN model contains fewer parameters, we 

selected this model for subsequent fitting in all mice. 
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Figure 2-7 Model comparison of different models of contrast non-linearity 

20-fold cross-validated model comparison of different contrast transformation 
for data from 5 mice. Log likelihood on test-set data is plotted for each mouse 
and each session individually. Each dot is one session. Red lines are the mean 
log likelihood across sessions. The red shaded region is the 95% confidence 
interval, and the blue shaded region is the standard deviation. 

 

Another way to visualise the model fit is in the space of the proposed decision 

variables 𝑍𝐿 and 𝑍𝑅 (Figure 2-8). In this space the model’s assumption of the 

independence of irrelevant alternatives is apparent. In the averaged data the IIA 

assumption is not strictly held, however this is more the case for stimulus 

conditions at extreme values of log odds ratios, which corresponds to probabilities 

around 0.99, and therefore uncertainty (via the limited number of samples) of 

probabilities in this area will translate to higher noise in the Z-space values. 
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Figure 2-8 Z-space plot of the average data and model fit 

(A) Schematic of the 𝑍𝐿 and 𝑍𝑅 space which is equivalent to the log odds ratio 
of Left vs. NoGo and Right vs. NoGo respectively. Grey lines mark the contours 
where the probability of Left, Right and NoGo is greater than 0.5.  
(B) Empirical data (averaged across sessions) is plotted for each of the 16 
stimulus conditions separately in blue. The contrast values span a 4x4 grid 
which covers this space. Contrast values are indicated inset.  
(C) Prediction of the fit B & CN logistic model for each of the 16 stimulus 
conditions. The square shape of the 4x4 grid in this space reflects the 
independence of irrelevant alternatives assumption present in the model. 
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2.5 A multi-level framework estimates behavioural 

variation 

Behavioural data is acquired from several mice over many different sessions. 

Variation in the choice behaviour across sessions and mice may arise either from 

true variation in the bias, sensitivity and shape parameters, or due to sampling 

noise resulting from the fact that we have limited data for each session. In this 

section, we modified the logistic model outlined previously to provide an estimate 

of true behavioural variability, by estimating variability in the model parameters 

between sessions and mice. 

To determine whether the parameters are truly varying between sessions, one 

strategy is to fit the logistic model to each session separately. Behavioural 

variation would be reflected as variation in the parameter fits. However, this 

strategy is problematic for two reasons. Firstly, the model may overfit the data of 

a single session. This will artificially increase the variation in the parameters 

between sessions, which could erroneously be interpreted as variation in 

perceptual features between sessions. Secondly, fitting the model to each session 

individually throws away information contained in the fact that the parameters 

for each session are likely to be similar for sessions from the same mouse. 

We therefore employed a hierarchical Bayesian framework (Figure 2-9) which 

addresses these problems. These models define a prior probability distribution 

associated with each parameter. Bayes rule defines a procedure for obtaining the 

posterior probability distribution of the parameters, conditioned on the observed 

data. This approach therefore provides a measure of uncertainty associated with 

the parameter estimates. In addition, the prior distribution on the parameters 

associated with each session can be defined hierarchically. For example, the prior 

can be set such that the parameters for multiple sessions for each mouse are 

related to a common set of parameters specific for that mouse. Likewise, the 

parameters for multiple mice can be related to a common parameter for the 

average mouse. 

Hierarchical Bayesian models can therefore provide a robust measure of 

behavioural variation. Similarly, since hierarchical models define a relationship 

between sessions, this modelling framework improves the stability of a fit to a 

single session. This arises because the parameter fit for a single session is also 

‘informed’ by the fit for other sessions from the same mouse. This framework 

therefore strikes a balance between quantifying variation in parameters across 
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sessions and regularising the parameters such that they don’t vary too much 

between sessions. 

 

Figure 2-9 Probabilistic Graphical representation of the hierarchical model 

White circles represent unobserved quantities whose distribution is inferred 
from the data. Large grey shaded regions reflect nesting of the model (i.e. 
trials are nested within sessions within subjects) which reflect the hierarchical 
dependence placed on the model parameters (reflected in the arrows). Grey 
squares are the known contrast on each trial, and the grey circle represents 
the choice on that trial. 

 

For each trial 𝑖, choices 𝑦(𝑖) ∈ {𝐿𝑒𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡, 𝑁𝑜𝐺𝑜} are treated as draws from a 

probability distribution over choices Left, Right, NoGo, each with probabilities 𝜋, 

𝑦(𝑖) ~ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (𝜋𝐿
(𝑖), 𝜋𝑅

(𝑖), 𝜋𝑁𝐺
(𝑖) )  

The probability mass associated with each choice is computed from the softmax 

function of two decision variables, 

(𝜋𝐿
(𝑖), 𝜋𝑅

(𝑖), 𝜋𝑁𝐺
(𝑖) ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑍𝐿

(𝑖), 𝑍𝑅
(𝑖)) 
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Given this definition, the two decision variables are equivalent to the following 

log odds ratios as outlined in a previous section (Greene, 2011), 

𝑍𝐿
(𝑖)

= 𝑙𝑛 (
𝜋𝐿

(𝑖)

𝜋𝑁𝐺
(𝑖)

) 

𝑍𝑅
(𝑖)

= 𝑙𝑛 (
𝜋𝑅

(𝑖)

𝜋𝑁𝐺
(𝑖)

) 

The value of the decision variables on each trial is set from a linear model which 

decomposes the decision variable into a stimulus-independent ‘bias’ value ℬ𝐿 and 

ℬ𝑅 (one for each decision variable), and a stimulus-dependent ‘sensitivity’ value 

𝒮𝐿 and 𝒮𝑅. Each expression contains the contrast of the appropriate hemifield 

(contrast left 𝑐𝐿 and contrast right 𝑐𝑅) raised to an exponent 𝒩 which allows for a 

saturating non-linear contribution of contrast value to the decision variables, 

𝑍𝐿
(𝑖)

= ℬ𝐿
(𝑖)

+ 𝒮𝐿
(𝑖)

× (𝑐𝐿
(𝑖)

)
𝒩(𝑖)

 

𝑍𝑅
(𝑖)

= ℬ𝑅
(𝑖) + 𝒮𝑅

(𝑖) × (𝑐𝑅
(𝑖))

𝒩(𝑖)

 

The bias, sensitivity and shape parameters are indexed by trial 𝑖, because the 

parameters for each trial are constructed from a hierarchical prior which allows 

for per-session and per-subject deviations from a grand average set of 

parameters, 

ℬ𝐿
(𝑖) = 𝑏𝐿 + 𝑏𝐿

𝑆𝐸𝑆𝑆𝐼𝑂𝑁[𝑖]
+ 𝑏𝐿

𝑆𝑈𝐵𝐽𝐸𝐶𝑇[𝑖]
 

ℬ𝑅
(𝑖) = 𝑏𝑅 + 𝑏𝑅

𝑆𝐸𝑆𝑆𝐼𝑂𝑁[𝑖]
+ 𝑏𝑅

𝑆𝑈𝐵𝐽𝐸𝐶𝑇[𝑖]
 

𝒮𝐿
(𝑖) = 𝑠𝐿 + 𝑠𝐿

𝑆𝐸𝑆𝑆𝐼𝑂𝑁[𝑖]
+ 𝑠𝐿

𝑆𝑈𝐵𝐽𝐸𝐶𝑇[𝑖]
 

𝒮𝑅
(𝑖)

= 𝑠𝑅 + 𝑠𝑅
𝑆𝐸𝑆𝑆𝐼𝑂𝑁[𝑖]

+ 𝑠𝑅
𝑆𝑈𝐵𝐽𝐸𝐶𝑇[𝑖]

 

𝒩(𝑖) = 𝑛 + 𝑛𝑆𝐸𝑆𝑆𝐼𝑂𝑁[𝑖] + 𝑛𝑆𝑈𝐵𝐽𝐸𝐶𝑇[𝑖] 

Where (𝑏𝐿 , 𝑏𝑅 , 𝑠𝐿, 𝑠𝑅, 𝑛) are 5 global parameters, estimated as the grand mean 

across all sessions and subjects. (𝑏𝐿
𝑆𝐸𝑆𝑆𝐼𝑂𝑁[𝑖]

, 𝑏𝑅
𝑆𝐸𝑆𝑆𝐼𝑂𝑁[𝑖]

, … ) are the deviations in 

the 5 parameters, from the grand mean value, for the session corresponding to 

trial 𝑖. Likewise, (𝑏𝐿
𝑆𝑈𝐵𝐽𝐸𝐶𝑇[𝑖]

, 𝑏𝑅
𝑆𝑈𝐵𝐽𝐸𝐶𝑇[𝑖]

, … ) are the deviations in the 5 parameters 

for the subject corresponding to trial 𝑖. For each level of the hierarchy (per-

session and per-subject), the deviations of the 5 parameters are given a 

hyperprior, allowing the model to estimate the variance and covariance of the 
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parameter deviations within each level of the hierarchy. The model therefore 

explicitly estimates the variation in parameters which arise from true variation as 

opposed to sampling noise. For example, the model allows us to estimate how 

much 𝑏𝐿
𝑆𝐸𝑆𝑆𝐼𝑂𝑁 varies across sessions, as well as estimating how much covariance 

there is between 𝑏𝐿
𝑆𝐸𝑆𝑆𝐼𝑂𝑁 and 𝑏𝑅

𝑆𝐸𝑆𝑆𝐼𝑂𝑁 across sessions, 

[
 
 
 
 
 
𝑏𝐿

𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝑏𝑅
𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝑠𝐿
𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝑠𝑅
𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝑛𝑆𝐸𝑆𝑆𝐼𝑂𝑁]
 
 
 
 
 

 ~ 𝑀𝑉𝑁

(

 
 

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

, 𝚺𝑆𝐸𝑆𝑆𝐼𝑂𝑁

)

 
 

 

[
 
 
 
 
 𝑏𝐿

𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝑏𝑅
𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝑠𝐿
𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝑠𝑅
𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝑛𝑆𝑈𝐵𝐽𝐸𝐶𝑇]
 
 
 
 
 

 ~ 𝑀𝑉𝑁

(

 
 

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

, 𝚺𝑆𝑈𝐵𝐽𝐸𝐶𝑇

)

 
 

 

Where 𝚺𝑆𝐸𝑆𝑆𝐼𝑂𝑁 and 𝚺𝑆𝑈𝐵𝐽𝐸𝐶𝑇 are 5x5 covariance matrices reflecting the variance 

within each parameter across the sessions and subjects, as well as the covariance 

between parameters across sessions and subjects. These covariance matrices are 

each parameterised with standard deviation parameters 𝜎𝑆𝐸𝑆𝑆𝐼𝑂𝑁 and 𝜎𝑆𝑈𝐵𝐽𝐸𝐶𝑇, and 

5x5 correlation matrices 𝓡𝑆𝐸𝑆𝑆𝐼𝑂𝑁 and 𝓡𝑆𝑈𝐵𝐽𝐸𝐶𝑇, 

𝚺𝑆𝐸𝑆𝑆𝐼𝑂𝑁 = 𝑑𝑖𝑎𝑔

[
 
 
 
 
𝜎𝑏𝐿

𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝜎𝑏𝑅
𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝜎𝑠𝐿
𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝜎𝑠𝑅
𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝜎𝑛𝑆𝐸𝑆𝑆𝐼𝑂𝑁]
 
 
 
 

× 𝓡𝑆𝐸𝑆𝑆𝐼𝑂𝑁 × 𝑑𝑖𝑎𝑔

[
 
 
 
 
𝜎𝑏𝐿

𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝜎𝑏𝑅
𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝜎𝑠𝐿
𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝜎𝑠𝑅
𝑆𝐸𝑆𝑆𝐼𝑂𝑁

𝜎𝑛𝑆𝐸𝑆𝑆𝐼𝑂𝑁]
 
 
 
 

 

𝚺𝑆𝑈𝐵𝐽𝐸𝐶𝑇 = 𝑑𝑖𝑎𝑔

[
 
 
 
 
 
𝜎

𝑏𝐿
𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝜎
𝑏𝑅

𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝜎
𝑠𝐿
𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝜎
𝑠𝑅
𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝜎𝑛𝑆𝑈𝐵𝐽𝐸𝐶𝑇]
 
 
 
 
 

× 𝓡𝑆𝑈𝐵𝐽𝐸𝐶𝑇 × 𝑑𝑖𝑎𝑔

[
 
 
 
 
 
𝜎

𝑏𝐿
𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝜎
𝑏𝑅

𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝜎
𝑠𝐿
𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝜎
𝑠𝑅
𝑆𝑈𝐵𝐽𝐸𝐶𝑇

𝜎𝑛𝑆𝑈𝐵𝐽𝐸𝐶𝑇]
 
 
 
 
 

 

Finally, the grand-average parameters are given the following prior distributions, 

based on previous fits from the non-hierarchical logistic regression model outlined 

earlier. 

(𝑏𝐿 , 𝑏𝑅) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 22) 

(𝑠𝐿 , 𝑠𝑅) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(5, 22) 

𝑛 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0.5, 0.252) 

The standard deviation parameters (𝜎𝑏𝐿
𝑆𝐸𝑆𝑆𝐼𝑂𝑁, 𝜎

𝑏𝐿
𝑆𝑈𝐵𝐽𝐸𝐶𝑇, etc) are given a weakly-

informative Half Cauchy distribution which penalises extreme values. These priors 
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act to regularise variation, ensuring that the parameters don’t vary too much 

across sessions and subjects. 

(𝜎𝑏𝐿
𝑆𝐸𝑆𝑆𝐼𝑂𝑁 , 𝜎𝑏𝑅

𝑆𝐸𝑆𝑆𝐼𝑂𝑁 , … ) ~ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1) 

(𝜎
𝑏𝐿

𝑆𝑈𝐵𝐽𝐸𝐶𝑇 , 𝜎
𝑏𝑅

𝑆𝑈𝐵𝐽𝐸𝐶𝑇 , … ) ~ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦(0, 1) 

The correlation matrices were given an LKJ prior (Lewandowski et al., 2009). The 

LKJ prior is a prior over correlation matrices, using a penalty factor 2 which 

penalises extreme positive and negative correlations between parameters. This 

also regularises variation but explicitly allows for variation in one parameter 

across sessions to ‘inform’ estimates of another parameter across sessions, 

𝓡𝑆𝐸𝑆𝑆𝐼𝑂𝑁 ~ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(2) 

𝓡𝑆𝑈𝐵𝐽𝐸𝐶𝑇  ~ 𝐿𝐾𝐽𝑐𝑜𝑟𝑟(2) 

We fit this single model to a dataset comprising 91 sessions from 5 mice. Model 

fitting was achieved with numerical estimation of the joint posterior distribution 

over all parameters. 

In many complex models, the joint posterior distribution over all parameters is 

not analytically solvable. Instead, one can numerically estimate the posterior 

distribution by drawing samples from it. If enough samples are drawn, the 

moments of the posterior distribution (true mean, true variance, etc) can be 

estimated from the samples (sample mean, sample variance, etc). This requires 

however that the posterior distribution can be evaluated at any given point in the 

parameter space, even if the full functional form cannot be produced. Markov 

Chain Monte Carlo (MCMC) methods are a class of algorithms which achieve 

numerical sampling of an arbitrarily complex posterior distribution. The general 

procedure of these methods is for the sampler to start at a random point in 

parameter space. The sampler moves around parameter space towards the region 

of parameter space with the higher posterior probability density. This is achieved 

by, at each iteration, making proposing a random direction as to where to go 

next, but only “accepting” the choice if that choice would increase the posterior 

probability of the location in parameter space. The sampler therefore operates in 

two phases: the first phase is to move from a random location towards the general 

vicinity of the posterior distribution. The second phase is to move around the 

region with high posterior density. The sampler will spend more time around the 

peak of the posterior distribution, but also occasionally explore the regions 
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towards the edges. The history of locations of the sampler can be treated as 

samples of the posterior distribution. 

We perform the posterior distribution sampling using the probabilistic 

programming language Stan (Carpenter et al., 2017). This language uses 

Hamiltonian Monte Carlo (HMC) with No-U-Turn Sampling. HMC is a type of MCMC 

algorithm. No-U-Turn Sampling augments HMC by preventing the sampler from 

making any U-turns in parameter space. 
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Figure 2-10 Posterior fit of the grand average data 

(A) Posterior distribution of the 5 global parameters. The dots are the 
posterior mean. Solid dark lines span the 20th and 80th percentile, and crosses 
mark the 2.5th and 97.5th percentile.  
(B) Fit of the global parameters to the grand average psychometric data. The 
plot uses the same convention is as in Figure 2-4. Dots are the fraction of 
choices averaged over all sessions. The solid line and shaded region are the 
mean and 95% credible intervals of the posterior prediction from the global 
parameters of the hierarchical model. 
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The model fit could capture several features of the data. Firstly, the fit provided 

estimates of the grand average parameters, as well as uncertainty associated with 

each (Figure 2-10A). These parameters were able to capture the dependence of 

behaviour on the stimulus contrast (Figure 2-10B). The uncertainty in the 

parameter estimates also provided estimates of uncertainty in fraction of choices 

present in the psychometric curves. 

Secondly, the model could capture variation in behaviour across sessions and 

subjects. The hierarchical structure of the model significantly improved fit of the 

dataset compared to a similar model without per-session and per-subject 

hierarchy (hierarchical: 33,533 ± 312, non-hierarchical: 37,025 ± 21, WAIC score ± 

estimated standard error). For all parameters, the variation across subjects 

(𝜎𝑆𝑈𝐵𝐽𝐸𝐶𝑇) was slightly larger than the variation across sessions within a subject 

(𝜎𝑆𝐸𝑆𝑆𝐼𝑂𝑁) (Figure 2-11). The bias parameters showed the largest variation across 

sessions and subjects. 
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Figure 2-11 Parameter variation across sessions and subjects 

(A) Posterior distribution of the per-session variation parameters 𝜎𝑆𝐸𝑆𝑆𝐼𝑂𝑁 
normalised by the absolute value of the posterior mean of the corresponding 
global parameter. Single dots are the posterior mean. Solid grey lines span the 
20th and 80th percentile, and crosses mark the 2.5th and 97.5th percentiles. 

(B) Same plot but for the per-subject variation parameters 𝜎𝑆𝑈𝐵𝐽𝐸𝐶𝑇. 

 

What does the high variability in the bias parameters correspond to in the 

behaviour? To explore this, we leveraged the fact that the behaviour on zero 

contrast trials is only determined by the bias parameters, because the sensitivity 

and shape parameters contribute on trials with non-zero contrast. Therefore, 

variation in the bias parameters must reflect variation in the choice behaviour on 

zero contrast trials. We found that different sessions varied substantially in the 

tendency to NoGo on zero contrast trials. The hierarchical model could capture 



63 

this NoGo variation successfully (Figure 2-12A), while regularising extremely high 

or low NoGo rates. Since the bias parameters are equivalent to the value of 

𝑙𝑛 (
𝜋𝐿

𝜋𝑁𝐺
) and 𝑙𝑛 (

𝜋𝑅

𝜋𝑁𝐺
) on zero contrast trials, NoGo variation can only arise from 

positive correlation in the two bias parameters. Accordingly, the posterior fit of 

the model showed significant positive correlation in the two bias parameters 

across all sessions (0.49 posterior mean correlation, [0.27, 0.68] 95% credible 

intervals; Figure 2-12B).  

The model was also able to capture variation in behaviour across the full set of 

contrast conditions. The variation present in the bias parameters, together with 

the smaller variation in the sensitivity and shape parameters, could capture 

behavioural variability across the contrast conditions and choices (Figure 2-12C-

D). 
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Figure 2-12 Model can capture variation in NoGo rate across sessions 

(A) Each dot is the probability of NoGo on zero contrast trials for one session. 
Each shaded region is the mean and 95% credible interval of the model fit for 
that session. Each colour represents data from one mouse, and sessions are 
sorted within each mouse in ascending order of NoGo probability. The two 
sessions highlighted with black arrows are plotted below in (C) and (D).  
(B) The posterior mean of the two bias parameters 𝑏𝐿 and 𝑏𝑅 is plotted for 
each session. The posterior mean correlation between the parameters is shown 
inset. 
(C) Example model fit for one session with high NoGo bias. Same plotting 
convention as in Figure 2-10.  
(D) Example model fit for one session with low NoGo bias. 
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2.6 Discussion 

We have developed a two-alternative unforced-choice visual discrimination task 

for mice. The task requires mice to explicitly integrate visual information from 

both hemifields and indicate which side has the higher contrast using a wheel turn 

or abstain from turning if no stimulus is present. We have used behavioural data 

from this task to constrain a phenomenological model, which decomposes choices 

into perceptual states such as choice bias and stimulus sensitivity. We have also 

quantified how these states vary between sessions and mice. Using this method, 

we show that variation across sessions and subjects was primarily in the bias 

parameters, and that this could account for variation in the NoGo rates observed 

empirically. 

Many rodent decision tasks employ either Go-NoGo (Goard et al., 2016; Guo et al., 

2014; Li et al., 2016) or forced-choice (Akrami et al., 2018; Erlich et al., 2015; 

Hanks et al., 2015; Katz et al., 2016; Licata et al., 2017; Mante et al., 2013; 

Raposo et al., 2014; Znamenskiy and Zador, 2013) regimes. However, Go-NoGo 

and forced-choice tasks have several problems. Go-NoGo confounds perceptual 

biases with non-perceptual biases from unbalanced motor costs and 

disengagement. Forced-choice confounds decision bias with uncertainty bias, and 

also confounds bias associated with detecting one of the stimuli with bias 

associated with comparing between the stimuli. These problems limit how much 

one can infer perceptual states from the behavioural data and limit the possible 

interpretations of neural manipulation and recording.  

Our task design solves a number of these issues. The combination of visual 

discrimination with a two-alternative unforced-choice design limits the role of 

uncertainty-related bias. Left-Right choice bias cannot be confounded with 

uncertainty bias because the perceptual state of uncertainty (i.e. being unsure 

that a stimulus is present at either location) is now reported with NoGo. Another 

form of uncertainty, where the subject knows that there is a stimulus present but 

is unsure which side (Left or Right) is correct, may still be affected by 

uncertainty-related biases. 

Our task structure can be modelled as two independent binary decisions each 

using visual information from one hemifield. The Left vs. NoGo decision axis is 

informed only the left contrast. The Right vs. NoGo axis is informed only by the 

right contrast. Each of these decisions have their own perceptual states (bias and 

sensitivity). This decomposition makes it possible to interpret different kinds of 
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behavioural manipulation. For example, an inflated preference towards Left 

choices can arise either from a bias in the Left vs. NoGo decision (increased 𝑏𝐿) or 

a bias in a Left vs. Right comparison (increased 𝑏𝐿 and decreased 𝑏𝑅). This model 

is related to models from Signal Detection Theory applied to multi-alternative 

decisions (Sridharan et al., 2014), and econometric logistic models of binary-

choice decisions (Busse et al., 2011; Greene, 2011; Roe et al., 2001). However, 

we expand on these models by incorporating an estimate of non-linear functional 

dependence of the behaviour on the contrast value. A further advantage of the 

model framework is the ability to incorporate other regressors of interest, such as 

choice history (Akrami et al., 2018; Frund et al., 2014; Lueckmann et al., 2018) 

and arousal (Jacobs et al., 2018). 

Our model also explicitly estimates variation in perceptual parameters over 

sessions and subjects. This type of multi-level modelling is fairly routine in human 

psychophysics and social science (Gelman et al., 2013; Lee, 2011; Rouder and Lu, 

2005). However, to our knowledge this approach has not been used in rodent 

studies identifying perceptual states. Many rodent studies instead estimate bias 

and sensitivity for sessions separately (Busse et al., 2011; Licata et al., 2017). 

However, this has a high risk of model overfitting which makes parameter 

interpretation misleading. Our hierarchical model has regularisation built into the 

structure by relating sessions to each other by common subject-level parameters 

and relating subjects to each other by common global parameters. 

2.6.1 Caveats 

There are a few caveats to this work. Firstly, the task does not strictly control the 

precise perceptual strategy used to solve the task, nor the motor plan which the 

mice use to move the wheel. For example, mice may solve the discrimination task 

either by attending to both stimuli at once, or by attending to the one and then 

the other side. Likewise, mice may move the wheel using one or two paws, or turn 

the wheel with a brief strong movement, or multiple smaller movements. Our 

behavioural model successfully controls for inter-subject and inter-session 

variability, but only at the level of which choices tend to be made, and not at the 

level of how the motor plan is performed nor the unobserved perceptual strategy. 

Additionally, if perceptual strategies vary fundamentally between subjects, then 

it may be invalid to decompose behavioural performance into the same perceptual 

parameters (bias, sensitivity, shape) in the model. 
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Secondly, our task may suffer from the same motivational bias present in Go-NoGo 

tasks. We observe variation in NoGo rates across sessions as outlined earlier. This 

variation is NoGo rates across sessions may be accounted for either because of 

variation in long-term engagement in the task, or because of variation in 

perceptual biases. It is unlikely that this variation across sessions can be 

accounted for by variation in long-term engagement, because our repeated-trial 

design ensures that periods of disengagement terminate the session early. Short-

term disengagement is harder to identify; however, we feel this kind of 

disengagement is rare because shrinking the proportion of zero-contrast trials 

leads to almost no NoGo choices (data not shown), hence we over-represent zero-

contrast trials at ~30%. If short-term disengagement was regularly present, we 

would observe more NoGo choices than we currently do. 

Thirdly, the model assumes that the decision on each trial can be described by a 

statistical model parameterised with a fixed set of numbers for each session. This 

ignores the possibility for perceptual biases and sensitivity to gradually change 

over the course of a single session. States can in principle vary across a session, 

for example motivational drift, water satiety, and muscular fatigue. These within-

session changes in state would be reflected as changes in the model parameters 

yet our model ignores this variation and makes inferences only at the level of the 

session and not trial. 

Fourthly, the hierarchical design of the model assumes that parameter variation 

across sessions within a subject is normally distributed. However, it’s possible 

that a single mouse’s perceptual states may be, for example, bimodally 

distributed across sessions. Similarly, variation in subject-level parameters may 

not be normally distributed around a global mean value, and instead may be 

clustered into multimodal groupings. Our model therefore imposes a unimodal 

variation between sessions and subjects, for the purposes of regularizing the fit. 

However, this model may be inappropriate for variation which is not Gaussian-

like. Nevertheless, the success of the model fit in accounting for behavioural 

variation across sessions and subjects implies that the Gaussian approximation is 

justified for our dataset. 

Finally, we assume that our task does not involve integration of evidence over 

time, and hence the behaviour can be appropriately described with a model which 

does not involve an accumulated decision variable. There are two ways that a task 

can be treated as involving integration of evidence. Firstly, tasks where the 



68 

identity of the correct choice can only be known from multiple stimulus events. 

For example, a task where the subject has to accumulate a number of Poisson 

clicks on the left and right side to determine which side has the highest average 

number of click events (e.g. Brunton et al., (2013)). Secondly, tasks where the 

identity of the correct choice could, in principle, be known from a single ‘frame’ 

of sensory evidence, but due to sensory ambiguity, continual observation of the 

same sensory stimuli improves choice accuracy. Our task is not of the first but 

could in principle involve an integration of evidence of the second type. This 

would be more applicable for low-contrast trials than high contrast trials. 

Consistent with this, reaction times for low contrast trials tend to be longer than 

for high contrast trials (data not shown). Such a situation would necessitate 

modifying the model to incorporate choice timing, as in drift-diffusion models. 

However, fitting such models requires knowledge of each instantaneous 

observation event of the static stimulus, which is currently not measurable for our 

task. Instead the task could be modified to incorporate brief pulsed stimulus 

events instead of a static Gabor stimulus, which would be more amenable to drift-

diffusion modelling. 

 



69 

CHAPTER 3 SEQUENTIAL ACTIVATION OF CORTICAL 

AREAS 

The work described in this chapter, and in subsequent chapters, contributed 

towards a publication, 

Zatka-Haas P.*, Steinmetz N.*, Carandini M., Harris K.D., (in preparation) “A 
mechanistic model of cortical contributions to visual discrimination in mice” 
 
* These authors contributed equally 

Note: Widefield calcium imaging data was acquired by Nick Steinmetz. My 

contribution in this Chapter is in data analysis. 

3.1 Introduction 

Perceptual decision making recruits many brain areas involved in sensation, motor 

planning and action execution (Gold and Shadlen, 2007; Svoboda and Li, 2018). 

However, it is not clear exactly how this decision process unfolds neurally.  

Evidence from observational and perturbational studies have supported the idea 

that cortical areas play key roles in perceptual decisions. In tasks where monkeys 

make eye movements to indicate the direction of a moving stimulus, choice-

predictive signals have been observed in individual neurons from areas spanning 

the sensory-motor axis: visual area MT (Britten et al., 1992), the lateral 

intraparietal area (LIP; Roitman and Shadlen, 2002; Shadlen and Newsome, 2001), 

and visuomotor frontal eye field (FEF; Ding and Gold, 2012; Gold and Shadlen, 

2000). In rodents, several studies have found choice-predictive signals for 

different tasks in early sensory areas (Nienborg and Cumming, 2009; 

Sachidhanandam et al., 2013; Yang et al., 2016), posterior parietal cortex (Harvey 

et al., 2012; Licata et al., 2017; Park et al., 2014; Raposo et al., 2014), and 

frontal-motor areas (Barthas and Kwan, 2016; Chen et al., 2017; Erlich et al., 

2015; Goard et al., 2016; Guo et al., 2014; Hanks et al., 2015).  

To what extent does the decision process arise from distinct brain areas operating 

sequentially, or from multiple areas active simultaneously (Cisek and Kalaska, 

2010; Hunt and Hayden, 2017)? In tactile and visual discrimination, stimulus-

specific activity is sequentially ordered from early sensory to premotor and motor 

areas (Le Merre et al., 2018), whereas choice-predictive activity arises 

simultaneously in many of the areas recorded (Hernández et al., 2010; Ledberg et 

al., 2007; Siegel et al., 2015). However, these studies have relied on tasks with an 
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explicit delay phase, where subjects have to hold their memory of a decision in 

mind for a prolonged period before performing the choice action. Therefore, it is 

unclear whether the sequential task-related activation arises because of neural 

processes inherent to decision making, or instead arises from structure imposed 

by a sequential task design. 

This Chapter will outline work done towards investigating the activity of dorsal 

cortex while mice perform a decision task. Mice were trained on the two-

alternative unforced-choice visual discrimination task as detailed in Chapter 2 and 

Burgess et al (2017). In this task, mice were permitted to respond immediately 

after stimulus onset, and therefore the task contains no delay period. While mice 

performed this task, we employed widefield calcium imaging to measure cortical 

activity. Imaging of the dorsal cortex revealed a robust sequential activation of 

visual, secondary motor, primary motor and somatosensory areas in response to 

presentation of the visual stimulus. We found that activation of visual and 

secondary motor areas was stimulus-dependent, whereas activation of primary 

motor and primary somatosensory areas was movement-dependent. This work sets 

up subsequent Chapters which will explore the causal relevance of this sequential 

activation in forming the upcoming choice. 

3.2 Methods 

3.2.1 Behaviour 

Mice performed the behavioural task described in Chapter 2, but with a few 

modifications. Trials began after a period of no wheel movement (0.3-0.7seconds) 

which was 100msec longer than non-widefield imaging sessions. This helped 

reduce contamination of widefield signals associated with a visual stimulus on any 

given trial with residual GCaMP6s fluorescence on the previous trial. We also 

introduced a delay period (0.5-1.2 seconds) after stimulus onset before the 

auditory go cue, when the stimulus was present on the screen but could not be 

moved by the wheel. Mice tended to move the wheel before the go cue anyway, 

and so for the initial wheel movement the stimulus was motionless on the screen. 

After the delay period was complete, the ongoing wheel movement led to 

stimulus movement which would permit the mice to make a response and obtain 

rewards. This small task modification was important to ensure that stimulus-

related cortical activity was not inter-mixed with activity related to an auditory 

go cue beep, and that movement-related activity was not inter-mixed with signals 
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related to movement of the stimulus on the screen. We exclude any trials where 

mice start moving after this go cue. For analysis in this study, ‘reaction time’ 

refers to the time from stimulus onset to the time of first wheel movement, even 

if this movement is prior to the delayed go cue. 

3.2.2 Widefield calcium imaging 

Widefield calcium imaging was performed in 5 transgenic mice expressing 

GCaMP6s in excitatory cells (Camk2a-TTA x TetO-GCaMP6s; mouse ID 3-5) or all 

neurons (Snap25-GCaMP6s; mouse ID 1-2) (Chen et al., 2013; Wekselblatt et al., 

2016). These mouse lines do not show aberrant epileptiform activity shown in 

related mouse-lines (Steinmetz et al., 2017). We imaged using a macroscope 

(Scimedia THT-FLSP) with sCMOS camera (PCO Edge 5.5) and dual-wavelength 

illumination (Cairn OptoLED). The macroscope used 1.0x condenser lens (Leica 

10450028) and 0.63x objective lens (Leica 10450027). Images were acquired from 

the PCO Edge with ~10-ms exposures and 2 x 2 binning in rolling shutter mode. 

Images were acquired at 70Hz, alternating between blue and violet illumination 

(35Hz each). The light sources were 470-nm and 405-nm LEDs (Cairn OptoLED, 

P1110/002/000; P1105/405/LED, P1105/470/LED). Excitation light passed through 

excitation filters (blue: Semrock FF01-466/40-25; violet: Cairn DC/ET405/20x), 

and through a dichroic (425 nm; Chroma T425lpxr). Excitation light then went 

through 3-mm-core optical fibre (Cairn P135/015/003) and reflected off another 

dichroic (495 nm; Semrock FF495- Di03-50x70) to the brain. Emitted light passed 

through the second dichroic and an emission filter (Edmunds 525/50-55 (86-963)) 

to the camera. Alternation was controlled with custom code on an Arduino Uno, 

and illumination was restricted to the ‘global’ phase of the rolling shutter 

exposures, i.e. only the times when all pixels of a frame were being exposed 

together. We de-noised the signal with singular value decomposition and 

normalised the signal to the mean fluorescence (over the entire recording session) 

at each pixel. The signal from the 405nm illumination frames was used to correct 

for parts of the 470nm signal that were due to changes in blood flow that obstruct 

the fluorescence signal (Ma et al., 2016) and the correction was performed with 

custom MATLAB code (https://github.com/cortex-lab/widefield). We then low-

pass filtered the signal at 8.5Hz and applied a derivative filter to the fluorescence 

trace to approximate deconvolution of the calcium sensor’s time course from the 

underlying neural activity. When computing event-triggered averages of the 

fluorescence, pre-event baseline activity was removed, removing impact of long-

term trends. To ensure that differences in fluorescence timing between 

https://github.com/cortex-lab/widefield
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contralateral and ipsilateral stimuli were not due to differences in reaction time 

between contraversive and ipsiversive choices, we matched the reaction time 

distribution between Left and Right choices. This was achieved by pooling trials 

across sessions for each mouse and excluding Left and Right trials until a coarsely-

binned reaction time histogram matched between the two choice types. 

 

Figure 3-1 Schematic of Allen Common Coordinate Framework 

Schematic of dorsal cortex from the Allen Common Coordinate Framework 
(CCF; Lein et al. (2007)). Primary visual (VISp), secondary visual (e.g. VISal), 
secondary motor (MOs), primary motor (MOp) and primary somatosensory (SSp) 
areas are highlighted. 

ROIs were selected based on the Allen Common Coordinate Framework atlas 

(Figure 3-1; Lein et al. (2007)) aligned manually to each mouse, guided by skull 

features and retinotopic maps. ROI positions were manually adjusted to account 

for inter-mouse differences. Primary visual area (VISp) was selected as the peak 

of the most posterior-medial activated site in visual cortex in response to a 

contralateral stimulus. Secondary visual area (VISal) was selected as the centre of 

VISal according to the Allen CCF. VISal was selected as an exemplary secondary 

visual cortical area because it was furthest from the part of VISp activated by our 

visual stimuli, ensuring minimal contamination of fluorescence between these two 

ROIs. The secondary motor area (MOs) ROI was selected as centre of the most 

anterior site activated by the contralateral stimulus. Primary motor area (MOp) 

and primary somatosensory area (SSp) ROIs were selected as the most anterior-

medial and posterior-lateral regions of the activated region spread over the MOp-

SSp border. 
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3.3 Stimulus and movement-specific activation across 

cortex 

Our first question was to ask which cortical areas are active during this task. We 

performed widefield calcium imaging in mice expressing GCaMP6s in excitatory 

neurons or in all neurons, while mice performed the task. We found robust 

activation in primary visual (VISp), secondary visual (e.g. VISal) and secondary 

motor (MOs) areas in response to stimuli presented on the contralateral side 

(Figure 3-2). This activation was present for trials where mice responded with 

movement, as well as NoGo trials. This indicates that the activation is specific to 

the stimulus presence and not movement. By contrast, we found broad bilateral 

activation of primary motor (MOp) and primary somatosensory (SSp) regions on 

trials where the mice moved the wheel, independent of whether there was a 

stimulus present. This bilateral activity began at movement onset (Figure 3-3), 

which suggests that the bilateral activation of MOp and SSp is related to ongoing 

motor signals or sensory feedback of ongoing movement. We observed weak and 

sustained activation of MOp from the beginning of the trial even on NoGo trials. 

On NoGo trials primary motor activity increased around the same time when Left 

or Right choices are made on other trials. This is consistent with mice performing 

NoGo using active muscular contraction to hold the wheel still. When comparing 

between correct Left and correct Right trials (right column of Figure 3-2 and 

Figure 3-3), widefield activity appeared to be selective for the choice only in the 

regions with sensory-related activity (VIS regions and MOs). The choice-selectivity 

in these areas arises because these regions are selective to the stimulus, and 

choice correlates with stimulus. By contrast, MOp and SSp regions did not show 

clear asymmetric sensitivity to the ongoing choice. Therefore, bilateral activation 

in these regions appears to be non-selective to Go movements in general. 

These results highlight several cortical areas as being engaged in stimulus and 

movement-specific aspects of the task: unilateral visual and secondary motor 

areas relate to the stimulus, and bilateral primary motor and primary 

somatosensory areas relate to ongoing movement. In Chapter 5, the choice-

predictive aspects of these signals will be further explored. 
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Figure 3-2 Stimulus-aligned cortical calcium fluorescence 

Each colourmap shows cortical fluorescence (dF/F) averaged across 7 sessions 
from mouse 4 (Camk2a-TTA x TetO-GCaMP6s), aligned to stimulus onset. Each 
map is overlaid with an outline of cortical regions defined by the CCF, and the 
widefield fluorescence map is cropped to the outer edges of the CCF. Rows 
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indicate different times relative to stimulus onset. Columns correspond to a 
specific stimulus-response condition as indicated by the 2x2 grid on the top. 
Each column reflects the following conditions respectively: NoGo choice on 
zero contrast trials, NoGo choice on left contrast trials, Left choice on left 
contrast trials. The final column is the difference in fluorescence between two 
trial types: Left choice on left contrast (red) and Right choice on right contrast 
(blue).  
The difference between the first two columns shows visual and secondary 
motor areas are active specifically in response to the stimulus. The difference 
between the second and third columns shows that large regions of the dorsal 
cortex (e.g. MOp and SSp) become bilaterally active specifically when mice 
move the wheel. The final column shows that visual and secondary motor areas 
are action-selective by virtue of being stimulus-selective, however primary 
motor and somatosensory regions are not clearly decision-specific. 
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Figure 3-3 Movement-aligned cortical calcium fluorescence 

Same plotting convention as in Figure 3-2 but aligned to movement onset. 
Movement “onset” for NoGo response trials is defined as a fixed delay after 
stimulus onset, corresponding to the median reaction time on Go trials. 
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3.4 Activation is sequential 

We next asked whether these cortical regions show sequential activation or 

become active simultaneously. We analysed activity at single-pixel ROIs in primary 

visual (VISp), secondary visual (here defined as VISal), secondary motor (MOs), 

primary motor (MOp) and somatosensory (SSp) cortices.  

We observed a reliable temporal sequence of activation, with onset (defined as 

time to 25% of peak activity) in VISp at 44±2 ms (median ± median absolute 

deviation across mice), VISal at 52±4 ms and MOs at 90±6 ms, before reaching 

areas such as MOp (142±12 ms) and SSp (140±10 ms) (Figure 3-4A-C). The early 

VISp, VISal, and MOs responses were absent for stimuli present on the ipsilateral 

side (Figure 3-4D), but the MOp/SSp responses were present for both contralateral 

and ipsilateral stimuli. We therefore conclude that presentation of a stimulus first 

elicits activity in contralateral visual cortex, which spreads to contralateral MOs 

then ipsilateral MOs, before reaching bilateral primary motor and somatosensory 

cortex, with the last areas to respond being ipsilateral visual cortex. 
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Figure 3-4 Stimulus-specific robust sequential activation of cortical areas 

(A) Stimulus-locked calcium fluorescence at 5 ROIs for one example session. 
Vertical grey line marks the time of stimulus onset. Thick lines are the average 
response to contralateral stimuli over all correct trials. Thin lines are the same 
but for trials with ipsilateral stimuli.  
(B) (Top) Position of 5 ROIs overlaid onto the Allen Common Coordinate 
Framework atlas (Lein et al., 2007). The normalised average fluorescence is 
shown for one session, for contralateral stimuli (middle) and ipsilateral stimuli 
(bottom).  
(C) Summary of response onset latencies for 26 sessions in 5 mice. Each row 
contains data from a single mouse. Mice 1-2 correspond to Snap25-GCaMP6s, 
and mice 3-5 correspond to Camk2a-TTA x TetO-GCaMP6s. Onset latency is 
defined as the time from stimulus onset to fluorescence breaching 25% of the 
maximum. Solid vertical bars are the average latency across sessions, shaded 
regions are the median ± median absolute deviation across sessions. For each 
mouse, the black line spans the 25th and 75th percentile of the reaction times 
pooled across sessions, and the black dot is the median reaction time. Filled 
coloured circles and lines are the average onset latencies for contralateral 
stimuli across mice (median ± median absolute deviation). Open circles are the 
average onset latencies for ipsilateral stimuli across mice.  
(D) Average latencies for trials with contralateral and ipsilateral stimuli across 
mice. Significance was determined by a paired t-test. *** p<0.001, ** p<0.01, * 
p<0.05. 
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3.5 Discussion 

In this study we investigated the activation of multiple cortical areas in a two-

alternative unforced choice visual discrimination task in the mouse. Widefield 

calcium imaging during task performance revealed a sequential activation of 

several cortical areas in this task, starting in visual, then secondary motor, and 

finally somatomotor areas.  

Sensory information first arrives in VISp and higher visual areas on one 

hemisphere, then propagates to the same side MOs. This then passes cross-

hemispherically producing bilateral MOs activation. After this, bilateral MOp and 

SSp regions become active and finally the VISp on the other hemisphere is 

activated. This sequence of events is consistent with a feed-forward signal from 

VISp to MOs, followed by a top-down feedback originating in MOs and moving 

down a cortical hierarchy. Sequential activation of several cortical areas has been 

demonstrated previously in monkey (Hernández et al., 2010; Ledberg et al., 2007; 

Siegel et al., 2015) and rodent (Le Merre et al., 2018) studies. 

3.5.1 Caveats 

There are a few caveats to consider in this work. Firstly, the fluorescence is a 

temporally-distorted measure of spatially-aggregate electrical activity in the 

neuron. Membrane depolarization in the dendritic tree, cell soma, or axon 

terminals, produces calcium influx through voltage-sensitive calcium channels 

(Grienberger and Konnerth, 2012). Calcium can also pass into the cell cytoplasm 

through calcium-permeable AMPA and NMDA receptors in the postsynaptic 

membrane or from intracellular stores. Intracellular calcium ions bind to GCaMP6s 

distributed throughout the cell membrane, which triggers conformational changes 

leading to seconds-long fluorescence when illuminated with light of a specific 

wavelength. The GCaMP6s fluorescence therefore peaks well after the trigger of 

calcium influx, and this delay corrupts any measure of absolute onset latency of 

activity. Nevertheless, it is still possible to compare the relative onsets between 

cortical areas, as all areas will presumably have the same delay. 

Secondly, fluorescence at a single pixel reflects population activity of many 

thousands of cells. This therefore ignores differences between cells within a 

cortical region. However, as will be shown later using electrophysiological 

recording, putative excitatory cells (in the appropriate retinotopic position in 

VISp, and in MOs) show firing which monotonically increases with contrast. 

Therefore, among the VISp and MOs cells which respond to the stimulus, they all 
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seem to respond in the same way. In these cases, the population rate is therefore 

a suitable estimate of the average activity across the cells in these regions. 

However, we have not recorded in VISal, MOp or SSp and therefore this may not 

hold in those regions. 

Thirdly, the group-level analysis (Figure 3-4D) involves pooling fluorescence data 

across two mouse lines expressing GCaMP6s either in excitatory neurons alone, or 

in all neurons. This therefore neglects possible differences between excitatory 

and inhibitory neurons. Despite this problem, we did not observe qualitatively 

different fluorescence responses between the two mouse lines. One reason for 

this could be that excitatory and inhibitory neuron activity is correlated (e.g. 

Wehr and Zador, (2005)), which would give rise to similar fluorescence responses 

between the two mouse lines. A further possible reason for the similarity is that 

GABAergic neurons form ~20% of neocortical neurons in the mouse (Sahara et al., 

2012). This smaller proportion of inhibitory neurons means the fluorescence signal 

is dominated by the excitatory neuron population. We therefore feel that this 

pooling is acceptable.
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CHAPTER 4 A CAUSAL ROLE FOR VISUAL AND 

SECONDARY MOTOR CORTEX 

Note: We discovered a problem with a dataset displayed in Figure 4-1, which 

resulted in having to repeat some experiments. The original data will be shown, 

and this problem will be pointed out. None of the conclusions drawn from this 

work are affected by this. 

4.1 Introduction 

We have seen in the previous Chapter that several cortical areas are robustly 

activated in a visual discrimination task. We have also shown that these regions 

show clear sequential activation. It is however unclear what the causal relevance 

of these signals are. 

Despite several studies identifying clear task-related signals across many cortical 

areas, perturbation studies have produced some contradictory findings. For 

example, activity in monkey LIP predicts the choice in a motion discrimination 

task (Roitman and Shadlen, 2002), but muscimol inactivation of LIP has no effect 

on performance (Katz et al., 2016). Rat parietal cortex contains choice-predictive 

signals during an auditory accumulation task (Hanks et al., 2015), but muscimol 

inactivation does not impair auditory discrimination (Erlich et al., 2015). In a 

similar task, rat frontal orienting field (FOF) shows increasingly strong correlation 

to the upcoming choice during a memory phase (Kopec et al., 2015). However, 

optogenetic inactivation of FOF impairs performance most strongly during the 

earlier phase of the trial, when FOF activity has very weak predictive information 

for the upcoming choice. Therefore, while both observational and perturbation 

studies have provided insight into the role of different cortical areas, it remains 

ambiguous exactly which areas drive the decision process. 

A further question concerns whether the causal role of different cortical areas is 

restricted to specific phases of the task. If cortical areas are causally relevant at 

distinct task phases, this would suggest a specific functional role for these areas 

in mediating the stimulus-decision-action sequence. By contrast, if cortical areas 

are causally necessary at the same time, this would suggest that decisions arise 

from a continuous reverberation of activity between the cortical regions. This has 

typically been explored in tasks with a delay period where the subject must hold 

their decision in memory before responding. In a memory-guided tactile detection 
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task, scanning optogenetic inactivation across the dorsal cortex reveals a 

restricted set of regions which are sequentially causal for the behaviour: barrel 

cortex during the sensation period, and frontal-motor area ALM during a memory 

period (Guo et al., 2014). In a visual detection task, the causal role of visual and 

parietal areas is restricted to the stimulus period, whereas the role of frontal-

motor areas extends throughout the sensation, memory, and response periods 

(Goard et al., 2016). It is unclear whether the sequentially causal role for these 

areas reflects an intrinsic property of decision making, or instead arises because 

these task imposes a sequential structure (i.e. sensation then memory phases). 

In this Chapter, we clarify the causal role cortical areas in this task using 

optogenetic inactivation. Inactivation of 52 sites across cortex highlighted a 

causal role for visual and secondary motor cortex but not primary motor and 

somatosensory areas, despite their large task-related activity observed in 

widefield calcium imaging. Using precisely-timed optogenetic inactivation of 

visual and secondary motor areas, we found distinct times in the trial when 

inactivation was effective, consistent with the timing of their responses as 

observed in widefield imaging. We also find distinct effects in choice behaviour 

when inactivating visual and secondary motor areas, which further suggests that 

these two regions contribute distinct roles towards the decision process. To 

further explore this, we modify the phenomenological model of Chapter 2 to 

model the effect of inactivation as perturbations to the bias and sensitivity 

parameters. We find that the distinct roles of visual and secondary motor areas 

can be attributed to different perturbations in biases and not stimulus sensitivity. 

4.2 Methods 

4.2.1 Behaviour 

As before, the behavioural task used in this study is outlined in Chapter 2. 

However, there are a few differences. For the 52-coordinate inactivation 

experiment, trials began after a period of 0.2-0.6sec of no wheel movement. For 

all other inactivation experiments in this Chapter, there is no pre-trial quiescence 

period however trials are excluded post-hoc if wheel movement is detected -150 

to +50 msec relative to stimulus onset.  

4.2.2 Optogenetic inactivation 

Ai32xPV-cre transgenic mice expressed Channelrhodopsin-2 (ChR2) in Pvalb-

expressing cortical inhibitory interneurons. ChR2 is a light-activated ion channel 
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which non-selectively passes positively charged ions. Photo-illumination therefore 

depolarises the interneurons, which in turn inhibits local activity in excitatory 

neurons via release of GABA (Guo et al., 2014). This line was acquired from 

B6;129P2-Pvalbt(cre)Arbr/J crossed with Ai32. 

While mice performed the task, we optogenetically inactivated several cortical 

areas through the skull using a blue laser. For the 52-coordinate inactivation 

experiment, we used 5 mice. For the remaining inactivation experiments, we used 

6 mice: in the delayed-onset inactivation experiment we used 2 of the mice, in 

the pulse inactivation experiment we used all 6 mice, and for the higher-power 

inactivation experiment we used 5 of the 6.  

In the 52-coordinate experiment, unilateral inactivation was achieved by 

mounting a fibre-optic cable on a moving manipulator. On every trial, the 

manipulator set the position of the fibre-optic cable to one of 52 different 

coordinates distributed across the cortex. Inactivation coordinates were defined 

stereotaxically from bregma. On ~75% of trials, the laser was switched on (473nm, 

1.5mW, 40Hz sine wave) to inactivate the cortical site. Laser and non-laser trials, 

and the location of the cortical inactivation, was randomised. The duration of the 

laser was from visual stimulus onset, until a behavioural choice was made. For any 

given session, a single cortical site on the inactivation grid may only be 

inactivated a handful of times. This discouraged any adaptation effects that may 

occur on more frequent inactivation paradigms, however this approach does 

require combining data across sessions. The laser positioning was independent of 

laser power, so noise from the manipulator did not predict inactivation.  

In subsequent inactivation experiments, a pair of mirrors mounted on galvo 

motors were used to orient the laser (462nm) to different points on the skull. We 

also introduced improved light isolation to ensure no light could reflect from the 

skull surface and be seen by the mouse. In the pulse inactivation experiment, we 

inactivated only visual (-4mm AP, ±2mm ML, coordinates relative to bregma) and 

secondary motor areas (+2mm AP, ±0.5mm ML), using a brief 25msec pulse at 

15mW power. The onset time of the laser pulse was set randomly trial by trial, 

ranging -300ms to +300msec relative to stimulus onset. In the higher-power 

inactivation experiment, we inactivated visual and secondary motor areas, as well 

as primary motor areas (-0.5mm AP, ±0.5mm ML) for a fixed duration 1.5seconds, 

40Hz sine wave using different laser powers (1.5, 2.9, 4mW).  
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4.3 Visual and secondary motor areas causally contribute in 

this task 

We first asked whether the cortical areas activated in the widefield calcium 

imaging were also causally necessary for the task. To address this question, we 

performed scanning unilateral and bilateral optogenetic inactivation across the 

dorsal surface of the cortex while mice performed the task (Figure 4-1A). A laser 

illuminated the cortex through a clear skull preparation. Due to the sparse nature 

of the inactivation, each cortical site was inactivated for only a few trials on each 

session. It was therefore necessary to average across sessions to compare the 

effect of inactivation across many areas on behaviour. Unilateral and bilateral 

inactivation induced robust changes to choices at specific cortical sites. 

Specifically, we observed a reduction in contraversive choices when inactivating 

visual and secondary motor areas unilaterally (Figure 4-1B). For example, for 

trials with high contrast on the left screen, unilateral inactivation of right VIS and 

right MOs impaired the mouse’s ability to respond Left. This pattern was also 

observed when inactivating the left hemisphere VIS and MOs on trials with stimuli 

on the right side. In summary, the optogenetic inactivation acted to impair the 

mouse’s ability to choose the action associated with the contralateral stimulus. 

Interestingly, VIS inactivation also increased ipsiversive choices, even on trials 

where there is no stimulus on the ipsilateral side. This VIS effect is inconsistent 

with a simple blinding of the animal to the stimulus, as blinding should only act to 

increase NoGo choices. This effect was less apparent for MOs inactivation. 

On equal contrast stimuli, where mice would normally respond Left and Right 

about equally, we observed robust changes to the choices away from the 

contralateral side when inactivating VIS and MOs (Figure 4-1B and Figure 4-1D; 

VIS: -0.35 p<0.0002, MOs: -0.22 p<0.0002; permutation test, shuffling laser trial 

identities within 91 sessions in 5 mice). We also observed an increase in choices 

towards the ipsilateral side of inactivation (Figure 4-1E; VIS: +0.35 p<0.0002, MOs: 

+0.18 p<0.0002). 
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Figure 4-1 Unilateral and bilateral optogenetic inactivation of cortex on 
choice behaviour 

(A) Timeline of laser inactivation during the trial. On ~75% of trials, a 473nm 
40Hz 1.5mW laser was switched on during stimulus presentation and ceased 
when a response (or NoGo) was registered. The position of the laser varied 
randomly trial-to-trial over 52 different cortical sites. 
(B) Each colourmap shows the change in the fraction of Left, Right and NoGo 
choices (columns) induced by unilateral laser inactivation averaged across 91 
sessions in 5 mice. Each row shows the map for different stimulus conditions. 
The stimulus condition is represented by a square matrix schematic in the 
central column. The size of each dot reflects statistical significance based on a 
shuffle test where the identity of laser and no-laser trials is shuffled.  
(C) Same plotting scheme as in (B) but for bilateral inactivation, showing 
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average data over 76 sessions in 4 mice. Note: the effect in primary 
motor/somatosensory cortex on zero contrast trials is artefactual (see text).  
(D) Summary map of the effect of unilateral inactivation on contraversive 
choices on trials with equal contrast on each side. The colourmap reflects the 
change in the probability of making a contraversive choice (Left choices for 
right hemisphere inactivation, and Right choices for left hemisphere 
inactivation). The change in proportion of contraversive choices is plotted 
symmetrically across the hemispheres. Black lines mark the grouping of 
coordinates used to test statistical significance. Significance is tested by 
shuffling the identities of laser and non-laser trials within each session.  
(E) Same plotting scheme as in (E) but plotting the change in ipsiversive choices 
(Left choices for left hemisphere, and Right choices for right hemisphere). 

 

Bilateral inactivation of VIS and MOs also impaired the mouse’s ability to respond 

to the contralateral stimulus (Figure 4-1C). However, the behavioural effect was 

not lateralised: bilateral inactivation of VIS and MOs reduced choices towards the 

contralateral stimulus and increased NoGo choices. These findings are consistent 

with an inter-hemispheric competition process driving a Left-Right decision. 

Unilateral inactivation imbalances this comparison, whereas bilateral inactivation 

does not.  

We also observed an effect on reaction time. Inactivation of VIS and MOs 

increased reaction times for choices made towards the contralateral side of 

inactivation (VIS: +44.2msec p<0.0002, MOs: +47.6msec; permutation test, 

p=0.0004), and decreased reaction time for choices made towards the ipsilateral 

side (VIS: -33.5msec p<0.0002, MOs: -3.9msec p=0.03). We observed a weakly 

significant decrease in reaction time when inactivating primary motor and primary 

somatosensory areas (-12msec for contra choices p=0.003 and -12msec for ipsi 

choices p=0.0014), however they were in the same direction which suggested that 

the reaction time effect here was creating something like a startle response. 

We observed a puzzling effect where inactivation of primary motor and 

somatosensory areas decreased NoGo choices. Unilateral inactivation increased 

ipsiversive choices, while bilateral inactivation increased both Left and Right 

choices. We hypothesised that inactivating somatosensory cortex was unpleasant 

to the mouse, and mice subsequently move the wheel to terminate the laser. We 

therefore performed a new experiment where we inactivated this region of cortex 

for a fixed 1.5second duration so mice couldn’t terminate the laser early by 

moving the wheel. However, we still observed a decrease in NoGo choices (data 

not shown), which invalidated our original hypothesis. We discovered later that 
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improper light isolation was the cause, because improving light isolation removed 

the somatosensory effect (while the VIS and MOs effects remained). We 

discovered later that shining the laser light onto the somatosensory cortical region 

produced reflections of the laser light onto the ceiling of the experimental rig, 

possibly reflecting off the clear-skull implant. We propose therefore that mice 

were able to see this reflection and were influenced by it particularly on zero 

contrast trials because that reflection was the only visual “stimulus” present to 

the animal on that trial. 

Due to the light-isolation problem, we repeated the inactivation experiment but 

with added light isolation to prevent laser light reflecting off the surface of the 

clear-skull implant. Since the 52-coordinate experiment required a lot of data, we 

opted to not inactivate all 52 coordinates again. Instead we focused on 

inactivating VIS, MOs and primary motor region MOp. We also modified the 

experiment to address some extra questions: 1) The results above suggest that 

primary motor areas play no role in this task. Is this because primary motor 

inactivation was not sufficiently strong, or because primary motor really has no 

effect? 2) Is the reason that VIS and MOs inactivation does not impair behaviour 

completely because the inactivation is incomplete or because there is redundancy 

with a non-inactivated structure elsewhere? To address these extra questions, we 

inactivated these regions with higher laser power (Figure 4-2A). 



88 

 

Figure 4-2 Higher power optogenetic inactivation 

(A) Schematic of higher-power fixed-duration inactivation, focused on VIS 
(blue), MOs (green) and MOp regions (grey). Inactivation was performed at 
higher laser powers: 1.5, 2.9 and 4.25mW.  
(B) The probability of moving contraversive to the inactivated hemisphere, on 
trials with visual stimuli only present on the side contralateral to the 
inactivated hemisphere. The dashed grey line represents the session-averaged 
(34 sessions in 6 mice) non-laser probability of moving to the correct side 
indicated by the stimulus. Bar values represent the session-averaged 
probability of moving towards the side indicated by the stimulus, on trials 
when inactivating the contralateral VIS (blue), MOs (green) and MOp (dark 
grey) at different laser powers (denoted inset). Error bars are the standard 
error in probabilities across sessions. Statistical significance for the change in 
the proportion of contraversive choices from the laser off condition was 
determined with a paired t-test. *** p<0.001, ** p<0.01, * p<0.05. 
(C) Same plotting scheme as in (B) but plotting the probability of moving 
ipsiversive to the inactivated hemisphere, on trials with visual stimuli only 
present on the contralateral side. The dashed grey line represents the session-
averaged non-laser probability of moving to the opposite side than what is 
indicated by the stimulus. 

Unilateral inactivation of VIS and MOs, but not MOp, impaired the mouse’s ability 

to respond to the contralateral stimulus (Figure 4-2B). Inactivating MOp at high 
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power had no effect, which suggests that it does not play a role in this task. For 

VIS, the effect was similar across laser powers, which suggests that VIS 

inactivation has saturated for these laser powers. For MOs inactivation, the 

reduction in contraversive choices was much stronger when inactivating at 2.9mW 

but this reduction did not increase at 4.25mW. Inactivating both VIS and MOs at 

high power (4.25mW) therefore impaired performance but this performance 

reached a floor at about 30% correct. This suggests that VIS and MOs do not 

individually completely determine the behavioural performance on the task. 

As before, inactivation of VIS also significantly increased ipsiversive choices even 

on trials where there was no ipsilateral stimulus to respond to (Figure 4-2C). This 

was not present for MOs inactivation; however, it was weakly present in the 

previous experiment (Figure 4-1B), which may be explained by the improper light 

isolation before. These findings suggest that VIS and MOs are contributing 

different roles in the decision behaviour. We explore this in later sections. 

4.4 The causal role is sequential in time 

Visual and secondary motor areas therefore play a causal role in this task. We 

next asked whether this causal role was restricted to specific phases within the 

trial timing. To address this, we performed optogenetic inactivation of VIS and 

MOs at different times in the trial. This was explored with two experiments. 

In the first experiment, we inactivated VIS and MOs with the same laser power 

and waveform as in the 52-coordinate experiment (1.5mW 40Hz sine wave for 

1.5seconds), but the onset time of the laser was shifted to different time-points 

after stimulus onset. We found that as the onset time of inactivation was shifted 

later into the trial, the effect on performance was reduced. However, the time-

course over which the performance impairment was reduced differed between VIS 

and MOs (Figure 4-3). The behavioural impairment was approximately half of its 

maximum when inactivating VISp at 50msec after stimulus onset. By contrast, the 

impairment was half of its maximum when inactivating MOs at 100msec after 

stimulus onset. 
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Figure 4-3 Optogenetic inactivation at different onset times 

(A) Schematic of the inactivation experiment. VIS and MOs are inactivated with 
a 1.5second laser waveform (1.5mW 40Hz), but the onset time of the laser is 
chosen randomly among a set of delays after stimulus onset  
(B) The blue dots and connecting line reflect the data from VIS inactivation, 
and green dots for MOs inactivation. The dots are the empirical performance 
and the error bars are the 95% binomial confidence intervals for the proportion 
of correct choices, pooling data over 23 sessions in 2 mice. Performance is 
calculated on trials where visual contrast is higher on one side than the other, 
and the contralateral hemisphere is inactivated. For example, ‘contra VIS’ 
comprises left VIS inactivation on 𝑐𝑅 > 𝑐𝐿 trials, with right VIS inactivation on 
𝑐𝐿 > 𝑐𝑅 trials. The grey dashed line represents the non-laser performance.  
(C) The same trace as in (B) but normalised by the maximum performance 
impairment.  
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In the second experiment, we inactivated VIS and MOs with a brief 25msec pulse 

at a high power of 15mW, and the onset time of the pulse was set randomly trial 

by trial between -300 to +300msec relative to stimulus onset. Since the laser 

onset time was drawn randomly trial by trial, a single time-point was only 

inactivated once. Therefore, it was necessary to smooth data across time-points 

and pool data across sessions and mice. We observed a characteristic impairment 

in performance and reaction time when briefly inactivating VIS and MOs. 

Inactivation of both VIS and MOs impaired accuracy and reaction time, but at 

different time-windows during the trial (Figure 4-4). Inactivation of VIS had a 

significant effect on the percentage of correct choices around the time of 

stimulus onset (-110 to +130 ms), while inactivation of MOs was significant only 

after stimulus onset (+52 to +174ms). Inactivation of both VIS and MOs also 

delayed the production of responses by up to 100ms. Again, the time windows for 

which MOs inactivation could have this effect were later than for VIS (-34 to 

+79ms for VIS, and +32 to +130ms for MOs). 

The effect of pulsed laser inactivation on neural activity was not confined to the 

25msec during laser presentation. In a separate experiment performed by Nick 

Steinmetz, VISp neuron activity was recorded extracellularly (Methods in Chapter 

5) while the cortical region was illuminated with brief 10msec 4mW laser pulses. 

The brief laser pulse silenced activity in VISp for a sustained period up to 

~100msec after pulse onset (Figure 4-5). We also observed rebound activity from 

130 to 200msec after pulse onset which increased neural firing to about 2.5 

spikes/second (2.5x baseline firing). Note that this rebound activity was much 

weaker than activity observed in VISp in response to visual stimuli which ranged 

from 8 spikes/second for weak stimuli to 30 spikes/second for strong stimuli (see 

later Figure 5-2). Given this long-lasting effect of pulsed illumination on the 

neural activity, the causal time-windows identified above are broader than what 

is probably the true case. Instead the true critical window corresponds to the late 

phase of the causal windows measured using the pulse inactivation. This 

corresponds approximately to +75 to +125msec for VIS and +125 to +175msec for 

MOs. The effect of inactivation at earlier times can be explained by a long-tailed 

effect of the pulse illumination which lasts sufficiently long to be active during 

the true (later) critical windows. 
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Figure 4-4 Pulsed high-power optogenetic inactivation experiment 

(A) Schematic of the inactivation experiment. VIS and MOs regions were 
inactivated with a brief 25msec pulse at different times within the trial. The 
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onset time of the laser pulse was set randomly between -300 to +300msec 
relative to stimulus onset.  
(B) The effect of pulsed inactivation on behavioural accuracy, on trials pooled 
over 65 sessions in 6 mice. Dashed-grey line is the accuracy on trials without 
inactivation. Solid blue and green lines reflect the accuracy on trials with 
inactivation in VIS and MOs regions respectively. Shaded regions are the 95% 
binomial confidence intervals for the proportion estimate. Left-hemisphere 
inactivation trials on 𝑐𝑅 > 𝑐𝐿 contrast conditions are pooled with right-
hemisphere inactivation trials on 𝑐𝐿 > 𝑐𝑅 contrast condition. Data is smoothed 
with a 100msec sliding window. Solid blue and green bars indicate the 
timepoints when the accuracy is significantly different from the non-laser 
condition, based on a chi2 test of independence with false alarm rate of 
0.0001.  
(C) The effect of pulsed inactivation on reaction times for correct Go 
(Left/Right) trials. Shaded regions are the 95% confidence interval. Solid bars 
reflect the timepoints when the reaction time is significantly longer than the 
non-laser reaction time, based on a one-tailed Wilcoxon rank sum test with 
false alarm rate of 0.0001. 

 

 

Figure 4-5 Effect of pulse laser illumination on cortical firing rate 

The effect of pulsed inactivation on firing rates in a population of 152 broadly-
spiking VISp neurons recorded over 219 repeated trials of inactivating with a 
10msec 4mW pulse. Spiking data was acquired using Neuropixels probes (see 
Methods in Chapter 5). The firing rate is shown aligned to the time of laser 
pulse onset, averaged over 219 trials and 152 neurons. A laser pulse was used 
to briefly silence activity in these neurons. The firing rate at the beginning of 
the pulse onset is masked due to the presence of light-induced artefacts in the 
electrodes. The presentation of a brief 10msec inactivation pulse produced 
prolonged suppression of firing lasting approximately 100msec. This was met 
with rebound activity which lasted from about 130 to 200msec after pulse 
onset. This rebound activation peaked at about 2.5 spikes/sec. This was much 
smaller than the firing rate evoked by weak-contrast stimuli (8 spikes per 
second, see Figure 5-2 in Chapter 5).  
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Taken together, these results suggest that VIS and MOs contribute towards the 

decision process at different times. VIS has a critical window earlier than MOs. 

The MOs window is still earlier than movement onset by ~125-175msec. 

Interestingly, the shift in the critical window between these two regions is 

approximately 50msec, which matches the delay in activation observed between 

VISp and MOs from the widefield imaging data in the previous Chapter. Therefore, 

the sequential activation of these areas, beginning in VISp and then progressing to 

MOs, reflects a causal process which drives the decision task. By contrast, the late 

bilateral activation of MOp and SSp doesn’t appear to contribute towards task 

performance. 

4.5 A phenomenological model of the inactivation effect 

So far, we have seen that VIS and MOs are sequentially causal in this task. A next 

question we asked was whether these two cortical areas contribute a distinct 

functional role for this behaviour. One way to explore this question is to ask 

whether the effect of inactivation on behaviour could be expressed as the 

perturbation to specific parameters of the behavioural model outlined in Chapter 

2. The current model form comprises bias and sensitivity parameters. If 

optogenetic inactivation of VIS and MOs was accounted for as perturbations to 

different parameters in the behavioural mode, that would suggest a functionally 

distinct role for these areas within the framework of the model. 

As in Chapter 2, the probability of choosing Left (𝜋𝐿), Right (𝜋𝑅) and NoGo (𝜋𝑁𝐺) 

on each trial 𝑖 is modelled with two expressions. The log odds of Left vs NoGo and 

the log odds of Right vs NoGo. Each expression is parameterised with a bias, 

sensitivity and shape parameter for the corresponding hemifield, 

𝑙𝑛 (
𝜋𝐿

(𝑖)

𝜋𝑁𝐺
(𝑖)

) = ℬ𝐿
(𝑖) + 𝒮𝐿

(𝑖) × (𝑐𝐿
(𝑖))

𝒩(𝑖)

 

𝑙𝑛 (
𝜋𝑅

(𝑖)

𝜋𝑁𝐺
(𝑖)

) = ℬ𝑅
(𝑖) + 𝒮𝑅

(𝑖) × (𝑐𝑅
(𝑖))

𝒩(𝑖)

 

Where the prior distribution on the bias (ℬ𝐿 , ℬ𝑅), sensitivity (𝒮𝐿, 𝒮𝑅), and shape 

(𝒩) parameters are defined within a hierarchical framework containing per-

subject and per-session deviations from the grand average values.  

The effect of optogenetic inactivation was captured with an augmented model 

(Figure 4-6), 
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(𝑖)

𝜋𝑁𝐺
(𝑖)

) = (ℬ𝑅
(𝑖) + ∆𝑏𝑅
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(𝑖) + ∆𝑠𝑅

(𝑖)) × (𝑐𝑅
(𝑖))

𝒩(𝑖)

 

Where ∆𝑏𝐿, ∆𝑏𝑅, ∆𝑠𝐿, and ∆𝑠𝑅 are new parameters which capture changes to the 

bias and sensitivity parameters when inactivating one cortical region. Each 

inactivated region has its own set of 4 delta parameters. The delta parameters 

are not contained within the per-session and per-subject hierarchical priors, and 

therefore act as fixed effects on the grand average values for the bias and 

sensitivity parameters. The model estimates of these delta parameters are 

interpreted as changes to the bias and sensitivity perceptual states as a result of 

optogenetic inactivation. 

The delta parameters for each cortical region were given a regularizing prior 

around zero, 

(∆𝑏𝐿, ∆𝑏𝑅 , ∆𝑠𝐿, ∆𝑠𝑅) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 22) 

We fit this model to the behavioural data acquired on sessions with 1.5seconds of 

inactivation at higher laser powers. Trials with different laser power were pooled 

together.  
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Figure 4-6 A probabilistic graphical model of the optogenetic inactivation 
effect 

A graphical depiction of an augmented hierarchical model which accounts for 
the effect of optogenetic inactivation as perturbation to the bias and 
sensitivity parameters. In grey is the standard hierarchical model as outlined in 
Chapter 2. In blue are four new parameters for each inactivation region, 
reflecting the perturbation to bias and sensitivity parameters from their non-
laser value. 

 

The model was able to recapitulate the behavioural data during the trials with 

inactivation (Figure 4-7A-B). The behavioural effect of VIS and MOs inactivation 

could be captured with similar reduction in the sensitivity term to the 

contralateral stimulus (Figure 4-7C). By contrast, there were distinct effects on 

the bias parameters. Unilateral VIS inactivation decreased the bias associated 

with the contraversive choices (e.g. Left VIS decreased the log odds of Right vs 

NoGo) and increased the bias associated with the ipsiversive choices (e.g. Left VIS 

increased the log odds of Left vs NoGo). However, MOs inactivation decreased bias 

for both the contraversive and ipsiversive choices. This pattern was also observed 

when fitting an alternative model where the parameter perturbations were 
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contained within a hierarchy which modelled the per-subject variation in how the 

laser affected the parameter perturbations. 

 

Figure 4-7 Modelling the effect of optogenetic inactivation 

(A) Schematic of the inactivation experiment.  
(B) Effect of inactivating VIS and MOs on the psychometric curve. Showing only 
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the subset of contrast conditions where the minimum contrast on either side is 
zero (zero pedestal). Dots are the empirical probabilities (averaged across 
sessions) for the choices on the detection stimulus subset. Black line and 
shaded region are the grand average model prediction with 95% credible 
intervals for non-inactivated trials. Coloured line and shaded region are the 
model fits for different inactivated regions: left VIS (dark blue), left MOs (dark 
green), right VIS (light blue), right MOs (light green).  
(C) Posterior distribution of the bias (left) and sensitivity (right) parameter 
perturbations. The contours represent the fit of a 2D gaussian distribution to 
the samples of the posterior distribution acquired by MCMC. 

 

These results suggest that VIS and MOs contribute distinct roles towards shaping 

the decision. VIS (or a structure downstream) contributes towards a competitive 

selection between Left and Right choices. This is because VIS inactivation 

primarily modifies behaviour by inducing a Left-Right bias. By contrast, MOs 

inactivation is more concerned with engaging the action informed by the stimulus, 

because inactivation of this region reduces Go choices but still in a manner which 

is sensitive to the contralateral stimulus. 

4.6 Discussion 

In this Chapter we have investigated the causal relevance of different regions in 

the mouse cortex. While mice performed the visual discrimination task, we 

optogenetically inactivated several cortical regions. We identified a causal role 

for visual and secondary motor areas in this task. We also demonstrated a 

sequential causal role for VIS and MOs using precisely-timed optogenetic 

inactivation. We observed two important features from the inactivation 

experiments. Firstly, inactivation did not totally abolish performance, which 

suggests that decision formation is not localised to these areas alone. Secondly, 

inactivation of VIS induced an increase in ipsiversive choices even when no 

ipsilateral stimulus was present. This suggests a distinct role for VIS compared to 

MOs, which we clarified by relating the inactivation effect to perturbations of 

parameters in the behavioural model. Inactivation of visual areas was associated 

with a Left-Right choice biasing, whereas inactivation of secondary motor areas 

was associated with basing a Go-NoGo decision process. 

Note that these inferences were only made possible by our task design. Previous 

studies exploring the role of cortical areas during decision making have largely 

relied on Go/NoGo (Goard et al., 2016; Le Merre et al., 2018; Sachidhanandam et 

al., 2013) or 2AFC (Erlich et al., 2015; Hanks et al., 2006; Kopec et al., 2015; 
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Licata et al., 2017; Tsunada et al., 2016) task designs. Had we employed a 2AFC 

design, we could not have observed the effect where VIS and MOs inactivation 

suppresses contraversive choices, while only VIS inactivation increases ipsiversive 

choices. This is because in 2AFC designs, suppression of contraversive choices is 

equivalent to enhancement of ipsiversive choices by definition. This is apparent in 

previous studies. For instance, it is unclear whether the reduction in contralateral 

responses following FOF inactivation in Erlich et al. (2015) resulted from a 

decrease in propensity to make contralateral responses or an increase in 

propensity to make ipsilateral ones, or both. 

The causal relevance of sensory and frontal-motor areas to different times in the 

decision process has been studied primarily in tasks with a memory-component 

(Goard et al., 2016; Guo et al., 2014; Kopec et al., 2015; Li et al., 2016). These 

memory tasks impose a sequential structure to the behaviour, which makes it 

difficult to ascertain whether the role of these cortical areas in decision making is 

necessarily sequential. Some evidence suggests that frontal-motor areas play an 

early role in the decision process (Gold and Shadlen, 2000; Sul et al., 2011). Our 

study shines light on this early role of frontal-motor areas during decision tasks, 

by showing that the role is indeed early (~100ms after stimulus onset), but 

sequentially after sensory cortex.  

Is MOs involved in motor production? Microstimulation of frontal-motor areas in 

rats leads to a combined set of eye, eyelid, vibrissae, and head movements 

consistent with orienting (Donoghue and Wise, 1982; Hall and Lindholm, 1974). 

This rodent cortical area therefore interfaces with circuitry generating complex 

behavioural patterns. MOs neurons project directly to the spinal cord (Wang et 

al., 2018) which would be consistent with a role in motor production. However, in 

our experiment, inactivation of MOs does not paralyse wheel movements. Instead 

the wheel is turned in the wrong direction, and reaction times are increased. 

Therefore, perhaps frontal-motor areas are more related to decision formation 

than motor production. In Chapter 3 we found an early stimulus-specific 

activation of MOs. In this Chapter we found that inactivation of MOs early into the 

trial affected performance. This is consistent with previous findings where 

inactivation of frontal-motor areas during the stimulus phase of a visual detection 

task impairs performance (Goard et al., 2016). These findings suggest that MOs 

may have more of a sensory role and/or a role in motor planning related to an 

action informed by the stimulus. 
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MOs may have multiple roles depending on context. For example in posterior 

parietal cortex, neurons show multiplexed tuning to sensory-related and action-

related task variables (Raposo et al., 2014). Perhaps MOs neurons similarly contain 

multiplexed representations of visual contrast and choice action in our task. 

Alternatively, different MOs neurons within the same region may confer different 

functions. In a self-initiated action task in the rat, different spatially-intermixed 

MOs neurons showed firing properties characteristic of different components of an 

accumulation-to-bound model. Some neurons were active with sustained firing 

which gradually changed over the trial, consistent with an accumulation signal. 

Other neurons were transiently active and correlated with the action, which is 

consistent with the input evidence pulses provided to the accumulator (Murakami 

et al., 2014).  

MOp also appears to have no role in this task. MOp lesions have been shown to 

abolish fine motor skills of distal muscles while leaving proximal trunk muscles 

unaffected (Gharbawie et al., 2005). MOp inactivation in this task may have no 

effect because mice can still move the wheel using proximal trunk and forelimb 

muscles. 

4.6.1 Caveats 

There are several important caveats to this work. During the optogenetic 

inactivation experiments, we were limited by the spatial precision of the 

inactivation effect. In our experiments using 1.5mW laser power, this effect 

(defined as the region where cortical activity is at most half of baseline) has been 

estimated to be 1.2mm radius from epicentre (Guo et al., 2014). This large spread 

means we could not target different visual areas, nor target posterior parietal 

cortex independently of visual cortex or somatosensory cortex. Accordingly, we 

limit our interpretations of inactivation to all “visual areas” and do not distinguish 

early from higher visual areas. For the pulsed inactivation experiment, since the 

laser duration was reduced to 25msec, it was necessary to increase the laser 

power to 15mW to achieve any behavioural effect. This larger power may have 

larger spatial spread. Given this uncertainty, the different critical time-windows 

we observe between VIS and MOs locations may be more conservatively 

interpreted as different time-windows for the causal role of the frontal and 

occipital lobes. 

We also did not perform any control experiments using mice which were ChR2-

negative (e.g. a YFP control). This was primarily due to the labour-intensiveness 
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of the training and running experiments. However, the fact that inactivation of 

some cortical regions showed no significant effects on choice behaviour could be 

considered a negative control. It remains possible that laser illumination of 

secondary motor areas may penetrate the brain tissue and illuminate the retina 

directly, which could induce behavioural changes. However, we feel this is 

unlikely for two reasons. Firstly, pulsed-inactivation of secondary motor areas was 

effective during a window much later that would be expected if mice were seeing 

the laser light directly. Secondly, other studies which have photo-illuminated 

frontal-motor areas found that this was effective only for ChR2-positive mice (Guo 

et al., 2014). 

A more general problem with studies invoking perturbations relates to how much 

we can interpret causality from these effects. One hope of perturbation studies is 

to identify components of a mechanistic causal chain which drives behaviour. 

However, behaviour is a process emerging from a complex dynamic whole (brain, 

body, and environment). It may be fallacious to attempt to ascribe the true 

causes of behaviour to only a part of this whole (a part of the brain), as behaviour 

only exists on the level of that whole (Gomez-Marin, 2017; Schaal, 2005). Related 

to this, the massively recurrent nature of brain connectivity means optogenetic 

perturbation of one part of this network may have widespread indirect effects 

across the brain (e.g. Otchy et al. (2015)). Likewise, other brain areas may 

compensate even for brief perturbations (e.g. Li et al. (2016)). Furthermore, 

subjects may engage slightly different motor plans or behavioural strategies in 

solving the task, which may translate to differences in the causal roles of 

different brain areas (Churchland and Kiani, 2016). These features make it 

difficult to derive meaningful conclusions from perturbation studies alone. The 

interpretation can be aided however by combining insight from observational and 

theoretical work. This will be explored in the next Chapter. 

Our task has a fixed stimulus-action contingency. To disambiguate whether the 

optogenetic inactivation was impairing something about stimulus perception, or 

something about action selection, the stimulus-choice contingencies would need 

to be flipped. For example, if we observed the same inactivation result on trials 

where mice were trained with a flipped contingency (i.e. choose left when the 

contrast is higher on the right side), this would indicate that the inactivation 

effect operated primarily by affecting stimulus perception. If instead the 
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inactivation was affecting action selection, then we would expect the inactivation 

effect to change.
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CHAPTER 5 A MECHANISTIC MODEL OF THE 

CORTICAL CONTRIBUTION TO VISUAL DISCRIMINATION 

Note: Electrophysiological recordings were performed by Nick Steinmetz. My 

contribution in this Chapter is in data analysis and the model. 

5.1 Introduction 

So far, we have seen that visual and secondary motor areas are causally relevant 

for mouse visual discrimination. We have also shown data which hints at distinct 

roles for these two areas based on optogenetic inactivation. However, it is still 

unclear what the precise contribution is for activity in these areas towards 

forming the decision. 

To address this problem, it is useful to map neural structures to components of a 

mechanistic theory of decisions. This approach has generated insight in previous 

studies using evidence accumulation tasks. Activity in monkey and rodent frontal 

and parietal areas has been linked to components of the drift-diffusion model 

(Erlich et al., 2015; Hanks et al., 2015; O’Connell et al., 2018; Shadlen and 

Newsome, 2001). For example, activity in parietal areas behaves like an 

accumulation signal, and activity in frontal areas behaves like a discretisation of 

the accumulator. However, as previously discussed, these models are of a 2AFC 

task design, which confounds several types of biases. Therefore, it is unclear what 

the mechanistic contributions are for cortical areas in a task without these 

confounds. Furthermore, it is unclear what the contribution may be for a task 

which does not require explicit integration of stimuli over time. 

To ascertain the functional role of these sequentially-causal areas, we developed 

a mechanistic model of the cortical contribution of VIS and MOs towards forming a 

decision. In this Chapter we outline the structure of the mechanistic model, and 

we show that this model can predict average behaviour, trial-by-trial choice 

variability, and the effect of optogenetic manipulation. This model proposes 

distinct roles for visual and secondary motor areas in their contributions towards 

forming the decision. 
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5.2 Methods 

5.2.1 Electrophysiological recording in VISp and MOs 

Extracellular spikes were recorded using high-density Neuropixels probes (Phase 

3A option 3; Jun et al., 2017) while mice performed a similar behavioural task. 

Mice were implanted with a clear-skull preparation as outlined in the Methods of 

Chapter 2. On the day of the recording or several days before, mice were 

anaesthetised, and a small craniotomy was performed through the clear skull cap 

at the site to be recorded, on the left hemisphere. The craniotomies for VISp 

were targeted in some cases using measured retinotopic maps in the same mice, 

and in other cases to the same position stereotaxically (-4AP, -1.7ML). The 

craniotomies for MOs were targeted stereotaxically (+2AP, -0.5ML). During the 

recording, mice were head-fixed, and the skull was covered with saline-based 

agar and silicon oil. Probes were inserted through the agar and into the brain, 

advanced at ~10µm/sec, and allowed to settle in the final position for 10-15 

minutes before recording. The probes were externally referenced to an Ag/AgCl 

wire in the agar above the skull. Recording was performed with SpikeGLX 

software, and probes were configured for gain=500 in the AP band and 250 in the 

LFP band. Multi-channel voltage data was spike-sorted using Kilosort (Pachitariu 

et al., 2016) and manually curated with phy (https://github.com/kwikteam/phy). 

Cluster quality was assessed by visualising the waveform variation across spikes, 

auto- and cross-correlation of spiking over time, and spike amplitude. Putative 

excitatory cells were identified by broad spike waveform (Niell and Stryker, 

2008). 

5.3 A mechanistic model  

We hypothesised that the distinct effects of VIS and MOs inactivation (Chapter 4) 

could be accounted for by optogenetic suppression of baseline firing rate. If 

downstream brain structures are subtractively comparing activity in right and left 

visual cortex, then even without any visual stimulation, suppressing baseline 

activity on one side could lead to increased ipsilateral responses. To test this 

hypothesis, we attempted to build a mechanistic model in which choices are made 

based on a weighted sum of cortical activity. The model was a modification of the 

phenomenological model introduced in Chapter 2, except the logistic component 

of the model is now taken literally as a hypothesis for the mechanistic causal 

processes underlying decision formation. 

https://github.com/kwikteam/phy
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Figure 5-1 Schematic of the mechanistic model 

Sensory stimuli on the left and right hemifields induces activity in 
contralateral VISp and MOs. Activity from both hemispheres is linearly summed 
(with connection weights 𝑤𝑅 and an offset 𝛼𝑅) to form the 𝑍𝑅 decision 
variable, representing the log odds of Right vs. NoGo. The 𝑍𝐿 decision variable 
is similarly determined by activity in the four regions but weighted differently 
by 𝑤𝐿 and with a different offset 𝛼𝐿. The offset parameters 𝛼𝐿 and 𝛼𝑅 capture 
all un-modelled effects which may otherwise shape the decision. The decision 
variables are pooled together via a competitive process (e.g. softmax) to 
determine the probability mass associated with each choice. A probabilistic 
decision process then selects one action. Note that the model is mechanistic 
with respect to the cortical activity, but leaves the instantiation of the 
decision variables, softmax computation, and probabilistic decision process to 
an abstract part of the model. 

 

In this model, two decision variables (log odds of Left vs. NoGo and log odds of 

Right vs. NoGo) are computed from a weighted sum of neural activity in VIS and 

MOs (Figure 5-1), 
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Where 𝑓 is a 4-element vector containing the firing rate of each of the cortical 

areas: left VISp, right VISp, left MOs and right MOs. 𝑤⃗⃗⃗𝐿 and 𝑤⃗⃗⃗𝑅 are 4-element 

vectors of parameters, representing the weighting of the firing rates onto the two 

log odds ratio decision variables 𝑍𝐿 and 𝑍𝑅 respectively. 𝛼𝐿 and 𝛼𝑅 are offset 

parameters which estimates the effect of all other unmodelled brain regions onto 

the decision process. The two decision variables then feed into a softmax 

computation downstream, which computes the probability of choosing each 

action. This then goes through a decision process to select the action based on the 

computed probabilities. Our model is focused primarily on the cortical 

contribution towards the decision variables. The weightings of the neural activity 

onto the decision variables are therefore informative for the cortical contribution 

of that area to the decision. To improve fit stability, we enforced parameter 

symmetry between the left and right hemispheres (e.g. the weight of left VISp 

onto the log odds of Left vs. NoGo was the same as right VISp onto Right vs. 

NoGo). As in the phenomenological model, all parameters are modelled in a 

hierarchical Bayesian framework, capturing per-subject and per-session variation 

in the weights and offset parameters. The hyperpriors are the same as in the 

hierarchical model of Chapter 2. The global parameter 𝛼𝐿, 𝛼𝑅, 𝑤⃗⃗⃗𝐿 and 𝑤⃗⃗⃗𝑅 are 

given a weakly-regularising 𝑁𝑜𝑟𝑚𝑎𝑙(0,42) prior. 
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Figure 5-2 Electrophysiological recording of broadly-spiking VISp and MOs 
neurons in response to visual Gabor stimuli 

(A) Example neuron in left VISp and left MOs. The waveforms are shown in 
black and the red dot marks the location of the neuron within an aligned Allen 
CCF atlas. 
(B) Raster plots, showing the spiking activity aligned to stimulus onset. The 
colour reflects the contrast level presented to the contralateral hemifield.  
(C) PSTHs showing an estimate for the firing rate for the example neurons, 
averaged across trials.  
(D) PSTHs averaged over 204 neurons in VISp and 76 neurons in MOs. The 
shaded regions mark the time window when the firing rate is averaged for 
subsequent analyses: 75-125msec for VISp, and 125-175msec for MOs. 
Horizontal red line marks the time of the critical time window identified in the 
pulse inactivation experiment (Figure 4-4).  
(E) Trial-averaged fluorescence of left VISp and left MOs ROIs in response to 
stimuli present on the contralateral side. Shaded regions mark the time 
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windows used for averaging in subsequent analyses. This window is 30msec 
after the window associated with electrophysiological data, to compensate for 
the slow onset of GCaMP6s.  
(F) Correlation of window-averaged fluorescence and firing rates for left VISp 
and left MOs. The 16 open circles correspond to the 16 possible contrast 
conditions (averaged over trials). Red line corresponds to the fit of a simple 
linear model f(x) = b0 + b1*x. The linear model is used to transform widefield 
fluorescence data into estimates of population firing rate. 

 

The neural activity contained within 𝑓(𝑖) is the estimated population firing rate of 

the four cortical regions on each trial. We estimate the population firing rate 

from widefield calcium fluorescence at the VISp and MOs ROIs described in 

Chapter 3. Since the baseline activity in widefield calcium fluorescence is poorly 

defined, the calcium fluorescence was calibrated to approximate population firing 

rates. To achieve this, we recorded extracellular spiking activity in VISp and MOs 

using Neuropixels probes in separate sessions, and computed trial-averaged firing 

rates for each of the contrast conditions over the end of the critical time-window 

identified from the pulse inactivation experiment (Figure 5-2A-E; VIS: 75-

125msec, MOs: 125-175msec). Calcium fluorescence was also averaged over the 

same windows but 30msec later to allow for slower GCaMP6s kinetics. The 

transformation of widefield fluorescence to firing rate was computed by simple 

linear regression over the 16 contrast conditions between these two datasets 

(Figure 5-2F). This linear transformation was then applied to the fluorescence 

value for each individual trial, thereby providing an estimate of the population 

firing rate of the four cortical regions on every trial. 

We fit the mechanistic model weights 𝑤𝐿, 𝑤𝑅 and offsets 𝛼𝐿, 𝛼𝑅 to the 

behavioural data using the trial-by-trial widefield activity in the four regions 

calibrated to population firing rate. The fitted model was able to capture the 

average probability of choices across different stimulus conditions (Figure 5-3A). 

The parameter weights indicated a distinct role for VISp and MOs in determining 

the value of the contraversive and ipsiversive decision variables (Figure 5-3B). 

Each hemisphere VISp had a positive weight onto the contraversive decision 

variable (e.g. left VISp was positively weighted onto Right vs. NoGo) and a 

negative weight onto the ipsiversive decision variable (e.g. left VISp was 

negatively weighted onto Left vs. NoGo). By contrast, each hemisphere MOs was 

positively weighted towards both the contraversive and ipsiversive decision 

variables. 
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Figure 5-3 Mechanistic model predicts behaviour 

(A) Model fit to the psychometric data. The probability of moving Left, Right 
and NoGo is shown as a function of contrast. A subset of contrast conditions is 
plotted, where a stimulus is only present on one side (shown inset). Positive 
contrast values reflect stimuli on the right side, and negative values reflect 
stimuli on the left side. Black dots are the session-averaged empirical fraction 
of choices made for each contrast conditions. The black lines and shaded 
regions are the posterior means and 95% credible intervals for the prediction of 
the model from the widefield data. For each contrast condition, the model 
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prediction is computed using the fitted parameters and a linearly-interpolated 
measure of the cortical firing rate, interpolating from the measured firing 
rates for the contrast conditions that were empirically tested. 
(B) Posterior distribution of the mechanistic model weights for each of the four 
regions, left VIS (dark blue), left MOs (dark green), right VIS (light blue) and 
right MOs (light green) onto the two decision variables 𝑍𝐿 and 𝑍𝑅. The 
parameters are constrained to be symmetrical about the diagonal (solid grey 
line). Lines reflect the contours of a 2D Gaussian distribution fit to MCMC 
samples of the posterior distribution.  
(C) Trial-by-trial choice stochasticity within a single contrast condition is 
reflected in trial-by-trial variation in the decision variables. (Left) On trials 
with medium contrast on the left only, the value of the decision variable is 
shown for trials when mice chose Left (L) or NoGo (N). Bar height is the 
average of the posterior means for each of the trials, and error bar is the 
standard error across trials. Data is pooled across sessions and subjects. Below 
the plot is the cross-validated % correct of a logistic classifier which predicts 
the choice from the decision variable. The mechanistic weights are fit on half 
of the data, and classification accuracy is measured on the other half. (Right) 
Similar plot but for medium contrast on the right only, showing the value of 
for trials when mice chose Right (R) or NoGo (N).  
(D) Simulating inactivation in the model by setting the neural activity to zero. 
The model fit is shown using the same plotting convention as in (A). Black dots 
are the session-averaged empirical fraction of choices made for the subset of 
stimulus conditions shown. Black lines and shaded regions are the model fit to 
the non-laser behavioural data. Coloured lines show the behavioural prediction 
when setting the neural activity of left VIS (dark blue), left MOs (dark green), 
right VIS (light blue), or right MOs (light green) to zero within the model. 
Coloured dots are the session-averaged empirical fraction of choices made 
when optogenetically inactivating these regions. 

 

The model was also able to partly account for choice stochasticity for trials with 

identical stimulus conditions. For example, on trials with medium contrast on one 

side only, spontaneous variation in the decision variable associated with that side 

correlated with the choice eventually made by the mouse (Figure 5-3C). Trial-by-

trial choice variability under identical stimulus conditions could therefore be 

partly attributed to variability in cortical activity which generates variability in 

the decision variables. 

We further verified that the estimated weights reflected more than a correlation 

between neural activity and choice, by showing that simulating data from the 

model could predict the behavioural effect of optogenetic inactivation. To 

demonstrate that the mechanistic model could predict behaviour during 

optogenetic inactivation, it was first necessary to re-fit the offset parameters 𝛼𝐿 

and 𝛼𝑅 to the non-laser trials contained within optogenetic inactivation sessions. 

For this purpose, we used the sessions which involved fixed-duration 1.5sec 

inactivation in VIS and MOs (Figure 4-2). Re-fitting the offset parameters was 
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necessary because the overall tendencies towards Go/NoGo were different 

between behavioural sessions during widefield imaging, and the non-laser trials 

during optogenetic inactivation sessions. 

Using the re-fit offset parameters, and the weights estimated from the widefield 

dataset, we simulated behavioural predictions from the model for different 

contrast conditions. To compute predictions of the mechanistic model for 

different contrast conditions, the firing rate vector was set as the linearly-

interpolated trial-averaged activity as measured previously (Figure 5-2). To 

simulate the effect of optogenetic inactivation in one of the four regions, the 

corresponding element of the firing rate vector was set to zero. We found that 

the behavioural prediction of this model could capture the primary features of the 

effect of optogenetic inactivation on real behaviour, despite these inactivation 

trials playing no role in the original model fit (Figure 5-3D). In this sense, the 

mechanistic model could cross-predict behaviour in a new dataset which it wasn’t 

fit to. This demonstrates that the weights estimated from the mechanistic model 

reflect more than a correlation between neural activity and behaviour, as these 

weights also predict the effect of neural manipulation. These results therefore 

propose a mechanistic causal process by which cortical activity in VISp and MOs is 

integrated towards forming a decision. 

5.4 Discussion 

To bring together the findings in previous Chapters, we developed a mechanistic 

model of the cortical contributions towards decision formation. The model 

identified different roles for VISp and MOs in shaping the decision process: VISp 

activity enhances contraversive choices and suppresses ipsiversive choices, 

whereas MOs activity enhances both contraversive and ipsiversive choices. This 

model was able to predict average choice behaviour, as well as trial-by-trial 

variation in choice for identical stimulus conditions. Finally, we showed that the 

model could emulate the effects of optogenetic inactivation on choice behaviour. 

5.4.1 Mechanism 

The model makes testable predictions for the behavioural impact of perturbation 

at different stages of the mechanistic process. In our experiment, the effect of 

VIS and MOs inactivation is accounted for as a reduction in weighted input to the 

contraversive and ipsiversive decision variables. Therefore, stimulating activity in 

these regions should produce opposite effects: VIS stimulation should enhance 
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contraversive choices and suppress ipsiversive choices, whereas MOs stimulation 

should enhance both contraversive and ipsiversive choices. Similarly, the model 

makes predictions for the effects of multi-site perturbation. This model also 

provides a framework for understanding the effect of learning and serial 

dependence in choice. For example, learning may correspond to changes in 

cortical firing to stimuli (Hua et al., 2010) which propagates to the decision 

variables leading to changed behaviour. Similarly, serial dependence in choices 

could arise from serial dependence in the cortical inputs to the model. Indeed, 

PPC activity has been shown to represent and be causally involved in serial 

dependence of behaviour (Akrami et al., 2018). 

The model also proposes the existence of two decision variables which arise from 

downstream convergence of activity from visual and secondary motor areas. These 

variables may be localised to particular subcortical structures or may be encoded 

in a distribution population. One possibility is the striatum, a structure implicated 

in decision tasks and orienting-type movements (Balleine et al., 2015, 2007; Jin 

and Costa, 2015; Tecuapetla et al., 2014; Wickens et al., 2007; Znamenskiy and 

Zador, 2013). The different roles of VIS and MOs in contraversive and ipsiversive 

actions could be mediated by specific projections in the striatum. For example, 

VIS could enhance contraversive choices by exciting the ipsilateral direct 

pathway, and could suppress ipsiversive choices by exciting the contralateral 

indirect pathway, or lateral inhibition within striatum. Likewise, MOs could 

enhance both types of movements by projecting to contralateral and ipsilateral 

direct pathways. Thalamus may also be a candidate structure, as thalamo-cortical 

loops have been implicated in decision tasks (W. Guo et al., 2017; Z. V. Guo et 

al., 2017; Halassa and Kastner, 2017). Another possibility is the midbrain superior 

colliculus, which has been implicated in visually-guided behaviour (Basso and May, 

2017; Crapse et al., 2018; Kopec et al., 2015), and exhibits contralateral 

suppression (Lo and Wang, 2006) consistent with VIS activity suppressing the 

ipsiversive movement. There are many more possibilities. It therefore remains to 

be seen whether the decision variables can be identified with activity in particular 

subcortical structures, and what the neural instantiations of the softmax 

computation and probabilistic action selection are. 

5.4.2 Function 

The mechanistic model reveals distinct functional roles for visual and secondary 

motor areas in the decision process. Visual areas appear to not only favour the 
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action associated with the stimulus on the contralateral hemifield, but also 

suppress the action associated with the ipsilateral hemifield. Interestingly, this 

pattern does not match the finding from widefield calcium imaging that visual 

cortical responses were exclusively contralateral until late in the trial. This 

suggests that the suppression of ipsiversive choices is through downstream 

projections. By contrast, secondary motor areas appear to favour both types of 

action, albeit slightly favouring the action associated with that hemisphere. This 

cooperative role of MOs is consistent with the responses we observed in widefield 

imaging, where MOs activates during the decision period for both contralateral 

and ipsilateral trials. This is also consistent with a bilateral and mutually-

reinforcing representation of movement plans in ALM (an area that is the same or 

nearby to our MOs) observed previously during a working memory task (Li et al., 

2016). 

5.4.3 Caveats 

The mechanistic model is not complete mechanistic account of the circuit process 

underlying the decision. It is instead a hybrid mechanistic-statistical model which 

estimates the functionally-independent contributions of cortical activity towards 

forming the decision variables. Action selection is accounted for by a more 

abstract softmax computation and probabilistic action selection rule. However, 

the model can also be considered a hypothesis for the functionally-relevant circuit 

processes underlying the decision. Considering this as a hypothesis for the 

circuitry, the model appears to neglect inter-cortical interactions in forming the 

decision. However it’s known for example that visual areas project to secondary 

motor areas (reviewed in Barthas and Kwan (2016)). It is therefore possible that 

the role of VIS in forming the decision arises in its effects through MOs activity. 

This suggestion implies that inactivation of MOs is equivalent to inactivation of VIS 

and MOs together. Nevertheless, we find that simulated inactivation of MOs alone 

in the model seems sufficient to account for the empirical behavioural effect of 

inactivating this area. This is true even though the model was itself fit to 

widefield data which would contain correlated activity reflective of any inter-

cortical interactions. Therefore, it does not seem crucial to incorporate the inter-

cortical interactions when accounting for the behavioural effects of inactivation. 

We therefore feel that the model is not only successful at estimating functionally-

independent roles for the cortical areas, but it also doubles as a hypothesis for 

the circuit processes underlying decision formation. 
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In its current form, the mechanistic model does not take account of time due to 

the static nature of the stimulus and therefore cannot make predictions of 

reaction time. In tasks where sensory evidence must be accumulated over time, 

accumulation-to-bound models can leverage this gradual decision process to 

model the dynamics of internal decision variables and therefore predict reaction 

times (Brunton et al., 2013; Gold and Shadlen, 2001). In tasks without any 

accumulation in the stimulus, accumulation models can still be applied as a model 

of internal ‘urgency’ to perform an action (Busemeyer and Townsend, 1993). One 

way of incorporating time in our model is to define the decision variable as the 

time-integral of the weighted input cortical activity and define a threshold for 

committing to an action. This model would therefore be similar to the 

accumulation-to-bound models used previously, except this model would allow for 

more than two choices. Nevertheless, we have shown from the widefield imaging 

and optogenetic inactivation experiments that VIS and MOs contribute at distinct 

times within the trial. Previous work has also demonstrated that early visual areas 

contribute towards visual detection over a very brief time-window (Resulaj et al., 

2018). Therefore, it may be sufficient for the model to consider only a single time 

window when modelling functionally-relevant activity.
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CHAPTER 6 CONCLUSIONS AND OUTLOOK 

The key questions driving my thesis were 

1. Does decision making arise from activation of distinct 
cortical regions in a temporal sequence, or instead arise in a 

distributed fashion? 

2. Which cortical areas are causally necessary for the 
decision process? 

3. What are the functional contributions of cortical areas 
towards decision making? 

We have made the following progress towards addressing these questions. 

Firstly, to investigate the nature of the decision process, we designed a task 

which would produce behavioural data amenable to modelling. Our task design 

(published in Burgess et al. (2017)) contains two crucial features which have not 

been used together in mice before: two-alternative unforced choices, and visual 

discrimination. The unforced choice structure made it possible to distinguish 

different types of biases and sensitivities (bias/sensitivity associated with one 

side, or associated with the difference between sides), and therefore better 

interpret the effect of neural manipulation. The visual discrimination aspect of 

the task made it possible to sufficiently constrain a multinomial logistic model, 

thereby obtaining stable estimates of the bias, sensitivity and contrast shape 

parameters. We also applied hierarchical modelling to quantify inter-subject and 

inter-session variability in behaviour. Using this we identified large correlated 

variation in the two bias parameters across sessions. This reflected the fact that 

mice varied session-to-session in their overall tendency to NoGo. 

Secondly, we asked whether the decision process arises from sequential activation 

of distinct cortical areas, or instead arises from a more distributed activation 

spanning many cortical regions simultaneously. To explore this, we performed 

widefield calcium imagining. We found hotspots of activity in several cortical 

areas which obeyed a strict temporal order. Stimuli present on one side led to 

sequential activation of contralateral primary visual cortex (VISp), higher visual 

areas (e.g. VISal), secondary motor areas (MOs), primary motor (MOp) and primary 

somatosensory (SSp) regions. We also observed activation on the ipsilateral 

hemisphere which was earliest in MOs and latest in VISp. These findings suggest 

that the stimulus induces feedforward activation through a cortical hierarchy, 
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terminating in MOs. MOp and SSp then receive top-down feedback from MOs. 

Sequential cortical activation has been previously observed in monkey performing 

visual (Ledberg et al., 2007; Siegel et al., 2015) and somatosensory (Hernández et 

al., 2010) discrimination tasks. In the mouse, sequential activation has only been 

observed in a whisker detection task (Le Merre et al., 2018). Interestingly in this 

study, the authors found activity started in somatosensory cortex and then 

progressed to primary motor cortex, and frontal areas (defined in this study as 

medial pre-frontal cortex) were activated last. In our task by contrast, we found 

an early activation of frontal area MOs which was present even in trials where the 

mice didn’t respond. Our study therefore demonstrates an early sensory-related 

role for MOs in mouse visual discrimination.  

Thirdly, we asked whether the activation of these cortical regions reflected a 

causal process which was also sequential. We optogenetically inactivated several 

cortical areas while mice performed the task, an approach directly inspired by the 

scanning inactivation approach in Guo et al. (2014). We identified two areas: VIS 

and MOs, where inactivation affected behaviour. We also found that the time 

when inactivation was strongest was different between these two regions (first in 

VIS, then in MOs) but still early into the trial. Interestingly, MOp and SSp 

inactivation had no effect. Therefore, while we observe widespread activation of 

activity from early sensory to secondary motor, to primary motor and 

somatosensory regions, only the first two stages appear to be causally related to 

performance in the task. Activity in other regions may reflect more feedback 

processes and sensory feedback/motor efference from wheel movement. The 

causal role of early sensory and frontal-motor areas has been demonstrated 

before in Go/NoGo (Goard et al., 2016) and 2AFC (Erlich et al., 2015; Guo et al., 

2014) tasks. However, many of these previous studies impose a sequential 

structure, via a memory period, which may misleadingly imply that cortical areas 

play a temporally sequential role. Our study demonstrates a sequential causal role 

for these areas even in a task without an explicit memory period.  

Finally, our task design highlighted different functional roles for VIS and MOs in 

this task which we quantified using a phenomenological modelling approach and a 

mechanistic modelling approach. By quantifying the effect of inactivation as a 

perturbation to the bias and sensitivity parameters of the phenomenological 

model, we showed that inactivation of VIS and MOs both resulted in reduced 

sensitivity towards the contralateral stimulus. However, inactivation in these 
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regions had distinct effects of bias: VIS inactivation induced a bias towards the 

side of inactivation and away from the contralateral side, whereas MOs 

inactivation biased behaviour towards NoGo. To understand this effect further, we 

constructed a mechanistic model of the decision process. We proposed that the 

algebra of the logistic model could be taken literally as a hypothesis for the 

cortical contribution towards the behaviour. In this model, cortical activity is 

linearly summed across the VIS and MOs on both hemispheres to form two decision 

variables: the log odds ratio of Left vs. NoGo choices, and the log odds of Right vs. 

NoGo. By estimating these weights from widefield data, we found that VIS and 

MOs had qualitatively different weightings onto the decision variables. VIS activity 

enhanced the decision variable associated with the contraversive movement and 

suppressed the decision variable associated with the ipsiversive movement, 

whereas MOs activity enhanced both. We validated this model by showing that it 

could capture psychometric data of the animal, predict choice variability on trials 

with identical stimulus conditions, and could be used to simulate the effect of 

optogenetic inactivation. 

The mechanistic model therefore constitutes a novel hypothesis for the 

contribution of cortical activity towards decision making. The model makes 

several testable predictions. For example, 1) unilateral inactivation of visual and 

secondary motor areas together should totally abolish behavioural sensitivity to 

the contralateral visual stimulus. 2) Optogenetic activation or microstimulation of 

visual areas should increase contraversive movements and suppress ipsiversive 

movements. 3) There should exist, subcortically, a neural signal which correlates 

with the log odds ratio of Left vs. NoGo choices and Right vs. NoGo choices across 

contrast conditions. 4) Neural activity which correlates with the log odds ratios 

should receive convergent input from visual and secondary motor cortex. 

6.1 Working model 

The results in this thesis point towards the following account of how decisions 

arise from cortical activity (Figure 6-1). Below are a set of statements about the 

functional processes underlying the decision, and underneath each statement are 

bullet points summarizing evidence consistent with each point. These statements 

are partly speculative, and the real neural process is likely not this simple. 
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Figure 6-1 Working model of neural basis of two-alternative unforced-
choice visual discrimination 

Visual stimuli (𝑐𝐿 and 𝑐𝑅) arrive in the contralateral hemisphere primary visual 
cortex (VISp). Red arrows represent stimulation (by direct excitatory input or 
disinhibition). Blue line with filled circle represents suppression. See text for 
explanation. 

 

Visual information arrives first in early visual cortex, which is relayed feed-

forward to two targets: frontal-motor areas and subcortical structures. 

• There are anatomical projections from VIS to MOs (Barthas and Kwan, 

2016), and from VIS to several subcortical structures including thalamus, 

striatum and midbrain (Hintiryan et al., 2016). 

• Widefield imaging and electrophysiology shows early feedforward 

activation of VIS followed by MOs on the same hemisphere. 

The subcortical structures implement a competitive process, integrating visual 

information from both sides. This may function to resolve on which side the 

contrast was higher, or instead which action is appropriate for the stimulus. 

• Optogenetic inactivation of VIS decreases contraversive choices and 

increases ipsiversive choices. This implies a subtractive downstream 

(subcortical) process which is affected by VIS inactivation. 
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• Subcortical structures like the superior colliculus have circuits 

implementing mutual inhibition (Knudsen, 2018; Lo and Wang, 2006). 

• Mechanistic model weights suggest that the decision variables are 

enhanced by the contraversive visual information and suppressed by 

ipsiversive visual information. 

The frontal-motor areas, by contrast, integrate visually-driven activity from 

the ipsilateral hemisphere’s visual cortex with activity in the contralateral 

frontal-motor area. This signal may be akin to a ‘go’ signal, or ‘urgency to 

move’, but is still lateralised to Left/Right stimuli and/or choices.  

• MOs receives excitatory projections from ipsilateral VIS and contralateral 

MOs (Barthas and Kwan, 2016). 

• Widefield imaging shows MOs is active soon after VIS on the hemisphere 

contralateral to the stimulus. By contrast, on the ipsilateral hemisphere, 

the first region active is MOs.  

This ‘go’ signal is relayed to subcortical structures, and if the signal is 

sufficiently strong, the subcortical structures trigger the motor plan.  

• There are anatomical projections from MOs to subcortical structures such 

as spinal cord, superior colliculus, striatum and thalamus (Barthas and 

Kwan, 2016; Z. V. Guo et al., 2017; Hintiryan et al., 2016). 

• Mechanistic model weights suggest that MOs activity enhances 

contraversive and ipsiversive (‘go’) movements via influence on 

downstream decision variables. 

If a motor plan is triggered, an efference copy or sensory feedback signal is 

relayed to primary motor and somatosensory regions, possibly for ongoing 

feedback control of forelimb movements. 

• Widefield imaging shows late bilateral activation of MOp and SSp. 

• Inactivation in these regions has no effect, therefore these signals may be 

related to feedback/efference copy. 

6.2 Future directions 

The results obtained from this work have contributed towards our understanding 

of the neural basis of decisions. However, there are several aspects of the work 

which are worth expanding on in the future. 
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6.2.1 Phenomenological model 

The current phenomenological model decomposes choices into choice biases and 

stimulus sensitivity. However, there are several additional states which have been 

shown to affect choice behaviour which future work could include.  

In many decision tasks such as ours, optimal behaviour (defined as behaviour 

which maximises the rate of reward) requires that subjects make choices based 

only on the stimulus of the current trial. However, subjects exhibit history 

effects, where the behaviour on a current trial is influenced by a stimulus or 

action state on the previous trial. In a visual detection task, mice exhibit a win-

stay lose-switch strategy where mice will tend to choose the action that was 

previously rewarded, or switch away from the action which was previously 

punished, independent of what the stimulus is (Busse et al., 2011). History effects 

have also been observed in monkeys, where perception of an oriented grating will 

be biased towards the angle of the previous stimulus (Fischer and Whitney, 2014). 

These perceptual biases have been attributed to midbrain dopaminergic circuits 

and basal ganglia (Lak et al., 2018), early visual cortex (John-Saaltink et al., 

2016) and parietal cortex (Akrami et al., 2018). The phenomenological model 

which we have developed could therefore be expanded to include measures of 

history-dependent effects. This is particularly important in cases where estimates 

of the behavioural biases and stimulus sensitivities would change if we had an 

improved estimate of history effects. The hierarchical framework used in our 

model may be useful as well, because history effects are often estimated either 

by fitting on each session individually (Busse et al., 2011), or by concatenating 

data across many sessions (Akrami et al., 2018). The former method is hindered 

by overfitting, and the latter ignores session-by-session and subject-by-subject 

variation. 

Another perceptual state is general arousal, which can be measured by proxy 

using the pupil diameter. In our task design, de-motivated mice will tend to 

perform NoGo more than Left or Right choices. Our current model can only 

attribute this to changes in bias, sensitivity and the non-linear contrast shape 

parameter. Motivation also interacts with history effects: human subjects with 

higher arousal states show stronger history effects (Urai et al., 2017). Therefore, 

the phenomenological model could be improved by incorporating both arousal and 

serial dependence. The model could also be improved by modelling parameter 

variation within a session. For example, as mice obtain water through the session, 
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satiety will increase gradually. This may lead to subsequent changes in behaviour 

over the course of a single session. The phenomenological model could therefore 

be improved by estimating these slow changes in behavioural state. 

6.2.2 Mechanistic model 

The mechanistic model can be expanded in several ways. For example, the 

mechanistic role of the downstream targets could be better defined. The model is 

currently missing a mechanistic account for how the value of the decision 

variables is transformed into the appropriate action, and what anatomical 

projections facilitate this process. Our model implies a softmax computation 

between the decision variables, as well as a probabilistic random draw to 

determine the action. Future work could therefore identify the neural 

mechanisms underlying these two stages. For example, as has been alluded to in 

the previous discussions, there are a few candidate regions (striatum, superior 

colliculus, etc) which could mediate this. Divisive normalization could implement 

something akin to a softmax computation (Carandini and Heeger, 2012), and 

lateral inhibition could implement winner-take-all dynamics to commit to one 

action (Maass, 2000). Investigating this will likely require experiments which 

record from several cortical and subcortical structures simultaneously, combined 

with careful manipulation of activity in specific regions and axonal projections. 

The highly complex recurrent connectivity may hinder interpretation, but this 

could be aided by theoretical models of circuit dynamics. 

Both the phenomenological and mechanistic models could be further expanded to 

incorporate dynamics. The current models account for the decisions based on free 

parameters and inputs which are fixed in time. However, in reality, the 

presentation of the stimulus is continuous in time, leading to repeated 

feedforward activation of the cortical areas discussed in the previous Chapters. 

Similarly, ongoing recurrent dynamics in cortical and subcortical structures will 

likely alter the impact of early vs late sensory information on decision circuitry, 

and these dynamics eventually resolve to generate a decision at a specific time. 

To explore this, these models can be modified to incorporate time explicitly. This 

can be achieved in the mechanistic model by setting the decision variable values 

to be the time-integral of weighted activity in visual and secondary motor areas. 

A further development would be to translate the model into a drift-diffusion 

model, which would make specific predictions for the reaction time associated 

with each choice. Several drift-diffusion models have been developed in previous 
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tasks involving two choices (Ratcliff et al., 2016), however it is currently unclear 

what the equivalent model would be for multi-alternative unforced-choice tasks. 

The mechanistic model could also be expanded to incorporate the state of 

individual cells within each cortical region. Currently the model is fit to widefield 

fluorescence, which is an estimate of the overall population rate. However 

individual cells within the population may contribute different roles, which may 

be averaged out in the population rate. For example, MOs neurons show diverse 

tuning towards task features in other tasks (Chen et al., 2017; Goard et al., 2016; 

Murakami et al., 2014), and therefore averaging over the neurons loses this 

information. This can be achieved by leveraging tools which can record 

electrophysiological activity in many neurons simultaneously (e.g. Jun et al., 

2017). Nevertheless, the success of the mechanistic model could be attributed to 

the fact that the population rate was a suitable measure of the response of the 

population to the visual stimuli, reflecting the fact that individual neurons showed 

similarly monotonic tuning to visual contrast. 

A further direction is to examine how these weights may vary with learning. 

Learning could take the form of learning the basic task rules, or instead learning 

to be more sensitive to stimuli after repeated exposure (i.e. perceptual learning). 

If the model is a good account of the mechanistic process underlying decisions, 

then it should be possible to understand learning in terms of changes to model 

weights or quantities. This question could be addressed by performing widefield 

calcium imaging in mice over the course of several weeks of training. The 

mechanistic model weights could be fit separately for each session, or instead a 

more sophisticated modelling approach could be used to model the drift in the 

parameters across sessions. Changes to the weights across training would suggest 

that learning occurs via the impact of cortex onto subcortical structures. 

Alternatively, if the weights do not change significantly with training, this would 

suggest the learning occurs either by changes to the cortical activity itself (e.g. 

Hua et al. (2010)) or through effects subcortically, after computation of the 

decision variables. 

6.2.3 Sub-optimal decision making 

The phenomenological and mechanistic models outlined in this thesis are based on 

a multinomial logistic framework, which is itself derived from normative economic 

theory. Normative models define behaviour which is optimal in some criterion, for 

example by maximizing reward rate. However, several studies have demonstrated 
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that observed decision behaviour violates optimality. For example, the 

independence of irrelevant alternatives (IIA) axiom states that the relative 

preference between any two alternatives is unaffected by changes in preference 

towards other alternatives (Luce, 1959). This assumption is consistently violated 

in tasks involving human and primate decisions (McNamara et al., 2014; Tversky 

and Kahneman, 1986). Taking inspiration from divisive normalization principles, 

Louie et al. (2013) showed that a model where the subjective value associated 

with each alternative is normalised by the total subjective utility across the 

alternatives was better able to account for IIA-violating human and monkey choice 

behaviour. Other examples of non-rational behaviour are loss aversion, probability 

distortion and intransitivity (Kahneman and Tversky, 1979). In loss aversion, when 

making decisions among alternatives that result in wins and losses, subjects will 

be disproportionately averse to losses. Probability distortion occurs when subjects 

over-estimate the frequency of low-probability events, and under-estimate the 

frequency of high-probability events. Intransitivity occurs when behaviour violates 

the principle that preferring A over B and B over C leads to preferring A over C. 

Tsetsos et al. (2016) developed a model of decisions where evidence for each 

alternative is noisy and must be accumulated over time. The authors found that 

behaviour which violates IIA and intransitivity could still be accounted for within a 

normative framework, by incorporating selective-gating of maximally-informative 

evidence samples (e.g. by attention). This shows that a normative account of 

decisions may still be applicable within a specific context. 

Alternatives to normative theories are descriptive theories, which attempt to 

parsimoniously describe decisions as they are, rather than prescribing optimal 

decision rules. One successful example is Prospect theory, which models 

behaviour descriptively, incorporating parameters for loss aversion and probability 

distortion (Kahneman and Tversky, 1979). Models of this type are harder to fit to 

behavioural data because the larger number of parameters introduce redundancy 

and make the model underdetermined. However, with the combination of 

behavioural modelling and neural manipulations demonstrated in this thesis, it 

may be possible to determine the neural basis of non-rational behaviour and other 

cognitive properties observed in mice and humans. 

6.3 Closing remarks 

Perceptual decision making requires the coordinated interplay of sensory 

information, internal goals, and motor output. Accordingly, decision behaviour 
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recruits many brain areas mediating these three types of function. Our results 

shine light on the neocortical contribution towards this complex process. 

However, further work will be required to elucidate how the cortical and 

subcortical regions work together with the body and environment to achieve the 

behavioural goals.  
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