UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Mapping perceptual decisions to cortical regions

Zatka Haas, Peter N.; (2018) Mapping perceptual decisions to cortical regions. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of THESIS_withCorrections.pdf]
Preview
Text
THESIS_withCorrections.pdf - Accepted Version

Download (5MB) | Preview

Abstract

Perceptual decisions involve a complex interaction of several brain areas. The neocortex is thought to play a major role in this process, but it is unclear which cortical areas are causally involved, and what their individual roles are. To explore this problem, we trained head-fixed mice to perform a two-alternative unforced-choice visual discrimination task. Mice were rewarded with water for turning a wheel to indicate which of two stimuli had higher contrast, or for holding the wheel still if no stimuli were present. We developed a hierarchical Bayesian model of the choice behaviour and used this to quantify mouse behaviour in terms of perceptual states such as choice biases and stimulus sensitivities. We also used this model framework to quantify how these perceptual states vary across individual mice and across sessions. Using widefield calcium imaging, we found robust sequential activation in primary visual, secondary visual, secondary motor, primary motor and somatosensory cortices in response to stimulus presentation. Optogenetic inactivation revealed that only the first two regions: visual (VIS) and secondary motor (MOs) areas, were causally relevant. VIS inactivation was effective earlier than MOs inactivation, which suggests a sequential causal role for these regions. We observed a surprising effect of VIS inactivation which could only be explained by a downstream subtractive process which integrates information between the two hemispheres. We tested this idea by developing a mechanistic model which was fit to widefield fluorescence data, using the same Bayesian hierarchical framework used earlier. In this model, VIS activity enhances the decision variable associated with contraversive movements and suppresses the decision variable associated with ipsiversive movements. By contrast, activity in MOs enhances both. This model could predict average psychometric behaviour, trial-by-trial variation in choices within a stimulus condition, as well as simulate the effect of optogenetic inactivation. This thesis therefore shines light on the cortical contributions towards visual discrimination behaviour. This work has implications for the neural processes underlying perceptual decision making more broadly.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Mapping perceptual decisions to cortical regions
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2019. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
URI: https://discovery.ucl.ac.uk/id/eprint/10064650
Downloads since deposit
152Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item