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Abstract. 
 
Introduction. Although many disease models exist for neurodegenerative disease, the 

translation of basic research findings to clinic is very limited. Studies using freshly 

resected human brain tissue, commonly discarded from neurosurgical procedures, 

should complement on-going work using stem cell-derived human neurons and glia 

thus increasing the likelihood of success in clinical trials.   

 
Areas covered. Herein, the authors discuss key issues in the lack of translation from 

basic research to clinic. They also review the evidence that human neurons, both 

freshly resected brain tissue and stem cell-derived neurons, such as induced 

pluripotent stem cells (iPSCs), can be used for analysis of physiological and molecular 

mechanisms in health and disease. Furthermore, the authors compare and contrast 

studies using live human brain tissue and studies using induced human stem cell-

derived neuron models. Using an example from the area of neurodegeneration, the 

authors suggest that replicating elements of research findings from animals and stem 

cell models in resected human brain tissue would strengthen our understanding of 

disease mechanisms and the therapeutic strategies and aid translation. 
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Expert opinion. The use of human brain tissue alongside iPSC-derived neural models 

can validate molecular mechanisms identified in rodent disease models and 

strengthen their relevance to humans. If drug target engagement and mechanism of 

cellular action can be validated in human brain tissue, this will increase the success 

rate in clinical research. The combined use of resected human brain tissue, alongside 

iPSC-derived neural models, could be considered a standard step in pre-clinical 

research and help to bridge the gap to clinical trials. 

 

 

Article highlights 

• Fewer than 10% of new drugs entering clinical trials achieve licensing for 

human use and the biggest risk of failure is in Phase II trials.  

• Confirming that a new drug binds the target and modifies its function can 

increase confidence in its likelihood to succeed in Phase II clinical trials. 

• Human neuron experimental paradigms in which new drugs could be tested 

include stem-cell models and resected brain tissue typically discarded from 

neurosurgical procedures.  

• iPSC-derived neurons can be obtained from patients and have great potential 

for drug testing. 

• Resected adult human brain tissue can help scientists to establish benchmarks 

for further development of iPSC-derived neural cultures and validate findings from 

iPSC-derived neurons, thus bridging the gap between pre-clinical and clinical 

research. 

• Analysis of tau protein complexity in mature human neurons in physiological 

conditions will clarify its role in disease and may contribute to targeting it 

therapeutically. 

 

  

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
ha

m
pt

on
] 

at
 0

6:
39

 1
9 

Fe
br

ua
ry

 2
01

6 



 4 

 

1. Introduction  
 

Research into diverse brain disorders has relied on the use of post-mortem tissue and 

experimental models to understand the cellular and molecular mechanisms of disease. 

Such experiments have been invaluable in expanding our understanding of the 

function of neurons and glia as well as how different diseases affect them. The lack of 

translation from pre-clinical research to patient benefit is therefore surprising. As a 

solution to this problem, the drug discovery field is moving towards experimental 

paradigms using human neurons. Currently these models are based on stem cell-

derived neurons and to a lesser degree the use of residual human brain tissue derived 

from neurosurgical procedures. We discuss a) some key issues that may be 

responsible for lack of translation from pre-clinical to clinical research; b) current 

experimental approaches using human neurons that we believe can provide better 

translation. We provide key examples to illustrate our opinions and one focused 

example of how these issues may have contributed to a lack of translation for treating 

dementia. We provide suggestions on how the different experimental paradigms using 

human neurons can be used in a complementary manner to facilitate translation in 

drug discovery. 

 

2. Problems with translating knowledge of brain diseases into drug therapies.   
 

Whether from the perspective of a large pharmaceutical company or that of a patient, 

the data on translation of new candidate drugs from pre-clinical research to achieving 

licensing for human use is startling. Although the exact figures are debated, the 

general message is clear. Across all indications 65% of agents are successful in 

Phase 1 clinical trials, 32% in Phase 2, 60% in Phase 3, of which 83% achieve 

eventual licensing. This equates to 10% of agents entering Phase 1 resulting in a 

clinically used drug1,2. The situation for New Molecular Entities (NMEs) (7.5%) and 

neurological indications (9.4%) is even worse. Given the costs associated with clinical 

trials these figures have attracted enormous attention with extensive analysis of how 

this may be improved.  
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To date, attention has mostly focused on the inadequacies of pre-clinical animal 

testing and clinical trial design. It is clear both can be improved. There is no doubt that 

current animal models of disease need better validation and that more rigorous 

experimental design would reduce noise in experimental observations3. Furthermore, 

higher quality reporting of animal experiments is urgently needed to ensure 

reproducibility of data as stated in the ARRIVE (Animal Research: Reporting of In Vivo 

Experiments) guidelines initiative4.  

 

Similarly, clinical trials need to be refined. Seemingly simple issues such as changes 

in endpoints between early and late phase studies or problems generalizing results 

from narrow research indications to the wider population remain practically complex 

and challenging5.  

 

However, much of the problem lies in the statistics. Whereas in pre-clinical research, 

models are designed to be as homogeneous and reproducible as possible in an 

attempt to control for all other factors, real diseases and patient groups are intrinsically 

highly heterogeneous. This heterogeneity means that the numbers of subjects studied, 

often single or double digits in pre-clinical studies, quickly become three or four digits 

long in clinical studies (and despite this may remain underpowered).  

 

This is just one juncture at which the powering of a study is against us. For a new 

agent to be licensed multiple hypotheses will have been tested in successive studies, 

each with its own challenges. Moreover, our illusion is that if we achieve a p value 

under 0.05 in any one study we should be on solid ground for progression as our 

agent only has a 5% chance of failure at the next stage of testing. However this 

assumes that the candidate agent is clinically safe and effective. It has been argued 

that, if only 10% of new candidate drugs are suitable for use, then if studies are 

conventionally reported with a significance of 5% and power of 80% there will be a 

4.5% false positive and 8% true positive rate. In essence only 56% of “statistically 

significant” results are likely to be true positives. This is compounded by many early 

studies not meeting these power thresholds and reporting multiple outcome measures, 

which has led some to suggest that as few as 30% of statistically significant results are 

true positives6. The obvious response to this is to reset the level of significance as has 

already been suggested7. However this ignores the real world practicalities and costs 
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of the populations required for such studies, particularly for some of the rarer 

indications.  

 

In reality a solution must lie in improving the selection of candidate drugs put forward 

for clinical testing. However, with the high throughput screening programmes that have 

become increasingly available in the laboratory more new agents are considered for 

more indications than ever. Multiple testing is subject to the same statistical 

considerations as the clinical trials discussed earlier and thus rather than ameliorating 

the problem it compounds it. This reinforces the need for more extensive selection 

procedures for candidate drugs put forward for clinical testing, which may be achieved 

with appropriate preclinical testing in more and better models. It will additionally 

require cross validation between laboratories and publication of negative results. 

 

All the above arguments apply to drug discovery in general. The case is even stronger 

for neurological disorders. This is also where the limitations of using animals are 

greatest as analysing cellular and molecular mechanisms in the brain requires invasive 

studies. It is after all the complexity of the human brain that sets humans aside from 

animals. Indeed many animal models of disease do not fully recapitulate the 

psychiatric and neurodegenerative conditions being investigated8, and models can be 

quite removed from the clinical reality. 

 

What can we learn from clinical trials to improve the success rate in drug 

development? Morgan et al performed a meta analysis on Phase II decisions for 44 

programs at Pfizer9 to understand the fundamental knowledge that can increase 

success rate in clinical trials. They concluded that success in Phase II clinical trials 

depended on an integrated understanding of “exposure at the site of action (I), target 

binding (II) and expression of functional pharmacological activity (III)”. They termed 

these three elements: the ‘three pillars of survival’. Pillars II and III increase the 

pharmacological confidence in the NME. To translate the knowledge from in vitro or 

animal work the NME must bind to the target and the functional molecular 

mechanisms downstream of drug action must be engaged in humans; thereby 

accounting for potential impact of species differences and discrepancies in the 

translation of research findings from rodents to humans.  
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What could improve experimental models to increase success rates in Phase II trials? 

The use of in vitro human tissue and human cells has the potential to have a 

significant impact as it has been demonstrated in oncology by the use of fresh human 

tumour tissue to test new therapeutics on specific human tumours and tumour cell 

lines10.  

 

Use of post-mortem brain tissue has increased markedly with the development of brain 

banks to facilitate access to tissue11 and has been invaluable in improving our 

understanding of disease. However, this tissue does not contain live cells to test 

physiological and pharmacological mechanisms. In addition, post-mortem delay may 

affect key aspects of protein biology including post-translational modifications, cellular 

localisation and the extent of protein degradation. 

 

These factors can be controlled for when using fresh human brain tissue derived from 

neurosurgical procedures. During neurosurgery there are some instances where 

normal brain is removed to obtain access to a lesion underlying it such as an epileptic 

focus, brain tumour, vascular anomaly or haemorrhage. In many instances this tissue 

is routinely discarded, but if it is collected in theatre and rapidly processed in 

physiological media, it remains healthy and electrophysiologically active for up to 24 

hours12. It can provide an invaluable an insight into the structure and function of adult 

human neurons and glia13–15. It is therefore surprising that with such a valuable and 

very limited resource, only a small fraction of what is routinely removed at surgery is 

currently used for physiological and pharmacological testing. This is where live brain 

tissue is of greatest benefit for translational research.  

 

Resected human brain tissue is limited in availability and can be cultured for only a few 

weeks16. For long term in vitro culture and high throughput screening of candidate 

drugs another human neuron experimental paradigm is needed. One rapidly growing 

approach is to utilise human stem cell derived neurons generated either from 

embryonic stem cells (ESCs) or from induced pluripotent stem cells (iPSCs)17. iPSCs 

are adult cells –such as skin fibroblasts- that have been reprogrammed to an 

embryonic-like state and that can be then differentiated into specific cell types by 

distinct protocols. However, it remains to be proven how accurately iPSC-derived 

neurons reflect fully mature neurons.  
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 8 

 

Some benchmarks of neuronal structure and function have been derived from our 

extensive knowledge of rodent neurons, and are already routinely applied to human 

iPSC (hiPSC) cultures. For example, expression and subcellular localisation of 

markers such as PSD-95, synaptotagmin, synapsin1 and vglut1 are used to address 

maturity. However, we know that in many aspects hiPSCs are relatively immature 

compared to adult human neurons. The input resistance of cortical neurons, a 

measure of neuron size and active membrane channels, is almost two orders of 

magnitude different between hiPSCs (2000-5000 MΩ)18, and rodent (64 MΩ) or human 

(86 MΩ) neurons12. Furthermore, recent studies have shown that adult human neurons 

are indeed different in many properties to mouse neurons. Cortical human neurons are 

three times larger with far more complex dendritic trees than rodent neurons14, and 

these differences in their morphology are mirrored by differences in the molecular 

composition of synapses19 and glial components13 producing complex physiological 

properties that impact on signal integration20. Therefore the gold standard against 

which to compare hiPSCs-derived neurons and glia should be cells in adult human 

brain tissue. 

 

We propose that studies in resected human brain tissue can significantly complement 

existing drug development programs. There are clearly a number of challenges that 

this poses, but these are not insurmountable. If resected human tissue is used 

routinely for this purpose then there will be greater translation of knowledge from 

animal models to novel drug discovery. 

 

3. How can live human brain tissue be used for understanding mechanisms of 
human brain disease.  
 

Resected human brain tissue can be obtained from neurosurgical procedures once 

appropriate ethical permission has been put in place. This type of tissue is already 

being used with great success to analyse synaptic integration20 and synaptic 

plasticity12 in cortical neurons, and to understand the mechanism of action of 

neuroactive drugs15. Although human brain samples available to the research 

community are highly heterogeneous, it is possible to analyse properties that can be 

generalised across different conditions. We suggest that a detailed analysis of the 
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 9 

tissue with a degree of standarisation will permit data sharing across different 

institutions and will allow us to confirm and replicate findings about neuronal 

physiology, disease mechanisms, and drug actions on therapeutic targets.  
 
3.1 Dealing with the diversity of tissue collected from neurosurgical cases for analysis 

of neuronal function in health and disease. The pathological tissue resected during 

neurosurgery can be used to understand the underlying disease. Epileptic cortical 

tissue from patients with drug-resistant epilepsy was used to understand oscillatory 

mechanisms, showing consistent results across a range of primary pathologies21. 

However, a proportion of the tissue derived from neurosurgical cases can be classified 

as “non-pathological” by means of imaging, macroscopic and molecular examination. 

This tissue can be used as a tool in drug discovery for diseases other than the disease 

that necessitated neurosurgery.  

 

To date the most commonly used human brain tissue has been derived from patients 

with epilepsy. While tumour surgery is far more frequent, only a small proportion of 

cases yield normal tissue, and although sections are smaller it has also been utilised 

as has tissue from patients with vascular malformations. Tissue availability remains 

limited and is highly dependent on the pathologies considered and local neurosurgical 

practices. Overall, one might expect 10 to 40 neurosurgery cases per year yielding 

resected brain tissue in a typical neurosurgical unit (of which there are about 25 in the 

United Kingdom). 

 

Since access to this precious resource is limited when compared to other experimental 

approaches such as in vitro or in vivo animal studies, data-sharing across laboratories 

engaged in using human brain tissue can be a powerful strategy to generate a large 

data-base and repeat observations. In order to facilitate this, data annotation becomes 

of paramount importance, owing to the variety of neurosurgical procedures, specific 

sites of tissue origin, and the diversity of case characteristics such as patient age, sex, 

co-morbidities, prescription drugs, and so forth. A public database, such as CARMEN, 

allows data-sharing22, with highly standarised reporting requirements23.  

 

In addition, given that the non-pathological tissue originates from a brain with a 

neurological condition, albeit derived distally from pathology focus, it becomes 
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necessary to establish its degree of normality. This can be achieved by generalising 

across samples from patient groups with unrelated neurological conditions. Indeed 

Verhoog et al. were able to reproduce experimental observations analyzing the 

mechanisms of synaptic plasticity in samples derived from both epilepsy patients and 

cancer patients12. 

 

A number of criteria are already in use by different groups to evaluate the pathology in 

resected human tissue and many of these measures can be combined for screening 

the tissue. The results can be annotated in the corresponding database with additional 

image files containing immunohistochemistry or western blot data where available. 

Experimental approaches for characterising tissue include: 

- The pre-surgical imaging and in situ examination needs to show no signs of 

structural anomalies, including bleeding, or hyper/hypo-intensities. Additionally, the 

distance of origin of resected tissue from the pathological focus should be reported. 

- The activation of microglia and astrocytes is a good sensor of pathological 

anomalies, as these cells react quickly to changes in the microenvironment24. Staining 

the resected tissue for the expression of markers of activation of microglia (i.e. MHCII, 

iNOS) or astrocytes (i.e. Vimentin) would indicate the level of pathology, as these 

markers are not usually expressed by resting cells. Classical markers such as Iba1 

(microglia) or GFAP (astrocytes) can also be used to detect changes in cell 

morphology (gliosis), characteristic of glial activation. 

 

For samples obtained from epileptic patients, several techniques have been used to 

analyse the extent of epileptic activation on resected tissue outside the epileptic focus: 

- Expression of the phosphorylated forms of CREB and/or ERK, have been 

proposed as neuronal biomarkers of epilepsy25,26 using either Western blot analysis or 

immunohistochemistry; the latter can provide a spatial correlate with recorded 

neurons.  

- Resected samples need to show reduced or low levels of neuronal expression 

of the immediate early gene transcription factors EGR-1, EGR-2, and c-fos, as these 

have been shown to dominate the gene expression pattern of epilepsy cases26.  

- Analysis of pathological tissue from the different patient groups will provide a 

contrast and control for the health of the resected tissue under study. 
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The qualitative and quantitative observations of the above variables will provide a 

good measure of quality of the resected tissue, and should be annotated along with 

other experimental data for subsequent analysis.  

 

3.2 Why use human brain tissue instead of rodent brain tissue? Although animal 

models have played a critical role in our understanding of neuronal function in health 

and disease, there are significant differences between the rodent and human brain. 

These are not only related to brain size and differences in total numbers of neurons27 

but also differences at the molecular and cellular level that we are just beginning to 

fully characterise.  For example, layer 3 (L3) cortical pyramidal neurons in human have 

double the density of postsynaptic spines compared to equivalent mouse neurons28.  

Furthermore, approximately 30% of the proteins in excitatory synapses in human are 

not present in mouse synapses, and there are substantial differences in the 

abundance of postsynaptic proteins that are expressed in these species19. There are 

differences at the level of protein isoform expression: there are only three isoforms of 

tau protein expressed in adult mice while there are six isoforms in adult human. It is 

likely that some of these differences have contributed to failure of translation of 

neuroactive compounds in pre-clinical to clinical work. 

 
Some of the key features of synaptic transmission originally discovered in animal 

models have now been confirmed in human neurons, such as synaptic plasticity: the 

capacity of neurons to strengthen or weaken their connections following specific 

patterns of stimulation29,30.  However, recent work has suggested that physiological 

and morphological properties of human neurons endow them with distinct 

computational rules in the processing of neuronal signals when compared with 

rodents12,14,31. Human neurons are able to recover much faster from short-term 

depression.  This property arises from differences in cellular morphology; human L2/L3 

pyramidal neurons have 3 times more dendrites than their mouse and macaque 

counterparts- imposing distinct electrical properties14 and endowing them with up to 

ten times the capacity for information transfer.  

 

3.3 Extending the use of resected brain tissue via organotypic slice culture. Although 

resected human brain tissue is remarkably resilient, allowing for high quality 

recordings for up to 24 hours after resection12, it would be desirable to further extend 
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the lifetime of these samples. This would enhance data collection for electrophysiology 

experiments and would permit the analysis of cellular variables that require longer time 

scales, such as changes in mRNA or protein expression, following acute treatments 

with drugs or other manipulations including molecular techniques to express 

transgenes in specific cell populations, for example allowing the analysis of neuronal 

function using optogenetics. 

 

A number of laboratories have already analysed resected human brain tissue under 

organotypic culture conditions and have shown that such tissue can indeed be 

maintained in culture for 3-4 weeks16,32,33. This work highlights an advantage of human 

brain organotypic culture: the ability to culture mature brain sections. Rodent 

organotypic cultures can only be obtained from immature animals, typically less than 2 

weeks of age. The inability to culture rodent adult brain tissue has imposed a problem 

on the analysis of phenotypes that arise in mature animals such as development of 

plaques/tangles in transgenic models but there are some recent insights into the 

underlying changes in adult mouse brain tissue that prevent long term organotypic 

culture. Mewes et al33 performed a metabolic and immunohistochemical analysis of 

murine brain slices that had been maintained in culture comparing slices from neonatal 

vs. adult animals. They showed that slices from neonatal mice maintained a high 

degree of metabolic vitality for weeks in culture while slices from 7-10 month old 

transgenic mice decreased in vitality and showed deteriorating neuronal morphology, 

activation of astrocytes and microglia, and programmed cell death34. Another study 

showed that it may indeed be possible to culture hippocampal slices from 3-5 month 

old adult mice if a serum-free medium is used35. Under these conditions many tissue 

characteristics are well preserved such as neuronal morphology, however a sharp 

decrease in synaptic proteins such as synapsin and PSD-95 is initially observed at 7 

days in vitro with stable levels maintained thereafter. Although a qualitative analysis 

suggests that human neurons can maintain their morphology in organotypic culture16, 

quantitative analyses of vitality, content of synaptic proteins and glial activation as 

described above for mouse slices have not been carried out. Performing such 

characterisation in organotypic cultures of resected human brain will further inform and 

validate this approach to extend the lifetime and experimental tools available for this 

type of tissue. 
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The use of brain tissue derived from neurosurgery can help us understand the function 

of neuronal circuits and identify therapeutic targets. Although the tissue will be derived 

from patients undergoing different types of neurosurgery, the tissue can be subjected 

to thorough characterisation. Tissue can be analysed under control conditions or 

following acute treatments that mimic disease, along with treatments and could 

provide proof of principle for drug actions. The ability to perform both control and 

experimental analyses in samples from the same patient will add statistical power to 

studies allowing for paired analysis. Being able to confirm target engagement and drug 

mechanisms in samples from distinct patients has great potential to increase the 

pharmacological confidence in compounds to then proceed to trials and test in 

individuals. 

 

The practicalities in obtaining resected human brain tissue and its analysis may not, 

however, allow for high throughput experiments or long-term culture of all brain 

regions. It is here that the study of human neurons derived from hiPSCs would provide 

a complementary approach with many advantages, as discussed below.  

 

 

4. The use of stem cell models in drug discovery, how far have we come 
characterising them and using them to understand disease?  
 
Human stem cells can be reprogrammed to generate differentiated neurons and glia in 

vitro. These stem cells can be obtained from embryos (hESC) or from adult human 

cells, which have been reprogrammed to achieve a stem cell potential (hiPSC). The 

advantage of the models using human hiPSCs is the fact that these cells can be 

derived from adults, and indeed the patients themselves. Thus, they capture the whole 

genotype associated with a disease, without focussing solely on one or more 

mutations identified for that particular disease. In contrast to human tissue resected 

from neurosurgical cases, hiPSCs can be cultured for months, thus allowing long-term 

experimentation and observation including analysis under chronic drug treatments. 

Numerous studies have used hiPSCs to model either normal neuronal development 

and maturation, or pathological conditions. This experimental paradigm is very 

attractive for creating translatable models of neurological diseases but it poses many 

challenges36 including the difficulty in reproducing the right cell types at the required 
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stage of maturity in the appropriate microenvironment and cells that recapitulate a 

disease phenotype. Although there are many examples of models that have 

successfully addressed these challenges, there are still some elements that need to 

be developed further17 such as cellular diversity, network connectivity and neuronal 

maturity. We discuss some of these challenges below but recognise that this is a very 

fast evolving field and tremendous progress is being made to overcome these 

problems. 

 

4.1 Variability and Reproducibility. There is high variability within a single hiPSCs line, 

due to passaging and accumulation of mutations, as well as variability between cell 

lines derived from the same patient37,38. Not all the cell lines have the same 

differentiation potential, and several lines from a single patient are often needed to get 

a highly neurogenic line. This experimental variability within a patient is compounded 

by the variability between patients where genome wide and epigenetic changes cause 

the disease phenotype. It will be important to understand how these factors interact to 

give rise to the disease and to extract those elements that have a greater effect size. 

Reproducibility of findings across multiple hiPSC lines from as many different patients 

as possible is important here to confirm the relevance of findings to the disease 

phenotype. However, there may be financial and time limitations to analyse many 

different cell lines from different patients. Instead we believe that it might be possible 

to obtain a higher number of replications in comparative experiments using adult 

human neurons derived from neurosurgery, where cell line associated variability is not 

a factor. If a disease phenotype can be acutely mimicked in the resected tissue, or the 

molecular/drug mechanism of action can be confirmed using this paradigm, this would 

greatly strengthen the experimental observations from the hiPSC models and increase 

confidence in the therapeutic target in human. 

 

4.2 Differentiation protocols. Numerous studies have used hiPSCs to model aspects of 

neurodegenerative disease using different methods of differentiation to recapitulate 

some features of the disease, as recently reviewed39. Protocols exist for generating 

specific neuronal subtypes including cholinergic neurons40–42, dopaminergic neurons38 

and glutamatergic neurons43. However, differentiation protocols are highly diverse and 

as recently reviewed38, stem-cell derived models of Parkinson’s disease, employ a 

variety of differentiation protocols in which 4%-37% of neurons acquire dopaminergic 
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marker tyrosine hydroxylase after anything from 21 to 70 days of differentiation. This 

clearly demonstrates that specific differentiation protocols can have a significant 

impact on the differentiation time required to acquire a particular neuronal phenotype 

and the proportion of neurons committing to this phenotype. The goal of recreating 

every desired neuronal cell type primarily affected in the disease under study for 

example, entorhinal cortex and hippocampal cell types for Alzheimer’s disease, has 

not been achieved. To date there is no protocol to differentiate pluripotent cells 

specifically into entorhinal cortex cells, although recent work suggests that 

differentiation of dentate gyrus granule cells is indeed possible owing to their intrinsic 

neurogenic capacity in the adult brain44. Overall, current protocols are still often 

complex, lengthy, expensive and yield mixed populations of neurons, constituting a 

challenge for analysis of specific cell subtypes.  

 

4.3 Maturation and aging.  Many neurodegenerative diseases affect the synaptic 

activity of neuronal networks in the aging brain, thus it is important to develop mature 

neuronal networks to allow the development of reliable disease models17,36. Existing 

3D culture studies recapitulate only developing neural cells (mid-end of gestation 

stage) and little or no synaptic activity. Using hESCs or human neural stem cells 3D 

cultures have been developed and their maturity has been equated to that of a first or 

second trimester stage of gestation45, showing excitable neurons with spontaneous 

glutamatergic synaptic activity46,47. Similar results have been obtained using hiPSCs, 

demonstrating maturation to mid-foetal stage only48 with neurons able to fire repetitive 

action potentials in response to depolarising current steps and spontaneous 

glutamatergic synaptic transmission48.  To mimic the ageing of hiPSC-derived 

neuronal cultures51, further strategies are currently under development, for example, 

progerin expression52. 

 

Appropriate benchmarks are required to assess maturity and functionality of stem-cell 

derived neurons (as reviewed in53). A complete morphological and structural 

characterisation of neuronal maturation would include immunohistochemistry analysis 

of mature neuron markers such as NeuN, MAP-2, adult tau isoforms, synaptic proteins 

such as synapsin and PSD95, and the apposition of such pre- and post-synaptic 

proteins. Further characterisation by electron microscopy52,53 can provide confirmation 

of synapse formation.  For electrophysiological characterisation, an analysis of intrinsic 
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excitability, spontaneous and evoked synaptic activity is required53. The level of 

maturity of neurons may depend on specific differentiation and culturing protocols. A 

recent study showed that the standard culture media used widely to culture hiPSC 

impairs neuronal signalling, and developed a new serum-free cell culture media which 

better supports neuronal activity, synaptic connectivity and survival of human neurons 

from hiPSCs in culture18.  

 

All stem cell-derived neural cells for modelling neurodegenerative disease ultimately 

aim to recreate the structure and function of adult human neurons or glia. A direct 

comparison of the physiology of stem-cell derived neurons with resected adult human 

neurons will provide the best benchmarks to illustrate how similar stem-cell neurons 

are to actual adult human neurons and to what extent they differ. This knowledge will 

be useful for further refining stem-cell protocols to ultimately generate neurons that 

most closely resemble adult brain neurons in vivo. 

 

4.4 3D cultures: 3D culture systems aim to model the physiological environment of 

neurons more closely by providing a diffusional barrier as compared to monolayer 

cultures. 3D neural cultures systems have been developed using cells other than 

hiPSCs. Air liquid interface systems have been used with hESCs54 achieving a dense 

network of neurons, astrocytes, and oligodendrocytes reaching a developing stage 

similar to early fetal brain. Neural tissue derived from hESCs achieved a form of self-

organization reaching a layered cortex reminiscent to a developmental stage of the 

second trimester of human gestation45, and 3D cultures derived from neuronal 

precursors expressed mature neuronal markers55,56. However, there are limited 

examples of hiPSCs reproducing features of human cortical development and 

developing into cerebral organoids or self-organising into discrete domains or 

layers49,50,57. To provide structural support for 3D cultures, studies have explored the 

option of a 3D matrix on which to grow the cells and various scaffolds have been 

investigated using substrates softer than plastic to improve neuronal maturation47,58. 

 

4.5 Mixed cultures. To understand mechanisms of disease, it is necessary to 

incorporate into hiPSC cultures non-neuronal cell types such as glia. Indeed, 

astrocytes promote maturation of excitability and synaptic function in neurons 

differentiating from hESCs59 and increase the long-term survival of neurons 
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differentiated from human neural stem cells60. 3D hiPSCs-derived neural culture 

studies have incorporated astrocytes in their system54,61: a major role for astrocytes in 

the pathogenesis of amyotrophic lateral sclerosis has been uncovered through the co-

culture of motor neurons and patient-iPSC-derived astrocytes62. Incorporating patient-

derived microglia and vascular components into hiPSC cultures would permit the 

analysis of interactions between these cell populations. Although this has not been 

achieved with patient-derived hiPSCs, a recent study incorporated these elements 

successfully using human embryonic stem cell-derived precursor cells64, and 

demonstrated its applicability to neurotoxicity studies.  

 

Despite differentiation, maturation and variability challenges, there is no doubt that 

using hiPSC-derived neural models will facilitate drug discovery and new therapeutics. 

Seven years after the discovery of the hiPSCs technique, several studies have 

recapitulated features of adult mature neurons, and used them to model aspects of a 

variety of neurodegenerative diseases38,43,64. Encouragingly, in some of these models, 

disease phenotypes have been rescued with pharmacological interventions. Amyloid-

beta (Aβ) oligomer induced cellular stress was rescued by docosahexaenoic acid in 

several Alzheimer’s disease patient-derived hiPSC models65; γ-secretase inhibitors 

suppressed Aβ secretion in hiPSC-derived neurons generated from patients with either 

PS1 or PS2 mutations66; in hiPSC-derived neurons from Phelan-McDermid syndrome 

patients’ faulty excitatory synaptic transmission was corrected by treating neurons with 

insulin-like growth factor 167. Based on hiPSCs studies, several drugs are about to 

enter clinical trials, BMS-986168 for progressive nuclear palsy, retigabine for 

amyotrophic lateral sclerosis and RG7800 for spinal muscular atrophy68.  

 

 

5. Drug translation in a specific example: Alzheimer’s Disease. 
 

5.1 Tau centric therapies for treating dementia - why haven’t they delivered? Since 

amyloid based therapies have not to date yielded expected results in Alzheimer’s 

disease (AD) there has been renewed interest in tau-centred disease modifying 

approaches. Traditionally these have been developed in animal models of disease and 

have attempted to counteract pathogenic changes in tau identified in post-mortem 

brain tissue. They include approaches to reduce tau phosphorylation69, reduce tau 
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aggregation70 and clear toxic tau oligomers and tangles71. Additionally some studies 

have explored the utility of microtubule stabilising agents to compensate for loss of 

microtubule binding function72. Though there have been reports of some success, 

these tau based therapeutic strategies have had disappointing clinical outcomes73,74. 

 

One possible reason for the failure of these various tau and amyloid targeting 

approaches is the late diagnosis and treatment of patients in the disease time course. 

The microtubule stabilising agent Davunetide, for example, significantly improved 

memory scores when given to patients with mild cognitive impairment75 but failed 

when used to treat patients with advanced tauopathy76. Another contributor to the poor 

translation of these therapeutic strategies may be the fact that the physiological and 

pathological state of tau is not entirely reflected in the post-mortem studies and animal 

models that are used to develop them.  

 
5.2 Studying tau biology and pathology in human post-mortem tissue paints a clear but 

not complete picture. Much of what we know about tau pathology in dementia has 

been learned from biochemical or immunohistochemical studies conducted on post-

mortem tissue. The earliest investigations demonstrating that tau is hyper-

phosphorylated and aggregated in AD, and is incompetent at microtubule stabilisation 

were biochemical investigations comparing post-mortem brain tissue from AD patients 

and age-matched controls77–79. These pioneering studies were complemented by 

highly cited histopathological staging reports showing that such tau pathologies begin 

in the entorhinal cortex and spread in a characteristic manner to neocortical and other 

brain regions as described by Braak and Braak 199580. This “Braak Staging” is still 

used to categorise disease severity and invariably correlates with extent of cognitive 

decline81 (and reviewed in Nelson et al 2012)82. Subsequently many studies identified 

sequential phosphorylation changes in pretangle and tangle bearing neurons83,84.  

These studies still serve as the benchmark for abnormal tau phosphorylation in the 

brains of both human and animal models. Collectively these studies have contributed 

enormously to our understanding of how tau becomes altered in disease state. 

Emerging newer tools have added to this wealth of knowledge by identifying even 

more pathological post-translational changes in tau including isomerisation85, 

truncation86, SUMOylation87 , acetylation and ubiquitination88. 
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Whilst such post mortem (PM) studies in disease brains have served tau biologists 

well by providing a framework for tau’s post-translational status, aggregation status, 

functional competence and sub-cellular localisation in disease, the equivalent studies 

on PM control brain may not reflect a similarly complete picture. The post-mortem 

interval greatly influences key aspects of tau’s biochemical properties and possibly 

even its sub-cellular localisation. Since pathologically altered tau in disease is 

relatively stable, it is less likely to be greatly changed by different PM intervals, and 

this may be why its pathological characteristics are generally consistent across 

studies. The same cannot be said for tau in normal physiological control brain 

conditions. A number groups demonstrated that some phosphorylation sites previously 

thought only to be phosphorylated in AD brains, are also phosphorylated, albeit to a 

smaller extent, in rapidly processed biopsy brain from control subjects. These sites 

identified by specific monoclonal antibodies (mab) include, amongst others, 

ser202/205 (recognized by mabAT8), ser396/404 (recognised by mabPHF-1) and 

ser262/ser356 (recognized by mab12E8)89,90. They are also phosphorylated to some 

extent in rapidly processed foetal and adult rodent brain88–90. Phosphorylation at these 

“physiological” sites is very sensitive to the post-mortem interval, decaying by 50-70% 

within minutes of processing. Inevitably phosphorylation and other such labile 

physiological post-translational tau modifications would go undetected after even with 

relatively short post-mortem intervals in studies on control brains. Similarly, the cellular 

localisation of tau is generally believed to be axonal because it has traditionally been 

viewed as a protein primarily involved in microtubular stabilisation. Accordingly, its 

presence in the somato-dendritic compartment in pre-tangle and tangle bearing 

neurons in AD is considered a pathological mislocalisation. However, if control brain 

slices are rapidly fixed and processed for immunohistochemistry, AT8 positive tau is 

evident in the somato-dendritic compartment of wild-type animals91. The localisation of 

phosphorylated tau in the somato-dendritic compartment is not usually detected when 

rodent brains are perfused for a few minutes and then fixed for 

immunohistochemistry92. Indeed, with more recent studies suggesting previously 

unknown functions of tau, such as scaffolding functions in dendritic spines (reviewed 

in88), it is perhaps not surprising that it will be found both in the somato-dendritic as 

well as axonal compartment of normal healthy neurons.  
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5.3 Studying tau biology and pathology in transgenic models muddies the picture. 

Following on from the benchmark pathological characterisation of abnormal tau in AD 

brain, several very successful attempts have been made to recreate this tau pathology 

in transgenic models93. The models expressed either wild-type94 or familial tauopathy 

mutant95 forms of human tau and reproduced both cognitive impairment, phospho-

tau/tangle pathology and progressive neurodegeneration96. More recently, these 

models have begun to simulate “prion-like” disease transmission across neural 

networks97.  Collectively, these models served to underline the causative role played 

by abnormal tau species in tauopathies. They have made an impressive contribution to 

our understanding of tau-mediated dysfunction and toxicity but they also pinpoint two 

other aspects of tau biology and pathology, which cannot be adequately mimicked in 

non-primate models. One is the need for physiological expression levels: in normal 

human adult brain, the 3R and 4R isoforms of tau are roughly equally expressed and 

disruption of this equality, or over-expression of any isoform, is pathogenic as 

evidenced by splicing mutations resulting in tauopathy in some familial cases. 

However, this delicate human isoform expression ratio is invariably not represented in 

many transgenic models because usually one human isoform is expressed at non-

physiological levels. Additionally, in most transgenic models, there is the confounding 

influence of the endogenous rodent tau, which is not always considered. Another fact 

highlighted by rodent models of tauopathy is the requirement of all isoforms of wild-

type human tau to create tangle pathology like that seen in sporadic tauopathy. This 

became apparent from the so-called “humanised tau mice” in which all six isoforms of 

human tau were expressed and led to emergence of tangle pathology98, which was 

conspicuously absent in previous rodent models expressing only some of the tau 

isoforms. 

 

5.4 Studying tauopathies in human neurons – closer to human brain? These studies 

and many others (comprehensively reviewed in97,99) show how tau based therapies 

may not have factored in normal tau physiology when designing strategies against 

abnormal tau pathology. Whether this has influenced their clinical outcome is not clear 

but it does highlight the need to study tau biology and pathology in adult human 

neurons, in conditions more closely reminiscent of those found in adult brain in vivo. 
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Thus far, only a few studies have described tau biology and pathology in human 

neuron experimental models43,100. In the study by Iovino et al43, hiPSC-derived 

neurons were generated from fibroblasts taken from patients suffering from familial 

frontotemporal dementia (FTDP-17).  Intriguingly, many aspects of pathology observed 

in brains of these tauopathy patients were recreated in the experimental culture. 

Developmentally regulated expression of all six tau isoforms was seen with evidence 

of physiological phosphorylation (at the mabAT8 site) in the control cultures and 

pathological phosphorylation (at the mabAT100 site) in the FTDP-patient derived 

cultures. Additionally, tau was located both in the axonal and somato-dendritic 

compartments in both the control and FTDP-patient derived cultures. As discussed 

above, these aspects of tau biology are generally misrepresented in studies 

undertaken on human post-mortem brain and are only apparent in the rapidly 

processed human resected brain samples. Since these hiPSC-derived cultures can be 

rapidly processed like resected human brain tissue, they can closely replicate 

physiological conditions. Thus, models such as this can be used to dissect tau-

mediated mechanisms of dysfunction and toxicity in a physiologically relevant 

experimental paradigm. 

 

Overall, tau biology is most comprehensively studied in rapidly processed human 

neurons because studies in postmortem tissue or rodent brain may not adequately 

depict its expression levels, phosphorylation status, aggregation status, functional 

capabilities and sub-cellular localisation. Since these are all affected in tauopathies, it 

is important to use models in which these aspects of tau biology replicate the biology 

of adult human brain. Studies in non-pathological resected human brain tissue and 

patient iPSC derived neural models may be the best experimental paradigms for 

achieving this43,100,101. . However since it is unlikely for AD patients to undergo 

neurosurgery, there will be limited access to resected tissue with confirmed AD 

diagnosis. Therefore disease modelling, particularly for chronic neurodegenerative 

diseases like AD, will have to rely either on acute incubation of resected tissue with 

disease related molecules, or manipulation of human brain organotypic cultures over 

days33 or potentially weeks16. 
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6. Conclusion 
In this review we have discussed factors related to poor translation of preclinical 

results into clinically efficacious compounds for the treatment of disorders and 

diseases of the CNS. There are well recognised limitations in neurodegeneration 

research arising from existing experimental paradigms including use of transgenic 

animal models and reliance on human post mortem tissue obtained in advanced 

stages of disease.  An important opportunity has emerged to employ patient-derived 

neuronal models to more closely simulate cellular and molecular mechanisms 

underpinning human disease but there are a number of important challenges to be 

addressed. We propose that a wider-use of resected human tissue from neurosurgical 

operations should be undertaken to validate and complement findings from the in vitro 

stem cell models, We have highlighted, using Alzheimer's disease as an example, how 

research findings may be complicated by species differences and post mortem interval 

in experimental paradigms, and how both human resected tissue and stem cell models 

would work in a complimentary manner for identification of drug targets and 

development of efficacious disease modifying treatments. 

 
7. Expert opinion 
 

Many factors are responsible for the limitations of translation from animal models of 

human neurodegenerative disease to effective drug therapy in humans. We propose 

that inadequate simulation of human disease in animal brains and incomplete 

knowledge of disease-relevant processes in adult human neurons and glia in 

physiological conditions may be key. The tau-based therapies and experimental 

approaches discussed in the example above highlight gaps in our knowledge about 

the physiological, biochemical and other disease-related properties in the context of 

tauopathies. 

 

In a bid to generate more translatable experimental paradigms, neuroscientists have 

made tremendous progress in developing stem cell-derived neural models from 

humans. The fact that these models can be generated from patients themselves 

makes their use particularly relevant. Indeed stem-cell derived models that 

successfully recapitulate aspects of disease have been generated from patients 

suffering from various neurodegenerative diseases including Alzheimer’s, Parkinson’s, 
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frontotemporal dementia and others. These models have enabled dissection of 

disease mechanisms and some proof-of-principle drug testing, stimulating 

pharmaceutical interest in using them for pre-clinical drug development. Although 

these models have untapped potential for better understanding human disease 

mechanisms in a physiological experimental paradigm, we believe that their 

translational impact can be further enhanced by validation of findings in resected 

human brain tissue. As well as validation, such comparative studies will also increase 

pharmacological confidence in drug targets identified from stem-cell models. This is 

because resected human brain tissue can serve as a stand-alone paradigm for acute 

aspects of pre-clinical testing of neuroactive drugs. Testing in this tissue can contribute 

towards two of the “three pillars of survival” in Phase II clinical trials as described by 

Morgan et al8: Confirmation of target binding and expression of pharmacological 

activity at the target site of action increases the likelihood of drug candidate survival.  

 

We appreciate that using resected human tissue in this way may pose many 

challenges, including the fact that such human tissue is a limited precious resource. To 

overcome some of these issues we propose that there should be a closer collaboration 

between neurosurgeons and neuroscientists to ensure: 1) Increased access by the 

scientific community to live human brain tissue derived from neurosurgery, 2) 

Increased efficiency and efficacy in the use of such tissue, 3) Increased cross-

comparison of results with adult human tissue to validate all animal models and iPSC 

findings. The first of these are largely practical issues of ensuring that ethical 

permission is obtained, and patients consented in a sensitive and appropriate fashion 

and there is proximity of laboratory facilities to neurosurgical theatres. The second is 

centred on how to optimise the use of such brain tissue through collaborative work on 

both acute slices and how to maximise the lifespan of tissue with well-characterised 

organotypic cultures. The third challenge requires that more experimental paradigms 

utilise human neurons alongside iPSCs to increase mechanistic and pharmacological 

confidence in molecular mechanisms identified in research models such as rodents, 

before progressing a new candidate drug to clinical testing. Such in vitro models 

should inform the decision process into clinical trials. 

 

We propose that the combined use of resected human brain tissue and patient-derived 

stem cell neural models for drug discovery programmes will both validate drug targets 
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and enable testing of drug efficacy in a physiologically relevant experimental 

paradigms.  If this approach becomes common practice we may be able to bridge the 

gap between pre-clinical research and patient benefit sooner. 
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Figure 1. Using human neurons to improve clinical translation in in dementia 
research. Currently, drug targets for neurodegenerative disease are identified 

predominantly from investigations with animal models (either in vivo or in vitro) and 

human post mortem tissue (A). Inadequate disease simulation in these paradigms 

contributes to the lack of translation towards effective clinical therapies. One way 

around this is to utilise living human neurons which currently take the form of stem-cell 

derived iPSC neuron models (B). We propose the wider use of resected human brain 

tissue (C) should be incorporated into this experimental armoury. In this way, target 

engagement and mechanistic efficacy can be validated prior to phase II/III clinical trials  

(D). This will undoubtedly increase the pharmacological confidence in the potential of 

drugs that get to clinical trials and may improve translation. 
 

  

Figure 2. Benefits and challenges of using iPSC-derived neural cultures for 
novel drug discovery in dementia research. (A) Healthy patient-derived iPSCs 

committed to neural stem cells and differentiated to mature neurons and astrocytes 

provide a new tool to test normal human neuronal function and some safety aspects of 

new drugs. (B) Neurons and astrocytes can be obtained in the same manner from 

individuals with disease-related familial mutations or individuals affected by disease. 

These cells provide a valuable tool to analyse disease mechanisms and to test some 

efficacy aspects of new drugs. The challenges (depicted by numbers) in the use of 

hiPSCs-derived neural cultures detailed in this review include: 1. Variability between 

patients, where genome wide and epigenetic changes underpin and modify the healthy 

or disease phenotype. 2. Variability between cell lines, not all the cell lines have the 

same differentiation potential. 3. Variability within a single hiPSCs line due to 

passaging and accumulation of mutations. 4. Differentiation and maturation of 

neurons, incorporation of other cell types (e.g. microglia and endothelium). 
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