REPLY TO AMBROSIoni ET AL

Huldrych F. Günthard, MD; Vincent Calvez, MD, PhD; Roger Paredes, MD, PhD; Deenan Pillay, MD, PhD; Robert W. Shafer, MD; Annemarie M. Wensing, MD, PhD; Donna M. Jacobsen, BS; Douglas D. Richman, MD

Affiliations

University Hospital Zürich, Zürich, Switzerland (Dr Günthard)

Pierre et Marie Curie University and Pitié-Salpêtrière Hospital, Paris, France (Dr Calvez)

Infectious Diseases Service and IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain (Dr Paredes)

Africa Health Research Institute, KwaZulu Natal, South Africa, and University College London, United Kingdom (Dr Pillay)

Stanford University Medical School, Stanford, California (Dr Shafer)

University Medical Center Utrecht, Utrecht, The Netherlands (Dr Wensing)

International Antiviral Society–USA, San Francisco, California (Ms Jacobsen)
Veterans Affairs San Diego Healthcare System and University of California San Diego, San Diego, California (Dr Richman)

Corresponding Author:
Huldrych F. Günthard, MD (Panel Chair)
Division of Infectious Diseases and Hospital Epidemiology
University Hospital Zurich
Rämistrasse 100
8091 Zürich, Switzerland
Phone: +41 44 255 34 50
Fax: +41 44 255 32 91
E-mail: huldrych.guenthard@usz.ch
In reply: We read with interest the letter by Ambrosioni, Mosquera and Miro.1 They raise the issue that polymorphisms, eg, E157Q and T97A, that can potentially reduce integrase strand transfer inhibitor (InSTI) activity are not infrequently detected in HIV-1 infected drug-naïve individuals, particularly with subtype B infection.2-4 They point out that E157Q at baseline has been associated with raltegravir- and elvitegravir/cobicistat-based regimens in some cases,5,6 and thus baseline InSTI resistance testing for might be considered if treatments with raltegravir or elvitegravir/cobicistat are planned. We await evidence that these polymorphisms increase the risk of failure with INSTI-based regimens, especially with the newer recommended regimens containing dolutegravir or bictegravir.7,8

The reason we have not recommended routinely performing baseline InSTI-associated resistance testing is that so far there have been only very limited reports of transmitted major InSTI resistance, and the large phase III trials with raltegravir and elvitegravir/cobicistat failures were not associated with polymorphisms potentially associated with InSTI resistance mutations.9-12 Therefore, these tests are not yet cost effective. In addition, current recommendations for initial antiretroviral therapy include those InSTIs with a higher resistance barrier (dolutegravir or bictegravir).8,13,14 For these drugs, integrase polymorphisms have not yet been shown to result in any impact on treatment responses.

As we have stated in our recommendations, surveillance for the emergence of transmitted InSTI resistance in all geographic regions is important because we do not know the future consequences of expanded use of InSTIs occurring in resource rich and in low and middle income countries. With the introduction of next-generation
sequencing for routine genotypic testing instead of Sanger sequencing, the costs may decrease in the future to allow general recommendations for routine baseline resistance testing covering a larger portion of the HIV genome.
REFERENCES


10. Cahn P, Sax PE, Squires K, et al. Raltegravir 1200 mg once daily vs 400 mg twice daily, with emtricitabine and tenofovir disoproxil fumarate, for previously untreated HIV-1 infection: week 96 results from ONCEMRK, a randomized, double-Blind, noninferiority trial. JAIDS. 2018;78(5):589-598.


patients: final 5-year results from STARTMRK. JAIDS. 2013;63(1):77-85.
