A Comprehensive Gene-Environment Interaction Analysis in Ovarian Cancer using Genome-wide Significant Common Variants

Running head: G x E analysis in ovarian cancer

Corresponding author: Bhramar Mukherjee, SPH Tower, 1415 Washington Heights, Ann Arbor MI 48109, Phone: 734-764-6544, Fax: 734-764-3192, Email: bhramar@umich.edu

¹These authors contributed equally to this work

¹ Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA.
² Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
³ Department of Virus, Lifestyle and Genes, Danish Cancer Society Research Center, Copenhagen, Denmark.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/ijc.32029
Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Department of Health Science, California State University, Fullerton, Fullerton, CA, USA.
University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA.
Research Institute and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA.
Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA.
Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA.
Department of Genetics and Genomic Sciences, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA.
Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
Cancer Prevention and Control, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Community and Population Health Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Department of Population Health Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
Department of Epidemiology, University of Washington, Seattle, WA, USA.
Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia.
Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia.
Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
Obstetrics and Gynecology Epidemiology Center, Brigham and Women's Hospital, Boston, MA, USA.
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Gynaecological Cancer Research Centre, Women's Cancer, Institute for Women's Health, University College London, London, UK.
Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Center for Cancer Prevention and Translational Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada.
Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM, USA.
Division of Cancer Care, Department of Population Health Research, Alberta Health Services, Calgary, AB, Canada.
Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
Ovarian Cancer Center of Excellence, Women's Cancer Research Program, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA.
Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Research Group Genetic Cancer Epidemiology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada.
Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Molecular Unit, Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
British Columbia's Ovarian Cancer Research (OVCARE) program, Vancouver General Hospital, BC Cancer Agency and University of British Columbia
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

Keywords: ovarian cancer, genetics, additive interaction, G x E
Abbreviations:
- AR = absolute risk
- BMI = body mass index
- BSO = bilateral salpingo-oophorectomy
- CI = confidence interval
- df = degrees of freedom
- G x E = gene-environment interaction
- GWAS = genome-wide association study
- LRT = likelihood ratio test
- OCAC = Ovarian Cancer Association Consortium
- OCP = oral contraceptive pill
- OR = odds ratio
- RD = risk difference
- SNP = single nucleotide polymorphism

Article category: Research Article (Cancer Genetics and Epigenetics)

Novelty and Impact: Our paper conducts gene x environment interaction analysis on both additive and multiplicative scales using data from 9,971 ovarian cancer (OC) cases and 15,566 controls. Seven OC risk factors are considered with 28 variants identified from previous GWAS. The top interaction was between oral contraceptive pill (OCP) use (ever vs never) and rs13255292 (P-value = 3.48 x 10^-4). The protective benefit of OCP use differs by genotype suggesting that prevention strategies need tailoring to an individual's genotypic profile.

ABSTRACT

As a follow-up to genome-wide association analysis of common variants associated with ovarian carcinoma (cancer), this study considers seven well-known ovarian cancer risk factors and their interactions with 28 genome-wide significant common genetic variants. The interaction analyses were based on data from 9,971 ovarian cancer cases and 15,566 controls from 17 case-control studies. Likelihood ratio and Wald tests for multiplicative interaction and for relative excess risk due to additive interaction were used. The top multiplicative interaction was noted between oral contraceptive pill (OCP) use (ever vs never) and rs13255292 (P-value = 3.48 x 10^-4). Among women with the TT genotype for this variant, the odds ratio for OCP use was 0.53 (95% CI=0.46-0.60) compared to 0.71 (95%CI=0.66-0.77) for women with the CC genotype. When stratified by duration of OCP use, women with 1-5 years of OCP use exhibited differential
protective benefit across genotypes. However, no interaction on either the multiplicative or additive scale was found to be statistically significant after multiple testing correction. The results suggest that OCP use may offer increased benefit for women who are carriers of the T allele in rs13255292. On the other hand, for women carrying the C allele in this variant, longer (5+ years) use of OCP may reduce the impact of carrying the risk allele of this SNP. Replication of this finding is needed. The study presents a comprehensive analytic framework for conducting gene-environment analysis in ovarian cancer.

Word Count: 4,537; Number of Figures and Tables: 6
INTRODUCTION

Ovarian carcinoma (cancer) is a disease with high mortality; most women are diagnosed with advanced stage disease where five-year survival is less than 50\%1. Effective screening modalities have been elusive2, and therefore primary prevention strategies remain the most promising avenue to minimize the incidence and mortality of ovarian cancer.

Several factors consistently associated with reduced or increased risk have been identified for ovarian cancer, including some that represent opportunities for chemoprevention or surgical intervention. Factors associated with reduced risk include oral contraceptive pill (OCP)3 use, aspirin use4, tubal ligation5, parity3, salpingectomy6-9 and bilateral salpingo-oophorectomy (BSO). Common germline genetic variation10-20, first-degree family history of ovarian cancer21,22, menopausal hormone therapy use23-25, greater body mass index (BMI)26 and endometriosis27 are risk factors for the disease. OCPs and aspirin use represent feasible chemoprevention strategies whereas salpingectomy is now recommended by many gynecologic societies as an ovarian cancer prevention approach for women seeking tubal sterilization, having a hysterectomy, or having other pelvic surgery.

Average lifetime risk of ovarian cancer diagnosis for women in the U.S. is 1.3\%28, but this number varies greatly depending on the composite exposure history of risk factors29. Pearce et al. estimated the lifetime risk for women in the general population ranges from 0.35\% (95\%CI = 0.29\% to 0.42\%) to 8.8\% (95\%CI = 7.1\% to 10.9\%) depending on exposure history for six factors: OCP use, parity, tubal ligation,
endometriosis, first degree family history of ovarian cancer and genetic risk score quintile \(^{29}\).

However, these lifetime risk estimates were limited to six risk factors and did not consider their interaction with individual genetic variants identified through genome-wide association studies (GWAS) \(^{28}\). The multiplicative scale is commonly used for gene-environment interaction (G x E) analysis. Additive interaction analysis has been suggested for case-control studies in many recent papers for a more mechanistic interpretation \(^{30-34}\). Validity of a truly multiplicative model implies existence of additive interaction when the two factors under consideration have non-null main effects \(^{35}\). Thus, failure to detect G x E interaction on multiplicative scale may imply there exists interaction on additive scale, but the ability to detect it depends on the sample size and the main and interaction effect sizes \(^{35}\). We present here our efforts to evaluate both multiplicative and additive gene-environment interactions in ovarian cancer using data from the international Ovarian Cancer Association Consortium (OCAC) comprising 17 case-control studies.

We have included 28 common genetic variants previously associated with risk of ovarian cancer in genome-wide association analyses for our G x E analyses \(^{36}\). Environmental factors included in our analysis are OCP use, parity, tubal ligation, breastfeeding, menopausal hormone therapy, usual adult BMI, and endometriosis. A small number of studies in OCAC had data available on aspirin use and thus we have not included this risk factor in our analysis here. Among our list of environmental factors, BMI, OCP use, tubal ligation, breastfeeding, and menopausal hormone therapy are of special interest because they are modifiable targets for prevention.
METHODS

Study Population

The OCAC is an international multidisciplinary consortium formed in 2005 (http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/) with a goal of sharing data from worldwide ovarian cancer studies to establish reliable estimation of association between environmental and genetic factors related to risk of ovarian cancer. Cases were defined as women with ovarian carcinoma (i.e., invasive epithelial ovarian cancers), fallopian tube cancer and primary peritoneal cancer. Controls were women without ovarian cancer and who had at least one ovary. For both cases and controls, individuals with prior cancers except non-melanoma skin cancers were excluded.

Genetic Association Analysis

In total, 28 single nucleotide polymorphisms (SNPs) previously identified through GWAS were included from 75 OCAC sites (*Table 1*). The first 26 SNPs were found to be significantly associated with either ovarian cancer overall or one or more histotypes. In addition, rs13255292 and rs10962643 were included because they were in the same region as two other significant SNPs but showed a strong independent association with ovarian cancer risk. The SNP at locus 15q26 (rs8037137), which was found to be genome-wide significant, was not included because not enough non-carriers were present in our analytic dataset for examining interactions. The genetic data included both genotyped and imputed variants (imputation being carried out using phase 2 Hapmap reference panel). More details regarding genotyping and imputation of the genetic data have been previously described. The methods for analyzing the SNP data in the OCAC have also been described previously. Briefly,
logistic regression models were fit to examine the association between ovarian cancer and each genetic variant under an additive model (using risk allele dosage). The models were adjusted for ethnicity, genotyping panel and the leading principal components for each ethnicity. The summary results are shown in Table 1 and are also available through the OCAC website (http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/).

Environmental Association Analysis

Environmental Variables (E): A total of seven established environmental risk factors for ovarian cancer were of primary interest (Table 2), including four associated with decreased risk and three with increased risk for ovarian cancer or one specific histotype. These included: OCP use (measured as both ever/never and duration of OCP use (never users including <1 one year of use, 1-<5, 5+yr), tubal ligation (yes/no), breastfeeding (ever/never), parity (0, 1-2, 3+ full-term births (i.e., those lasting >6 months), type of menopausal hormone therapy use for more than 1 year after age 50 (never user, menopausal estrogen therapy only, any use of menopausal estrogen + progestin therapy), BMI (<25, 25-<30, 30+), and a history of endometriosis (yes/no).

Four other environmental variables were included in our analysis, as covariates: baseline age (<50, 50-<55, 55-<60, 60-<65, 65-70, 70+ years), race (non-Hispanic white, Hispanic White, Black, Other), education (less than high school, high school graduate, some college, college graduate) and first-degree family history of ovarian cancer (yes/no). In addition to these four covariates, study site, OCP use, tubal ligation, parity, BMI and endometriosis were also included in all models for the environmental association analysis and gene by environment interaction analysis.
Harmonization and Imputation of Environmental Data: A brief description of environmental data harmonization across OCAC study sites is provided in eMethod 1 in the Supplementary Material. To optimize power and enhance the chance for discovery, we carried out multiple imputation of the environmental data. The maximal amount of data was used for imputation (see eMethod 1 and eFigure 1 in the Supplementary Material for details). A total of 19 studies comprising 13,722 cases and 22,975 controls with partially missing data were included for imputation. Of these 19 studies, 12 were from the US, 4 from Europe, 2 from Canada and 1 from Australia (see eTable 1 for a description of study sites). Further details for these 19 studies have been previously described (see Supplementary Material). The environmental variables included in our analysis were multiply imputed by chained equations (MICE) to produce ten imputed datasets. See details of imputation model in eMethod 2.1 in the Supplementary Material.

All analyses were performed on each of the ten imputed datasets, and coefficients/test statistics were properly combined to account for uncertainty due to imputation, following the recommended combination rule for multiply imputed datasets (see details in eMethod 2.3 in the Supplementary Material). Our marginal environmental association analysis was based on combined inference from the ten imputed versions of this harmonized E data. Logistic regression models were used for evaluating marginal associations between the environmental risk factors with ovarian cancer after adjusting for covariate. The estimated ORs, their 95% CIs, as well as two-sided Wald tests after accounting for imputation uncertainty are presented in Table 2.
along with summary statistics of complete cases before imputation. Full results of the complete cases analysis using logistic regression models are presented in \textit{eTable 2}.

\textit{Gene by Environment Interaction Analysis}

After marginal analysis of the genetic and environmental risk factors, we considered gene by environment (G x E) interaction analysis both on the multiplicative (odds ratio/relative risk) and the additive (relative excess risk due to interaction/absolute risk) scale 39. From the 19 studies with imputed environmental data, a subset of 17 case-control studies with 9,971 cases and 15,566 controls had available genetic data, thus G x E analyses were carried out on these 17 studies. Each imputed environmental dataset was merged with the genetic data for subsequent G x E analyses. Interaction analyses were then carried out separately on the ten imputed G x E datasets, and then all tests and coefficients reported were combined using appropriate multiple imputation combination rules 38.

For both multiplicative and additive interaction analysis, we started with global likelihood ratio tests (LRTs) for each G x E pair as several environmental factors had multiple categories resulting in tests for interactions with multiple degrees of freedom (df). These global joint tests, serving as a screening step for G x E interactions, were carried out for a total of 196 (7\times28=196) G x E pairs. After the global tests, we then followed up on the suggestive interactions (with global test P-value < 0.2) and carried out a two-sided Wald test for interactions involving each separate category of an environmental risk factor.

For the k-th SNP G_k \textit{(k = 1, \ldots,28)}, coded as a continuous allelic dosage, the j-th environmental risk factor E_j \textit{(j = 1, \ldots,7)}, and a set of confounders/covariates \{C_q\} \textit{(q = ...}
1, ..., Q), the basic fitted model for the probability of ovarian cancer of the i-th subject, namely, π_i, is of the following form:

$$
\logit(\pi_i | G_{ki}, E_{ji}, C_{1i}, ..., C_{Qi})
\equiv \beta_0 + \beta_G G_{ki} + \sum_{l=1}^{L} \beta_{EI}(E_{ji} = l) G_{ki} + \sum_{q=1}^{Q} \sum_{m=1}^{M_q} \beta_{C_{qi}m}(C_{qi} = m),
$$

[M1]

where $L = (\text{levels of } E_j) - 1$, $M_q = (\text{levels of } C_q) - 1$, and Q is the number of adjusted covariates.

Multiplicative Interaction Tests: For testing the multiplicative interaction between G_k and E_j, we first used the global LRT with L degrees of freedom to test for the joint null hypothesis $H_0: \beta_{GE1} = \beta_{GE2} = \ldots = \beta_{GE_L} = 0$. If the global test P-value < 0.2, we further assessed the multiplicative interaction at each level of E_j by using a Wald test with one degree of freedom for the null hypothesis $H_0: \beta_{GEl} = 0$ for the l-th level.

Additive Interaction Tests: Due to limitations of existing software (CGEN) for testing additive interactions with continuous dosage data, we used the maximal probable genotype for imputed SNPs. We further conducted the LRTs with binary collapsing of SNPs assuming a dominant genetic susceptibility model (given the constraints in software). For a given SNP G_k and an environmental risk factor E_j with L categories, a global LRT with L df was used for the following joint null hypothesis

$$
H_0: \frac{\exp(\beta_{E1}) + \exp(\beta_G) - 1}{\exp(\beta_{E1} + \beta_G)} = \exp(\beta_{GE1}), ..., \frac{\exp(\beta_{EL}) + \exp(\beta_G) - 1}{\exp(\beta_{EL} + \beta_G)} = \exp(\beta_{GE_L}),
$$

where the regression coefficients (β) are log odds ratio parameters described in model [M1]. This null hypothesis is based on a rare disease assumption, which is tenable for
our study (lifetime risk of ovarian cancer in the US is approximately 1.3%) \(^4\). If the global LRT P-value < 0.2, we further assessed the additive interaction at each level of \(E_j\) through the relative excess risk due to interaction (RERI) \(^4\). At the \(l\)-th level of \(E_j\), a Wald test with one degree of freedom (35) was used to test for the null hypothesis:

\[
H_0: RERI_{GEl} = 0, \quad \text{where} \quad RERI_{GEl} = \exp(\beta_{El} + \beta_{GEl}) - \exp(\beta_{El}) - \exp(\beta_{G}) + 1.
\]

After the screening step, we further explored the structure of the most promising interactions (defined as global test P-value < 0.01). This was accomplished by exploring odds ratios corresponding to \(E\) in sub-groups defined by \(G\) (for the multiplicative interaction) or absolute risks for ovarian cancer in each configuration of the values of \((G, E)\) (for the additive interaction). To better understand these two different scales of interaction, we also compared the observed joint ORs with the corresponding expected ORs under the multiplicative and the additive nulls.

To estimate sub-group specific absolute risk (AR) for each stratum defined by a given SNP \(G_k\) and environmental risk factor, we need the relative risk and the joint distribution of \(G_k\) and \(E_j\). The former was estimated from the fitted model [M1], and the latter was empirically estimated from the observed joint frequency of \(E_j\) and \(G_k\) in the control population (details in eMethod3 from the Supplementary Material). Table 4 presents the bootstrap confidence intervals for the estimated ARs and the risk differences (RDs) (see details in eMethod4 in the Supplementary Material). The results for \(G \times E\) analysis are presented in Table 3 (multiplicative interaction), Table 4 (additive interaction) and eTable 5 (observed and expected joint OR under the two different nulls). All calculations were performed in the statistical software R \(^3\).

RESULTS
The marginal G analysis was carried out on 26,864 cases and 48,034 controls and the results are shown in Table 1. These results are available through the OCAC website (http://apps.ccge.medschl.cam.ac.uk/consortia/ocac/). A total of 36,697 women with 13,722 ovarian cancer cases from 19 sites were included in the marginal E analysis using the imputed datasets. All seven environmental risk factors were associated with ovarian cancer in the expected direction (Table 2). OCP use for five or more years was associated with a 52% decrease in risk of ovarian cancer compared to never users (OR=0.48, 95%CI = 0.45 to 0.51). Tubal ligation (OR=0.73, 95%CI = 0.69 to 0.78) and breastfeeding (OR=0.76, 95%CI = 0.71 to 0.80) showed similar magnitudes of decreased risk. Also, having more than 3 children (versus none) was associated with a 50% (OR=0.5, 95%CI = 0.46 to 0.53) reduction in risk of ovarian cancer. Using menopausal estrogen therapy only for more than one year (OR=1.22, 95%CI = 1.12 to 1.34), being obese (OR=1.15, 95%CI = 1.08 to 1.22), and history of endometriosis (OR=1.60, 95%CI = 1.46 to 1.75) were all associated with increased risk of ovarian cancer. The inference remained robust before and after imputation (eTable 2).

Gene by Environment Interaction Results

Global Likelihood Ratio Tests: The global LRT essentially serves as a screening approach to identify a list of potentially interesting interactions. All interactions with global LRT P-value < 0.2 (40 on multiplicative scale and 41 on additive scale) are listed in eTable 3, while more detailed analysis of the top interactions, which showed the strongest significance (P-value < 0.01; 4 on multiplicative and 2 on additive scale), are shown in Table 3 and Table 4, respectively.
According to Global LRT results, the top interaction on the multiplicative scale was identified with the SNP rs13255292 and OCP use (ever and never use: P-value = 3.48 x 10^{-4}; duration of use [<1 yr, 1-5 yr, 5+ yr]: P-value = 7.26 x 10^{-3}) (Table 3). None of the observed interactions were significant based on a Bonferroni threshold of 0.05/(28 x 7) = 2.55 x 10^{-4}.

Wald Tests for Multiplicative interactions: For the most promising multiplicative interactions reported in Table 3 we carried out an in-depth analysis to better understand the structure of interactions by estimating the ORs (with accompanying Wald CIs and tests) corresponding to E in strata defined by G. For example, the OR for OCP use among women with the TT genotype for rs13255292 is estimated to be 0.53 (95%CI = 0.46 to 0.60), whereas for the CC genotype the estimated OR is 0.71 (95%CI = 0.66 to 0.77) suggesting a stronger protective effect of OCP use among TT genotypes (Table 3, Figure 1A).

When OCP use was further stratified by duration, we observed an interesting pattern in its interaction with rs13255292. The estimated OR corresponding to 1-5 year of OCP use vs < 1 year use in the TT genotype group was 0.58 (95%CI = 0.50 to 0.69) compared to an OR of 0.79 (95%CI = 0.72 to 0.87) among women with CC genotype, showing effect modification by the risk allele (C) of rs13255292 (Table 3, Figure 1B). This is akin to the result with ever/never user. However, the OR corresponding to 5+ years of OCP use vs < 1 year of use for the TT genotype group was 0.43 (95%CI = 0.37 to 0.50) and for the CC genotype was 0.53 (95%CI = 0.49 to 0.58) (Table 3, Figure 1C). With overlapping confidence intervals, there is no significant difference in the odds ratios for long-term OCP users across genotype sub-groups. Table 3 shows that the P-
value of the Wald test for interaction of rs13255292 and 1-5 years of OCP use (vs < 1 yr) was lower (P-value = 4.74 x 10^{-3}), when compared to the P-value for interaction of the same variant with 5+ years of OCP use (vs < 1 yr) (P-value = 2.43 x 10^{-2}).

Wald Test for Additive interaction/RERI: For the most statistically significant additive interactions in **Table 4**, we estimated the sub-group specific absolute risks (ARs) and risk differences (RDs) in each E by G stratum. For example, for the strongest additive interaction based on the global likelihood ratio tests in Table 4, there was suggestive evidence that rs11658063 modified the effect of menopausal estrogen therapy use, compared to never use of menopausal hormone therapy (P-value = 3.01 x 10^{-2}). Among women with the GG genotype, never users of menopausal hormone therapy had an estimated AR of 1.33% (95%CI = 1.26% to 1.40%) while women who used menopausal estrogen therapy had an estimated AR of 1.96% (95%CI = 1.59% to 2.33%), leading to an absolute risk increase of 0.63% (95%CI = 0.24% to 1.02%) (**Table 4, eFigure 2**).

For women with the CC genotype, the estimated AR was 1.27% (95%CI = 1.23% to 1.32%) for never receiving menopausal hormone therapy and 1.36% (95%CI = 1.15% to 1.57%) for receiving menopausal estrogen only therapy. This implies virtually no increased risk from taking menopausal estrogen only therapy among women with the CC genotype (95%CI = -0.14% to 0.31%; **Table 4, eFigure 2**). The results on the additive interactions were in general weaker in terms of the strength of P-values.

DISCUSSION

We have conducted a comprehensive multiplicative and additive interaction analysis of previously identified common genetic variants and environmental factors
unequivocally associated with ovarian cancer risk. We observed six suggestive interactions (with P-value < 0.01), four on the multiplicative scale and two on the additive scale. The lack of statistical significance of interactions after multiple testing correction from a large collection of data and well-curated studies enable us to conclude that it is unlikely that there are substantive interactions with single variants and environmental factors regardless of the choice of scale. This is consistent with what has been observed for other cancers. One may argue that the Bonferroni threshold for multiple comparisons is likely to be conservative for this set of correlated environmental factors, but the general pattern of findings remains consistent with smaller magnitude of interaction effect sizes. However, there are several interesting findings from this analysis that may be worthwhile to follow-up in future G x E studies of ovarian cancer.

Mechanistic Insight: In addition to guiding targeted prevention strategies, G x E analysis has the potential to provide mechanistic insight into the complex multifactorial structure of the underlying biological pathway. One issue complicating observed gene-environment interactions of even confirmed susceptibility loci is that the true casual alleles and the biological impact of the variants are unknown. Our top interaction is between OCP use and rs13255292. This variant lies in the 8q24 region which harbors several risk loci for ovarian cancer \(^{18}\) and other cancers \(^{43, 44}\). The SNP is in the *PVT1* gene which interacts with the oncogene *MYC* \(^{45}\). *MYC* has long been reported to be at least in part under hormonal control \(^{46, 47}\) thus an interaction with OCP use is plausible. Conversely, our top additive interaction is between menopausal estrogen use and rs11658063 which falls in *HNF1B*. To our knowledge there is no relationship between *HNF1B* and hormones thus underscoring the difficulty of understanding these gene-
environment interactions given our limited understanding of the function of the variants and even more broadly the biological role of the genes.

Exposure Pathways and Potential for Targeted Prevention: The strongest interactions are observed with OCP use or menopausal estrogen use which are modifiable exposures. Our most promising finding is the potential interaction between SNP rs13255292 and OCP use. This finding, if replicated could potentially lead to improved understanding of exposure pathways.

Analytic Architecture and the Choice of Scale for Measuring Interaction: We present a comprehensive analytical framework to carry out post-GWAS G x E analysis on both multiplicative and additive scale. Our framework starting with data harmonization and imputation followed by Global likelihood ratio tests and single df Wald tests provides a principled analytic architecture for such analysis. Our analysis reiterates the well-known fact that testing the additive and multiplicative nulls are very similar when the marginal associations are weak but could depart when both marginal associations are large in magnitude and the sample size is finite. In eTable 5, we present observed joint odds ratios for strata defined by G and E along with the expected odds ratios under the multiplicative null and the additive null. We use our top hit rs13255292 and OCP use (ever versus never) and length of OCP use (<1yr, 1-<5 yrs, 5+ yrs) as an illustration. One can note that the expected ORs are fairly close under both models. However, their estimated departure from the observed joint OR is more pronounced for the 1-<5 yrs sub-group when compared to 5+ yrs, explaining the suggestive evidence for rejecting the null.
We discussed the multiplicative interaction results for rs13255292 and OCP use in the previous section. We now explore the structure of additive interaction for this G x E result (Figure 2A-2C). Marginally, without including any genetic information, from a pure environmental association analysis we observed a relationship between duration of OCP use and risk reduction for ovarian cancer. For 1-5 years of OCP use (vs <1 year) the estimated absolute risk difference was 0.47% (95%CI = 0.37% to 0.56%), while the estimated absolute risk difference for long-term use of OCPs (5+ year vs <1 year) was 0.84% (95%CI = 0.77% to 0.92%) (Figure 2B-2C, eTable 4), in agreement with previous findings that longer duration of OCP use is associated with larger risk reduction in ovarian cancer. However, when stratified by rs13255292 genotype, we observed an interesting pattern. Among individuals with TT genotype, the corresponding absolute risk difference estimate for 1-5 year of OCP use (vs <1 year) was 0.69% (95%CI = 0.49% to 0.88%), whereas among individuals with CC genotypes the corresponding risk reduction estimate was 0.36% (95%CI = 0.22% to 0.50%), implying potential effect modification by the C allele at locus rs13255292 (P-value = 1.12 x 10^{-2}) (Figure 2B, eTable 4). In contrast, the absolute risk difference is estimated at 0.95% (95%CI = 0.78% to 1.12%) for women with TT genotype and at 0.79% (95%CI = 0.69% to 0.90%) in women with CC genotype. This indicates that longer OC use is associated with greater risk reduction overall and the risk reduction might be even greater for women with the TT genotype than those with the CC genotype. From Figure 2B-2C we observe the interplay between “nature vs nurture” with risk due to germline genetic mutations offset by long-term use of a modifiable protective factor. This analysis also
highlights the benefit of measuring duration of exposure as opposed to a coarse indicator of ever/never use.

Prior work in G x E for ovarian cancer has focused solely on multiplicative interactions. We previously reported no departures from a multiplicative model with the first six risk loci identified through GWAS with a reduced set of exposures \(^3\). Follow-up work identified an interaction with menopausal estrogen therapy use and rs10069690 in the *TERT* gene \(^48\), but that finding was not replicated in the present analysis which included a larger set of studies. Fridley and colleagues have reported on G x E taking a candidate gene approach with several promising findings \(^49\). There are several studies in other cancers examining G x E on the multiplicative scale with limited success in identifying interactions, but to our knowledge, only prostate cancer and bladder cancer have been studied on the additive scale. In prostate cancer, suggestive additive interactions between vitamin D, confirmed genetic variants and risk have been identified \(^50\). In bladder cancer, additive interaction has been explored between confirmed genetic loci and smoking with risk of disease \(^31\). In this work the authors were able to demonstrate that the absolute risk of bladder cancer for current smokers varied from 2.9% to 9.9% based on the polygenetic risk score quartile. These results are similar to our findings on the additive scale with absolute risk differing based on genetics and hormone therapy use; an interesting next step for our work is to consider the polygenetic risk score for all of these confirmed ovarian cancer susceptibility alleles.

There are several limitations of the current analysis. Though we considered both multiplicative and additive interactions, the logistic model in (M1) is linear in covariates and exposures. We ignored potential non-linearity and exposure x exposure as well as
exposure x covariate interactions. Similarly, we ignored any higher order interactions. A completely non-parametric machine learning approach, based on a recursive partition of the predictor space may avoid misspecification of the model, but would lack interpretability from an epidemiologic and public health perspective. We also acknowledge that this exploration of interaction is purely statistical, a more causal interpretation in a biological sense will require functional validation. One may also want to explore G x E interaction with loci that are not significant at genome-wide threshold but are significant at a less stringent threshold or even conduct genome-wide G x E scans.

The associations between ovarian cancer risk and some of the variants included here were limited to specific histotypes of ovarian cancer, however we have only presented results for all epithelial ovarian cancers combined. Developing histotype-specific risk stratification approaches is not feasible because for any given histotype the absolute risk is unlikely to ever reach an actionable threshold on a population level. In addition, risk reducing strategies are the same across histotypes and thus there is little benefit to considering histotype specific results from a precision prevention perspective. Heterogeneous associations between environmental risk factors and ovarian cancer risk by histology has previously been well characterized \(^3\), \(^23\), \(^27\). There is value in understanding histotype associations for disease etiology and mechanisms and this will be the focus of future work.

The analyses presented here offer insight into potential biological mechanisms, opportunities for ovarian cancer risk stratification, and approaches to studying gene-environment interactions. Ideally, replication for the six promising findings would be
undertaken, but this is challenging with ovarian cancer given that most studies with the relevant data are included here. Functional studies for the regions harboring our most promising findings are underway and it is possible that the association described here may help inform those investigations. Also, gene-environment interaction analyses can also be used to identify novel genetic associations and thus a deeper evaluation of variants that are still borderline significant, but do not exactly achieve a genome-wide threshold is warranted for subsequent G x E analysis. Of particular interest will be to conduct risk stratification and risk prediction analysis using a summative polygenic risk score and to conduct an agnostic genome-wide search for G x E interaction. Despite the limitations the comprehensive framework of data harmonization, imputation, screening test followed by characterization of effect and risk estimates that has been used in this analysis can serve as a robust model for future gene-environment interaction analyses.

ACKNOWLEDGEMENTS

The AOCS also acknowledges the cooperation of the participating institutions in Australia and acknowledges the contribution of the study nurses, research assistants and all clinical and scientific collaborators to the study. The complete AOCS Study Group can be found at www.aocstudy.org. We would like to thank all of the women who participated in these research programs. The cooperation of the 32 Connecticut hospitals, including Stamford Hospital, in allowing patient access, is gratefully acknowledged. This study was approved by the State of Connecticut Department of Public Health Human Investigation Committee. Certain data used in this study were obtained from the Connecticut Tumor Registry in the Connecticut Department of Public Health.
Health. The authors assume full responsibility for analyses and interpretation of these data. The German Ovarian Cancer Study (GER) thank Ursula Eilber for competent technical assistance. The NHS/NHSII studies thank the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. We particularly thank I. Jacobs, M.Widschwendter, E. Wozniak, A. Ryan, J. Ford and N. Balogun for their contribution to the study. We also thank Harvey Risch for contributing data for this analysis. Usha Menon has shares in Abcodia Ltd., which has an interest in early cancer detection.
FINANCIAL SUPPORT

AUS (GCT, PMW): The Australian Ovarian Cancer Study was supported by the U.S. Army Medical Research and Materiel Command under DAMD17-01-1-0729, the Cancer Councils of New South Wales, Victoria, Queensland, South Australia and Tasmania and The Cancer Foundation of Western Australia (Multi-State Applications 182, 191 and 211) and the National Health and Medical Research Council of Australia (NHMRC; ID400413, ID400281, 199600 and 1043134). The Australian Ovarian Cancer Study gratefully acknowledges additional support from Ovarian Cancer Australia and the Peter MacCallum Foundation; CON (HAR): National Institutes of Health (R01-CA063678, R01-CA074850; R01-CA080742); DOV (HRH, JAD, MAR): National Institutes of Health R01-CA112523, R01-CA87538 and K22 CA193860; GER (JCC, RTF): German Federal Ministry of Education and Research, Programme of Clinical Biomedical Research (01 GB 9401) and the German Cancer Research Center (DKFZ); HAW (MTG, PJT): U.S. National Institutes of Health (R01-CA58598, N01-CN-55424 and N01-PC-67001); HOP (FM, RBN): DOD: DAMD17-02-1-0669 and NCI: K07-CA080668, R01-CA95023, P50-CA159981; NIH/National Center for Research Resources/General Clinical Research Center grant MO1-RR000056; MAL (AJ, SKK): Funding for this study was provided by research grant R01-CA61107 from the National Cancer Institute, Bethesda, Md; research grant 94 222 52 from the Danish Cancer Society, Copenhagen, Denmark; and the Mermaid I project; MAY (ELG, SJW): National Institutes of Health (R01-CA122443, P30-CA15083, P50-CA136393); Mayo Foundation; Minnesota Ovarian Cancer Alliance; Fred C. and Katherine B. Andersen Foundation; NCO (AB, JMS): National Institutes of Health (R01-CA76016) and the Department of Defense
(DAMD17-02-1-0666); **NEC (DWC, KLT):** National Institutes of Health R01-CA54419 and P50-CA105009 and Department of Defense W81XWH-10-1-02802; **NHS (SST):** UM1 CA186107, P01 CA87969, R01 CA49449, R01-CA67262, UM1 CA176726; **NJO (EVB, SHO):** National Cancer Institute (NIH-K07 CA095666, R01-CA83918, NIH-K22-CA138563, P30-CA072720, and P30-CA008748) and the Cancer Institute of New Jersey; **OVA (ABW, LSC, NDL):** This work was supported by Canadian Institutes of Health Research grant (MOP-86727) and by NIH/NCI 1 R01CA160669-01A1; **POL (BT, NW):** Intramural Research Program of the National Cancer Institute; **SON (HAR):** National Health Research and Development Program, Health Canada, grant 6613-1415-53; **STA (ASW, WS):** NIH grants U01 CA71966 and U01 CA69417; **UCI (HAC, AZ):** NIH R01-CA058860, and the Lon V Smith Foundation grant LVS-39420; **UKO (UM, SAG):** The UKOPS study was funded by The Eve Appeal (The Oak Foundation) and supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre; **USC (AWL, AHW, CLP, MCP):** P01CA17054, P30CA14089, R01CA61132, N01PC67010, R03CA113148, R03CA115195, N01CN025403, T32 ES013678, and California Cancer Research Program (00-01389V-20170, 2II0200).

This work was supported by the National Cancer Institute, US National Institutes of Health (grant R01 CA076016, P30 CA04), and the National Cancer Institute’s Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative (grant U19-CA148112). and the National Cancer Institute (Grant P30 CA046592 for CLP and BM). Lastly, this work was also supported by the National Science Foundation (grant NSF
DMS 1406712 BM) and the National Institute of Environmental Health Sciences (NIH ES 20811 BM).

The Collaborative Oncological Gene Environment Study is funded through the European Commission’s Seventh Framework Programme (agreement 223175 HEALTH F2 2009-223175). The Ovarian Cancer Association Consortium is supported by a grant from the ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (grant PPD/RPCI.074)
REFERENCES

Tables

Table 1. Odds ratios for marginal associations of 28 genetic susceptibility variants with ovarian cancer. Analysis used data with 26864 cases and 48034 controls from 75 study sites.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Previously published best hit</th>
<th>Chr</th>
<th>Position</th>
<th>Risk Allele</th>
<th>Baseline Allele</th>
<th>RAF</th>
<th>OR</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs12023270</td>
<td>rs58722170</td>
<td>1</td>
<td>38086578</td>
<td>T</td>
<td>C</td>
<td>0.264</td>
<td>1.08 (1.05,1.10)</td>
<td>2.65×10⁻⁸</td>
</tr>
<tr>
<td>chr2:111818658</td>
<td>rs2165109</td>
<td>2</td>
<td>111818658</td>
<td>C</td>
<td>A</td>
<td>0.277</td>
<td>1.06 (1.04,1.09)</td>
<td>2.03×10⁻⁶</td>
</tr>
<tr>
<td>rs874898</td>
<td>rs752590</td>
<td>2</td>
<td>113974196</td>
<td>C</td>
<td>G</td>
<td>0.262</td>
<td>1.00 (0.98,1.03)</td>
<td>7.36×10⁻⁴</td>
</tr>
<tr>
<td>rs1562314</td>
<td>rs711830</td>
<td>2</td>
<td>177045560</td>
<td>T</td>
<td>A</td>
<td>0.638</td>
<td>1.10 (1.07,1.13)</td>
<td>2.84×10⁻⁴</td>
</tr>
<tr>
<td>rs112071820</td>
<td></td>
<td>3</td>
<td>138849110</td>
<td>allele 1</td>
<td>G</td>
<td>0.270</td>
<td>1.03 (1.00,1.06)</td>
<td>5.17×10⁻²</td>
</tr>
<tr>
<td>chr3:156397692</td>
<td>rs62274041</td>
<td>3</td>
<td>156397692</td>
<td>T</td>
<td>C</td>
<td>0.048</td>
<td>1.47 (1.39,1.55)</td>
<td>7.73×10⁻⁷</td>
</tr>
<tr>
<td>rs9870207</td>
<td>rs62274041</td>
<td>17</td>
<td>190525516</td>
<td>A</td>
<td>G</td>
<td>0.666</td>
<td>1.05 (1.03,1.08)</td>
<td>2.95×10⁻⁵</td>
</tr>
<tr>
<td>rs7705526</td>
<td>rs10069690</td>
<td>5</td>
<td>1285974</td>
<td>A</td>
<td>C</td>
<td>0.343</td>
<td>1.10 (1.07,1.12)</td>
<td>5.52×10⁻⁴</td>
</tr>
<tr>
<td>chr5:66121089</td>
<td>rs555025179</td>
<td>5</td>
<td>66121089</td>
<td>allele2</td>
<td>G</td>
<td>0.526</td>
<td>1.03 (1.00,1.05)</td>
<td>2.61×10⁻⁴</td>
</tr>
<tr>
<td>chr8:82653644</td>
<td>8:82668818</td>
<td>8</td>
<td>82653644</td>
<td>G</td>
<td>A</td>
<td>0.064</td>
<td>1.18 (1.12,1.23)</td>
<td>3.25×10⁻¹²</td>
</tr>
<tr>
<td>rs9886651</td>
<td></td>
<td>8</td>
<td>128817883</td>
<td>G</td>
<td>A</td>
<td>0.435</td>
<td>1.06 (1.03,1.08)</td>
<td>2.89×10⁻⁶</td>
</tr>
<tr>
<td>rs13255292</td>
<td></td>
<td>8</td>
<td>129076573</td>
<td>C</td>
<td>T</td>
<td>0.700</td>
<td>1.07 (1.05,1.10)</td>
<td>3.57×10⁻⁶</td>
</tr>
<tr>
<td>rs10103314</td>
<td>rs1400482</td>
<td>8</td>
<td>129560744</td>
<td>A</td>
<td>C</td>
<td>0.883</td>
<td>1.15 (1.11,1.20)</td>
<td>5.76×10⁻⁵</td>
</tr>
<tr>
<td>Chromosome</td>
<td>SNP</td>
<td>Position</td>
<td>Allele 1</td>
<td>Allele 2</td>
<td>RAFF</td>
<td>OR (95% CI)</td>
<td>P-value</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>chr9:16915105</td>
<td>rs10962692<sup>30</sup></td>
<td>9</td>
<td>16915105</td>
<td>C</td>
<td>G</td>
<td>0.834</td>
<td>1.24 (1.20,1.28)</td>
<td>4.54x10^-41*</td>
</tr>
<tr>
<td>rs10962643</td>
<td>NA</td>
<td>9</td>
<td>16857403</td>
<td>C</td>
<td>A</td>
<td>0.699</td>
<td>1.17 (1.14,1.20)</td>
<td>1.13x10^-35*</td>
</tr>
<tr>
<td>rs320203<sup>18</sup></td>
<td></td>
<td>9</td>
<td>104943226</td>
<td>C</td>
<td>A</td>
<td>0.842</td>
<td>1.03 (1.00,1.06)</td>
<td>5.21x10^-2</td>
</tr>
<tr>
<td>chr9:136138765<sup>15</sup></td>
<td></td>
<td>9</td>
<td>136138765</td>
<td>G</td>
<td>allele 3</td>
<td>0.176</td>
<td>1.12 (1.08,1.15)</td>
<td>1.49x10^-12*</td>
</tr>
<tr>
<td>rs7084454</td>
<td>rs144962376<sup>17</sup></td>
<td>10</td>
<td>21821274</td>
<td>A</td>
<td>G</td>
<td>0.301</td>
<td>1.07 (1.05,1.10)</td>
<td>3.32x10^-8*</td>
</tr>
<tr>
<td>rs7902587<sup>18</sup></td>
<td></td>
<td>10</td>
<td>105694301</td>
<td>T</td>
<td>C</td>
<td>0.091</td>
<td>1.08 (1.03,1.12)</td>
<td>4.54x10^-4*</td>
</tr>
<tr>
<td>chr12:121403724</td>
<td>rs7953249<sup>18</sup></td>
<td>12</td>
<td>121403724</td>
<td>A</td>
<td>G</td>
<td>0.570</td>
<td>1.05 (1.03,1.07)</td>
<td>2.58x10^-5*</td>
</tr>
<tr>
<td>chr15:91531995</td>
<td>rs8037137<sup>13</sup></td>
<td>15</td>
<td>91531995</td>
<td>C</td>
<td>T</td>
<td>0.829</td>
<td>1.08 (1.05,1.12)</td>
<td>1.18x10^-6*</td>
</tr>
<tr>
<td>rs11658063</td>
<td>rs7405776<sup>19</sup></td>
<td>17</td>
<td>36103872</td>
<td>G</td>
<td>C</td>
<td>0.614</td>
<td>1.04 (1.02,1.07)</td>
<td>2.98x10^-4*</td>
</tr>
<tr>
<td>chr17:43552537</td>
<td>rs1879586<sup>17</sup></td>
<td>17</td>
<td>43552537</td>
<td>A</td>
<td>G</td>
<td>0.164</td>
<td>1.12 (1.08,1.15)</td>
<td>2.22x10^-12*</td>
</tr>
<tr>
<td>rs7217120</td>
<td>rs7207826<sup>16</sup></td>
<td>17</td>
<td>46484755</td>
<td>C</td>
<td>T</td>
<td>0.275</td>
<td>1.10 (1.07,1.13)</td>
<td>8.69x10^-13*</td>
</tr>
<tr>
<td>rs8098244<sup>18</sup></td>
<td></td>
<td>18</td>
<td>21405553</td>
<td>G</td>
<td>A</td>
<td>0.741</td>
<td>1.04 (1.01,1.07)</td>
<td>4.23x10^-5*</td>
</tr>
<tr>
<td>rs4808075<sup>11</sup></td>
<td></td>
<td>19</td>
<td>17390291</td>
<td>C</td>
<td>T</td>
<td>0.268</td>
<td>1.13 (1.10,1.16)</td>
<td>1.49x10^-20*</td>
</tr>
<tr>
<td>rs74597329</td>
<td>rs688187<sup>14</sup></td>
<td>19</td>
<td>39739155</td>
<td>G</td>
<td>T</td>
<td>0.301</td>
<td>1.02 (0.99,1.04)</td>
<td>2.63x10^-1</td>
</tr>
<tr>
<td>rs6005807<sup>18</sup></td>
<td></td>
<td>22</td>
<td>28934313</td>
<td>T</td>
<td>C</td>
<td>0.095</td>
<td>1.09 (1.04,1.13)</td>
<td>3.35x10^-5*</td>
</tr>
</tbody>
</table>

Abbreviations: SNP, single-nucleotide polymorphism; RAFF, risk allele frequency; Chr, chromosome; OR, odds ratio; allele1, GCCAGATTTCAGAAT; allele2, GACACACAC; allele3, GCGCCCACCACTA.

^a: If not specified, the previously published best hit is the same as the current best hit.

^b: Logistic regression for ovarian cancer overall (regardless of histology), adjusted for ethnicity, study panel and leading principal components for each ethnicity (using a total of 47 principal components).

*: P-value > 0.01.
Table 2. Odds ratios for marginal associations of seven environmental risk factors with ovarian cancer risk with 13722 cases and 22975 controls from 19 study sites.

<table>
<thead>
<tr>
<th>Environmental risk factor</th>
<th>Before Imputation<sup>a</sup></th>
<th>After Imputation<sup>b</sup></th>
<th>OR<sup>c</sup></th>
<th>P-value<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Case</td>
<td>Control</td>
<td>Case</td>
</tr>
<tr>
<td>OCP use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>0.347</td>
<td>0.444</td>
<td>0.351</td>
<td>0.452</td>
</tr>
<tr>
<td>Ever</td>
<td>0.645</td>
<td>0.536</td>
<td>0.649</td>
<td>0.548</td>
</tr>
<tr>
<td>(missing)</td>
<td>0.008</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of OCP use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never users (including <1 year)</td>
<td>0.425</td>
<td>0.542</td>
<td>0.430</td>
<td>0.554</td>
</tr>
<tr>
<td>1-<5 year</td>
<td>0.229</td>
<td>0.208</td>
<td>0.232</td>
<td>0.215</td>
</tr>
<tr>
<td>5+ year</td>
<td>0.332</td>
<td>0.222</td>
<td>0.338</td>
<td>0.231</td>
</tr>
<tr>
<td>(missing)</td>
<td>0.014</td>
<td>0.028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubal ligation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.693</td>
<td>0.777</td>
<td>0.762</td>
<td>0.824</td>
</tr>
<tr>
<td>Yes</td>
<td>0.208</td>
<td>0.160</td>
<td>0.238</td>
<td>0.176</td>
</tr>
<tr>
<td>(missing)</td>
<td>0.098</td>
<td>0.063</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breastfeeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>0.239</td>
<td>0.294</td>
<td>0.380</td>
<td>0.515</td>
</tr>
<tr>
<td>Yes</td>
<td>0.532</td>
<td>0.410</td>
<td>0.620</td>
<td>0.485</td>
</tr>
<tr>
<td>(missing)</td>
<td>0.229</td>
<td>0.296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity (number of full-term births)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.148</td>
<td>0.241</td>
<td>0.149</td>
<td>0.243</td>
</tr>
<tr>
<td>1-2</td>
<td>0.487</td>
<td>0.434</td>
<td>0.489</td>
<td>0.438</td>
</tr>
<tr>
<td>3+</td>
<td>0.359</td>
<td>0.315</td>
<td>0.362</td>
<td>0.319</td>
</tr>
<tr>
<td>(missing)</td>
<td>0.006</td>
<td>0.011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of HT using more than 1 year after age 50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never use</td>
<td>0.687</td>
<td>0.647</td>
<td>0.789</td>
<td>0.782</td>
</tr>
<tr>
<td>ET only</td>
<td>0.060</td>
<td>0.075</td>
<td>0.066</td>
<td>0.084</td>
</tr>
<tr>
<td>(missing)</td>
<td>0.121</td>
<td>0.160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any EPT</td>
<td>0.131</td>
<td>0.118</td>
<td>0.145</td>
<td>0.134</td>
</tr>
<tr>
<td>(missing)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25</td>
<td>0.392</td>
<td>0.370</td>
<td>0.516</td>
<td>0.485</td>
</tr>
<tr>
<td>25-<30</td>
<td>0.209</td>
<td>0.213</td>
<td>0.284</td>
<td>0.286</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>30+</td>
<td>(missing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>No</td>
<td>0.144</td>
<td>0.174</td>
<td>0.200</td>
<td>0.229</td>
</tr>
<tr>
<td>Yes</td>
<td>0.255</td>
<td>0.243</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(missing)</td>
<td>0.250</td>
<td>0.230</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: OR, odds ratio; OCP, oral contraceptive pills; BMI, body mass index; HT, menopausal hormone therapy; ET, menopausal estrogen therapy; EPT, menopausal estrogen + progestin therapy; Ref, reference group.

a: Harmonized environmental data before imputation. Results of the complete cases analysis are provided in eTable 2.

b: Based on ten imputed E datasets.

c: Logistic regression model adjusted for reference age, race, education, family history, OCP use, tubal ligation, parity, BMI, endometriosis and study site.
Table 3. Results from Multiplicative Interaction Analysis: Odds ratios corresponding to environmental risk factors, stratified by genotype (for G-E pairs with global likelihood ratio test p-value < 0.01. Analysis used the G×E data with 9971 cases and 15566 controls from 17 study sites).

<table>
<thead>
<tr>
<th>SNP</th>
<th>Environmental risk factor</th>
<th>N (cases/controls)</th>
<th>Estimated OR for E stratified by G (95%CI)</th>
<th>Global LRT Test</th>
<th>Wald Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1325529</td>
<td>OCP use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TT</td>
<td>TC</td>
<td>CC</td>
<td>TT</td>
</tr>
<tr>
<td>rs1325529</td>
<td>Never</td>
<td>396/5</td>
<td>1758/2</td>
<td>2077/2</td>
<td>Ref</td>
</tr>
<tr>
<td></td>
<td>Ever</td>
<td>446/1</td>
<td>2286/4</td>
<td>2768/4</td>
<td>0.53 (0.46, 0.60)</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>24/1</td>
<td>96/56</td>
<td>120/96</td>
<td>Ref</td>
</tr>
<tr>
<td>rs1325529</td>
<td>Duration of OCP use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 1 yr</td>
<td>451/6</td>
<td>2213/2</td>
<td>2546/3</td>
<td>Ref</td>
</tr>
<tr>
<td></td>
<td>1-<5 yr</td>
<td>171/3</td>
<td>854/15</td>
<td>1082/1</td>
<td>0.58 (0.50, 0.69)</td>
</tr>
<tr>
<td></td>
<td>5+ yr</td>
<td>209/5</td>
<td>945/22</td>
<td>1178/2</td>
<td>0.43 (0.37, 0.5)</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>35/2</td>
<td>128/10</td>
<td>159/13</td>
<td>Ref</td>
</tr>
<tr>
<td>rs1096264</td>
<td>Parity (full term birth)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>230/2</td>
<td>940/94</td>
<td>1194/1</td>
<td>Ref</td>
</tr>
<tr>
<td></td>
<td>1-2</td>
<td>398/8</td>
<td>1741/3</td>
<td>2202/3</td>
<td>0.52 (0.44, 0.61)</td>
</tr>
<tr>
<td></td>
<td>3+</td>
<td>243/5</td>
<td>1242/2</td>
<td>1664/2</td>
<td>0.38 (0.32, 0.46)</td>
</tr>
</tbody>
</table>
Abbreviation: SNP, single-nucleotide polymorphism; OR, odds ratio; OCP, oral contraceptive pills; yr, year; Ref, reference group; df, degree of freedom, LRT, likelihood ratio test.

a: Number of cases and controls were estimated from the original merged G×E data (before imputation) with 9971 cases and 15566 controls from 17 study sites, using maximal probable genotypes for imputed SNPs.

b: ORs were estimated from the logistic regression model with SNP, E variable, SNP×E variable.

c: LRT was performed for jointly testing multiplicative interactions.

d: Wald test for individual multiplicative interaction.

All models were estimated from the logistic regression model with SNP, E variable, SNP×E variable, assuming log-additive model, using dosage data for imputed SNPs, adjusted for reference age, race, education, family history, OCP use, tubal ligation, parity, BMI, endometriosis and study site and were performed on imputed datasets of G-E (9971 cases, 15566 controls) with proper pooling.
Table 4. Absolute risks and risk differences stratified by levels of environmental risk factor and levels of genotype (for G-E pairs with global likelihood ratio test p-value < 0.01 on additive scale. Analysis used the G×E data with 9971 cases and 15566 controls from 17 study sites).

<table>
<thead>
<tr>
<th>Environment risk factor</th>
<th>N (cases/controls)</th>
<th>Estimated ARs or RDs for E stratified by SNPs (95%CI)</th>
<th>Global LRT<sup>d</sup></th>
<th>Wald Test<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>rs11658 063 G/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of HT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neither</td>
<td>589/1142</td>
<td>2609/4518</td>
<td>3310/4956</td>
<td>1.27% (1.23%, 1.32%)</td>
</tr>
<tr>
<td>ET only</td>
<td>66/98</td>
<td>281/409</td>
<td>416/454</td>
<td>1.36% (1.15%, 1.57%)</td>
</tr>
<tr>
<td>RD<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any EPT</td>
<td>105/207</td>
<td>498/952</td>
<td>606/1046</td>
<td>1.16% (1.04%, 1.28%)</td>
</tr>
<tr>
<td>RD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>missing</td>
<td>122/202</td>
<td>582/762</td>
<td>787/820</td>
<td>-0.12% (-0.26%, -0.03%)</td>
</tr>
<tr>
<td>rs98866 51 G/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCP use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>1278/1718</td>
<td>2053/2502</td>
<td>900/1028</td>
<td>1.52% (1.42%, 1.62%)</td>
</tr>
<tr>
<td>Ever</td>
<td>1666/3105</td>
<td>2640/4978</td>
<td>1194/2072</td>
<td>1.07% (1.02%, 1.12%)</td>
</tr>
<tr>
<td>RD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>missing</td>
<td>70/47</td>
<td>113/79</td>
<td>57/37</td>
<td>-0.45% (-0.57%, -0.33%)</td>
</tr>
</tbody>
</table>
Abbreviation: SNP, single-nucleotide polymorphism; AR, absolute risk; RD, risk difference; OCP, oral contraceptive pills; HT, menopausal hormone therapy; ET,
menopausal estrogen therapy; EPT, menopausal estrogen + progestin therapy; Ref, reference group; df, degree of freedom.

a: Number of cases and controls were estimated from the original merged G×E data (before imputation) with 9971 cases and 15566 controls from 17 study sites, using maximal probable genotypes for imputed SNPs.

b: The risk difference corresponds to given category compared to the reference group, stratified by SNP.

c: ARs were estimated from logistic regression model by empirically estimated distribution of E and SNPs, while fixing all other covariates at their mode (determined from the original data).

d: LRT was performed for jointly testing additive interactions, assuming dominant effect model of SNPs (due to limitation of software).

e: 1-df Wald test corresponds to the test individual RERI term (SNP = 2 vs SNP = 0, E = k vs E = reference group) is zero or not.

All models were estimated from logistic regression model with SNP, E variable, SNP\times E variable, assuming log-additive model (except for additive LRT which assumes dominant effect), using maximal probable genotypes for imputed SNPs, adjusted for reference age, race, education, family history, OCP use, tubal ligation, parity, BMI, endometriosis and study site and were performed on imputed datasets of G-E (9971 cases, 15566 controls) with proper pooling.
Figure Legends

Figure 1A-1C. ORs of oral contraceptive (OCP) use, marginally, or stratified by number of risk allele of rs13255292. The ORs were calculated from a logistic regression model assuming log-additive effect of SNPs. (A) OR of OCP (ever vs never) (B) OR of 1 to 5 years of OCP use (vs < 1 year) (B) OR of more than 5 years of OCP use (vs < 1 year).

Figure 2A-2C. Estimated absolute risk (AR) of ovarian cancer given OCP use and number of copies of C allele, among non-Hispanic white college graduates aged below 50 with no family history of ovarian cancer, BMI below 25, no tubal ligation, no endometriosis, with one child. The ARs were calculated from a logistic regression model assuming log-additive effect of SNPs while all covariates fixed at their most frequent level as described above. (A) ARs stratified by OCP (ever vs never) and genotype (B) ARs stratified by 1 to 5 years of OCP use (vs < 1 year) and genotype (F) ARs stratified by more than 5 years of OCP use (vs < 1 year) and genotype. Risk differences were also reported as the solid black bar.
Figure 2:

A

![Bar chart for genotypes of the rs13255593 variant.]

B

![Bar chart for genotypes of the rs13255592 variant.]

C

![Bar chart for genotypes of the rs13255592 variant.]

This article is protected by copyright. All rights reserved.