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ABSTRACT  

Hepatic encephalopathy (HE) is a severe complication of liver disease, describing a spectrum 

of neurological and psychiatric abnormalities ranging from subclinical alterations to coma. HE 

is the leading cause for hospital readmission, intensive care treatment and mortality in 

patients with chronic liver disease. The complex and multifaceted pathogenesis is not yet fully 

understood, but hypotheses focus on ammonia and systemic inflammation, which are the 

main targets for currently available therapies in clinical practice. Nevertheless, the remaining 

high clinical relevance and healthcare burden of this syndrome underlines the emergence for 

further unraveling the full spectrum of pathomechanisms as this provides the basis for the 

development of novel, highly targeted therapies.  

In this review, the most recent literature about current and future therapies for HE, relevant 

for intensive care management, will be discussed.   
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INTRODUCTION 

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome caused by acute or chronic liver 

disease and/ or portosystemic shunting. It describes a spectrum of neurological and 

psychiatric manifestations ranging from subclinical alterations to coma [1]. HE is associated 

with a substantial burden among caregivers and on the overall health care system and 

severely impacts on the patients’ health-related quality of life [2, 3]. Recent data show that 

HE remains a leading cause for readmission and mortality in patients with chronic liver disease 

(CLD) and intensive care management is often required in patients with higher grades of HE 

[4-8]. The persisting high clinical relevance underlines the emergence of improving its current 

management. However, the development of novel treatment options has been hampered 

because of the fact that the complex pathogenesis of HE is not yet fully understood. 

Traditionally, hyperammonemia secondary to liver dysfunction is considered central in the 

pathogenesis, but also systemic inflammation seems to play a major role. Currently available 

therapies are therefore based on reducing gut-derived ammonia using non-absorbable 

disaccharides and reducing bacterial translocation with poorly absorbed antibiotics [1]. 

However, recent advances in the understanding of this complex syndrome revealed potential 

novel therapeutic targets. In this article, we will discuss the most current management 

strategies for HE, thereby focusing on neurocritical care in the intensive care unit (ICU). In 

addition, novel therapeutic opportunities will be highlighted.  

 
 
  



CLINICAL FEATURES AND CLASSIFICATION  
 
 

Clinical presentation 

HE manifests as a wide spectrum of (non-specific) neurological and psychiatric symptoms [9]. 

In lower grades of HE, symptoms as euphoria, anxiety and a trivial lack of awareness occur, 

whereas higher HE grades are associated with disorientation, flapping tremor (asterixis), 

lethargy and eventually coma (table 1) [10-13]. Alterations of the motor system, such as 

hypertonia, hyperreflexia and a positive Babinski sign may be present. Transient focal 

neurological signs are rare, but may be observed [14]. In contrast, signs of extrapyramidal 

dysfunction such as muscular rigidity, brady-, hypo-, and dyskinesia are common findings [15]. 

It was generally believed that manifestations of HE are completely reversible. However, more 

recent research in liver transplant patients and in patients with recurrent HE episodes showed 

that cognitive abnormalities may persist [16, 17]. Rarely, persistent HE may present with 

irreversible (extra-)pyramidal signs. 

 

Epidemiology  

Incidence and prevalence of HE are highly related to the severity and type of the liver disease 

[18-20]. 

 

In CLD, the overall prevalence of fully symptomatic HE at time of diagnosis of cirrhosis is 10-

14% [21-23] and 16-21% in the subgroup of patients with decompensated cirrhosis [5, 24]. In 

30-40% of patients with cirrhosis, HE will develop at some point during the clinical course 

[25]. In 5-25% of patients, the first episode of fully symptomatic HE develops within 5 years 

after diagnosis of cirrhosis, depending on the presence of risk factors, such as subclinical HE, 



infections, variceal bleeding or ascites [26-30]. Patients with a previous episode of HE, have a 

cumulative risk of recurrence of 40% within 1 year [31]. Recently, a large, prospective study 

assessing the natural history of patients admitted for acute decompensation of liver cirrhosis 

(AD), showed that the incidence of HE in these patients was 34% [32]. In the subgroup of 

patients with acute-on-chronic liver failure (ACLF), which was found to be a distinct entity 

from AD and associated with (multi-) organ failure and high short-term mortality, survival was 

significantly lower in patients with as compared to those without HE. This indicates that the 

presence of HE significantly adds to the risk of death, independently from other organ failures 

[33]. 

 

Acute liver failure (ALF) is characterized by severe acute liver injury with impaired synthetic 

function (International Normalized Ratio>1.5) and the development of HE in a patient without 

prior liver disease [34]. Unlike CLD, ALF can lead to cerebral edema with increased intracranial 

pressure (ICP), potentially leading to cerebral herniation and death [35, 36]. Over the last 

decades, a considerable decline in the incidence of cerebral edema in ALF has been observed 

and is now seen in less than 25% of patients [16, 17]. This may be due to the implementation 

of emergency liver transplantation as well as practical improvements in critical care 

management. When present, however, cerebral edema in ALF is still associated with very 

poor survival  [37-39].  

 

Classification 

The disease classification and grading are of high importance as it guides patients’ treatment 

strategies. Whereas subclinical stages can be often managed in an outpatient setting does 



clinically apparent HE require hospital admission, imminent treatment and intensive care 

management in higher grades.  

Considering the intra- and inter-individual variability of symptoms, reliable diagnostic tools to 

define and grade HE are of high importance. In order to optimize the diagnostic accuracy, the 

current European Association for the Study of the Liver (EASL)/ American Association for the 

study of liver diseases (AASLD) guideline [1] implemented a multiaxial classification system, 

categorizing HE into: 1) the underlying disease (type A: acute liver failure, type B: 

portosystemic bypass or shunting, type C: cirrhosis), 2) the severity of the manifestations, 3) 

time course (episodic, recurrent, persistent), 4) the existence of precipitating factors (figure 

1). An additional category has been proposed according to the presence of ACLF [33], as it is 

a distinct entitiy from CLD and ALF in terms of pathophysiology, prognostic impact and 

management strategy. However, this classification is still subject of research.  

    

The West Haven Criteria (WHC) remains the gold standard for grading the severity of HE (table 

1) [1, 9]. Based on clinical criteria, this tool categorizes HE into 4 stages. Whereas it reliably 

distinguishes between patients with low vs. high grade HE, it has its weakness in 

discriminating between patients with grade I HE and those with no HE or minimal HE (mHE). 

Therefore, this is to date the domain of psychometric tests. The International Society for 

Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) additionally introduced the terms 

covert HE (CHE; i.e., £ grade 1) and overt HE (OHE; i.e., ³ grade 2) [40]. Considering the scope 

of this article, we will focus on the subgroup of patients with OHE.  

 

 

 



Diagnosis  

The diagnosis of OHE is primarily based on clinical signs and context [1]. As described 

previously, WHC is the gold standard to diagnose and grade the severity of OHE [1, 9]. A 

limitation of the WHC is that it is a subjective tool, resulting in inter-observer variability. In 

contrast, the presence of disorientation and asterixis has been found to have a good inter-

rater reliability and are therefore considered key symptoms of OHE [41]. The Glasgow Coma 

Scale is widely implemented for patients with a markedly altered level of consciousness and 

supplies an accurate description of the disease severity. Blood ammonia levels may be useful 

as the absence of hyperammonemia makes the diagnosis of OHE unlikely. In contrast, a high 

blood ammonia level alone in patients with CLD has no diagnostic or prognostic value [42]. 

Therefore, ammonia measurements in clinical practice in CLD remain controversial. In ALF, 

however, there is a good correlation between blood ammonia and disease severity and 

prognosis [43]. In patients with ALF and brain edema, it has been shown that persistent 

elevation of arterial ammonia (>124 umol/L) following initial therapeutic interventions, is 

associated with an increased risk of intracranial hypertension [44-46]. Ammonia 

measurements comprise some logistic obstacles that should be taken into consideration. First 

of all, arterial blood should be preferred over venous blood as it gives more reliable results 

[47, 48]. However, this advantage is limited and is therefore considered acceptable [49]. 

When venous blood is used, it should preferably be drawn when the patient is fasting, stored 

and transported on ice and analyzed immediately.  

 

Even when clinical signs are clear, it does not absolve from the necessity to search for 

precipitating events on the one hand and to be alert on alternative causes for an altered 

mental state on the other hand, as both require either additional or alternative treatments. 



Especially in (end-stage) CLD, OHE is considered a ‘diagnosis of exclusion’ as this patient 

population is prone to other causes of mental state abnormalities, such as several types of 

metabolic encephalopathy as well as non-metabolic causes (i.e., alcohol abuse, drug use, 

psychiatric disorders, cerebrovascular disease). Therefore, laboratory or radiological 

diagnostics may be needed to exclude these alternative causes. Cerebral imaging is 

recommended in case of non-specific clinical presentation or when cerebrovascular disease 

is suspected. However, it does not add any diagnostic or grading information [1]. Moreover, 

other complications of advanced liver disease, such as infections and hyponatremia may 

either lead to mental states mimicking OHE (i.e., delirium) or be the precipitating factor for 

HE. All of the aforementioned factors may of course co-exist with OHE, which makes the 

diagnosis of exclusion-process’ a complex one [50]. 

Based on the most recent guideline and literature, we have summarized practice 

recommendations for diagnosing OHE in table 2.  

 

PATHOGENESIS  
 
Although the complex pathogenesis of HE remains not fully elucidated, hyperammonemia is 

still thought to be the key mediator. However, other distinct pathophysiological mechanisms 

are involved, including impaired energy metabolism [47], oxidative stress [48], systemic 

inflammation [49, 51], cerebral haemodynamic dysregulation and impaired blood-brain-

barrier (BBB) permeability [52]. Especially the role of inflammation has gained more and more 

importance in both acute and chronic liver disease in the past decades. Moreover, there 

appears to be a synergistic relationship between hyperammonemia and inflammation in the 

progression of HE in CLD, ACLF and ALF [52-56]. Another important factor in the pathogenesis 

of HE is an altered cerebral blood flow (CBF), which seems to be directly linked to 



hyperammonemia and inflammation [57, 58]. Therefore, hyperammonemia, systemic 

inflammation and CBF seem to be critical in the current paradigm for the pathophysiology of 

HE and will be discussed in further detail below.  

 
 
 
Hyperammonemia and its consequences 
 
Ammonia is a nitrogen-containing compound that is neurotoxic at elevated concentrations. 

The intestine is the major supplier of plasma ammonia levels (responsible for about 50% of 

the plasma load). Intestinal ammonia is produced by bacterial metabolism of urea from 

consumed proteins and by glutamine deamination by glutaminase [59]. Another main source 

of ammonia is its production by the kidney, which is responsible for about 40% of plasma 

ammonia levels. Ammonia is mainly metabolized by the periportal hepatocytes through the 

urea cycle and is subsequently cleared by the kidneys and (to a lesser extent) by the muscles 

[60]. Liver dysfunction is therefore associated with impaired detoxification of ammonia and 

portal hypertension leads to shunting of ammonia-containing blood to the systemic 

circulation. Ammonia c rosses the BBB and is metabolized by astrocytes by converting 

glutamate and ammonia into glutamine by the enzyme glutamine synthetase. At elevated 

plasma ammonia concentrations, accumulation of glutamine creates an osmotic gradient 

resulting in astrocyte swelling and astrocyte dysfunction [61].  

 

Another ammonia-related contributor to neurotoxicity in HE is the activation of N-methyl-D-

aspartate (NMDA) receptors by astrocytes stimulated by ammonia. This results in a decrease 

in antioxidant enzyme activity and increases the production of reactive oxygen species (ROS) 

[62, 63]. In addition, mitochondrial dysfunction caused by exposure to high amounts of 



glutamine may lead to enhanced oxidative stress in astrocytes [64]. Also systemic 

inflammation, a common and significant feature in HE, contributes to the generationcer of 

oxidative stress by neutrophil activation and enhanced ROS production [52]. An excess of 

these oxidative agents may lead to oxidization of RNA, resulting in impaired protein synthesis 

and molecular damage [65, 66]. Animal and human studies have shown beneficial effects of 

treatment with antioxidants in the setting of fulminant liver failure and HE, thereby 

supporting a role for (ammonia-induced) oxidative stress as a relevant pathomechanism and 

potential therapeutic target [67-71].  

Other actions of ammonia on the brain include the effects on excitatory and inhibitory 

neurotransmission, inhibition of glucose oxidation and stimulation of glycolysis [72, 73].  

 

The systemic inflammation hypothesis 

Although there is a large amount of evidence showing that ammonia plays a key role in the 

pathogenesis of HE, the correlation between blood ammonia levels and HE severity in CLD is 

poor [49, 74], meaning that other mechanisms are involved. In cirrhotic patients, infection is 

a well-known precipitating factor for HE. The presence of infections, especially pneumonia 

and sepsis, significantly impact on the mortality risk in these patients [75]. In addition, 

multiple studies revealed that an elevated blood level of the pro-inflammatory cytokine TNF-

a positively correlates with the severity of HE [49, 76, 77]. Also in ALF, the presence of a 

systemic inflammatory response syndrome (SIRS) is involved in the progression of HE and 

therefore negatively impacts on prognosis [78, 79]. In ACLF, sepsis was found to be an 

important precipitating factor for HE in previously stable CLD [80]. Based on these 

observations, it was hypothesized that systemic inflammation is directly involved in the 

pathogenesis of HE.  



 

It has indeed been shown that the peripheral immune system communicates with the brain 

in the setting of systemic inflammation in liver disease, although the underlying mechanisms 

are not fully understood. During infection, the systemic inflammatory response leads to a 

cytokine storm and release of inflammatory modulators that may impact on the permeability 

and signaling pathways through the BBB [81].  This may in turn lead to microglia activation 

and local production of pro-inflammatory cytokines (i.e., TNF-a, IL-1B and IL-6), a 

phenomenon referred to as ‘neuroinflammation’ [78]. This has especially been shown in 

advanced stages of HE in ALF, while the degree of neuroinflammation in CLD seems less 

pronounced and relies on the characteristic of the precipitating factor [82]. Multiple studies 

have shown that neuroinflammation can lead to neuronal cell death [83, 84].  

 

Endotoxemia secondary to bacterial infections plays an important role in the development of 

a systemic inflammatory response and thus in the development of neuroinflammation in liver 

disease. Besides infections, endotoxemia can result from intestinal bacterial translocation 

due to impairment of the intestinal barrier integrity in cirrhosis and directly from the liver 

dysfunction [85, 86]. Many studies have shown that bacterial antigens, such as 

lipopolysaccharide (LPS) are involved in HE development. In several ALF animal models, LPS 

administration has been shown to increase BBB permeability and lead to coma [87]. Also in a 

CLD model, as induced by bile duct ligation (BDL) in rats, the administration of LPS was found 

to induce coma [56]. Moreover, LPS administration in BDL rats has been found to exacerbate 

brain edema through a synergistic effect of hyperammonemia and endotoxemia [81].  

 
 
 



Synergy between hyperammonemia and systemic inflammation 
 
Data of recent animal studies suggest that hyperammonemia and systemic inflammation are 

not isolated pathomechanisms, but act synergistically in producing the clinical manifestations 

of HE in both acute and chronic liver disease [52, 53, 55, 56]. In a CLD rat model for example, 

it was shown that administration of LPS resulted in hyperammonemia, brain swelling and 

coma [56]. Moreover, another study showed that a reduction in blood ammonia level 

protected the brain from a subsequent injection with LPS, suggesting that ammonia makes 

the brain more susceptible for a secondary inflammatory hit [56]. This was confirmed in a 

human study, in which significant deterioration in neuropsychometric tests was shown 

following induced hyperammonemia during the inflammatory state, but not after resolution 

of the infection [55]. Interestingly, administration of ammonia to healthy rats activates the 

microglial cells, which modulate neuroinflammation [88]. The exact mechanism behind this 

synergistic relationship is still subject of research, but it potentially provides interesting 

therapeutic targets for HE, such as endotoxin receptors, which will be discussed in the next 

section. 

 
Brain edema and the role of cerebral hemodynamics 
 
Altered CBF is a crucial factor in the pathogenesis of HE. While CLD is known to be associated 

with progressive reduction in CBF (i.e., cerebral oligaemia), is ALF characterized by significant 

increases in CBF (i.e., cerebral hyperaemia) [58]. Cerebral hyperaemia may lead to an increase 

in brain blood volume and promotes the movement of water through the BBB and is therefore 

relevant to the pathogenesis of increased intracranial pressure. Multiple mechanisms are 

involved in inducing alterations in cerebral haemodynamics in ALF, among which 



inflammation and hyperammonemia, acting synergistically, seem once again important 

mediators [57, 58]. 

 

Unlike ALF, mild brain edema has been shown in patients with CLD and HE using advanced 

magnetic resonance imaging techniques [89]. Nevertheless, lower grade edema appeared to 

be a significant feature in these patients as improvement of HE was found to be associated 

with a decrease in brain edema [90]. In ACLF, severity of brain edema and intracranial 

hypertension have not been studied extensively yet, but a significant increase in ICP has been 

previously described in small studies [53, 91]. A more recent study reports a relatively low 

incidence of high grade cerebral edema in ACLF patients of about 5% [92]. 

 

In summary, the current paradigm for the pathogenesis of HE in both acute and chronic liver 

disease involves the interaction between hyperammonemia, systemic inflammation and CBF 

and these pathomechanisms are therefore clear therapeutic targets for HE. 

 
 
TREATMENT  
 

General management 

The management of patients with HE has two primary goals: 1) to prevent HE related 

complications (e.g. brain herniation, aspiration, asphyxia) and 2) to restore patients’ 

individual cognitive function and consciousness.  All patients with OHE must be evaluated for 

intensive care monitoring and treatment. Whereas patients with preserved synthetic liver 

function and mild to moderate HE (i.e., WHC grade 1-2) can be safely managed on the normal 

ward, HE in association with ALF or ACLF is an indication for transfer to ICU in order to protect 



the airway, provide full organ support including mechanical ventilation, vasopressor support 

and renal replacement therapy.  

 

The management strategy depends on the underlying liver disease. In ALF, HE development 

is a direct consequence of the acute deterioration of liver function and subsequent 

hyperammonemia and inflammation, which may result in cerebral oedema and increase in 

ICP [87, 93]. Therefore, treatment strategies in ALF focus on reducing the ICP and identifying 

patients eligible for high urgency liver transplantation. This is in contrast to ACLF, in which HE 

is dominated by a pro-inflammatory reaction and less strongly associated with 

hyperammonemia. Moreover, in ACLF, HE is triggered in more than 60% of patients by 

precipitating events such as alcohol binge, infection, electrolyte disbalance, gastrointestinal 

bleeding and treatment with diuretic agents [33, 94]. Therefore, the initial management of 

HE in ACLF involves the identification and treatment of precipitating events, e.g. restoring 

fluid balance and electrolyte disturbances, identification of infections and administration of 

appropriate and early antibiotics and to treat gastrointestinal bleedings. In addition, 

administration of specific therapeutics targeting ammonia and inflammation play a central 

role. In this section, treatment strategies for both ALF and ACLF will be outlined and are 

summarized in table 3 and 4 and in figure 2.  

 

Nutrition 

Patients with liver cirrhosis are generally prone to be in a catabolic state characterized by 

protein degradation and reduced gluconeogenesis [95]. Dietary recommendations aim at 

maintaining patients’ energy and protein intake independently on the presence of HE. The 

ESPEN guidelines suggest a caloric intake of about 35-40 kcal/Kg, in order to avoid protein 



catabolism. Ideally, this should be distributed between multiple meals throughout the day 

including a high caloric meal at bedtime [93]. A protein intake of about 1.2-1.5 gram 

protein/kg body weight is recommended in order to maintain the nitrogen balance. There is 

no reliable data supporting a strict dietary restriction in patients with HE, unless the HE bout 

can be clearly allocated to an excessive protein intake [93]. This is in contrast to the 

widespread belief that protein restriction fastens the recovery after hepatic encephalopathy. 

Long-term energy and protein restriction must be avoided, also in obese patients with 

cirrhosis, as it leads to protein depletion and exacerbation of HE [93]. In this situation 

endogenous amino acids are utilized to maintain the blood sugar levels. This leads to protein 

break down and production of ammonia [96]. In stressful situations such as intensive care 

stays the energy and protein requirement might be even higher [93].  

 

Hyperammonemia is considered the main cause of reduced levels of branched chain amino 

acids (BCAAs) [97]. Its oral supplementation has been reported to enhance ammonia 

detoxification [98, 99], to stimulate the secretion of hepatocyte growth factor [100] which 

stimulates liver regeneration, to induce muscle protein synthesis [101] and insulin secretion 

[102]. A recent Cochrane meta-analysis confirmed the clinical efficacy on the development of 

HE by analyzing 16 studies, although the survival endpoint was not met [97]. However, BCAA 

supplementation is not effective in patients with overt HE [94].  

 

Patient with liver cirrhosis, notably with alcoholic liver cirrhosis, are prone to be thiamine 

deficient [93] and are therefore at risk of developing a Wernicke’s encephalopathy. Although 

there are disease specific symptoms such as nystagmus and ptosis, clinical presentation of 

Wernicke’s encephalopathy may overlap with HE (e.g. ataxia, confusion, memory loss), 



making the diagnostic process challenging. As thiamine substitution is cheap and safe, 

thiamine should be given in all patients with HE associated with alcoholic liver disease.    

 

 

Current specific treatments 

 
Therapies targeting the gut  
 
Nonabsorbable disaccharides, notably lactulose, is traditionally used as the initial treatment 

in HE associated with CLD. Lactulose has a restoring effect on the intestinal dysbiosis, as it 

reduces the amount of ammonia-producing bacteria. In addition, its laxative effect results in 

removal of nitrogen-containing substances from the gastrointestinal tract. Its benefit 

regarding the resolution of the HE bout [RR 0.63], liver related complications (e.g. variceal 

bleedings, SBP and hepatorenal syndrome) [RR 0.42] and mortality [RR 0.36] was shown in a 

meta-analysis, which updated a 2004 published Cochrane Review [103, 104]. Furthermore, 

the low costs, its ease of use and the small spectrum of side effects still speak for its 

widespread use as a first line treatment in cirrhosis associated HE. Initially, lactulose is given 

to achieve two to three loose bowel movements daily. The dose can be increased if there is 

no treatment response, or alternatively administered as enema [94]. However, at higher 

doses, side effects such as hyponatremia, dehydration, meteorism and skin irritation occur 

more frequently and may limit its applicability. Polyethylene glycol, which is commonly used 

as laxative, might be an alternative to lactulose, as shown in a small study with 50 patients. 

Administration of polyethylene glycol resulted in a significantly quicker resolution of the HE 

episode [105]. However, further validation is needed before polyethylene glycol could be 

implemented as a first line treatment.  



 

In ALF, the evidence for the efficacy of lactulose is limited and the oral administration may 

cause gastrointestinal side effects such as bowel distension, worsening of paralytic ileus, 

which ultimately jeopardizes liver transplantation [106]. If necessary, the rectal 

administration should be preferred over the oral approach, as it less likely causes treatment 

related complications.  

 
Rifaximin (550mg BD) is a non-absorbable antibiotic agent, which inhibits bacterial RNA 

synthesis by binding to the DNA-dependent RNA-polymerase. It targets the intestinal 

dysbiosis, the bacterial translocation and reduces the production of neurotoxin (ammonia) 

and the amount of circulating endotoxins [107]. In most European and North American 

countries Rifaximin is approved and tested to prevent the development of HE episodes [108-

110] as secondary prophylaxis [94]. Data about its benefit in the acute HE is sparse. A positive 

effect on resolution of OHE and survival has been shown in a study with 120 patients 

comparing lactulose vs. rifaximin plus lactulose [111]. However, according to the approval 

status and its limited evidence, the use of rifaximin for the acute HE bout in association with 

ACLF is limited to treatment of non-responders.  

 

Rifaximin was not evaluated for HE associated with ALF and can therefore not be 

recommended in this setting.  

 

Ammonia targeting therapies 

L-ornithine L-aspartate (LOLA) is known to lower ammonia levels by interacting with the 

glutamine synthetase and urea cycle enzyme system [112]. Whilst the oral effect especially in 



the acute situation is questionable, the intravenous administration (25-40 g/day, max 

5g/hour) was shown to reduce ammonia levels and improve the performance of psychometric 

tests [112]. This was confirmed by a published meta-analysis [113]. However, a recently 

released Cochrane meta-analysis emphasized, that the quality of evidence is poor. Further 

trials are required [114] and its use is restricted to countries in which it is approved for the 

treatment of HE. The potential ammonia regeneration from glutamine breakdown may lead 

to a rebound effect and a certain number of non-responder [115].  

 

In ALF LOLA was not effective in improving the HE severity [116], although its ammonia 

lowering effect had been shown previously [117]. 

 
 
Albumin 

Albumin plays a prominent role among all plasma proteins. Its effect goes far beyond the 

maintenance of the systemic oncotic pressure. It comprises numerous additional functions, 

including detoxification, modulating inflammation and stabilizing endothelial function [118]. 

However, at this time point there is no credible data showing a true benefit in HE, which adds 

to the plasma expanding effect of albumin [119], although a survival benefit in the setting of 

cirrhosis associated HE has been shown [120]. HE is therefore, not an indication for albumin 

administration. However, albumin is crucial component in most extracorporeal liver assist 

devices, as discussed below, and might through this channel gain importance in the treatment 

of HE.  

 

Management of intracranial hypertension 

Measurement and monitoring 



Under normal conditions the ICP approximately equals the central venous pressure. However, 

in the setting of intracranial hypertension, the ICP increases above 20 mmHg. Increased ICP 

can reduce the cerebral perfusion pressure (CPP), thereby increasing the risk of ischemic brain 

damage on the one hand and herniation of the brain on the other hand [121]. As previously 

discussed, intracranial hypertension and cerebral oedema is more prominent in ALF than in 

ACLF. Therefore, management strategies are primarily developed for patients with ALF. 

Nevertheless, its principals do also apply to patients with ACLF.  

 

If there is evidence of intracranial hypertension, adequate monitoring is essential. Given the 

fact that patients with liver failure have a coagulopathy and are therefore at risk of bleeding 

complications, invasive measurement of intracranial pressure should be carefully considered. 

There is no agreement on the localization of the pressure probe, ranging from epidural over 

subdural and intraparenchymal to intraventricular [121]. Whereas the epidural approach 

bears the lowest risk for complications does the intraparenchymal and intraventricular probes 

provide the most accurate results [121]. Ultimately, the access path strongly depends on the 

confidence of the neurosurgeon and individual patients factors such as the severity of 

coagulopathy.  Unfortunately, there are no randomized controlled trials proving the general 

efficacy of this measure. Some data from uncontrolled trials suggest that invasive pressure 

measurement might reduce the frequency of HE related endpoints with a low risk of 

complications [122, 123]. In a case series of 37 patients with ALF and HE grade 4, 

intraparenchymal probes were inserted after sufficient substitution with recombinant factor 

VIIa and desmopressin, elevating the platelet count to > 50,000/mm3 and the fibrinogen level 

to >100 mg/dL. [122]. In this study, one patient developed an intracranial bleed but required 

evacuation of the haematoma. Four patients died due to brain herniation und thus 



uncontrolled intracranial hypertension. Although this study has several limitations, of which 

the missing control group is certainly the most important one, it shows that under certain 

conditions invasive ICP measurement is feasible with an acceptable risk of complications. 

However, data from other studies underline the conflicting discussion regarding this measure. 

A large case-control study in 629 patients with ALF and HE grade 3/4 matched 140 patients 

with invasive ICP measurements with 489 non-invasively monitored patients. Bleeding 

complications were rare (4/56, 7%). Nevertheless, in non-paracetamol induced ALF, invasive 

ICP measurement was associated with an increased risk of death with a hazard ratio of 3 

[124]. In this study the cause of inferiority of invasive ICP monitoring could not be clarified. It 

might be related to a more aggressive ICP treatment or selection of sicker patients [124, 125]. 

In conclusion, the benefit of invasive ICP monitoring needs to be proven weighing up the risk 

of bleeding versus benefit.  

 

The high costs and the potential complications of invasive ICP management emphasize the 

need for the development of non-invasive assessment strategies. There are numerous studies 

evaluating transcranial Doppler ultrasound techniques to assess the intracranial pressure. 

However only a few reported the correlation with invasive methods and showed a wide range 

of sensitivity (25%-100%) [126, 127] and specificity (69%-99%) [128, 129]. In addition, the 

reliability of this method is highly investigator-dependent and data in adult liver disease 

patients do still not exist.  

 

Treatment of increased ICP 

Treatment strategies for intracranial hypertension focus on the reduction of the cerebral 

oedema and the maintenance of the CPP. Therapies of intracranial hypertension correspond 



to the principals of the general neurological and neurointensive care management. 

Intravenous sedation with barbiturates, an elevated head position and controlled sodium 

levels (aim 145-150 mmol/l) should be achieved. If necessary, continuous hypertonic saline 

infusion are useful to maintain the high sodium level [130]. Pressure peaks might be 

controlled by bolus injections of mannitol and hypertonic saline [106]. Metabolic alkalosis and 

hypokalemia increases ammonia production and need to be corrected. Although short term 

hyperventilation leads to reduced CO2 levels thereby causing cerebral vasoconstriction and 

decreased intracranial pressure, this measure should be avoided beyond short term 

application for pressure peaks [121] as it may lead to cerebral ischemia and rebound oedema 

[131]. However, as hypercapnia worsens the cerebral oedema a target PaO2 level of about 

32-34 mmHg followed by normocapnia (35-40mmHg) is of benefit to control intracranial 

pressure [121, 132] (figure 2b, table 4). 

 

Results from a systematic review published in 2010 suggested that hypothermia in ALF with 

intracranial hypertension is effective, feasible and safe in the treatment of uncontrolled 

intracranial hypertension [123]. However, a recently published randomized controlled trial 

investigated 46 patients with ALF, high-grade HE and intracranial pressure measurement into 

groups with moderate hypothermia (33-34°C) and normothermia. The aim of this study was 

to evaluate whether hypothermia could prevent sustained ICP-elevation. The data did not 

confirm the benefit of moderate hypothermia in this setting but the study was thought to be 

underpowered to detect a difference.[133]. 

 

 

 



Extracorporeal devices 

The use of renal replacement, notably continuous veno-venous hemofiltration (CVVH), 

reduces circulating ammonia levels [134]. Therefore, early initiation of CVVH is widely 

recommended in ALF [135]. Other extracorporeal devices focus on the removal of 

inflammatory mediators and toxins. Of them, high volume plasmapheresis has been recently 

evaluated for the treatment of ALF in comparison with standard of care [136]. In 182 patients, 

plasmapheresis achieved a survival improvement from 47.8% to 58.7% [136]. A reduced 

vasopressor requirement and a decrease of markers for inflammation and cell damage were 

the most compelling results [136]. Therefore, plasma exchange is an important measure in 

the early phase of ALF, independently of the presence of HE or intracranial hypertension. 

However, if not indicated per se, its utilization might be considered in patients with refractory 

circulatory insufficiency and HE. Although Larsen et al. [136] could not show an effect of high 

volume plasmapheresis on the intracranial pressure, the stabilization of the circulation can 

increase the cerebral perfusion pressure and thereby lower the risk for ischemic cerebral 

damage.  

 

In ACLF, there are two single-center, non-controlled observational studies [137, 138] and two 

randomized controlled trials evaluating the plasma-exchange either against the molecular 

adsorbent system (non-MARS)[139] or standard of care [140]. Results suggest its feasibility 

and a positive effect on the survival. However, it remains unclear whether there is an 

independent effect on HE.  

 

Other extracorporeal devices such as the molecular adsorbent recirculating system (MARS) 

use albumin as a scavenger molecule to clear the circulation from toxins. However, neither 



MARS nor other albumin-based systems have been shown to have a positive effect on ACLF 

or ALF. Two multicenter randomized trials, the RELIEF trial [141] and the FULMAR study [142], 

evaluated MARS in both disease entities and reported additional results about HE 

development. The FULMAR study could not show an improvement of HE in ALF. This was most 

likely due to the fact, that the median time from randomization to liver transplantation was 

too short to unfold a potential effect. In ACLF the RELIEF trial reported a diminished severity 

of HE during the MARS treatment period [141].  

 

A novel extracorporeal assist device, called DIALIVE, combines albumin exchange with 

endotoxin adsorption. The first study in patients is currently ongoing. This randomized 

controlled trial is designed as a proof of concept trial in patients with ACLF (NCT03065699).  

 

Overall, there are currently two systems that play a role in management of HE associated with 

ALF or ACLF; high volume plasmapheresis and MARS. Plasma exchange may have its indication 

in both entities, especially if the circulatory insufficiency is predominating, in order to stabilize 

the systemic blood pressure and intracranial perfusion pressure. Patients with HE but without 

circulatory failure might benefit from MARS, especially as a bridge to transplantation or 

spontaneous recovery.  

 

Liver transplantation  

HE is traditionally regarded as being fully reversible if treated adequately. Liver 

transplantation, by restoring liver function, should therefore allow patients to fully recover 

from their neuropsychological impairment. However, there is evidence suggesting that HE, 

even after liver transplantation, leaves some cognitive sequelae [143]. A two-component 



model has been proposed, consisting of a reversible delirium-like state and a irreversible 

dementia-like state [143]. The delirium-like state relates majorly to the cerebral oedema, 

whereas the dementia-like state includes degenerative cerebellar and ganglia alterations 

[144]. As to whether this significantly impacts the selection of liver transplant candidates is 

unclear, notably because neuropsychological disorders after liver transplantation are most 

often multifactorial (e.g. dementia, immunosuppression, depression etc.). HE is therefore 

perceived as an indication instead of a contraindication for liver transplantation.  

 

The role of HE in the organ allocation system for liver transplant candidates depends on the 

underlying liver disease. In ALF HE defines the condition [145, 146]. In ACLF, the presence of 

HE is an independent risk factor for mortality [32]. Though, liver transplantation is a 

potentially life saving intervention in this specific group of patients [147].  HE is not a criterion 

for priorisation on the waiting list in most countries with MELD score based organ allocation 

and standard exceptions for this type of complications do not exist. It is therefore essential 

to clarify the type of underlying liver disease, as it determines how liver transplantation fits 

into individual patient management strategies.   

 

TIPSS- and portosystemic shunt related HE 

In patients with refractory HE associated with ACLF, the presence of portosystemic shunts 

should be excluded. If large shunts are present, their occlusion may improve HE especially if 

the liver function is preserved (MELD 11 or below) [148-150]. After transjugular intrahepatic 

shunt insertion (TIPS), HE may occur in up to 50% of patients and is associated with 

hyperammonemia, endotoxemia and cerebral oedema [151-153]. As the efficacy of medical 



treatment is limited, stent reduction or occlusion remains the gold standard especially in 

those with refractory or recurrent TIPS-related HE [154, 155]  

 

Novel therapeutic opportunities 

Targeting ammonia 

Ornithine is a component of LOLA and acts by stimulating the glutamine synthetase, which 

eliminates ammonia to glutamine. LOLA bears the risk of an ammonia rebound phenomenon 

as glutamine can be recycled to ammonia [115]. New drug formulations combine ornithine 

with phenylacetate (ornithine phenylacetate, OP) or its prodrug phenylbutyrate, which 

increases glutamine excretion by binding to phenylacetate [156, 157]. Although these 

treatments were proven to be safe and effective in reducing ammonia [156, 157] results need 

to be confirmed in phase 3 study.  

 

Targeting the intestinal microbiome 

Probiotics, which correct dysbiosis and intestinal bacterial translocation, were tested in 

prospective trials assessing its capacity to prevent the occurrence of HE bouts. Overall it failed 

to prove a significant benefit over the standard treatment with lactulose [158-161]. Besides, 

a randomized controlled study in acute HE does not exist so that this type of treatment cannot 

be recommended.  

 

Fecal microbiota transplantation is a novel approach to restore dysbiosis [162] and seems to 

be an attractive target for patients with liver cirrhosis and HE. In fact, its ammonia-lowering 

effect has been proven in animal studies [163, 164] and there are currently three human 



studies actively recruiting patients (NCT03014505, NCT02862249) or completed 

(NCT02636647).  

 

However, in the setting of acute HE and intensive care, this treatment that requires specific 

resources and logistics, might be difficult to implement as first line therapy.  

 

Targeting (neuro-)inflammation 

There are a few approaches that target altered neuro-(inflammatory) pathways. Sildenafil is 

a phosphodiesterase inhibitor, which improves the function of glutamate-NO-cGMP pathway 

and restores extracellular cGMP levels. It has been shown to improve learning abilities in rats 

with porto-caval anastomosis and hyperammonemia [165]. Moreover, a reduction of 

neuroinflammation along with an improvement of cognitive functions was reported in other 

studies [166, 167]. 

 

Indomethacin is a cyclooxygenase inhibitor, which reduces the intracranial pressure in a 

porcine model and might play a role in humans [168]. Although further studies need to 

confirm the results, it may be considered in treatment of refractory cases of severe 

intracranial hypertension in patients with ALF [106].  

 

CONCLUSION  

HE is a devastating complication of liver failure and an independent predictor of mortality 

both in patients with ALF and those with ACLF. Although the mechanisms of HE are still 

being investigated, ammonia and inflammation are pathogenically important. Therapeutic 

option for management of patients with severe HE are limited. Newer strategies based on 



the better understanding of interorgan metabolism of ammonia are in late stages of 

development. With improvements in treatment of HE, it is likely that the survival of patients 

with ALF and ACLF will improve. 

  



TABLES 

Table 1. West-Haven criteria and ISHEN classification (modified according to Vilstrup H et al. 

[1]). 

WHC grade ISHEN Clinical features 
Unimpaired No encephalopathy at all, no history of HE 
Minimal Covert Psychometric or neuropsychological 

alterations of tests exploring psychomotor 
speed/executive functions or 
neurophysiological alterations without 
clinical evidence of mental change 

Grade I • Trivial lack of awareness 
• Euphoria or anxiety 
• Shortened attention span 
• Impairment of addition or subtraction 
• Altered sleep rhythm 

Grade II Overt • Lethargy or apathy 
• Disorientation for time 
• Obvious personality change 
• Inappropriate behavior 
• Dyspraxia 
• Asterixis 

Grade III • Somnolence to semistupor 
• Responsive to stimuli 
• Confused 
• Gross disorientation 
• Bizarre behavior 

Grade IV Coma 
 

WHC, West Haven criteria; ISHEN, International Society for Hepatic Encephalopathy and 

Nitrogen Metabolism.  

 

  



Table 2. Practice recommendation for the diagnostic work-up of OHE in patients with 

confirmed hepatic failure and/ or portosystemic shunting (modified according to Romero-

Gómez M et al. [169]). 

Steps in diagnostic work-up of OHE in the setting of confirmed hepatic failure and/ or 
portosystemic shunting 

1. History taking • precipitating factors for HE  
• list of medication 
• previous HE episodes (requiring hospitalization) 
• time course and pre-morbid functioning 

2. Neuropsychiatric assessment • focusing on disorientation in place and time 
• use of GCS in patients with significantly altered 

consciousness 
3. Clinical examination • including neurological examination 

• asterixis  
4. Laboratory testing • full blood count, liver and kidney function, 

electrolytes, ammonia, CRP, TSH, glucose, vitamin 
B12 

• ammonia: preferably arterial blood. If venous: 
preferably when patient is fasting, refrigerated on 
ice, immediate analyzation 

5. Imaging cerebral imaging should be performed in case of non-
specific clinical presentation or when cerebrovascular 
disease is suspected 

 

HE, hepatic encephalopathy; GCS, Glasgow coma scale; CRP, C-reactive protein; TSH, thyroid 

stimulating hormone 

  



Table 3. Dosage guideline for different specific treatment options in patient with hepatic 

encephalopathy. 

 

Therapeutic agent Dose 
Lactulose Initially 25ml BD orally, increase of 

necessary to achieve two to three loose 
bowel movements daily 

Rifaximin 550 mg BD orally 
L-Ornithine-L-Aspartate 25-40g continuous i.v. infusion per day 
High caloric nutrition 35-40kcal/Kg 
Thiamine 100mg/day i.v. 
Indomethacin 0.5mg/kg i.v. 
Ornithine phenylacetate Up to 20g/day i.v. 
Glycerol phenylbutyrate 6ml BD orally 

i.v. - intravenously 
 
 
Table 4. Specific measures to treat cerebral oedema and intracranial hypertension (modified 

according to Kandiah PA et al [106]). 

 
Neuroprotective strategies   
Increase sodium level  Continuous infusion: 30% NaCL infusion 

titrated between 5 and 20 ml/h or 3% 
titrated between 30 and 100 ml/h 

 Intermittent bolus injection: 200ml 3% 
NaCL 

Mannitol infusion 20% mannitol 0.5-1g/kg bolus, avoid 
plasma osmolarity >320 mOsm/L 
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Figure 1. Classification of HE according to the multiaxial system as recommended by the 

current practice guideline of HE in CLD by the EASL/ AASLD (modified according to Prakash R 

and Mullen KD [80]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HE, hepatic encephalopathy; WHC, West Haven criteria; ISHEN, International Society for 

Hepatic Encephalopathy and Nitrogen Metabolism; MHE, minimal HE.   

  



Figure 2. Management algorithm for hepatic encephalopathy divided by patients with 

acute-on-chronic liver failure (2A, modified according to Kandiah PA et al. [106]) and acute 

liver failure (2B; modified according to Romero-Gomez M et al. [169]) 

 
 
A 
 
 

  



B 
   

 
 
*Treatment doses are displayed in table 3 
#measures are explained in detail in table 4 
ITU – intensive therapy unit 
JvO2 – jugular venous oxygen saturation 
MARS - molecular adsorbent recirculating system 
PCS – portocaval shunt 
ICP – intracranial pressure 
CPP – cerebral perfusion pressure 
CRRT – continuous renal replacement therapy 
Na – sodium level 
ALD – alcoholic liver disease 
GI-bleeding – gastrointestinal bleeding 
ACLF – acute-on-chronic liver failure 
OLT – orthotopic liver transplantation 
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