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Abstract— Knowing the correct skull conductivity is crucial for
the accuracy of EEG source imaging, but unfortunately, its true
value, which is inter- and intra-individually varying, is difficult to
determine. In this paper, we propose a statistical method based
on the Bayesian approximation error approach to compensate for
source imaging errors related to erronous skull conductivity. We
demonstrate the potential of the approach by simulating EEG data
of focal source activity and using the dipole scan algorithm and a
sparsity promoting prior to reconstruct the underlying sources.
The results suggest that the greatest improvements with the pro-
posed method can be achieved when the focal sources are close to
the skull.

Keywords— Electroencephalography, Bayesian modelling, in-
verse problems, skull conductivity

I. INTRODUCTION

Source reconstruction from electroencephalography (EEG)
data is an ill-posed inverse problem, and the solution depends
strongly on the accuracy of the discretized head model [1, 2, 3].
The essential head features are the geometry and the electrical
properties of the tissues of which the geometry can be extracted,
to some extent, using auxiliary imaging tools [4].

However, the accurate determination of the electrical con-
ductivities of the head tissues is an open question. Especially
the accurate modelling of the skull is essential for source re-
construction. There are only few techniques available and they
can be used to calibrate only few tissue conductivity parameters
either by using well defined somatosensory evoked potentials /
fields in combination with EEG [5], combined EEG/MEG [6, 7]
or electrical impedance tomography (EIT) -based techniques
[8]. Since all these methods rely on auxiliary measurements,
it would be highly beneficial to find methods that are purely
computational for this purpose.

In this paper, we propose to use the Bayesian approximation
error (BAE) approach to compensate for the imaging artefacts
caused by the approximately modelled skull conductivity. The
main idea of BAE is to use an approximate model (e.g. because
the accurate model is unknown or computationally unfeasible)
and to take statistically into account the induced modelling er-

rors [9]. In our case, we first choose an observation model with
a standard skull conductivity value and then estimate statistics
of the errors between this approximate model and the set of
accurate models that is constructed based on the postulated dis-
tribution of possible skull conductivity values. This results in
an additive error term that is marginalized using a Gaussian
approximation. Previously, BAE has been successfully used in
EIT [10], optical tomography [11] and recently also in EEG
source imaging [12] for geometry related modelling errors.

We demonstrate here by using a specific BAE model, namely
the enhanced error model (EEM), that the imaging errors
caused by the erroneous skull conductivity can be alleviated.
The work was carried out by using state-of-the-art finite ele-
ment (FE) -based head models, skull conductivity values based
on the known literature and appropriate sparsity priors to re-
cover focal source configurations.

II. THEORY

A. Bayesian framework with linear forward model

The computational domain is denoted with Ω and its ma-
terial properties with σ(x) where x ∈ Ω. For numerical im-
plementations, the domain is discretized and the observation
model is written as

v = A(σ)d + e, (1)

where v ∈ Rm are the measurements, m is the number of mea-
surements, A(σ) ∈ Rm×3n is the lead field matrix that depends
on electric conductivity σ , d ∈ R3n is the distributed dipole
source configuration and e ∼ N (e∗,Γe) is the measurement
noise. Note that the model A(σ) assumes that the accurate val-
ues of electric conductivities are known (which in practice with-
out additional effort is almost never the case).

In the Bayesian framework, the inverse solution is the poste-
rior density of the Bayes formula

π(d|v) ∝ π(v|d)π(d), (2)

where π(v|d) is the likelihood and π(d) the prior.
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The likelihood model can be written as

π(v|d) ∝ exp
(
− 1

2
(v−Ad− e∗)T

Γ
−1
e (v−Ad− e∗)

)
. (3)

B. Enhanced error model

In BAE, we replace the accurate lead field matrix, A, with an
approximate lead field, A0, in which we employ standard fixed
values for the electric conductivity, σ0. We can write

v = A0d + ε + e (4)

where ε = Ad−A0d is the induced approximation error, ε ∈
Rm.

In the enhanced error model (EEM), we further approximate
that ε ∼N (ε∗,Γε) and d are independent, i.e., ε is considered
as another random additive error term. Even though, in prac-
tice, ε and d are usually correlated, this approximation often
leads to very similar inverse solutions [9]. In our case, since
we assume that the true source activity d is focal (sparse), the
cross-covariances with ε will be negligible.

Based on these approximations, we formulate the probability
distribution of the likelihood as

π(v|d) ∝ exp
(
− 1

2
(v−A0d− ε∗− e∗)T

(Γε +Γe)
−1(v−A0d− ε∗− e∗)

)
. (5)

C. Prior model

In this paper, we consider sparse focal source models and we
employ an L1,2 norm induced prior model (group lasso)

π(d) ∝ exp

(
−α

2

n

∑
i=1

wi‖di‖2

)
(6)

where di = (dix,diy,diz) and ‖di‖1
2 =

√
d2

ix +d2
iy +d2

iz is the
strength of the source at location i, and α is a scaling constant
that fixes the distribution of the source strengths. The depth
weighting factors wi are used to reduce the bias of the prior
to favor superficial source distributions [13, 12].

D. Maximum a posteriori estimate

In this paper, we compute maximum a posteriori (MAP) es-
timates of the posterior. Based on the likelihood model (3), the
MAP estimate of the source configuration is

d̂ACC = min
d
‖Le(v−Ad− e∗)‖2

2 +α

n

∑
i=1

wi‖di‖2, (7)

where Le comes from the Cholesky factorization Γ−1
e = LT

e Le.
The subscript ”ACC” refers to the assumption that the electrical
conductivities are accurately known.

If we, however, compute the solution using the fixed stan-
dard electrical conductivity values, σ0, we get

d̂STAN = min
d
‖Le(v−A0d− e∗)‖2

2 +α

n

∑
i=1

wi‖di‖2. (8)

From the likelihood of the EEM (5), the source configuration
can be estimated as

d̂EEM = min
d
‖Lε+e(v−A0d− ε∗− e∗)‖2

2 +α

n

∑
i=1

wi‖di‖2 (9)

where (Γε + Γe)
−1 = LT

ε+eLε+e. Note that the EEM result is
computed using the same lead field matrix as in Equation (8).

The resulting non-linear convex minimization problem is
solved using the truncated Newton interior point method [14].

III. MATERIALS AND METHODS

A. Head models

The geometry of the head was constructed based on T1- and
T2-weighted magnetic resonance images of a healthy subject
measured with a 3 T MR scanner. The scalp, eyes, skull com-
pacta, skull spongiosa, cerebro spinal fluid (CSF), gray matter
(GM) and white matter (WM) were segmented, for more details
see [15, 7]. In the simulation set-up, 74 measurement electrodes
were attached to the sculp.

The electric conductivities (in S/m) of the different tissues
were 0.43 for the scalp [16], 0.505 for the eyes [17], 1.79 for
the CSF [18], 0.14 for the WM [17] and 0.33 for the GM [17].
The skull conductivities of the different head models were the
following:

First, we created 200 head models with skull conductivity
drawn from a Gaussian distribution with mean 0.01855 and
standard deviation 0.007225. This distribution was set in such
a way that the two standard deviation lower and upper values
were 0.0041 [19, 7, 20, 21] and 0.033 [22, 7], respectively. We
refer to these head models as sample head model.

We also created a standard head model with the mean skull
conductivity 0.01855. The skull spongiosa conductivities in all
the models were selected based on the spongiosa:compacta
conductivity ratio 3.6:1 [7].

The head geometry was discretized using tetrahedral FEs.
For the forward simulations, a source space that covered the
GM was constructed with 30,105 nodes on a regular grid with
grid size 2 mm. For the inverse computations, two source spaces
that covered the GM were used: the first one consisted of 10,782
source locations on a regular grid with grid size 3 mm and the



second 2,249 source locations with grid size 5 mm. The forward
grid was chosen in such a way that it did not contain the same
coordinate points as the inverse grids. The lead field matrices
used in the simulations were computed using standard piece-
wise linear FE basis functions with the Saint Venant source
modelling approach [21, 23].

B. Computation of the approximation error statistics

The approximation error statistics was created by first choos-
ing randomly one of the sample head models, evaluating the
model with randomly chosen source configuration, and finally
calculating the approximation error by evaluating the standard
model with the same source configuration,

ε
( j) = A(σ ( j))d( j)−A0d( j), (10)

where A(σ ( j)) is one of the sample models, d( j) random source
configuration and A0 is the standard model.

The procedure was repeated J = 200,000 times, and these
simulated error samples were used to calculate the sample
mean, ε∗, and the sample covariance, Γε , of the approximation
error.

IV. RESULTS AND DISCUSSION

A. Dipole scan with noiseless data

To demonstrate the potential of BAE, we first carried out
reconstructions from noiseless data with the dipole scan al-
gorithm. The noiseless data was computed using the accurate
model that had skull conductivity 0.0041 S/m [19, 7, 20, 21].
This value was chosen to showcase a rather large difference
compared to the skull conductivity in the standard model,
0.01855 S/m. Single sources in GM with orientation that was
normal to the surface of the cortex were used. For the dipole
scan, the 3 mm regular grid was used and two results were com-
puted: one with the standard model and another with the EEM.

From the results, we calculated the localization error (in milli
meters) between the actual and the reconstructed source for
both models, XSTAN and XEEM , respectively. Figure 1 shows
the differences ∆ = XSTAN − XEEM which are positive (red ∆

signs) if EEM has improved the source localization, close to
zero (white ∆ signs) if both models give the same localization
error, and negative (blue ∇ signs) if EEM performs worse than
the standard model.

It can be seen that the largest improvements occur for
sources that are close to the skull. These are also the sources
that usually have the largest localization errors due to erronous
skull conductivity. The deeper in the brain the sources are the
less improvement can be seen, and for some deep locations the
EEM model actually performs worse than the standard model.

Fig. 1: The red ∆ signs show how many milli meters the proposed EEM
improves the localization accuracy of the sources when compared to the

standard model. The blue ∇ signs show the locations where the EEM has less
accuracy than the standard model.

B. L1,2 prior with noisy data

To demonstrate the feasibility with a sparsity prior, we
present a result computed from noisy boundary data (SNR =
40 dB) by using the L1,2 prior described in Section II-C.. Here,
the results were computed by evaluating Equations (7)-(9), re-
spectively. The computations were carried out in the regular 5
mm grid. The first result in Figure 2 shows the correct location
of the source (black cone) and the reconstruction when the ac-
curate skull conductivity, 0.0041 S/m, is known (green cones).
The second result shows the reconstruction when the standard
model is used (blue cones) with skull conductivity 0.01855, and
the third result the reconstruction with the EEM (red cones). As
expected, the best results is achieved when the accurate skull
conductivity is known. However, if the accurate conductivity is
not know, then EEM gives a better estimate than the standard
model.

V. CONCLUSION AND FUTURE WORK

We have demonstrated that with the help of EEM it is pos-
sible to reduce source localization errors caused by erroneous
skull conductivity. The EEM showed the greatest improvement
for sources close to the skull. In the future, the statistical mod-
elling of conductivity errors can be combined with various ge-
ometry related approximations.
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Fig. 2: (A) The location of the source is shown with a black cone and the reconstruction result when using the accurate model with green cones. (B) The
reconstruction result using the standard model (with wrong skull conductivity) is shown with blue cones. (C) The EEM reconstruction, red cones, gives a better

estimate for the sources than the standard model.
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