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TOM ILMANEN, ANDRÉ NEVES, AND FELIX SCHULZE

Abstract. We prove the existence of the flow by curvature of regular
planar networks starting from an initial network which is non-regular.
The proof relies on a monotonicity formula for expanding solutions and
a local regularity result for the network flow in the spirit of B. White’s
local regularity theorem for mean curvature flow. We also show a pseu-
dolocality theorem for mean curvature flow in any codimension, assum-
ing only that the initial submanifold can be locally written as a graph
with sufficiently small Lipschitz constant.

1. Introduction

A natural generalization of the flow of smooth hypersurfaces by mean cur-
vature is the flow of surface clusters, where three hypersurfaces can meet
under equal angles, forming a liquid edge. These edges then again can meet
on lower dimensional strata. The simplest such configuration, which already
includes many aspects of the situation in higher dimensions, is the flow by
curvature of a network of curves in the plane.

In brief, we consider a planar network to be a finite union of embedded curves
of non-zero length, which only intersect at their endpoints. We require that
at each such point, called a multiple point, a finite number, but at least
two endpoints come together. We call a network regular if at each multiple
point three ends of segments meet, forming angles of 2π/3. Without this
condition, but requiring that the segments have mutually distinct exterior
unit tangents at each multiple point, we call such a network non-regular.
A solution to the planar network flow is a smooth family of regular, planar
networks, such that the normal component of the speed under the evolution
at every point on each segment is given by the curvature vector of the
segment at the point. For a more precise definition see section 2.

Since the evolution by curvature of a regular network is the gradient flow of
the length functional it is natural to assume that at regular times only triple
points are present and the angles formed by the segments are balanced. This
is supported by the fact that only the balanced configuration with three seg-
ments meeting infinitesimally minimizes length around each multiple point,
if one allows as competitors connected networks with additional segments.
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After the pioneering work of Brakke [3], whose definition of moving varifolds
includes the evolution of networks described here, and the fundamental re-
sults on curve shortening flow of embedded closed curves by Gage/Hamilton
and Grayson [9, 10], the first thorough analytical treatment of the flow of
networks was undertaken by Mantegazza, Novaga and Tortorelli [15]. Aside
from establishing short time existence of the network flow starting from a
regular initial network, their focus is mainly on the evolution of three arcs
with three fixed endpoints, meeting at one interior triple point. In this
special setting they obtain long time existence and convergence under cer-
tain hypotheses. In a recent preprint by Magni, Mantegazza and Novaga
[13] it is shown that these hypotheses are actually fulfilled, provided none
of the arcs contracts to zero length. Existence and convergence properties
of the network flow in other special configurations have been studied in
[2, 11, 16, 22, 21].

It is conjectured that at a singular time of the flow no tangent flow which is
a static line of higher multiplicity can develop. An immediate consequence
of this conjecture is that at any singular time, the length of one of the
segments shrinks to zero, and at least two triple junctions collide. It thus
can be expected that at the singular time a non-regular network forms.

In the present paper we show that starting from a non-regular initial net-
work, a smooth evolution of regular networks exists. In this evolution it
might happen that out of non-regular initial multiple points new segments
are created.

Theorem 1.1. Let γ0 be a non-regular, connected planar network with
bounded curvature as in Definition 2.1. Then there exists T > 0 and a
smooth connected solution of the planar network flow of regular networks
(γt)0<t<T such that γt → γ0 in the varifold topology as t ↘ 0. Away from
the non-regular multiple points of γ0 the convergence is in C∞loc. Furthermore,
there exists a constant C > 0 such that

sup
γt
|k| ≤ C√

t

and the length of the shortest segment of γt is bounded from below by C−1
√
t.

Remarks 1.2. i) The proof uses a local monotonicity formula, which only
works if the network is locally tree-like, i.e. contains locally no loops. In
the proof we glue small tree-like self-similarly expanding networks into γ0

around non-regular multiple points. These tree-like, connected, self-similarly
expanding networks always exist. Nevertheless, there are also non tree-like
self-similarly expanding networks, which would correspond to the creation
of new bounded regions in the complement of the network out of non-regular
multiple points. Our proof would not work gluing in this type of expanders.

ii) The proof of this result presented here yields, only with minor modifica-
tions, also the corresponding statement for non-regular initial networks with
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bounded curvature and fixed endpoints.

iii) Using a relaxation scheme via the Allen-Cahn equation Sáez [20] has
shown that regular, smooth solutions starting from a non-regular initial
network, which are tree-like, and satisfy the estimates on the curvature and
the length of the shortest segment as above, are unique in their topological
class. This yields a corresponding uniqueness statement for our constructed
solutions in this case.

The method of proof relies on a monotone integral quantity, which implies
that self-similarly expanding solutions are attractive under the flow. This
monotone integral quantity has already been applied by the second author
in the setting of Lagrangian Mean Curvature Flow in several places, see
[17, 18, 19]. The second main ingredient is a local regularity result in the
spirit of White’s local regularity theorem for smooth mean curvature flow
[26].

In the statement of the following local regularity result, ΘS1 is the Gaussian
density of the self-similarly shrinking circle. Note that ΘS1 =

√
(2π/e) >

3/2. The quantity Θ(x, t, r) is the Gaussian density at scale r > 0, centered
at the point (x, t). For details and the definition of proper flows, see section
8.

Theorem 1.3. Let (γt)t∈[0,T ) be a smooth, proper and regular planar net-

work flow in Bρ(x0) × (t0 − ρ2, t0) which reaches the point x0 at time t0 ∈
(0, T ]. Let 0 < ε, η < 1. There exist C = C(ε, η) such that if

(1.1) Θ(x, t, r) ≤ ΘS1 − ε

for all (x, t) ∈ Bρ(x0)× (t0 − ρ2, t0) and 0 < r < ηρ for some η > 0, where
(1 + η)ρ2 ≤ t0 < T , then

|k|2(x, t) ≤ C

σ2ρ2

for (x, t) ∈
(
γt ∩B(1−σ)ρ(x0)

)
× (t0 − (1− σ)2ρ2, t0) and all σ ∈ (0, 1).

Remarks 1.4. i) One can furthermore show that there is a constant κ =
κ(ε, η) > 0 such that the length of each segment which intersectsB(1−σ)ρ(x0)×
(t0−(1−σ)2ρ2, t0) is bounded from below by κ·σρ. This implies correspond-
ing scaling invariant estimates on all higher derivatives of the curvature.

ii) We also prove a corresponding result if the evolving network is locally
tree-like, i.e. does not contain any closed loops of length less than δ > 0 and
the Gaussian density ratios are bounded from above by 2− ε.
iii) Note that the result implies that any regular smooth flow, which is
sufficiently close in measure to the static configuration consisting of three
half-lines meeting under equal angles, is smoothly close. Recently Tonegawa
and Wickramasekera [24] have shown that this is also true for integer Brakke
flows.
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To get sufficiently good local control away from the multiple junctions we
also show the following pseudolocality theorem. Since it also holds for mean
curvature flow, we formulate it in full generality. A similar estimate assum-
ing initial control on the second fundamental form has been shown by Chen
and Yin [5] and assuming control on up to fourth derivatives by Brendle and
Huisken [4].

In the following, for any point x ∈ Rn+k we write x = (x̂, x̃) where x̂ is the
orthogonal projection of x on the Rn-factor and x̃ the orthogonal projection
on the Rk factor. We define the cylinder CR(x0) ⊂ Rn+k by

Cr(x) = {x ∈ Rn+k | |x̂− x̂0| < r, |x̃− x̃0| < r} .

Furthermore, we write Bn
r (x0) = {(x̂, x̃0) ∈ Rn+k |x̂− x̂0| < r}.

Theorem 1.5. Let (Mn
t )0≤t<T be a smooth mean curvature flow of embedded

n-dimensional submanifolds in Rn+k with area ratios bounded by D. Then
for any η > 0, there exists ε, δ > 0, depending only on n, k, η,D, such that if
x0 ∈M0 and M0∩C1(x0) can be written as graph(u), where u : Bn(x0)→ Rk
with Lipschitz constant less than ε, then

Mt ∩ Cδ(x0) t ∈ [0, δ2) ∩ [0, T )

is a graph over Bn
δ (x0) with Lipschitz constant less than η and height bounded

by ηδ.

Remarks 1.6. i) In codimension one the local estimates of Ecker and Huisken
[8] yield that a local bound on the second fundamental form or higher deriva-
tives thereof on M0 ∩Cδ(x0) imply a corresponding bound in Mt ∩Cδ/2(x0)

for t ∈ [0, δ2/4) ∩ [0, T ).

ii) By localizing Huisken’s monotonicity formula, see for example [7] or [25],
the result is still true for local mean curvature flows without an assumption
on the area ratios.

iii) The proof of this result uses the local regularity theorem of White [26].
By replacing this with Brakke’s local regularity theorem for Brakke flows
[3], see also [12, 23], the above statement is still true if one only assumes
initially that (Mn

t )0≤t<T is an integer Brakke flow, provided that the flow
has no sudden mass loss in C1(x0).

Proof outline. The cone-like structure at the non-regular multiple points
suggests that the regular evolution out of such a point should be close to a
self-similarly expanding solution. Given such a non-regular initial network γ0

we glue in, around each non-regular multiple point, a tree-like, self-similarly
expanding, regular solution at scale s1/2 to obtain an approximating network
γs0. Since the curvature of γs0 is of the scale s−1/2 and the shortest segment

of length proportional to s1/2 we obtain from standard short-time existence
a solution γst only up to a time proportional to s.
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To show that these solutions exist for a time T0 > 0 independent of s we
use the local monotonicity formula to show that the solutions γst are close in
an integrated sense to a self-similarly expanding solution around each non-
regular multiple point. The uniqueness of self-similarly solutions in their
’topological class’, together with a compactness argument then yields that
there are many times such that γst is close to the corresponding self-similarly
expanding solution in C1,α around each of the non-regular multiple points.
This in turn gives that the Gaussian density ratios on the appropriate scale
are less than 3/2 + ε. Theorem 1.3 then gives estimates on the curvature
which are independent of s, together with lower bounds on the length of the
shortest segment which yields existence up to a time T0, independent of s.
Passing to the limit s→ 0 we obtain the desired solution.

The proof of the local regularity result, Theorem 1.3, follows the proof of
White [26] and the alternative proof Ecker [7]. To make this proof work
in the case of networks, in a first part we show that the only self-similarly
shrinking networks with Gaussian density less than ΘS1 are a constant line
through the origin, or three half-lines meeting at equal angles at the origin.
The second part is that we show that any smooth network flow which is
weakly close to three half-lines meeting at equal angles is also smoothly
close. To do this we localize the interior integral estimates in [15].

Structure of the paper. In section 2 we give the basic definitions. The
monotonicity formula for expanding solutions is presented in section 3. In
section 4 we give a proof for the uniqueness of self-expanders in their topo-
logical class, together with a lemma showing that networks which are in a
weak integral sense close to the self-expander are actually C1,α-close. Stat-
ing the necessary conditions for an approximating sequence γs0 we show the
estimates on the Gaussian density ratios in section 5. In section 6 we give
the omitted proofs of some technical lemmas from section 5. Following this,
we show that we can construct such an approximating sequence by gluing
in a self-expander at the right scale into γ0 in section 7 and give the proof
of Theorem 1.1.

In section 8 we first localize the higher order integral estimates from [15]
and then investigate tangent flows to the network flow and self-similarly
shrinking solutions. We complete this section by proving the local regularity
result, Theorem 1.3.

In section 9 we prove the pseudolocality result Theorem 1.5.

We finish the paper with an appendix containing several helpful technical
results.

Acknowledgements: The third author is grateful to R. Mazzeo and M.
Sáez for many helpful discussions.
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2. Definitions and set-up

Definition 2.1 (Regular and non-regular network). We define a regular,
planar network γ as follows.

i) There is a finite number of points S = {ai}ni=1 on γ such that γ \
S is a finite union of smooth, embedded curves of positive length
(branches).

ii) If σ is a non-compact branch of γ then it approaches a half-line P
at infinity, i.e.,

lim
R→∞

dist(σ \BR(0), P \BR(0)) = 0.

We will furthermore assume that the curvature of such a non-compact
branch is uniformly bounded.

iii) Each point in S, called a triple point, is the endpoint of three curves
{σj}3j=1 satisfying the following condition: If Tj denotes the exterior
unit tangent vector induced by each σj , then

T1 + T2 + T3 = 0.

We call a network non-regular if each point in S is an endpoint of at least two
line segments {σj}kj=1 k ≥ 2, and the induced exterior unit tangent vectors
are mutually distinct

Ti 6= Tj for i 6= j .

We will call such a point a non-regular multiple point.

Consider a smooth family of regular, planar networks (γt)0≤t<T , i.e. γt2 is
a smooth deformation of γt1 . This implies that the number of triple points
in St = {ai(t)}ni=1 stays fixed. So we can assume that there exists a smooth
family of regular parametrizations (Nt)0≤t<T of the evolving network. We
will call (γt)0≤t<T a solution to the network flow if the deformation vector

dN

dt
= X satisfies X⊥ = ~k

at each non-singular point.

Remarks 2.2. i) As a consequence, using the above notation, at each triple
point

3∑
j=1

〈~kj , JTj〉 = 〈X, JT1 + JT2 + JT3〉 = 0,

where J is the complex structure.

ii) Note that for a network without triple points, i.e. a union of curves, this
is curve shortening flow.

iii) A network flow still satisfies the avoidance principle when comparing to
smooth solutions of curve shortening flow. Comparing with big shrinking
circles it is easy to see that any half-line P at infinity will remain fixed under
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the flow.

iv) Note that ii) in Definition 2.1 implies that such a network has bounded
length ratios, i.e. there exists D > 0 such that

H1(γ ∩Br(0)) ≤ Dr .

v) By the work of Mantegazza, Novaga and Tortorelli [15, 14] it is known
that for a given smooth, regular, planar network a smooth solution to the
network flow exists, at least for a short time, provided it is compact with
possible fixed endpoints. It is shown there that the solution exists as long
as the curvature of the evolving network stays bounded, and none of the
lengths of the branches goes to zero. This statement can be easily extended
to the case of regular networks with non-compact branches as in Definition
2.1, see the beginning of section 7.

vi) It would also be possible to study networks with fixed or moving end-
points. To avoid the non-conceptual, but technical difficulties arising from
the contribution of the endpoints, we do not consider this case.

Definition 2.3. Let χ be a regular network with finitely many triple points.
We say that χ is of class Ck,α where k ≥ 1, 0 ≤ α ≤ 1 if there exists δ > 0
and a collection of points (pi) ⊂ χ, either finitely or countably many, such
that

a) the collection of balls (B3δ/4(pi)) covers χ,
b) each ball Bδ(pi) contains at most one triple point. If it contains no

triple point, then B3δ/4(pi) ∩ χ can be written as a graph over its

affine tangent line at pi, where the graph function has Ck,α-norm
less than one.

c) If Bδ(pi) contains a triple point, then pi is the triple point, and
χ∩Bδ(pi) consists of three curves meeting at pi. Each of the curves
in B3δ/4(pi) can be written as a graph over the corresponding affine

tangent half-line at pi where the graph function has Ck,α-norm less
than one.

We say that another regular network σ is ε-close to χ in Ck,α, if σ is contained
in the δ/2-neighborhood of χ and the triple junctions of σ are in one to one
correspondence with the triple junctions of χ, with the triple junctions of σ
being in a δ/2-neighborhood of the triple junctions of χ. Furthermore, in
case b) in the above local graph representation, σ∩B3δ/4(pi) can be written
as a graph as well, where the difference of the graph functions is less than
ε in Ck,α. In case c) we assume that there exist unit vectors Ni such that
σ ∩ B3δ/4(pi) can be written as χ + uiNi, where the ui are defined on a
connected sub-domain of Bδ(pi) ∩ χ and continuous. Restricted to each of
the three local branches of χ we assume that the Ck,α-norm of ui is less than
ε with respect to arc-length parametrization on each branch.
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3. Monotonicity formulas

Let θ̃t be the angle that the tangent vector of γt makes with the x-axis. This
is a well defined function up to multiple of π away from the triple junction
points. Because at each of these points the angle jumps by 2π/3, there is a

well defined function θt which is continuous on γt and coincides with θ̃t up

to a multiple of π/3. An important observation is that ~k = J∇θt, where J
is the complex structure.

Set λ = xdy − ydx. We assume that the planar network γt has no loops, so
we can define βt to be such that

dβt = λγt .

Note that βt is Lipschitz because its gradient is bounded linearly and thus
βt grows at most quadratically.

Finally, for any x0 ∈ R2 and t0, define for t < t0 the backwards heat kernel
centered at (x0, t0):

(3.1) ρx0,t0(x, t) =
1√

4π(t0 − t)
e
− |x−x0|

2

4(t0−t) .

Lemma 3.1. The following evolution equations hold away from the triple
junction points:

dθt
dt

= ∆θt + 〈∇θt, X〉;(i)

dβt
dt

= ∆βt + 〈∇βt, X〉 − 2θt;(ii)

dρx0,t0
dt

= −∆ρx0,t0 + 〈∇ρx0,t0 , X〉

−
∣∣∣∣~k +

(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ρx0,t0 + |~k|2ρx0,t0 .
(iii)

Proof. The derivation of these equations proceeds as in the smooth case
except that now we have a tangential motion that needs to be taken into
account. For this reason we will only show the second formula.

The family of functions βt can be chosen so that its time derivative is con-
tinuous. Then, denoting by LX the Lie derivative in the X direction, we
obtain from Cartan’s formula

d(dβt/dt) = LXλ = d(Xyλ) +Xydλ = d(Xyλ)− 2dθt,

where in the last equality we use the fact that

(Xydλ)γt = (X⊥ydλ)γt = (J∇θtydλ)γt = −2dθt.

Therefore

d(dβt/dt+ 2θt −Xyλ) = 0.
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Note that the function which has differential zero is continuous on γt and
so we can add a time dependent constant to each βt to obtain that

dβt
dt

= 〈X, Jx〉 − 2θt.

The desired formula follows from 〈X, Jx〉 = ∆βt + 〈X,∇βt〉. �

Lemma 3.2. Let f be in C2(R). The following identities hold:

d

dt

∫
γt

f(θt)ρx0,t0 dµ = −
∫
γt

f ′′(θt)|~k|2ρx0,t0 dµ

−
∫
γt

f(θt)

∣∣∣∣~k +
(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ρx0,t0 dµ.(i)

d

dt

∫
γt

f(βt + 2tθt)ρx0,t0 dµ =

−
∫
γt

f ′′(βt + 2tθt)|x⊥ − 2t~k|2ρx0,t0 dµ

−
∫
γt

f(βt + 2tθt)

∣∣∣∣~k +
(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ρx0,t0 dµ.
(ii)

Proof. We prove the second identity. Set αt = βt + 2tθt. Then

df(αt)

dt
= ∆f(αt)− f ′′(αt)|∇αt|2 + 〈∇f(αt), X〉

and so

d

dt

∫
γt

f(αt)ρx0,t0 dµ =

∫
γt

ρx0,t0∆f(αt)− f(αt)∆ρx0,t0 dµ

+

∫
γt

div(X>f(αt)ρx0,t0)dµ−
∫
γt

f ′′(αt)|x⊥ − 2t~k|2ρx0,t0 dµ

−
∫
γt

f(αt)

∣∣∣∣~k +
(x− x0)⊥

2(t0 − t)

∣∣∣∣2 ρx0,t0dµ.
We need to show that the first two integral terms vanish. Decompose γt into
k smooth curves {σj}kj=1. Then, we obtain from Green’s formulas∫

γt

ρx0,t0∆f(αt)− f(αt)∆ρx0,t0 dµ

=

k∑
j=1

∫
∂σj

ρx0,t0〈∇f(αt), ν〉 − f(αt)〈∇ρx0,t0 , ν〉 dµ,

where ν is the exterior unit normal to each σj . It is straightforward to see
that if σj is non-compact then the boundary term at “infinity” vanishes. Let
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x1 be a triple junction point meeting three line segments, which we relabel
as σ1, σ2, and σ3. Then, at the point x1

3∑
i=1

〈∇f(αt), νi〉 =
3∑
i=1

f ′〈Jx1 − 2tJ~ki, νi〉

= f ′〈Jx1 − 2tJX, ν1 + ν2 + ν3〉 = 0.

The same argument shows that

3∑
i=1

〈∇ρx0,t0 , νi〉 = 0

and so ∫
γt

ρx0,t0∆f(αt)− f(αt)∆ρx0,t0 dµ = 0.

For the second integral term we use again the decomposition∫
γt

div(X>f(αt)ρx0,t0) dµ =

k∑
j=1

∫
σj

div(X>f(αt)ρx0,t0) dµ

and one can argue as before to conclude that∫
γt

div(X>f(αt)ρx0,t0) dµ = 0.

�

In the applications later, the evolving network will only be locally tree-like,
i.e. only locally without loops. To apply the above monotonicity formula
we have to localize it. We assume that (γt)0≤t<T is a smooth solution to
the network flow such that γt ∩ B4 does not contain any closed loop for all
0 ≤ t < T . As before, we define β locally on γt ∩B4.

Let ϕ be a smooth cut-off function such that ϕ = 1 on B2, ϕ = 0 on R2 \B3

and 0 ≤ ϕ ≤ 1.

Lemma 3.3. The following estimate holds:

d

dt

∫
γt

ϕ|βt + 2tθt|2ρx0,t0 dµ ≤ −
∫
γt

ϕ|x⊥ − 2t~k|2ρx0,t0dµ

+ C

∫
γt∩(B3\B2)

|βt + 2tθt|2ρx0,t0 dµ .

Proof. We have( d
dt
−∆γt

)
ϕ = −∆R2ϕ+D2ϕ(ν, ν) + 〈∇ϕ,XT 〉

≤ CχB3\B2
+ 〈∇ϕ,XT 〉 .
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As in the proof of Lemma 3.2 we set αt = βt + 2tθt. Then( d
dt
−∆

)
ϕα2

t ≤ −2〈∇ϕ,∇α2
t 〉 − 2ϕ|∇αt|2 + 〈∇(ϕα2

t ), X
T 〉

+ CχB3\B2
α2
t

≤ −ϕ|∇αt|2 + 〈∇(ϕα2
t ), X

T 〉+ CχB3\B2
α2
t ,

where we estimated

|〈∇ϕ,∇α2
t 〉| ≤ 2|Dϕ||αt||∇αt| ≤ 4

|Dϕ|2

ϕ
α2
t +

1

2
ϕ|∇αt|2

≤ CχB3\B2
α2
t +

1

2
ϕ|∇αt|2 .

The rest follows as in the proof of the previous lemma. �

4. Uniqueness of self-expanders

Consider the negatively curved metric

g = exp(|x|2)(dx2
1 + dx2

2).

A network ψ is said to be a geodesic for g if, when parametrized propor-
tionally to arc-length, is a critical point for the length functional when re-
stricted to variations with compact support. The network is said to be a

self-expander if ~k = ψ⊥ on each branch and we say that the self-expander is
regular if it has only triple junctions and the angles at each triple junction
are 2π/3.

Given a function u or a curve ψ, we denote by u′, u′′, ψ′, and ψ′′, the corre-
spondent derivatives with respect to the space parameter.

In this section we show that regular self-expanders are unique in their topo-
logical class.

Lemma 4.1 (Ilmanen and White). A network ψ is a regular self-expander
if and only if it is a geodesic for g.

Proof. Let (ψs)0≤s≤ε be a compactly supported continuous deformation of
ψ which is a C1 deformation when restricted to each branch. Each network
ψs has only triple junctions. If we set

X =
dψs
ds

and T =
ψ′s
|ψ′s|

then, assuming parametrization proportional to arc-length, we have for each
branch

(4.1)
d

ds

∫ b

a
(g(ψ′s, ψ

′
s))

1/2dt =
d

ds

∫ b

a
exp(|x|2/2)|ψ′s|dt

=
(
〈T,X〉 exp(|x|2/2)

]b
a

+

∫ b

a
〈x⊥ − ~k,X〉|ψ′s| exp(|x|2/2)dt.
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If ψ is a geodesic then by choosing variations X compactly supported on each

branch we obtain that indeed x⊥ = ~k on each branch. Choosing variations
supported on a neighborhood of each triple junction we obtain that

T1 + T2 + T3 = 0,

where T1, T2, T3 denote the outward unit tangent vectors at each triple junc-
tion and so ψ is a regular self-expander. Likewise, if ψ is a regular self-
expander, it is simple to see that it is a critical point for the length func-
tional. �

Definition 4.2. We say that a self-expander ψ has an end asymptotic to a
half-line L = {xeiα |x ≥ 0} if, for R large enough, a connected component
ψ̄ of ψ \BR can be parametrized as

ψ̄ = {xeiα + u(x)ei(α+π/2) | for all x ≥ R}, where lim
x→∞

u(x) = 0.

Lemma 4.3. Let P be a union of half-lines meeting at the origin and ψ a
self-expander for which

lim
r→∞

dist(ψ \Br, P ) = 0.

Then ψ is asymptotic to P in the sense of Definition 4.2. Moreover, the
decay of u for x ≥ R is given by

|u| ≤ C1e
−x2/2, |u′| ≤ C1x

−1e−x
2/2, |u′′| ≤ C2e

−x2/2,

and
|u(3)| ≤ C3xe

−x2/2, |u(4)| ≤ C4x
2e−x

2/2,

where each Ci depends only on R, u(R) and u′(R).

Proof. In [22] it is shown that each asymptotic end of a self-expander is
asymptotic to a half-line. Even more the graph function u decays exponen-
tially. Since ψ is a self-expander the function u satisfies

u′′ = (1 + (u′)2)(u− xu′).
By possibly changing orientation, a simple application of the maximum prin-
ciple (see [22]) implies that we can assume without loss of generality that
u > 0 and u′ < 0, if the self expander is not identical with the half-line. The
function v = u− xu′ is strictly positive and satisfies

v′ = −x(1 + (u′)2)v < −xv .
Integrating this inequality yields the first two estimates. Inserting that
into the equation for u′′ we get the third estimate and the fourth and fifth
estimates come from computing u(3), u(4), and using the previous derived
estimates. �

We say that two self-expanders ψ0 and ψ1 are asymptotic to each other if
their ends are asymptotic to the same half-lines. In this setting, we say they
have the same topological class if there is a smooth family of maps

Ft : ψ0 −→ R2, 0 ≤ t ≤ 1
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such that F0 is the identity, F1(ψ0) = ψ1, the distance between any two
triple junctions of Ft(ψ0) is uniformly bounded below, and

lim
r→∞

sup
{
|dFt|Ft(x) |x ∈ γ0 \Br(0)

}
= 0 for every 0 ≤ t ≤ 1.

Theorem 4.4. If ψ0 and ψ1 are two regular self-expanders asymptotic to
each other and in the same topological class, then they coincide.

Proof. Let (x0
i )i∈A and (x1

i )i∈A denote the triple junctions (finite set) of ψ0

and ψ1 respectively. Because the networks are in the same topological class,
we can rearrange the elements of (x0

i )i∈A so that each x0
i is connected to x1

i
by the existing deformation of ψ0 into ψ1. Denote by (xsi )0≤s≤1 the unique
geodesic connecting these points.

For each s we consider the network ψs such that if x0
i is connected to x0

j

by a geodesic, then xsi is connected to xsj through a geodesic as well. To
handle the non-compact branches we proceed as follows. Let P denote a
common asymptotic half-line to ψ0 and ψ1, which means that there are
geodesics γ0 ⊂ ψ0, γ1 ⊂ ψ1 asymptotic to P at infinity and starting at some
points x0

i and x1
i respectively. Define γs to be the unique geodesic starting

at xsi and asymptotic to P . Because these are geodesics with respect to a
negatively curved metric it is easy to see that if γs intersects γs′ then they
must coincide.

Hence, we have constructed a smooth family of triple-junction networks
(ψs)0≤s≤1 connecting ψ0 and ψ1 and such that:

i) The triple-junctions (xsi )i∈A of ψs connect the triple-junctions of ψ0

to the ones of ψ1 and, for each index i fixed, the path (xsi )0≤s≤1 is a
geodesic with respect to the metric g.

ii) Each branch of ψs is a geodesic for g.

iii) There is R large enough so that ψs \ BR(0) has N connected com-
ponents, each asymptotic to an half-line Lj , j = 1, . . . , N . We can
find angles αj such that each end of ψs becomes parametrized as

ψs(x) = xeiαj + uj,s(x)ei(αj+π/2) for all x ≥ R.
This follows from Lemma 4.3.

iv) The vector

X =
d

ds
ψs

is continuous, C1 when restricted to each branch, and

X = O(e−r
2/2), ∇X = O(r−1e−r

2/2).

Moreover

αj,s =
duj,s
ds
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satisfies

|αj,s| = O(e−x
2/2) |α′j,s| = O(x−1e−x

2/2).

It is enough to provide justification for the second set of estimates.
For ease of notation we omit the indexes s and j on αj,s and uj,s.
We have

α′′ = (1 + (u′)2)(α− xα′) + 2u′α′(u− xu′).
We can assume without loss of generality that α(R) ≥ 0. Moreover,
it follows from our construction that

lim
x→∞

|α(x)|+ |α′(x)| = 0.

A simple application of the maximum principle shows that α can not
have negative local minimum or a positive local maximum. Hence,
α ≥ 0 and α′ ≤ 0. The function β = α− xα′ satisfies

β′ = −x(1 + (u′)2)β − 2xu′α′(u− xu′) ≤ −xβ
because u′(u − xu′) ≤ 0 (see proof of Lemma 4.3), and integration
of this inequality implies property iv).

Denote by L the length function with respect to the metric g and consider
the family of functions

Ft(s) = L(ψs ∩B2R(0)) +
N∑
j=1

∫ t

2R
exp((x2 + u2

j,s)/2)
√

1 + (u′j,s)
2dx

−N
∫ t

2R
exp(x2/2)dx.

The decays given in Lemma 4.3 imply the existence of a constant C such
that for every t ≤ t′

(4.2) ‖Ft − Ft′‖C3 ≤ C exp(−t),
and so when t tends to infinity Ft converges uniformly in C2 to a function F .
Furthermore, if s = 0 or s = 1, we have from combining (4.1) with property
iv) that

lim
t→∞

dFt
ds

(s) = 0,

and thus F has a critical point when s = 0 or s = 1.

A standard computation shows that on each compact branch we have (as-
suming parametrization proportional to arc-length)

d2

ds2

∫ b

a
(g(ψ′s, ψ

′
s))

1/2dt =

∫ b

a
|ψ′s|−1(|(∇ψ′sX)⊥|2

− Rm(X,ψ′s, ψ
′
s, X))dt+

(
|ψ′s|−1g(∇XX,ψ′s)

]b
a

=

∫ b

a
|ψ′s|−1(|(∇ψ′sX)⊥|2 − Rm(X,ψ′s, ψ

′
s, X))dt,
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where we used property i) on the second equality and all the geometric quan-
tities are computed with respect to the metric g. Combining this identity
with property iv) we have

d2Ft
ds2

=

∫
ψs∩Bt(0)

|ψ′s|−2(|(∇ψ′sX)⊥|2 − Rm(X,ψ′s, ψ
′
s, X))dl +O(e−t).

The Gaussian curvature of g is equal to −e−|x|2 and so the integrals above
are bounded independently of t. Therefore, we obtain from (4.2) that

d2F

ds2
(s) =

∫
ψs

|ψ′s|−2(|(∇ψ′sX)⊥|2 − Rm(X,ψ′s, ψ
′
s, X))dl ≥ 0

where the last inequality comes form the fact that g has strictly negative
Gaussian curvature. As a result, F is a convex function with two critical
points and hence identically constant. The formula above implies that X
must be a constant multiple of ψ′s and thus it must vanish at all triple-
junction points. The fact that X is continuous implies that X is identically
zero and this proves the desired result. �

Before using this Theorem to prove a compactness result we need one more
definition.

Definition 4.5. Two regular networks σ0 and σ1 are in the same (ν, η, r, R,C)
topological class if there is a smooth family (σ̂t)0≤t≤1 of networks, with pos-
sible boundary points, such that for every 0 ≤ t ≤ 1

a) the distance between any two triple junctions of σ̂t is bigger or equal
to η;

b) all the triple junctions of σ̂t are contained in Br(0) and the boundary
points of σ̂t are contained outside BR(0), with r ≤ R;

c) For every R ≥ s ≥ r

dist(σ̂t \Bs, P ) ≤ ν + C exp(−s2/C);

d) σ0 ∩BR ⊆ σ̂0 and σ1 ∩BR ⊆ σ̂1.

We can now state the following corollary.

Corollary 4.6. Let ψ be a regular self-expander with ends asymptotic to a
union of half-lines P . Fix r1, η, C1, D1, α < 1/2, and R.

For every ε, there are R1 ≥ R, β, and ν, all depending on ε, r1, η, C1, D1,
α, P, R,, so that if σ is a regular network that satisfies:

i)

H1(σ ∩Br(x)) ≤ D1r for all x and r;

ii) ∫
σ∩BR1

(0)
|~k − x⊥|2dH1 ≤ β;



16 On short time existence for the Planar Network Flow

iii) σ and ψ are in the same (ν, η1, r1, R1, C1) topological class

then σ must be ε-close in C1,α(BR1(0)) to ψ.

Proof. We start by finding R1 ≥ R and ν so that if σ is a regular self-
expander in the same (2ν, η/2, r1 + 1, R1− 1, C1) topological class as ψ then
σ must be ε/2-close in C1,α(BR1(0)) to ψ.

Suppose not. Then we can find a sequence of self-expanders σi with Ri
tending to infinity, νi tending to zero, and such that σi is not ε/2-close
in C1,α(BRi(0)) to ψ. Let bi denote a smooth branch of σi that connects
σi∩{|x| = Ri} to one of the triple junctions inside B2r1(0). Because of c) and
Lemma 4.3, there is some r2 such that, for every i large enough, bi \Br2(0)
can be written as a graph of a function with C1,α norm less than ε/4 and
defined over part of P \Br2 . As a result, if σi is not ε/2-close in C1,α(BRi(0))
to ψ, we can find r3 such that σi is not ε/2-close in C1,α(Br3(0)) to ψ for
every i large enough. Because each branch of σi is a geodesic of g, it is simple
to see that we have uniform length bounds for σi. Standard compactness
arguments show that a subsequence of σi converges in C1,α to regular self-
expander σ which, in virtue of property c), is asymptotic to P at infinity. If
we can show that ψ and σ are in the same topological class, then Theorem
4.4 implies that they have to coincide and this is a contradiction.

Arguing as in Theorem 4.4, we can change the family (σ̂it)0≤t≤1 of networks

given by hypothesis iii) and construct a family (ψ̂it)0≤t≤1 of networks con-
necting ψ∩BRi−1(0) to σi∩BRi−1(0) such that all the branches are geodesics
for g, and those which intersect {|x| = Ri−1} have a uniform decay towards

the half-lines of P ( ψ̂it should satisfy, with obvious modifications, properties
i)-iv) described in the proof of Theorem 4.4). Making i tending to infin-

ity, it is easy to recognize that (ψ̂it)0≤t≤1 converges to a family of networks

(ψ̂t)0≤t≤1 connecting ψ to σ and satisfying properties i)-iv) mentioned in
Theorem 4.4. Hence the self-expanders must be in the same topological
class.

Set ε1 = min{ε/2, ν, η/2, r1, 1/2}, and let σ be a regular network satisfying
the hypothesis of the lemma. Condition i) and ii) imply that∫

BR1
(0)∩σ

|~k|2dH1 ≤ β +

∫
BR1

(0)∩σ
|x⊥|2dH1 ≤ β +D1R

3
1.

Thus we have uniform C1,1/2 estimates for σ in BR1(0). A standard com-
pactness argument shows that by taking β small enough, we can assume
that σ is ε1-close in C1,α to a regular self-expander ψ′ in BR1(0). By the
reasoning before, we thus get that ψ′ is ε/2-close in C1,α to ψ in BR1(0) and
this implies the desired result. �
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5. Main Theorem

To show the short-time existence result for non-regular initial networks, we
will use a special family of approximating regular networks. We will state
the needed properties of such an approximating family below and show in
the sequel the needed estimates for the proof of the short-time existence
result. We will show in section 7 that for any non-regular initial network
such an approximating family exists.

Fix a regular self expander ψ which is asymptotic to a union of half-lines
denoted by P . Note that, by Lemma 4.3, P coincides with the blow-down
of ψ. For any x0 ∈ R2 and t > 0 denote

Φ(x0, t)(x) = ρx0,0(x,−t) =
1√
4πt

exp

(
−|x− x0|2

4t

)
.

We also use the notation

A(r,R) = {x ∈ R2 : r ≤ |x| ≤ R}.

Let (γs)0<s≤c be a family of regular networks on R2 such that for every
0 < s ≤ c :

H1) There is a constant D1 such that

H1(γs ∩Br(x)) ≤ D1r for all x and r.

H2) There is a constant D2 such that for every s and x in γs

|θs(x)|+ |βs(x)| ≤ D2(|x|2 + 1).

H3) γ̃s =
γs√
2s

converges in C1,α
loc to ψ. Without loss of generality we

assume that

lim
s→0

(θs + β̃s) = 0,

where β̃s is primitive for the Liouville form of γ̃s.
H4) The connected components of P ∩A(r0

√
s, 4) are in one-to-one cor-

respondence with the connected components of

γs ∩A(r0

√
s, 4)

and if θ is the angle that a half-line in P makes with the x-axis, there
is a function us such that a connected component σ of γs∩A(r0

√
s, 4)

can be parametrized as

σ = {xeiθ + us(x)ei(θ+π/2) | for all r0

√
s ≤ x ≤ 4}.

Moreover, the function us satisfies

|us(x)|+ |x|
∣∣∣∣dusdx

∣∣∣∣+ |x|2
∣∣∣∣d2us
dx2

∣∣∣∣ ≤ D3

(
|x|2 + (2s)1/2 exp

(
−|x|2/4s

))
for some constant D3.
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Assume that (γst )t≥0 is a smooth solution to network flow with initial con-
dition γs and denote by Θs

t (x, r) the Gaussian density of γst

(5.1) Θs
t (x0, r) =

∫
γst

Φ(x0, r
2)dH1.

Note that in our previous notation we have Θs
t (x0, r) = Θ(x0, t+ r2, r) with

respect to the flow (γst ). We will show

Theorem 5.1. There are s1, δ1, and τ1 depending on α < 1/2, D1, D2, D3,
ψ, r0, and ε0, so that if

t ≤ δ1, r
2 ≤ τ1t, and s ≤ s1,

then

Θs
t (x0, r) ≤ 3/2 + ε0

for every x0 in B1(0).

Proof. Throughout the proof it will be understood that, unless stated, all
constants will depend only on α < 1/2, D1, D2, D3, ψ, r0, and ε0. All the
lemmas will be proven in section 6.

Set

γ̃st =
1

(2(s+ t))1/2
γst .

We start by proving estimates that hold either for short-time or far from the
origin. They will be simple consequences of Huisken’s monotonicity formula.

Lemma 5.2. [Far from origin estimate] There are δ1 and K0 so that if
r2 ≤ t ≤ δ1, then

Θs
t (x0, r) ≤ 3/2 + ε0

for every x0 with 1 ≥ |x0| ≥ K0

√
2t.

[Short-time estimate] There are s1 and q1 such that if s ≤ s1, r2, t ≤ q1s,
then

(5.2) Θs
t (x, r) ≤ 3/2 + ε0

for every x in B1(0).

Remark 5.3. 1) It follows from the second estimate that we need only
to prove Theorem 5.1 when t ≥ q1s.

2) Setting

Θ̃s
t (x, r) =

∫
γ̃st

Φ(x, r2)dH1,

and in virtue of

Θs
t (x0, r) = Θ̃s

t

(
x0

(2(s+ t))1/2
,

r

(2(s+ t))1/2

)
,
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in order to prove Theorem 5.1 it suffices to find s1, δ1, and τ1 such
that for every s ≤ s1, q1s ≤ t ≤ δ1, r2 ≤ τ1, and y0 with |y0| ≤
(2(s+ t))−1/2, we have

Θ̃s
t (y0, r) ≤ 3/2 + ε0.

3) Set

τ1 = q1/(2(q1 + 1)).

The second estimate in the lemma implies that for s ≤ s1, t ≤ q1s,
and r2 ≤ τ1 we have

Θ̃s
t (y0, r) ≤ 3/2 + ε0

for every |y0| ≤ (2(s + t))−1/2. The first estimate in Lemma 5.2
implies that for r2 ≤ τ1, s ≤ s1 and q1s ≤ t ≤ δ1,

Θ̃s
t (y0, r) ≤ 3/2 + ε0

for every y0 with K0 ≤ |y0| ≤ (2(s+ t))−1/2.

From now on, consider K0, q1, s1, and δ1, given by Lemma 5.2 and set τ1 =
q1/(2(q1 + 1)).

In the next two lemmas we control the asymptotic behavior of γ̃st . The proof
will be a bit involving because it is important that r1 does not depend on ν.

Lemma 5.4 (Proximity to P ). There are C1 and r1 so that for every ν we
can find s2, and δ2 for which the following holds. If s ≤ s2, t ≤ δ2, and
r ≤ 2, then

dist(y0, P ) ≤ ν + C1 exp(−|y0|2/C1) if y0 ∈ γ̃st ∩A
(
r1, (s+ t)−1/8

)
,

and

Θ̃s
t (y0, r) ≤ 1 + ε0/2 + ν if y0 ∈ A

(
r1, (s+ t)−1/8

)
.

Denote by F st the normal deformation

F st : γs −→ R2

such that γst = F st (γs) and set F̃ st = (2(s + t))−1/2F st so that γ̃st = F̃ st (γs).
Using the previous lemma with ν = ε0/2 we obtain, as we shall see in section
6,

Lemma 5.5. There are r2, δ3, s3, and L, such that if t ≤ δ3 and s ≤ s3

then

|F̃ s0 (x)− F̃ st (x)| ≤ L whenever F̃ s0 (x) ∈ A(r2, (s+ t)−1/8/2).

Consider C1 and r1 given by Lemma 5.4, r2, δ3, s3, and L given by Lemma
5.5, and choose η1 = η1(τ1) given by Lemma 10.2. We then set r3 =
max{r0, r1, r2, 1}. Apply Corollary 4.6 where we consider R =

√
1 + 2q1K0+

r3, ε = ε(ψ, α) to be the one given by Lemma 10.1, r1 to be r3, and
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η1, C1, D1, α, and P to be the constants already defined. Then, we get
the existence of R1, β, and ν for which Corollary 4.6 holds.

Consider now s2 = s2(ν), δ2 = δ2(ν) given by Lemma 5.4 and set s4 =
min{s1, s2, s3}, δ4 = min{δ1, δ2, δ3}. Finally decrease s4, δ4 if necessary so
that

(s4 + δ4)−1/8 ≥ 2R1.

The next lemma is essential to prove Theorem 5.1 and its content is that
the proximity of γ̃st to a self-expander can be controlled in an integral sense.
It is the only place where we use the evolution equations derived in section
3.

Choose a > 1 such (1 + 2q1)/a > 1 and set q = q1/a.

Lemma 5.6. There are δ0, and s0 so that for every

qs ≤ T ≤ δ0 and s ≤ s0,

we have
1

(a− 1)T

∫ aT

T

∫
γ̃st∩BR1

|~k − x⊥|2dH1dt ≤ β.

Consider δ0, s0 for which the lemma holds and set s5 = min{s0, s4}, δ5 =
min{δ0, δ4}. Decrease s5 if necessary so that q1s5 ≤ δ5.

Having all the constants properly defined, we can now finish the proof. Set

T0 = sup{T | Θ̃s
t (x, r) ≤ 3/2 + ε0 for all x ∈ BK0(0), r2 ≤ τ1, t ≤ T}.

It suffices to show that T0 ≥ δ5 for every s ≤ s5. Remark 5.3 1) implies that
T0 ≥ q1s.

Suppose that T0 < δ5 and set T = T0/a. Lemma 5.6 implies the existence
of T ≤ t1 ≤ T0 so that ∫

γ̃st1
∩BR1

|~k − x⊥|2dH1 ≤ β.

We now check that Corollary 4.6 can be applied with σ being γ̃st1 . Conditions
i) and ii) are trivially satisfied. For every 0 ≤ t ≤ t1 set

σ̂t = F̃ st (γs ∩BR1+L(0)).

During the proof of Lemma 5.5 we chose r2 so that

Θ̃s
t (x, r) ≤ 1 + ε0

for every r ≤ 2 and x in A(r2, (s + t)−1/8). This implies that all the triple
junctions of σ̂t are inside Br3(0). Lemma 5.5 implies that the boundary
points of σ̂t lie outside BR1(0), and so condition iii) b) is met. Condition iii)
a) holds because Remark 5.3 3) implies that, for every x in BR1(0), r2 ≤ τ1,
and t ≤ t1

Θ̃s
t (x, r) ≤ 3/2 + ε0,
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and so Lemma 10.2 can be applied with R = R1. Condition iii) c) is satisfied
because of Lemma 5.4. Condition iii) d) is not immediately satisfied because

σ̂0 coincides with part of (2s)−1/2γs instead of ψ. Nonetheless, using hy-
pothesis H3) and picking s5 smaller if necessary, one can extend the family
(σ̂t)0≤t≤t1 so that condition iii) d) indeed holds.

Therefore, we get from Corollary 4.6 that γ̃st1 is ε-close in C1,α(BR1(0)) to
ψ. Denote by (γ̂sl )l≥0 the solution to network flow with initial condition γ̃st1 .
A simple computation shows that

γ̂sl =
√

1 + 2lγ̃st1+lλ2 ,

where λ2 = 2(s + t1). Applying Lemma 10.1 we conclude that for every
l ≤ q1

Θ̃s
t1+lλ2(x, r) = Θ̂s

l (
√

1 + 2lx,
√

1 + 2lr) ≤ 3/2 + ε0

provided √
1 + 2l|x| ≤ R1 − 1 and (1 + 2l)r2 ≤ q1.

Hence, for all t1 ≤ t ≤ t1(1 + 2q1),

Θ̃s
t (x, r) ≤ 3/2 + ε0

for every x in BK0(0) and r2 ≤ τ1, which implies that T0 ≥ t1(1+2q1). This
is a contradiction because

t1(1 + 2q1) ≥ T (1 + 2q1) = T0(1 + 2q1)/a > T0.

�

6. Omitted proofs from section 5

We prove the various lemmas used in the previous section.

Proof of Lemma 5.2. We start by showing the existence of K0 so that for
every y0 in R2 with |y0| ≥ K0 and λ > 0∫

λ(γs∩B3(0))
Φ(y0, 1)dH1 ≤ 3/2 + ε0/2.

We argue by contradiction and assume the existence of yi tending to infinity,
λi, and si, for which

(6.1)

∫
λi(γsi∩B3(0))

Φ(yi, 1)dH1 ≥ 3/2 + ε0/2.

The first remark is that (λi)i∈N has to be an unbounded sequence, because
for some universal constant C and for all i sufficiently large∫

λi(γsi∩B3(0))
Φ(yi, 1)dH1 ≤ Cλi exp(−|yi|2/8 + Cλ2

i )H1(γsi ∩B3(0)).
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The second remark is that from hypothesis H3) and H4) it follows the exis-
tence of D4 depending only on ψ, r0 and D3, so that on γs ∩B3(0)

|~k| ≤ D4

(
1 + s−1/2e−

|x|2
4s

)
and thus, setting σi = λiγ

si and li = λ2
i si, we have on σi ∩B3λi(0)

|~k| ≤ D4

(
λ−1
i + li

−1/2e
− |x|

2

4li

)
.

Because yi is tending to infinity, it is easy to recognize that the curvature
goes to zero uniformly on compact sets centered around yi. As a result, σi−yi
converges to either a line, or a union of half-lines. We first note that one
only needs to consider the case limi→∞ li =∞, otherwise H3) and |yi| → ∞
yield a contradiction to (6.1). Furthermore, all the triple junctions of σi are

inside a ball of radius proportional to l
1/2
i and the shortest distance between

them is also proportional to l
1/2
i . Hence, because yi is getting arbitrarily

large, we see that σi − yi converges to a either plane or a union of three
half-lines. This contradicts inequality (6.1).

Hypothesis H1) ensures us that we can choose δ1 so that for every x0 in
B1(0) and l ≤ 2δ1 ∫

γs\B3(0)
Φ(x0, l)dH1 ≤ ε0/2.

The monotonicity formula implies that for r2, t ≤ δ1.

Θs
t (x0, r) ≤

∫
γs

Φ(x0, r
2 + t)dH1

=

∫
γs\B3(0)

Φ(x0, r
2 + t)dH1 +

∫
γs∩B3(0)

Φ(x0, r
2 + t)dH1

≤ ε0/2 +

∫
(r2+t)−1/2(γs∩B3(0))

Φ(x0/
√
r2 + t, 1)dH1

≤ 3/2 + ε0,

provided |x0| ≥ K0

√
r2 + t. This proves the first statement.

Pick

ε = ε(ψ, α), q1 = q1(ψ, α)

given by Lemma 10.1 and apply this lemma with

σt = (2s)−1/2γs2st and R = K0
√
q1 + 1.

Note that by hypothesis H3) we can choose s1 so that, for every s ≤ s1, σ0

is ε-close to ψ in C1,α(BR(0)) and s1q1 ≤ δ1. Scale invariance implies that
for every s ≤ s1, r2 ≤ t ≤ q1s, and x in B√2sq1K0

(0),

Θs
t (x, r) ≤ 3/2 + ε0.
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This proves the second statement because the ball B√2sq1K0
(0) contains

B√2tK0
(0) if t ≤ q1s. �

Proof of Lemma 5.4. Set

l = t(2(s+ t))−1 and σs = (2(s+ t))−1/2γs.

Note that l ≤ 1. Moreover, for s2 = s2(r0) and δ2 = δ2(r0) small we have
that

σs ∩A
(
r0, 3(s+ t)−1/8

)
is graphical over P ∩A

(
r0, 3(s+ t)−1/8

)
and if vs is a function arising from

the graphical decomposition then

|vs(x)|+ |x||dvs/dx|+ |x|2
∣∣d2vs/dx

2
∣∣

≤ D3

(
2(t+ s)1/2|x|2 + exp(−|x|2/2)

)
,

which means that, by choosing s2 = s2(D3, r0), δ2 = δ2(D3, r0) small enough
and choosing r1 = r1(r0, D3) ≥ max{r0, 1} large enough, we can ensure that

(6.2) |vs(x)|+ |x||dvs/dx| ≤ D3

(
2(t+ s)1/2|x|2 + exp(−|x|2/2)

)
≤ 1

on A
(
r1, 3(s+ t)−1/8

)
.

From now on pick

y0 ∈ γ̃st ∩A
(

3r1 + 1, (s+ t)−1/8
)
.

From the monotonicity formula we have that

1 ≤ Θs
0(y0(2(s+ t))1/2,

√
t) =

∫
σs

Φ(y0, l)dH1 = A+B + C,

where

A =

∫
σs\B

3(s+t)−1/8

Φ(y0, l)dH1,

B =

∫
σs∩Br1

Φ(y0, l)dH1,

C =

∫
σs∩A(r1,3(s+t)−1/8)

Φ(y0, l)dH1.

For every x with |x| ≥ 3(s+ t)−1/8, the bounds for y0 imply that

|x− y0|2 ≥ |x|2/3 + |y0|2

and so

Φ(y0, l) ≤
√

3 exp(−|y0|2/(4l))Φ(0, 3l).
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Thus, we can find C1 = C1(D1) for which

A =

∫
σs\B

3(s+t)−1/8

Φ(y0, l)dH1

≤
√

3 exp(−|y0|2/(4l))
∫
σs\B

3(s+t)−1/8

Φ(0, 3l)dH1

≤ C1 exp(−|y0|2/C1).

To estimate the second term we proceed in the same way. For every |x| ≤ r1,
the bounds for y0 imply that

|x− y0|2 ≥ |x|2 + |y0|2/3

and so

Φ(y0, l) ≤ exp(−|y0|2/(12l))Φ(0, l) for every |x| ≤ r1.

Thus, we can find C1 = C1(D1) for which

B ≤ exp(−|y0|2/(12l))

∫
σs∩Br1

Φ(0, l)dH1 ≤ C1 exp(−|y0|2/C1).

Finally, we estimate the third term. Denote by Pi the half-lines such that
P = {Pi}Ni=1, by ai the orthogonal projection of y0 on the line determined
by Pi, and by bi the projection fof y0 onto the normal space of Pi so that

dist(y0, P ) = min{|bi|} = |b1|.

Furthermore, denote by σsi the component of

σs ∩A
(
r1, 3(s+ t)−1/8

)
which is graphical over Pi∩A

(
r1, 3(s+ t)−1/8

)
and by vis the correspondent

graph function. It is easy to recognise that for i = 2, . . . , N , we have |bi| ≥
c|y0|, where c = c(P ) is some positive constant. Relabel r1 = r1(r0, D3, P )
such that (6.2) holds with c/

√
2 instead of 1 on the right hand side. Hence

(vis − bi)2 ≥ (c2/2)|y0|2

and so there is C1 = C1(D1, P ) such that∫
σsi

Φ(y0, l)dH1 ≤ 2(4πl)−1/2

∫
exp

(
−(c2/2)|y0|2 + (x− ai)2

4l

)
dx

≤ C1 exp(−|y0|2/C1).

As a result, we combine all these estimates and obtain that for some C1 =
C1(D1, P )

1 ≤
∫
σs1

Φ(y0, l)dH1 + C1 exp(−|y0|2/C1).
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We relabel r1 one last time and find r1 = r1(D1, D3, r0, ψ, α) so that

C1 exp(−r2
1/C1) ≤ 1/2.

This combined with H1) implies that there exists a constant c = c(D1) such
that

1/4 ≤
∫
σs1∩Bc√l(y0)

Φ(y0, l)dH1 ≤ 2 sup
|x−a1|≤c

√
l

exp

(
−|v

1
s − b1|2

4l

)
.

By (6.2), the variation of v1
s(x) over the interval |x − a1| ≤ c

√
l is O(

√
l)

and thus there exists a constant c̃ = c̃(D1, P ) such that

sup
|x−a1|≤c

√
l

|v1
s − b1|2

4l
≤ c̃ .

Therefore, using that λ ≤ (1− exp(−λ)) exp(c̃) for λ ∈ [0, c̃], we see that we
can find C1 = C1(D1, P ) for which∫
|x−a1|≤c

√
l

(v1
s − b1)2

4l

exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

≤ C
∫
|x−a1|≤c

√
l

(
1− exp

(
−(v1

s − b1)2

4l

))
exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

≤ C
(∫
{x≥r1}

√
1 + (dv1

s/dx)2
exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

−
∫
σs1\Br1 (0)

Φ(y0, l)dH1

)

≤ C

(∫
{x≥r1}

√
1 + (dv1

s/dx)2
exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx− 1

)
+ C1 exp(−|y0|2/C1)

≤
∫
{x≥r1}

C(dv1
s/dx)2 exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx+ C1 exp(−|y0|2/C1)

and thus

b21 ≤ C1

∫
{x≥r1}

(
(v1
s)

2 + (dv1
s/dx)2

) exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

+ C1 exp(−|y0|2/C1).

We observe that |a1| ≥ c|y0| for some constant c = c(P ) and that for every
0 ≤ l ≤ 1 we have

(x+ a)2

2
+
x2

4l
≥ a2

8
+
x2

8l
.
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Thus, we obtain from (6.2) that, for some constant C1 = C1(D1, D3, P ),

∫
(dv1

s/dx)2 exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

≤ D3

∫ (√
s+ t|x|+ exp(−x2/2)

) exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

≤ C1

√
s+ t+D3

∫
exp(−x2/2)

exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

≤ C1

√
s+ t+D3

∫
exp(−(x+ a1)2/2)

exp(−x2(4l)−1)

(4πl)1/2
dx

≤ C1

√
s+ t+D3 exp(−a2

1/8)

∫
exp(−x2(8l)−1)

(4πl)1/2
dx

≤ C1

√
s+ t+ C1 exp (−|y0|2/C1).

The same type of estimate holds for the term∫
(v1
s)

2 exp(−(x− a1)2(4l)−1)

(4πl)1/2
dx

and so we can choose s2 and δ2 both depending on D1, D3, ψ, r0, α, and ν,
such that for every s ≤ s2 and t ≤ δ2 we have

b1 = dist(y0, P ) ≤ ν + C1 exp(−|y0|2/C1).

We now show that, by relabeling r1, s2, and δ2 if necessary, we also have

Θ̃s
t (y0, r) ≤ 1 + ε0/2 + ν

for every r ≤ 1. The argument is almost identical to what we have just done
and so we will just point out the differences. We keep the same notation
and assumptions. Arguing in the very same way as we did before, we obtain
the existence of C1 = C1(D1, D3, P ) and r1 = r1(D1, D3, r0, ψ, α) for which

Θ̃s
t (y0, r) ≤

∫
σs

Φ(y0, l + r2)dH1

≤
∫
σs1

Φ(y0, l + r2)dH1 + C1 exp(−|y0|2/C1)

≤
∫ √

1 + (dv1
s/dx)2

exp
(
−(x− a1)2(4(l + r2))−1

)
(4π(l + r2))1/2

dx

+ C1 exp(−|y0|2/C1)
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≤ 1 + C1

∫
|dv1

s/dx|
exp

(
−(x− a1)2(4(l + r2))−1

)
(4π(l + r2))1/2

dx

+ C1 exp(−|y0|2/C1)

≤ 1 + C1

√
s+ t+ C1

∫
exp(−x2/2)

exp
(
−(x− a1)2(4(l + r2))−1

)
(4π(l + r2))1/2

dx

+ C1 exp(−|y0|2/C1).

Using the fact that 0 ≤ l ≤ 1 we obtain

Θ̃s
t (y0, r) ≤ 1

+ C1

√
s+ t+ C1

∫
exp(−(x+ a1)2/2)

exp
(
−x2(4(l + r2))−1

)
(4π(l + r2))1/2

dx

+ C1 exp(−|y0|2/C1)

≤ 1 + C1

√
s+ t+ C1 exp(−a2

1/40)

∫
exp

(
−x2(8(l + r2))−1

)
(4π(l + r2))1/2

dx

+ C1 exp(−|y0|2/C1)

≤ 1 + C1

√
s+ t+ C1 exp(−|y0|2/C1)

≤ 1 + ε0/2 + C1

√
s+ t.

Thus, like before, we can choose s2, δ2 for which the result holds. �

Proof of Lemma 5.5. From scale invariance and applying Lemma 5.4 with
ν = ε/2, we can find r2 ≥ 1, δ3, and s3 such that if t ≤ δ3, and s ≤ s3, then

Θs
t (x, r) ≤ 1 + ε0

whenever r ≤ 2(2(s+ t))1/2 and

x ∈ A
(
r2(2(s+ t))1/2, (2(s+ t))1/2(s+ t)−1/8

)
.

Hence, from White’s regularity Theorem [26], we obtain the existence of a
universal constant C for which∣∣∣∣dF stdt (p)

∣∣∣∣ = |~k| ≤ Ct−1/2

whenever

F st (p) ∈ A
(

3r2(2(s+ t))1/2/2, 3(2(s+ t))1/2(s+ t)−1/8/4
)
.

Choosing a larger r2 (depending on C and the previous r2) and δ3, s3 smaller
if necessary, we obtain after integrating the previous inequality that

|F st (p)− F s0 (p)| ≤ 2C
√
t

whenever

F s0 (p) ∈ A
(
r2(2(s+ t))1/2, (2(s+ t))1/2(s+ t)−1/8/2

)
.
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This finishes the proof. �

Lemma 6.1. There exists δ5 > 0, s.t. for 0 < s, t < δ5 it holds that

(6.3) |~k(x)|+ |θst (x)|+ |βst (x)| ≤ D4 ∀x ∈ γst ∩A(1/3, 3)

Proof. By assumption H4) the estimate is true for t = 0 and s sufficiently
small. H4) furthermore implies that for s sufficiently small, each component
of γs∩A(1/8, 8) is a graph, uniformly small C2-norm over a half-line P . By
Theorem 1.5 this implies that there exists δ5 > 0 such that γst ∩ A(1/6, 6)
remains a graph with small gradient over P for 0 ≤ t ≤ δ5. This already
implies the first two estimates of the statement, since θst is continuous in t.

The estimates of Ecker and Huisken, [8], for graphical mean curvature flow
then imply that

γst ∩A(1/5, 5)

remains is a graph over P with small C2-norm for 0 ≤ t ≤ δ5. Let (N s
t )0≤t≤T

be a smooth parametrization of the evolving network. Since γst ∩A(1/5, 5) is
free of triple junctions we can locally reparametrize (N s

t )0≤t≤min(T,δ5) such
that ( ∂

∂t
N
)T

= XT = 0

on A(1/4, 4). Since X = ~k, we have by the evolution equation for βt that,∣∣∣ d
dt
βt

∣∣∣ ≤ |〈X, Jx〉|+ 2|θt| ≤ C .

Decreasing δ5 further if necessary, this implies the second part of statement.
�

Proof of Lemma 5.6. Set T0 = R2(aT+s)+aT . During this proof C denotes
a constant which is allowed to depend also on a,R, and q (but not T and s).
We have from the localized monotonicity formula applied to 2(s+ t)θs + βs

(see Lemma 3.3) that

1

(a− 1)T

∫ aT

T

∫
γ̃st∩BR(0)

|~k − x⊥|2dH1dt

=
1

(a− 1)T

∫ aT

T
(2(s+ t))−3/2

∫
γst∩BR

√
2(s+t)

(0)
|2(s+ t)~k − x⊥|2dH1dt

=
1

(a− 1)T

∫ aT

T
(2(s+ t))−3/2

∫
γst∩BR

√
2(s+t)

(0)
|∇(2(s+ t)θs + βs)|2dH1dt

≤ C

T

∫ aT

T
(s+ t)−3/2(T0 − t)1/2

∫
γst

ϕ|∇(2(s+ t)θs + βs)|2ρ(0, T0 − t)dH1dt

≤ C

T
(s+ T )−3/2(T0 − T )1/2

∫
γsT

ϕ(2(s+ T )θs + βs)2ρ(0, T0 − T )dH1
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+
C

T
(s+T )−3/2(T0−T )1/2

∫ aT

T

∫
γst∩A(2,3)

(2(s+ t)θst +βst )
2ρ(0, T0− t) dH1dt

≤ C

T
(s+ T )−3/2(T0 − T )1/2

∫
γs0

ϕ(2sθs + βs)2ρ(0, T0)dH1

+
C

T
(s+T )−3/2(T0−T )1/2

∫ aT

0

∫
γst∩A(2,3)

(2(s+ t)θst +βst )
2ρ(0, T0− t) dH1dt

≤ C

T (s+ T )

∫
γs0

ϕ(2sθs + βs)2ρ(0, T0)dH1

+
C

T (s+ T )

∫ aT

0

∫
γst∩A(2,3)

(2(s+ t)θst + βst )
2ρ(0, T0 − t) dH1dt

= A+B ,

For the second term, using Lemma 6.1, we have

B ≤ C((s+ aT ) + 1)

T (s+ T )

∫ aT

0

∫
γst∩A(2,3)

|x|4ρ(0, T0 − t)dH1dt

≤ C((s+ aT ) + 1)

T (s+ T )

∫ aT

0
(T0 − t)2

∫
(T0−t)−1/2(γst∩A(2,3))

|x|4ρ(0, 1)dH1dt

≤ C((s+ aT ) + 1)T 3
0

T (s+ T )
sup

0<t<aT

∫
(T0−t)−1/2(γst∩A(2,3))

|x|4e−|x|2/4dH1

≤ CT0 sup
0<t<aT

∫
(T0−t)−1/2(γst∩A(2,3))

|x|4e−|x|2/4dH1 .

Note that

T0 ≤ R2δ0(a+ 1/q) + aδ0

and so we can choose δ0 small enough so that B ≤ β/2.

We now estimate the first term. Recall that if β is primitive for the Liouville
form on the network γ, then βl = l−2β is primitive for the Liouville form on
l−1γ. Set

λ =
s

T + s
and l =

√
2(T + s).

Then

A ≤ C

T (s+ T )

∫
γs∩B3

(2sθs + βs)2ρ(0, T0)dH1

=
C(s+ T )

T

∫
l−1(γs∩B3)

(λθs + βsl )
2ρ(0, l−2T0)dH1

≤ C
∫
l−1(γs∩B3)

(λθs + βsl )
2ρ(0, l−2T0)dH1,



30 On short time existence for the Planar Network Flow

where the last equality follows because T ≥ qs. Consider

F (T, s) =

∫
l−1(γs∩B3)

(λθs + βsl )
2ρ(0, l−2T0)dH1,

where we remark the existence of a constant C (independent of T and s)
such that

C−1 ≤ l−2T0 ≤ C.
Given any β1 small it is enough to show the existence of s0 and δ0 so that
if qs ≤ T ≤ δ0 and s ≤ s0 then

F (T, s) ≤ β1.

We now argue by contradiction and assume the existence of si and Ti (with
qsi ≤ Ti) converging to zero for which F (Ti, si) ≥ β1. We also assume that
l−2
i T0 converges to T1.

Suppose first that λi (as defined above) has a subsequence converging to a
positive number λ. In that case

l−1
i γsi = λ

1/2
i γ̃si

converges in C1,α
loc to λ1/2ψ. Hypothesis H3) implies that

lim
i
F (Ti, si) ≤ lim

i
λ2
i

∫
γ̃si

(θs + β̃si)2ρ(0, l−2
i λ−1

i T0)dH1 = 0.

Suppose now that λi has a subsequence converging to zero. It follows at
once that

lim
i

∫
l−1
i

(
γsi∩Br0

√
si

)(λiθ
si + βsili )2ρ(0, l−2

i T0)dH1 = 0.

Note that by hypothesis H4)

l−1
i γsi ∩A(r0(λi/2)1/2, 3l−1

i )

is graphical over P and if vi is the function arising from the graphical de-
composition of l−1

i γsi then

|vi(x)|+ |x||dvi/dx|+ |x|2
∣∣d2vi/dx

2
∣∣ ≤ D3

(
li|x|2 + (λi)

1/2e
− |x|

2

2λi

)
.

Therefore, we have that

(6.4) |∇βsili | = |x
⊥| = |xv′i − vi|√

1 + (v′i)
2
≤ D3

(
li|x|2 + (λi)

1/2
)
.

We now argue that for any connected component of

l−1
i γsi ∩A(r0(λi/2)1/2, 3l−1

i )
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there is xi converging to zero for which bi = βsili (xi) also converges to

zero. From hypothesis H3) we see that any connected components of ψ̃si ∩
A(2r0, 3r0) contains yi such that

lim
i

(θsi(yi) + β̃si(yi)) = 0.

Setting xi = λiyi, it is simple to see that bi = λiβ̃
si(yi) tends to zero.

Therefore, we can use gradient estimate (6.4) and the graphical decomposi-
tion to conclude the existence of a constant C independent of i such that

|βsili (x)| ≤ C
(
li|x|3 + (λi)

1/2|x|
)

+ bi on A(r0(λi/2)1/2, 3l−1
i ).

Hence,

lim
i
F (Ti, si) = lim

i

∫
l−1
i γsi∩A(r0(λi/2)1/2,3l−1

i )
(λiθ

si + βsili )2ρ(0, l−2
i T0)dH1

= lim
i

∫
l−1
i γsi∩A(r0(λi/2)1/2,3l−1

i )
(βsili )2ρ(0, l−2

i T0)dH1

≤ lim
i
C(l2i + λi + b2i )

∫
l−1
i γsi

(|x|6 + |x|2 + 1)ρ(0, l−2
i T0)dH1 = 0.

This is a contradiction. �

7. Short-time existence

We will show in this section that one can glue a scaled self-expander at scale
s into the initial network around a non-regular multiple point to obtain a
sequence of regular networks γs which satisfy the hypotheses H1)-H4) in
section 5. We will show that combining Theorem 5.1 and 1.3 then proves
short time existence of the network flow for non-regular initial networks,
Theorem 1.1.

We will first discuss the question of short-time existence for regular networks
with unbounded branches. By the definition of a regular network there exists
an R0 > 0 such that outside of BR0 the initial network γ0 consists of a finite
number of non-compact branches γi0, i = 1, . . . , n which can be written as
graphs over corresponding half-lines Pi. Since the curvature of γ0 is bounded
and the γi0 approach the half-lines Pi at infinity, we assume that each γi0 can
be written as a normal graph over Pi with small C1-norm. We define the
points qik := γi0 ∩ ∂Bk for k ≥ k0 > R0; k, k0 ∈ N. By the results in [15, 14]
there exists a maximal solution (γk,t)0≤t<Tk of the network flow, starting at
γ0 ∩Bk with fixed endpoints qik. Using Proposition 8.1 in Bk0 and Theorem
1.5 to control the boundary points as well as estimates of Ecker and Huisken
for graphical mean curvature flow to control the parts outside of Bk0 to see
that there is T > 0 such that Tk ≥ T for all k ≥ k0, together with uniform
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estimates on the curvature. We thus take a limit k →∞ to obtain a solution
to the network flow, starting at γ0.

Now let γ be a non-regular initial network with bounded curvature. For
simplicity let us assume that γ has only one non-regular multiple point at
the origin.

If the multiple point consists only of two branches meeting at an angle
different than π, then smoothing the cone point and using estimates for
graphical mean curvature flow, see for example the proof of Lemma 6.1, one
easily constructs a solution starting at γ as claimed in Theorem 1.1.

So we can assume that at the origin at least three branches meet, and let
Tj , j = 1, . . . , n, be the exterior unit normals. We denote with

Pj = {−tTj | t ≥ 0}

be the corresponding half-lines. Since γ has bounded curvature, we can
assume, by scaling γ if necessary, that γ ∩ B5 consists of n branches γj
corresponding to the half-lines Pj ; and if θj is the angle that Pj makes with
the x-axis, there is a function uj such that γj can be parametrized as

γj = {xeiθj + uj(x)ei(θj+π/2) | 0 ≤ x ≤ 5} .

Note that the assumption that γ has bounded curvature implies

(7.1) |uj(x)| ≤ Cx2 and
∣∣∣ d
dx
uj(x)

∣∣∣ ≤ Cx .
In [22] it was shown that for n = 3 there exists a unique tree-like self-
expander ψ asymptotic to P := ∪nj=1Pj . In the case n > 3 the existence

of tree-like, connected self-expanders was shown by Mazzeo-Saez [16]. Note
that Lemma 4.3 gives the asymptotics of ψ outside a large ball Br0 .

We now aim to glue ψs :=
√

2s · ψ into γ to get a family satisfying the

conditions H1)-H4). Let vjs be the graph function corresponding to the

branch ψjs on A(r0

√
2s, 4). By Lemma 4.3 we have the estimate

|vjs| ≤ (2s)1/2Ce−x
2/4s , |(vjs)′| ≤ x−1(2s)1/2Ce−x

2/4s ,

|(vjs)′′| ≤ (2s)−1/2Ce−x
2/4s .

(7.2)

Let ϕ : R+ → [0, 1] be a cut-off function s.t. ϕ = 1 on [0, 1] and ϕ = 0

on [2,∞). We define γs via the graph function ujs in the gluing region
A(r0

√
2s, 4) by

ujs := ϕ(s−1/4x)vjs(x) + (1− ϕ(s−1/4x))uj(x) .

It can easily be checked that γs satisfies the assumptions H1)–H3). From
(7.1) and (7.2) we see that

|ujs| ≤ C
(
x2 + (2s)1/2e−x

2/4s
)
.



Tom Ilmanen, André Neves, and Felix Schulze 33

Furthermore

(ujs)
′ = s−1/4ϕ′(s−1/4x)vjs(x) + ϕ(s−1/4x)(vjs)

′(x)

− s−1/4ϕ′(s−1/4x)uj(x) + (1− ϕ(s−1/4x))(uj)′(x) .

We have x−1 ≤ s−1/4 ≤ 2x−1 on {ϕ′(s−1/4x) 6= 0} and so we can estimate

x|(ujs)′| ≤ C(|vjs(x)|+ x|(vjs)′(x)|+ |uj(x)|+ x|(uj)′(x)|

≤ C
(
x2 + (2s)1/2e−x

2/4s
)
.

The estimate for (ujs)′′ follows similarly, which shows that also H4) is satis-
fied.

Proof of Theorem 1.1. As discussed at the beginning of this section there
exits a smooth solution to the network flow (γst )0≤t≤Ts for some Ts > 0. We
now aim to show that there exists a T0 > 0 such that Ts ≥ T0 for all s > 0
and that there are time interior estimates on k and all its higher derivatives
for all positive times, independent of s.

Using Theorem 1.5 and interior estimates for higher derivatives of the cur-

vature we see that we can pick a smooth family of points Pj(t, s) ∈ γjs ∩
A(1/3, 1/2) such that assumptions (8.7) and (8.8) are satisfied, with con-
stants independent of s for 0 ≤ t < min{Ts, δ}, where δ > 0 does not
depend on s. Then Proposition 8.1 gives estimates on the curvature and its
derivatives, independent of s on R2 \B1/2 × (0,min{Ts, δ}).
To get the desired estimates on B1/2 we aim to apply Theorem 5.1 and
Theorem 1.3. Fix ε0 > 0 such that 3/2 + ε0 < ΘS1 , and let s1, δ1, τ1 be
determined by Theorem 5.1.

Pick 0 < t0 < min{Ts, δ1, δ} and x0 ∈ B1/2. Let ρ := (t0/2)1/2. Note that
Bρ(x0) ⊂ B1. Theorem 5.1 then implies that the Gaussian density ratios

Θ(x, t, r) ≤ 3/2 + ε0

for all (x, t) ∈ Bρ(x0) × (t0 − ρ2, t0) and r ≤ √τ1ρ. Thus by Theorem 1.3
with σ = 1, there exists C, depending only on ε0, τ1 such that

|k|(x0, t0) ≤ C

t
1/2
0

,

together with the corresponding estimates on all higher derivatives. By
Remark 1.4 there is a κ > 0, depending only on ε0, τ1 such that the length

of the shortest segment is bounded from below by κ · t1/20 .

Together with the estimate on (R2 \ B1/2) × (0,min{Ts, δ}) this implies
that Ts ≥ T0 := min{δ, δ1}. By the estimates on the curvature, which are
independent of s we can take a subsequential limit of the flows (γst )0<t<T̄ as
s→ 0 to obtain a limiting flow (γt)0<t<T̄ starting at the non-regular network
γ.
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Note that by Theorem 1.5 and the interior estimates of Ecker/Huisken,
away from any triple and multiple point, the flow (γt)0<t<T̄ attains the
initial network γ in C∞. Furthermore by the above estimate in B1 and
Proposition 8.1 we have

|k| ≤ C

t1/2
.

The estimate on the length of the shortest segment passes to the limit as
well. �

8. Local Regularity

In this section we will prove some local regularity results for the network
flow.

Integral estimates. We will need to localize the integral estimates in the
work of Mantegazza, Novaga and Tortorelli [15]. In the following we will
outline what modifications of the original proofs are needed to obtain the
estimates in the local case. The setup is as follows.

Let (γt)t∈[0,T ) be a regular, smooth solution of the network flow on R2. Let

N : γ0 × [0, T ) → R2 be a smooth and regular parametrization of the flow.
We denote the tangential component of the deformation vector by

(8.1) ~λ = XT .

As defined before we denote with Tj the exterior unit tangent vector induced
by each σj at each triple point. We then define

(8.2) ki = 〈~ki, JTi〉 and λi = 〈~λ, Ti〉 .

The balancing condition at each triple point then implies

(8.3) k1 + k2 + k3 = 0 and λ1 + λ2 + λ3 = 0 .

We would like to point out that our setup differs to the one in [15] in that

we do not want to prescribe the tangential component ~λ of the deformation
vector. If one aims to prove a short-time existence result, one has to specify
the tangential velocity. Nevertheless, and this is important in the following
discussion, the integral estimates on the curvature and higher derivatives
of the curvature of the evolving network do not depend on the choice of
tangential velocity. Another point is that the calculations in [15] are done
only for a network consisting of three curves, meeting at one common triple
point, and with three fixed endpoints. As already mentioned there, see
Remark 3.24 in [15], these calculations generalize without any changes to
networks with more than one triple point, but with fixed endpoints. In the
following we will explain how to generalize these estimates to networks with
arbitrary tangential speed, more than one triple point and any number of
moving endpoints.
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We assume that along each segment σi we have fixed an orientation and
thus the unit tangent vector field τ along is well defined. Note that at each
endpoint p of σi we have

τ(p) = ±Ti ,
depending on the chosen orientation. We fix the unit normal vector field ν
along N by requiring that

Jτ = ν .

This convention implies that the curvature k of N is given by

k = 〈~k, ν〉 = 〈∂sτ, ν〉 = −〈∂sν, τ〉 ,
where s is the arc-length parameter along σi(t). Similarly we define

λ = 〈X, τ〉 = 〈~λ, τ〉 .
Note that this implies again that at an endpoint p of σi it holds that

k(p) = ±ki and λ(p) = ±λi .
It then can be easily checked that the evolution equations for τ, ν and k do

not depend on the choice of the tangential speed ~λ and are given by

∂tτ = (〈∇k, τ〉+ kλ)ν(8.4)

∂tν = −(〈∇k, τ〉+ kλ)τ(8.5)

∂tk = ∆k + 〈∇k,~λ〉+ k3 ,(8.6)

see (2.4), (2.5) and (2.6) in [15]. Furthermore the estimates and relations
between the curvatures ki and the tangential speeds λi at a triple point, fol-
lowing (2.6) until (2.10) in [15], remain valid. As well the evolution equation
for higher derivatives of the curvature and the relations between time and
spacial derivatives given in Lemma 3.7 and the calculus rules in Remark 3.9
in [15] are not affected.

This ensures that all the calculations for integrals of the curvature and its
derivatives are identical up to contributions from the boundary points. To
control the influence of the boundary points we make the following assump-
tion.

Assumption: We assume that the evolving network (γt)t∈[0,T ) has bound-
ary points Ql(t), where l = 1, . . . , N . We assume that these boundary points
are all disjoint and at each of this points it holds that

(8.7) XT |(P (t),t) = ~λ(Ql(t), t) = 0 .

for all t ∈ [0, T ). Furthermore we assume that there are positive constants
Cj such that

(8.8) sup
l∈{1,...,N}

|∇jk|
∣∣
(Ql(t),t)

≤ Cj

for all j = 0, 1, . . . , j0, where j0 ∈ N, t ∈ [0, T ).
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With this assumption the additional terms in the evolution of the integral

of the square of ∂jsk can be controlled. To demonstrate this, and for the
reader’s convenience, we will do this calculation explicitly, compare with
(3.4) in [15].

d

dt

∫
γt

|∇jk|2ds = 2

∫
γt

∇jk ∂t∇jk ds

+

∫
γt

|∇jk|2(div(~λ)− k2) ds

= 2

∫
γt

∇jk∆∇jk +∇~λ∇
jk∇jk ds

+

∫
γt

pj+3(∇jk)∇jk ds+

∫
γt

|∇jk|2(div(~λ)− k2) ds

= −2

∫
γt

|∇j+1k|2ds+

∫
γt

div(~λ|∇jk|2) ds

+

∫
γt

p2j+4(∇jk) ds+
∑

3-points

3∑
i=1

〈Ti,∇|∇jk|2〉
∣∣∣∣
3-point

+
N∑
l=1

〈Tl,∇|∇jk|2〉
∣∣∣∣
Ql

= −2

∫
γt

|∇j+1k|2ds+

∫
γt

p2j+4(∇jk) ds

∑
3-points

3∑
i=1

〈Ti,∇|∇jk|2〉+ λi|∇jk|2
∣∣∣∣
3-point

+
N∑
l=1

〈Tl,∇|∇jk|2〉
∣∣∣∣
Ql

.

(8.9)

In the special case j = 0 one gets

d

dt

∫
γt

k2ds = −2

∫
γt

|∇k|2ds+

∫
γt

k4 ds

+
∑

3-points

3∑
i=1

〈Ti,∇(k2)〉+ λik
2

∣∣∣∣
3-point

+
N∑
l=1

〈Tl,∇(k2)〉
∣∣∣∣
Ql

.

The relations at the triple points, see (2.10) in [15], imply that at each triple
point

3∑
i=1

2〈Ti,∇(k2)〉+ λik
2

∣∣∣∣
3-point

= 0 .
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Thus the order of differentiation at the triple point can lowered by one order,
and one gets

d

dt

∫
γt

k2ds = −2

∫
γt

|∇k|2ds+

∫
γt

k4 ds

−
∑

3-points

3∑
i=1

λik
2

∣∣∣∣
3-point

+
N∑
l=1

〈Tl,∇(k2)〉
∣∣∣∣
Ql

.

(8.10)

Following verbatim the computations in [15] on can use interpolation in-
equalities for Lp-norms of k and higher derivatives of k to absorb the term∫

γt

k4 ds

and the boundary terms at the triple-points. Note that the contributions at
the boundary points Ql are bounded by NC0C1. This leads to the estimate,
compare (3.10) in [15],

(8.11)
d

dt

∫
γt

k2ds ≤ C
(

1 +

∫
γt

k2 ds

)3

,

where C depends only on a bound for the inverses of the lengths of the
segments the evolving network and NC0C1. This inequality implies that
the L2-norm of k cannot grow to quickly. It can be furthermore shown that
an estimate for the L2-norm of every even derivative ∇jk is true, which
depends only on the L2-norm of k, a bound for the inverses of the lengths
of the segments of the evolving network and NCjCj+1. Compare here the
proof of Proposition 3.13 in [15].

A bound for the inverses of the lengths of the segments l(σi) of the evolving
network, depending on the initial network and

∫
k2 is also true. Note that

since at the endpoints Ql we have λl = 0 there is no extra contribution
there. As in the proof of Proposition 3.15 in [15] one obtains

(8.12)
d

dt

(
1 +

∫
γt

k2 +
∑
i

1

l(σi)

)
≤ C

(
1 +

∫
γt

k2 +
∑
i

1

l(σi)

)3

where C depends only on NC0C1. Thus also the length of the shortest
segment remains bounded from below for a short time. Thus there exists a
T0 > 0, depending only L2-norm of the curvature of γ0, the inverses of the
lengths of the segments of γ0, and N,C1, C2 such that on [0, T0] the L2-norm
of k and the inverse of the length of the shortest segment remains uniformly
bounded.

To obtain estimates for higher derivatives of k which are interior in time,
Mantegazza, Novaga and Tortorelli look, for j even, at the evolution of
integrals of the form,∫

γt

k2 +
t

2!
|∇k|2 + · · ·+ tj

j!
|∇jk|2 ds .
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By (8.9) we get for the time derivative of such a quantity in our case only
the additional boundary term

N∑
l=1

j∑
i=0

ti

i!
〈Tl,∇|∇ik|2〉

∣∣∣∣
Ql

,

which by our assumption (8.8) is bounded on finite time intervals. So arguing
as in [15] we obtain, compare p. 273 there, that on [0, T0]∫

γt

k2 +
t

2!
|∇k|2 + · · ·+ tj

j!
|∇jk|2 ds ≤ C̃j .

Here the constants C̃j depend only on the L2-norm of the curvature of γ0, the
inverses of the lengths of the segments of γ0 and the constants C1, . . . , Cj+1.
Using interpolation inequalities, see Remark 3.12 in [15], we can thus state
the following Proposition.

Proposition 8.1. Let (γt)t∈[0,T ) be a smooth solution to the network flow,
with N endpoints, satisfying the assumptions (8.7) and (8.8). Then there
exists T0 > 0, depending only on the L2-norm of the curvature of γ0, the
inverses of the lengths of the segments of γ0, and N,C1, C2 such that for all
0 < t < min{T, T0} it holds fo all j > 0 that

|∇jk| ≤ Ĉj · t−
j
2
− 1

4 ,

where Ĉj depends only on the L2-norm of the curvature of γ0, the inverses
of the lengths of the segments of γ0, N and the constants C1, . . . , Cj+1.

Generalized self-similarly shrinking networks. In the following we de-
fine a degenerate regular network. It can be seen as a C1-limit of regular
networks, where it is allowed that the lengths of some segments go to zero.

Definition 8.2 (Degenerate regular network). We consider a connected
graph G consisting of a finite number of edges ei, 1 ≤ i ≤ N1 and vertices
vj , 1 ≤ j ≤ N2. We assume that the edges are either homeomorphic to
the interval [0, 1], with two boundary points, or homeomorphic to [0,∞),
with one boundary point. We assume that at the vertices always three such
boundary points meet. We furthermore assume that there exists a continu-
ous map Ψ : G → TR2, x 7→ (Ψ(x),Ψ′(x)) such that if ei is homeomorphic
to a finite interval, then either

i) Ψ restricted to ei is the smooth, regular parametrization of a curve
in R2 up to the endpoints, with self-intersections possibly only at
the endpoints, or

ii) Ψ is degenerate, i.e. it maps to a fixed point (p, v) ∈ TpR
2 with

|v| = 1, for some p ∈ R2.

If the edge is homeomorphic to a half-line we assume the first case. At each
vertex we assume that the three tangent directions of the curves meeting
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there form 120-degree angles. We call (G,Ψ) as above a degenerate regular
network if there exists a sequence of homeomorphisms Ψk : G → R2 as
above, such that Ψk → Ψ in C1, where we assume that the Ψk are actually
embeddings, i.e. Ψk(G) are regular networks. If one or several edges are
mapped under Ψ to a single point p in R2, we call this sub-network the core
at p. Note that for a degenerate regular network, the core at a point p is
always a connected sub-network.

We call (G,Ψ) a generalized self-similarly shrinking network, if Ψ is a de-
generate embedding in the sense above, and Ψ|ei satisfies the self-shrinker
equation

~k = −x
⊥

2
,

for all 1 ≤ i ≤ N1. The evolving self-similar solution for t ∈ (−∞, 0) is then
given by

Nt =
√
−tΨ .

The most basic example of a generalized self-similarly shrinking solution
with triple points is the union of three half-lines, meeting at the origin
under a 120-degree condition. We will call this solution the standard triod.

The following Lemma is from [11], for the convenience of the reader we give
the proof in here.

Lemma 8.3 (Hättenschweiler). Let (G,Ψ) be a generalized self-similarly
shrinking network, such that G is a tree. Then Ψ(G) consists of half-lines
emanating from the origin, with possibly a core at the origin.

Proof. First note that any non-degenerate self-similar shrinking curve is a
member of the one-parameter family of curves classified by Abresch and
Langer in [1]. Their classification result implies the following. If the curve
contains the origin, then it is a straight line through the origin. Otherwise
it is contained in a compact subset of R2, but it is still diffeomorphic to
a line. In the latter case, any such curve has a constant winding direction
with respect to the origin. Aside from the circle, any other solution has a
countable, non-vanishing number of self-intersections.

Let us consider Γ′ ⊂ Γ := ψ(G), which consists of Γ with all half-lines going
to infinity removed. For θ ∈ S1 let S(θ) be the half-line, emanating from
the origin in direction of θ. Consider

R(θ) := sup{|x| |x ∈ Γ′ ∩ S(θ)} .
If Γ′ is not only the core at the origin, there exists a ϕ0 such that R(ϕ0) =
|S(ϕ)∩γi| > 0, where γi is a non-degenerate curve of Ψ. Since the γi’s don’t
change their winding direction we have

R(ϕ) = |γi(ϕ)|
for all ϕ ∈ {ϕ | γi ∩ S(ϕ) 6= ∅}. At an endpoint of γi we have R(·) > 0
otherwise γ would have been a half-line, starting at the origin. At this
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endpoint, also if it has a core, there is always another γi′ which continues
smoothly with the same winding direction, R(ϕ) stays positive and

R(ϕ) = |γi′(ϕ)|

for all ϕ ∈ {ϕ | γi′ ∩ S(ϕ) 6= ∅}. This also implies that R(ϕ) is continuous.
Continuing until ϕ reaches again ϕ0 we find a closed non-contractible loop
in Γ′, which yields a contradiction. �

Let us assume that (γt)0≤t<T is a network flow. Huisken’s monotonicity
formula implies that the function

Θx0,t0(t) :=

∫
γt

ρx0,t0 ds

is decreasing in time for t < t0, and the limit Θ(x0, t0) := limt↗t0 Θx0,t0(t)
is the Gaussian density at (x0, t0). The function Θx0,t0(t) is constant in
time if and only if the evolving network is a self-similarly shrinking network,
centered at the space-time point (x0, t0).

The Gaussian density of the shrinking sphere can easily computed to be

ΘS1 =

√
2π

e
.

Note that ΘS1 > 3/2. For a generalized self-similar shrinking network γ we
denote Θγ :=

∫
γ ρ0,0(·,−1) ds.

Lemma 8.4. Let γ be a generalized self-similarly shrinking network and
assume that Θγ < ΘS1. Then γ is tree-like, and thus either a multiplicity
one line, or the standard triod.

Proof. By the work of Colding-Minicozzi, [6], it holds that

(8.13) Θγ =

∫
γ
ρ0,0(·,−1) ds = sup

x0∈R2,t0>−1

∫
γ
ρx0,t0(·,−1) ds .

Assume that γ is not tree-like. Let us first assume that the complement of
γ in R2 contains no bounded component. It is easy to see from the proof of
the previous lemma that this implies that γ consists of at least six half-lines
emanating from the origin, together with a core. Thus would imply that
Θγ ≥ 3, a contradiction.

Let B be a bounded component of the complement of γ and γ̃ the sub-
network of γ which bounds B, counted with unit multiplicity. Since γ̃ is
smooth with corners, and no triple junctions, we can evolve it by classical
curve shortening flow until it shrinks at (x0, t0) to a ’round’ point. By the
monotonicity formula this implies that∫

γ̃
ρx0,t0 ds ≥ ΘS1 .
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By (8.13) this implies

Θγ ≥
∫
γ
ρx0,t0 ds ≥

∫
γ̃
ρx0,t0 ds ≥ ΘS1 .

�

Given a sequence λi ↗∞ and a space-time point (x0, t0), where 0 < t0 ≤ T
the standard parabolic rescaling around (x0, t0) of the flow is given by

γiτ = λi
(
γλ−2

i τ+t0
− x0

)
,

where τ ∈ [−λ2
i t0, λ

2
i (T −t0)). Recall that the monotonicity formula implies

Θx0,t0(t)−Θ(x0, t0) =

t0∫
t

∫
γσ

∣∣∣~k +
(x− x0)⊥

2(t0 − σ)

∣∣∣2ρx0,t0(·, σ) ds dσ

Changing variables according to the parabolic rescaling, we obtain

Θx0,t0(t)−Θ(x0, t0) =

0∫
λ2i (t−t0)

∫
γiτ

∣∣∣~k − x⊥

2τ

∣∣∣2ρ0,0(·, τ) ds dτ ,

or for fixed time τ0 ∈ (−λ2
i t0, 0),

(8.14) Θx0,t0(t0 + λ−2
i τ0)−Θ(x0, t0) =

0∫
τ0

∫
γiτ

∣∣∣~k − x⊥

2τ

∣∣∣2ρ0,0(·, τ) ds dτ .

We now give a slightly modified version of the Blowup-Lemma in [11].

Lemma 8.5. There exists a subsequence (λi) (relabeled again the same)
such that for almost all τ ∈ (−∞, 0) and for any α ∈ (0, 1/2)

γiτ → γ̄τ

in C1,α
loc ∩W

2,2
loc , where Γ̄τ is a generalized self-similarly shrinking network at

time τ . This convergence also holds in the sense of radon measures for all
τ . Note that the subsequence does not depend on τ and also not the limit
(except for scaling).

Proof. We first choose a subsequence such that the rescalings converge as
Brakke flows to a self-similarly shrinking tangent flow. Let

fi(τ) :=

∫
γiτ

∣∣∣~k − x⊥

2τ

∣∣∣2ρ0,0(·, τ) ds.

Note that (8.14) implies that fi → 0 in L1
loc((−∞, 0]). Thus there exists

a subsequence such that fi converges point-wise a.e. to zero. This implies
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that that for any R > 0 ∫
γiτ∩BR(0)

|k|2ds ≤ C ,

independent of i. By choosing a further subsequence we can assume that Γiτ
converges in C1,α

loc to a degenerate network. Note that each limiting segment,

which is non-degenerate is in W 2,2
loc and and is a weak solution of

~k =
x⊥

2τ
.

By elliptic regularity, each such segment is actually smooth, and thus the
limiting network is a generalized self-similarly shrinking network at time τ .
But since this limit has to coincide in measure with the limiting Brakke-flow
it is unique, and the whole sequence converges. The convergence in W 2,2

loc is
implied by the weak convergence in W 2,2 and the fact that fi(τ)→ 0. �

This can be strengthened, if the limit has unit density.

Lemma 8.6. Assume that a sequence of rescalings as above converges in
the sense of Brakke flows to a regular self-similarly shrinking network,

(γit)→ (γ̄t) .

Then this convergence is smooth on all compact subsets of R2 × (−∞, 0).

Proof. By the Lemma before we can choose a further subsequence such that
we have Γiτ → Γ̄τ in C1,α

loc ∩W
2,2
loc for almost every τ . Now take any set of

the form Ω = B̄R(0)× [a, b], a < b < 0, where we choose R big enough, such
that ∂BR(0) intersects Γ̄τ for τ ∈ [a − 2, b] only in the straight lines going
out to infinity (if they exist). Since for almost every τ we have convergence
in C1,α we know that the Gaussian density ratios in this set are less than
1 + ε for all τ ∈ [a− 3/2, b]. Thus there can be no triple points present, and
by the estimates of White [26], we can choose i0 big enough such that |∇jk|
is small on Γi for all j ≥ 0 on BR+1 \BR for all τ ∈ [a− 1, b] and all i > i0.
Now for any given ε, δ > 0 we choose i0 even bigger such that there exists
times τj , j = 0, . . . , N := 2[(b− a+ 1)/δ] + 1 such that

|τ0 − a+ 1|, |τN − b| ≤ δ, |τj+1 − τj | ≤ δ

for all 0 ≤ j ≤ N − 1 and

‖Γiτj − Γ̄τj‖W 2,2(BR+1) ≤ ε ,

for all i > i0. We now fix ε > 0 and adjust δ > 0 accordingly such that we
can ensure that by (8.12) that

‖Γiτ‖W 2,2(BR+1) ≤ C ,
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for all τ ∈ [a, b] and i > i0. The higher order interior estimates then prove
smooth subsequential convergence. For this argument we had chosen a sub-
sequence, but since we can always choose such a subsequence, the whole
sequence converges. �

Regularity results. In the following we will give some regularity results
for ’proper’ flows, where we say that a flow is a proper flow, given by its
space-time track M in an open subset U of space-time, if

M =M∩ U ,

compare with section 2.3 in [26].

Theorem 8.7. Let (γit)0<t<T be a sequence of smooth network flows with
uniformly bounded length ratios which converges locally as Brakke flows to
the standard triod. Then this convergence is smooth.

Proof. We can assume that the triple point of the standard triod is at the
origin. Fix T ′ > T . Then for any 0 < t1 < t2 < T we have∫

γitj

Φ0,T ′ ds→
3

2
where j = 1, 2 .

Then as in the proof of lemma 8.5 we obtain that there is subsequence where
we have C1,α-convergence to the standard triod for a.e. t ∈ (t1, t2). Note
that by White’s regularity theorem the convergence is smooth away from
the triple point, and that out of combinatorial reasons no core can develop
at the triple point of the standard triod. As in the proof of lemma 8.6 we
can then show that the convergence is actually smooth. �

In the following we will prove a local regularity result in the spirit of Brian
White’s result for mean curvature flow [26]. We follow here the alternative
proof of Ecker [7, Theorem 5.6]. The Gaussian density ratios are defined as

(8.15) Θ(x, t, r) := Θt−r2(x, t) .

In the case of proper flows, which are only defined in an open subset of
space-time one has to localize Huisken’s monotonicity formula. Compare
with section 10 in [25] and Remark 4.16 together with Proposition 4.17 in
[7]. To keep the presentation simpler, we will only give proofs of the next
two theorems for flows defined on all of R2 and leave the modifications in
the case of proper flows to the reader.

Theorem 8.8. Let (γt)t∈[0,T ) be a smooth, proper and regular planar net-

work flow in Bρ(x0) × (t0 − ρ2, t0) which reaches the point x0 at time t0 ∈
(0, T ]. Assume that for some ε > 0 it holds that

(8.16) Θ(x, t, r) ≤ 2− ε
for all (x, t) ∈ Bρ(x0)× (t0 − ρ2, t0) and 0 < r < ηρ for some η > 0, where
(1 + η)ρ2 ≤ t0 < T . Furthermore, assume that γt ∩ Bρ(x0) has no closed
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loops of length less than δρ > 0 for all t ∈ (t0− (1+η)ρ2, t0) for some δ > 0.
Then there exists C = C(ε, η, δ) such that

|k|2(x, t) ≤ C

σ2ρ2

for (x, t) ∈
(
γt ∩B(1−σ)ρ(x0)

)
× (t0 − (1− σ)2ρ2, t0) and all σ ∈ (0, 1).

Remark 8.9. Note that the bound on the curvature, together with the bal-
ancing condition and (8.16), gives that there is a constant κ = κ(ε, η, δ) > 0
such that the length of each segment which intersects B(1−σ)ρ(x0) × (t0 −
(1−σ)2ρ2, t0) is bounded from below by κ ·σρ. This implies, using Theorem
8.1, corresponding scaling invariant estimates on all higher derivatives of the
curvature.

Proof. We can first assume that t0 < T , and pass to limits later. By transla-
tion and scaling we can furthermore assume that x0 = 0 and ρ = 1. We can
now follow more or less verbatim the proof of Theorem 5.6 in [7]. Supposing
that the statement is not correct we can find a sequence of smooth, regular

network flows (γjt ), defined for t ∈ [−1− η, 0], reaching the point (0, 0) and
satisfying the above conditions, but

(8.17) ζ2
j := sup

σ∈(0,1)

(
σ2 sup

(−(1−σ)2,0)

sup
γit∩B1−σ

|k|2
)
→∞

as j →∞. We can find σj ∈ (0, 1) such that

ζ2
j = σ2

j sup
(−(1−σj)2,0)

sup
γit∩B1−σj

|k|2

and yj ∈ γjτj ∩ B̄1−σj at a time τj ∈ [−(1− σj)2, 0] so that

(8.18) ζ2
j = σ2

j |k(yj , τj)|2 .
We now take

λj = |k(yj , τj)|−1

and define

γ̃js =
1

λj

(
γj
λ2js+τj

− yj
)

for s ∈ [−λ2
jσ

2
j /4, 0]. As in the the proof of Theorem 5.6 in [7] we see that

(8.19) 0 ∈ γ̃j0 , |k(0, 0)| = 1

and

sup
(−λ−2

j σ2
j /4,0)

sup
γ̃js∩Bλ−1

j
σj/2

|k|2 ≤ 4

for every j ≥ 1. Since λ−2
j σ2

j = ζ2
j → ∞ we see that up to a subsequence,

labeled again the same,

(8.20) γ̃js → γ̃∞s
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converges locally uniformly R2×R in C1,α to a limiting C1,1-solution γ̃∞s of
the network flow. Note that this limiting solution is defined for s ∈ (−∞, 0]
and possibly degenerate, i.e. cores and higher density lines can develop. But
note that (8.16) implies that on γ̃∞s

(8.21) Θ(x, t, r) ≤ 2− ε
for all r > 0 and (x, t) in R2 × (−∞, 0]. Together with the fact that γ̃∞s
is uniformly bounded in C1,1, this implies that γ̃∞ is non-degenerate, i.e.
there are no higher densities and no cores. Furthermore, the assumption on
the lower bound for the length of closed loops implies that γ̃∞ is tree-like.
The estimate (8.21) yields that the tangent flow at −∞ is either a static
unit density line, or the standard triod and limr→−∞Θ(x, t, r) is either 1 or
3/2. In the first case this implies that γ̃∞ is a static unit density line. But
then White’s local regularity theorem implies that the convergence in (8.20)
is smooth. This gives a contradiction to (8.19). In the second case γ̃∞ has
to have a triple point, and thus is the standard triod. Then Proposition 8.7
gives a contradiction as before. �

Without the assumption on the length of the shortest loops, we prove a
similar statement if the Gaussian densities are less than ΘS1 :
Proof of Theorem 1.3. The proof is nearly identical to the proof of Theorem
8.8. Rescaling and translating such that x0 = 0 and ρ = 1 we assume that

as a contradiction we have a sequence of smooth, regular network flows (γjt )
defined for t ∈ [−1− η, 0], reaching (0, 0), satisfying (8.17) and

(8.22) Θ(x, t, r) ≤ ΘS1 − ε
for all (x, t) ∈ B1 × (−1, 0) and 0 < r < η. Rescaling as before we obtain a
limiting C1,1 solution (γ̃∞s ) which satisfies

Θ(x, t, r) ≤ ΘS1 − ε
for all r > 0 and (x, t) ∈ R2(−∞, 0]. By Lemma 8.4 this implies that the
tangent flow at −∞ is either a static unit density line, or the standard triod.
We reach a contradiction as in the proof of the previous theorem. �

9. A pseudolocality result for Mean Curvature Flow

We recall the following setup from the introduction. For any point x ∈ Rn+k

we write x = (x̂, x̃) where x̂ is the orthogonal projection of x on the Rn-
factor and x̃ the orthogonal projection on the Rk factor. We define the
cylinder CR(x0) ⊂ Rn+k by

Cr(x) = {x ∈ Rn+k | |x̂− x̂0| < r, |x̃− x̃0| < r} .
Furthermore, we write Bn

r (x0) = {(x̂, x̃0) ∈ Rn+k |x̂− x̂0| < r}.
Proof of Theorem 1.5. We first assume that T ≥ 1. Translating x0 to 0 and
rescaling with a factor R > 0 we can assume that M0 ∩ CR(0) = graph(u)
where u : Bn

R(0) → Rk with Lipschitz constant less than ε. We want to
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show that there exists R� 1 such that Mt∩C1(0) is a graph with Lipschitz
constant less than η and height bounded by η/2 for all t ∈ [0, 1].

Recall that by [26], if all Gaussian density ratios up to scale 1 centered at
(x, t) ∈ B2(0)× [0, 1] are bounded above by 1 + ε0 then

|A|M1(x) ≤ C(ε0)

for all x ∈M1 ∩ C1(0). Furthermore, a compactness argument implies that
C(ε0)→ 0 as ε→ 0. This implies that we can choose 0 < ε1 < ε0 such that
if the Gaussian density ratios up to scale 1 centered at (x, t) ∈ B2(0)× [0, 1]
are bounded by 1 + ε1 and

M1 ∩ C1(0) ⊂ C1 ∩ {|ỹ| ≤ η/2} ,

then M1 ∩ C1(0) is a graph over Bn
1 (0) with Lipschitz constant bounded

above by η.

Now assume that y ∈ C2(0) ∩ {|ŷ| ≤ η/2}. We then have for R ≥ 2, r ≤ 1
that

Θ0(y, r) =

∫
M0∩CR

1

(4πr2)n/2
e−
|x−y|2

4r2 dHn(x)

+

∫
M0\CR

1

(4πr2)n/2
e−
|x−y|2

4r2 dHn(x)

≤
∫

BnR(0)

1

(4πr2)n/2
e−
|x̂−ŷ|2

4r2

(
det(111 +Du> ◦Du)

)1/2
dx̂n

+ e−
(R−3)2

8r2

∫
M0\CR

1

(4πr2)n/2
e−
|x−y|2

8r2 dHn(x)

≤ (1 + ε2)n/2 + Ce−
(R−3)2

8r2 ≤ 1 + ε1 ,

(9.1)

provided ε ≤ ε2 and R ≥ R0 ≥ 3.

By assumption we have that supBnR(0) |u| ≤ εR. Let us assume that ε is

small enough, depending on R, such that

(9.2) εR ≤ η/4 .
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Now let y ∈ C2(0) \ {|ỹ| ≤ η/2}. We can then estimate

Θ0(y, r) =

∫
M0∩CR

1

(4πr2)n/2
e−
|x−y|2

4r2 dHn(x)

+

∫
M0\CR

1

(4πr2)n/2
e−
|x−y|2

4r2 dHn(x)

≤
∫

BnR(0)

1

(4πr2)n/2
e−
|u(x̂)−ỹ|2+|x̂−ŷ|2

4r2

(
det(111 +Du> ◦Du)

)1/2
dx̂n

+ e−
(R−3)2

8r2

∫
M0\CR

1

(4πr2)n/2
e−
|x−y|2

8r2 dHn(x)

≤ e−
η2

64r2 (1 + ε2)n/2 + Ce−
(R−3)2

8r2

Now we choose R = R1 ≥ R0 such that

Ce−
(R1−2)2

8 < 1− e−
η2

128 .

Then choose ε ≤ min{ε2, 4
−1ηR−1

1 } such that

e−
η2

64 (1 + ε2)n/2 < e−
η2

128 .

Note that the first assumption on ε implies that (9.2) is satisfied. We see
that that Θ0(y, r) < 1 for all y ∈ C2 \ {|ŷ| ≤ η/2}. Using the monotonicity
of the Gaussian density ratios this yields that

Mt ∩ C2(0) ⊂ C2(0) ∩ {|ŷ| ≤ η/2} .

for all t ∈ [0, 1] and by the choice of ε and estimate (9.1) that

Θ(x, t, r) ≤ 1 + ε1

for all (x, t) ∈ C2(0)× [0, 1] and scales r up to one. By the choice of ε1 this
gives that M1∩C1(0) is a smooth graph over Bn

1 (0) with Lipschitz constant
bounded above by η.

We want to show that this is also true for Mt ∩ C1(0) for any 0 < t < 1.

Pick t0 ∈ (0, 1) and let λ = t
−1/2
0 . Let (Mλ

t )0≤t≤λ2T be the flow, parabol-

ically rescaled by λ. Note that for any x0 ∈ Mλ
0 ∩ C(λ−1)R1

(0) we can
shift x0 to 0 and see that our previous assumptions are satisfied for this
flow. That yields that Mλ

1 ∩ C1(x0) is a smooth graph over Bn
1 (x̂0) with

Lipschitz constant bounded above by η. Note that this property is scal-
ing invariant. Scaling back this implies that Mt0 ∩ C(1−t1/20 )R1+t

1/2
0

(0) is a

graph over Bn

(1−t1/20 )R1+t
1/2
0

(0) with Lipschitz constant less than η. Since

(1− t1/20 )R1 + t1/2 ≥ 2− t1/20 ≥ 1 this implies the statement.
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If T < 1 we can first rescale the flow by a factor λ = T−1/2 as above and
then scale back to get the result for 0 < t < T . �

10. Appendix

We derive some useful technical results. In what follows σ0 is a regular
network with (σt)0≤t<T being a regular solution for network flow. Moreover,
χ is a fixed regular network in R2 and ε0 is a universal constant less than
1/2.

Lemma 10.1. Fix ε0 and α. There exist ε = ε(χ, ε0, α) and q1 = q1(χ, ε0, α)
so that, for every R ≥ 2, if σ0 is ε-close to χ in C1,α(BR(0)), then for every
r2, t ≤ q1 and y ∈ BR−1(0)

Θt(y, r) ≤ 3/2 + ε0.

Proof. We argue by contradiction. Suppose there are sequences (εi)i∈N,
(ri)i∈N, (ti)i∈N all converging to zero, (Ri)i∈N with Ri ≥ 2 for all i, (yi)i∈N
with yi ∈ BRi−1(0), and (σit)0≤t≤ti a sequence of regular solutions to network
flow for which σi0 is εi-close to χ in C1,α(BRi(0)) and

Θti(yi, ri) > 3/2 + ε0.

The fact that σi is εi-close to χ in C1,α(BRi(0)) means that

a) there are functions ui defined on C0(χ ∩ BRi(0)) which are C1,α

when restricted to each branch and the C1,α norm on each branch
converges to zero;

b) there are unit vectors Ni defined on χ ∩ BRi(0) such that 〈Ni, ν〉 is
a smooth function on each branch that converges uniformly to one,
where ν denotes a unit normal vector on the respective branch;

c)

σi0 ∩BRi(0) = χ ∩BRi(0) + uiNi.

Set λi =
√
r2
i + ti. It is simple to recognize that we can find functions vi

defined on λ−1
i χ such that

λ−1
i σi0 ∩BRiλ−1

i
(0) = λ−1

i χ ∩BRiλ−1
i

(0) + viNi.

Because the C0,α norm of the first derivatives of vi converges uniformly
to zero on each branch of λ−1

i χ ∩ BRiλ−1
i

(0) we obtain that if the limit of

λ−1
i (σi0− yi) in the varifold sense is not empty, then it must be either a line

or three half-lines meeting at a common point. In any case we have

lim
i

∫
λ−1
i (σi0−yi)

(4π)−1/2 exp(−|x|2/4)dH1 ≤ 3/2.
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This contradicts the fact that, using the monotonicity formula,

3/2 + ε0 < Θti(yi, ri) ≤ Θ0(yi, λi)

=

∫
λ−1
i (σi0−yi)

(4π)−1/2 exp(−|x|2/4)dH1.

�

Assume that σ is non-compact, asymptotic to half-lines at infinity, and
contains no closed loops.

Lemma 10.2. Fix ε0, R > 2, and τ . There is η = η(τ) such that if

Θ(x, r) ≤ 3/2 + ε0 < 2

for every x in BR(0) and r2 ≤ τ , then the distance between any two triple
junctions in BR(0) is greater than η.

Proof. Choose T > 0 so that∫ T

0
(4π)−1/2 exp(−t2/4)dt = 1/2 + ε0/16− 1/32

and r1 > 0 so that∫ r1

0
(4π)−1/2 exp(−t2/4)dt = 1/32− ε0/16.

Suppose that σ has two triple junctions in BR(0) at a distance η smaller than
τr1. Denote the midpoint between the triple junctions by y and consider the
network γ = τ−1(σ − y) which has two triple junctions x1 and −x1 inside
Br1(0). Because γ has no closed loops we can find paths a1, b1, a2, and b2
contained in γ such that a1, a2 and b1, b2 connect x1 and −x1 respectively to
a point at a distance T from the origin and a1∩a2 = {x1}, b1∩ b2 = {−x1},
ai ∩ bj = ∅.

Consider the metric g = (4π)−1 exp(−|x|2/2)(dx2
1 + dx2

2) on R2 and denote
its distance function by dg. Straight lines containing the origin are geodesics
for g and so any point with |p| = T has

dg(x, p) ≥ 1/2 + ε0/8− 1/16 for any x ∈ Br1(0).

Thus

3/2 + ε0 ≥ Θ(y, τ) =

∫
γ
(4π)−1/2 exp(−|x|2/4)dH1

≥
2∑
i=1

(∫
ai

(4π)−1/2 exp(−|x|2/4)dH1 +

∫
bi

(4π)−1/2 exp(−|x|2/4)dH1

)

=
2∑
i=1

(∫
ai

dlg +

∫
bi

dlg

)
≥ 4(1/2 + ε0/8− 1/16) = 7/4 + ε0/2.

This is impossible because ε0 < 1/2. �
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