
Real-Time Management and Control of Monitoring
Elements In Dynamic Cloud Network Systems

Francesco Tusa, Stuart Clayman, Alex Galis
Dept. of Electronic Engineering, University College London, London, UK
Email: francesco.tusa@ucl.ac.uk, s.clayman@ucl.ac.uk, a.galis@ucl.ac.uk

Abstract—This paper explores new scenarios where Cloud
Network Service Providers take advantage of using more flexible
resource management and orchestration solutions in the form
of dynamic virtualised compute, network and storage resources.
The main focus of this work is to analyse how those challenges
will considerably impact the requirements of the monitoring
process. A framework in the context of 5G is here presented
to support the dynamic on-demand management, configuration
and control of a monitoring subsystem which: can easily scale
up / down according to the number of running entities in the
system as result of the instantiation / termination of multiple
services; can provide mechanisms to dynamically activate /
deactivate its constituent elements on-demand according to the
type of services to be monitored; and can provide mechanisms to
dynamically adjust the configuration if its elements. Experimental
outcomes, where a Monitoring Controller was used to adjust
the measurement collection / sending rate of the probes in the
monitoring subsystem on the-fly are also presented. The paper
shows how this prevented the transmission of vast amounts of
data when the number of virtual entities and related monitoring
probes in the system scaled up to hundreds of elements.

Index Terms—Cloud monitoring, resources monitoring, dy-
namic control, real-time control, on-demand reconfiguration,
network service orchestration, NFV, SDN, 5G.

I. INTRODUCTION

Cloud computing service providers have gradually been
adopting new technologies to deliver services to their cus-
tomers over Wide Area Networks. Network resources are now
being abstracted, shared and delivered as a bundle to different
tenants along with computational resources. In order to achieve
that, different Cloud infrastructures can be interconnected via
a combination of Software Defined Networks (SDN) and Net-
work Function Virtualization (NFV) technologies implemented
by using heterogeneous types of software and / or (virtualised)
hardware entities.

Due to the intrinsic high-dynamic nature of the pattern of
customers service requests in these scenarios, the required
resource management and orchestration processes may conve-
niently rely on the dynamic instantiation of ephemeral virtual
entities associated to different type of resources (e.g., comput-
ing, network and storage), which are likely to be created and
destroyed during a relatively short period of time.

Even during their short lifetime, those virtual entities that
have been instantiated for the implementation of those ser-
vices, will certainly generate data that is worth observing
and collecting. This monitoring process will not only allow

measuring the performance of the services themselves, but
will also provide a valuable source of information related
to the overall behaviour of the system. The presence of a
monitoring process in the system’s control loop becomes vital
to ensure that a proper feedback is continuously provided to
the functions that take care of the services’ life-cycle manage-
ment, configuration, and orchestration as they are dynamically
created and destroyed.

5G Network Service Providers have started reconsidering
their own core infrastructures according to a new more flexible
software-based approach – Software Defined Infrastructures,
i.e., a combination of NFV, SDN and Cloud technologies
designed to fulfil customers’ demand via relatively complex
software systems that perform the end-to-end orchestration
of network services on heterogeneous resources, even across
administrative borders. In this multi-technology, multi-domain
scenario, logically interconnected and virtualised resources are
dynamically allocated / deallocated on demand following the
pattern of the network services instantiation requested by the
customers. Services can include computational, storage, and
network resources that can be allocated as Virtual Machines
(VMs), Containers, virtual storage devices, and virtual links.

As already mentioned, the instantiation of those virtualised
elements is very likely to be performed according to a highly
dynamic pattern and can possibly scale up to reach hundreds
or thousands of running entities. As a consequence, firstly the
monitoring subsystem should be able to activate / deactivate
the required monitoring entities according to this dynamic
pattern and also to the specific type of services to be monitored
(i.e., the type of virtual resources a service is formed of).
Secondly, the monitoring subsystem should be able to cope
with the potential high number of (virtual) entities that may
need to be managed, orchestrated, controlled and monitored
during the execution of the above services. The higher the
number of entities that are up and running in the system, the
greater the amount of monitoring data that will be collected
and sent over the network.

For this reason, some of the parameters of the system may
have to be adjusted at run-time according either to the actual
number of running entities or to the occurrence of specific
events. For example, as the number of entities grows, the
frequency at which measurements are collected during the
monitoring process may need to be adjusted to avoid potential
network congestions. Conversely, if there is either a potential
fault detected in the system, or an anomalous behaviour in978-1-5386-6831-3/18/$31.00 c© 2018 IEEE

one of the components of a service instance, finer grained
monitoring data might be required and the rate at which
measurements are collected may have to be increased.

This will introduce additional requirements for the whole
resource infrastructure’s management system. As such, this
paper is focused on the monitoring process and describes
the set of features a monitoring subsystem should support to
comply with the requirements of a dynamic cloud network
environment. Most of the current existing monitoring solutions
are based on pre-configured static deployment strategies that
are difficult to customise at run-time. Using such systems
in scenarios that require dynamic adaptation and control of
their elements (such as in a 5G environment) would not be
appropriate and would make the implementation of a fully-
dynamic software-defined infrastructure more difficult or even
not feasible.

This paper highlights the new features that have recently
been added to Lattice, a monitoring framework that was de-
veloped and already used to monitor virtual computational [1]
and networking environments [2] environments in the context
of the EU FP7 project RESERVOIR [11]. The new Lattice’s
functionalities fulfil most of the above mentioned requirements
and allow dynamic activation, control and management of the
main elements constituting a monitoring subsystem.

The paper is organised as follows. Section II presents the
state-of-the-art on existing monitoring systems. Section III
provides an overview of the Lattice Monitoring framework
and describes how it was augmented to be used in the context
of dynamic cloud network systems. Section IV describes an
actual cloud network scenario related to 5G where Lattice was
used for monitoring resources and services. Section V provide
further details on how dynamic control can be achieved in that
scenario via reconfiguring relevant probes on-demand. Finally
Section VI draws some conclusions and foresees potential
future works.

II. RELATED WORKS

This section presents a brief overview of the state-of-the-
art on monitoring systems: it starts discussing traditional data
centers and grid monitoring solutions and then moves to
systems specifically designed to monitor Clouds environments.

The reader will see that, on the one hand, the former systems
lack of flexibility and cannot easily used in scenarios where
the topology of the entities to be monitored changes during rel-
atively short time intervals; on the other hand, the latter ones,
although designed to work on less static environments, still
miss dynamic programmability features that allow changing
the behaviour of the system at run time. The outcome of this
analysis was used as a starting point to identify functional gaps
and requirements for a desired Cloud Network monitoring
system.

Nagios [7] is one of the best-known open source tools
for monitoring IT infrastructures and adopts a centralised
client/server architecture – a server is responsible of gathering
monitoring information from remote monitored nodes for the
sake of storage and visualisation. Nagios configuration is

static and does not allow dynamic control of the services and
entities to be monitored. Nagios supports the development
of plug-ins to extend some if its functionalities, e.g., to
provide a remote API for dynamically changing the system
configuration. However, the supported API features are quite
rudimentary and limited to the scope of the central monitoring
server.

Zabbix [3] is an open source software that offers good
performance for gathering data on large scale environments. It
allows collecting monitoring measurements, statistics and per-
formance data from servers, network devices, and applications.
The system configuration can become complex when new
entities or custom checks have to be added. Zabbix offers an
API that can be used to retrieve and modify the configuration
of the system in a programmatic way. This API is currently
widely used to integrate Zabbix with third party software in
order to automate routine tasks. Also in this case, the scope of
the API is limited to the configuration of the central Zabbix
monitoring server.

Ganglia [10] is another relevant system widely adopted to
monitor grids and clusters of computers. It supports scalable
monitoring by using a hierarchical distributed architecture re-
lying on clients, agents and servers entities: an agent (gmond)
sends resource usage information on demand to another agent
(gmetad) that plays the role of higher level aggregator. Ganglia
does not support any mechanisms for adjusting the configu-
ration of the above agents dynamically and does not provide
any remote APIs either.

Moving away from the traditional IT monitoring systems,
Distributed Architecture for Resource manaGement and mOn-
itoring in cloudS (DARGOS) [9] is a completely distributed
and highly efficient Cloud monitoring architecture to dis-
seminate resource monitoring information. DARGOS ensures
an accurate measurement of physical and virtual resources
in the Cloud keeping at the same time a low overhead.
In addition, DARGOS is flexible and adaptable and allows
defining and monitoring new metrics easily. This solution has
some commonalities with Lattice as it cares about optimising
the network traffic by keeping a low overhead while the mea-
surements are sent. However, DARGOS does not provide any
control element nor an API for programming and automating
either the deployment and (re)-configuration of the monitoring
subsystem.

FlexACMS [4] is a framework to automate monitoring
configuration related to cloud slices using multiple monitor-
ing solutions. FlexACMS is able to detect new cloud slices
created in the cloud platform and, for each new detected
cloud slice, to trigger components that can configure the
monitoring solutions, building the corresponding monitoring
slice for that cloud slice. Although this solution represents a
huge steps forward in respect to the automatic deployment
and configuration of a monitoring subsystem, it still does
not consider any on-demand adaptation e.g., according to the
conditions of the system to be monitored, the number of
running entities, etc.

Data	
Consumer

Data	
SourceData	
Source

Monitoring	
Controller

Data	Source

Data Plane

Control Plane

Information Plane

ProbesReporters

Figure 1: Lattice Framework Elements

III. LATTICE MONITORING FRAMEWORK

Lattice was initially designed and developed to be a highly
customizable framework able to provide the software blocks
that can be used to build an ad-hoc monitoring subsystem
[2]. In the following, we will first provide an overview of
the design and implementation of the main Lattice soft-
ware elements; we will then discuss the requirements of a
monitoring subsystem that would be beneficial to a highly
dynamic cloud network scenario; we will finally describe
how Lattice was augmented to support those requirements via
the implementation of on-demand control, management, and
configuration capabilities of its software elements.

A. Overview

Lattice is based on the concept of dynamically composable
elements with data collection using monitoring probes, i.e.,
fully programmable Java software entities that can be used
to retrieve measurements from different types of sources (see
Figure 1). A probe usually collects measurements related to
the elements of the system that needs to be monitored. The
measurement process can be carried out either interacting with
these elements directly (e.g., a physical host, a hypervisor,
a network controller, an OVS switch, etc.) or with an exist-
ing higher level system that manages / controls / monitors
those entities already (e.g., a Docker Engine, an OpenStack
Ceilometer, an SDN Controller, etc.). In both cases, the probe
will hide the required specific interaction mechanisms and will
provide a uniform way to collect measurement data regardless
of the specific type of entity to be monitored.

Probes are not the only elements required to build a
customizable monitoring subsystem: the current specification
of Lattice also provides Data Sources, Data Consumers and
Reporters, where each of them implements specific functions
required for the monitoring process (Figure 1, see [1] and
[2] for further details). Although the first release of Lattice
provided a good degree of flexibility in building the desired
monitoring subsystem via deploying a customised topology
based on the above software entities, an a-priori configuration
of those blocks was still required, and an actual mechanism for
configuring / controlling them at run-time was in the design
but not yet implemented.

In order to develop a monitoring framework that was
able to support the requirements imposed by highly dynamic

environments such as the Cloud network infrastructures or the
scenarios related to the emerging 5G, we extended Lattice
to provide mechanisms enabling the dynamic control of the
monitoring entities that are part of a Lattice-based monitoring
subsystem. This allowed us to perform dynamic adaptation of
the monitoring subsystem, according to the status of the main
system that needs to be monitored (e.g., the status of resources
and services, the overall number of instantiated entities, etc.)
using both the Lattice Control and Information planes.

B. Requirements for a Monitoring Subsystem in dynamic
Cloud network scenarios

A monitoring subsystem that supports the deployment and
configuration of all the required monitoring entities at run-
time, as well as their dynamic control would be desirable to
have in the context discussed in the previous section. This
would allow to dynamically reshape the deployment, config-
uration and behaviour of the monitoring subsystem according
to the status of the system that needs to be monitored.

For doing that, the monitoring subsystem should (i) be able
to collect and provide measurements from different types of
resources, regardless of the technology used for their imple-
mentation; (ii) be able to easily scale up / down according
to the number of running entities in the system as result of
the instantiation / termination of multiple services; (iii) provide
mechanisms to dynamically activate / deactivate its constituent
elements (e.g., probes) on demand according to the type of
services to be monitored; (iv) be able to provide mechanisms
to dynamically adjust the configuration if its elements, e.g., the
measurements collection / sending rate according to the status
of the infrastructure, the number of running entities and the
characteristics of the network service instances (e.g., defined
thresholds and events, SLAs, etc.).

C. Dynamic control features

The Lattice Control and Information planes that were in-
cluded as part of the design specification described in [1]
and [2], have fully been implemented (using the ZeroMQ
asynchronous messaging library [6]) in the latest version of
Lattice.

The Information plane is used to share a topological view
of the monitoring entities that are up and running in the
monitoring subsystem (Probes and Data Sources as well as
Data Consumers and Reporters), also including their prop-
erties / attributes and run-time status. The Control plane is
utilised to enable one (or more) Monitoring Controller entities
(represented in Figure 1) to interact with the other Lattice
monitoring elements that are under their control in order to
enforce control actions (e.g., activating / deactivating a given
probe or a reporting mechanism, dynamically adjusting the
measurements rate of a probe, etc.).

The Lattice Monitoring Controller has fully been designed,
implemented and added to the other existing components of
the Lattice framework. The Monitoring Controller supports the
following dynamic run-time functionalities:

• to Start / Stop a Data Source monitoring agent on host /
resource,

• to Load / Unload a probe (on a Data Source) with
attributes (service id, NF id, Virtual Link id, etc.),

• to Activate / Deactivate a probe,
• to Set a probe measurements collection / sending rate,
• to Start / Stop a Data Consumer monitoring agent on host

/ resource,
• to Load / Unload a reporter (on a Data Consumer

monitoring agent),
• to Configure a reporter to use a particular persistent

storage system for storing the collected measurements.
These functions are exposed by the Monitoring Controller via
a RESTful API that includes multiple separate endpoints. The
API invocation on the Controller will first trigger the gener-
ation and then the transmission of proper control messages
on the Lattice Control Plane. These messages implement a
request-reply protocol involving the Monitoring Controller and
the Monitoring elements that need to be controlled. More
specifically, a light-weight RPC mechanism was implemented
using the External Data Representation (XDR) – this allows
sending proper messages to a monitoring entity that requires
dynamic control / reconfiguration in order to remotely trigger
the execution of proper methods / procedures. The result of
each control operation is then passed back to the Monitoring
Controller on the Control Plane and used as return value of
the original REST API call.

These mechanisms will allow building the required monitor-
ing control loop while enabling dynamic control features for its
main monitoring elements. For example, probes can be loaded
on specific Data Sources monitoring elements according to the
“spatial” configuration of the services being instantiated. If
the collected measurements highlight any abnormal behaviour
of the system, the reporting rate of a specific probe can be
increased in order to collect more accurate measurements and
better identify any potential issues. On the other hand, when
the number of monitored entities in the system has grown too
much and the amount of measurements being sent / received
on the Lattice Data Plane becomes so high as to degrade
the performance of the main system (due to e.g., network
congestion), the reporting rate of (some of) those probes can
possibly be decreased in a dynamic fashion without negatively
affecting the accuracy of the overall monitoring process.

Although Lattice can be used to build the monitoring func-
tionalities of any kind of dynamic system requiring on-demand
control, in the next section we will specifically consider a
5G multi-provider scenario where a Lattice-based monitoring
subsystem was devised to support the dynamic deployment of
network services. We will discuss and highlight how some of
the Lattice features turned out to be pretty useful to support
on-demand control and adaptation features for that system.

IV. DYNAMIC 5G MONITORING WITH LATTICE

This section describes a multi-operator, multi-domain 5G
scenario where Lattice was used to perform monitoring of
resources and services. Network service instances formed of

virtual computing elements (such as VMs, containers, etc.)
as well as virtual links (e.g., flow entries, network tunnels,
etc.) are created and destroyed dynamically according to
the customers requests. Service components are orchestrated
and deployed via the interaction of multi-domain MANO
(Management and Orchestration) frameworks. Each MANO
framework (namely Multi-domain Orchestrator – MdO) oper-
ates on a combination of heterogeneous resources belonging to
Network Service Providers / Operators – where each resource
partition is called a Resource Domain.

In a 5G ecosystem, different MANO frameworks belonging
to different Providers that have stipulated specific business
agreements, can interwork to create a globally federated infras-
tructure for the deployment of end-to-end network services.
Figure 2 depicts this scenario and considers a single MANO
instance operating over two internal Resource Domains. The
representation is focused on the monitoring perspective and
highlights two separate monitoring subsystem instances, both
based on Lattice and deployed in the two Resource Domains.

Monitoring
Orchestrator

Time
series

DB

Monitoring
Controller

Data
SourceData

SourceData
Source

I3-Moncontrol

I3-Mondata

Monitoring
Controller

Data
SourceData

SourceData
Source

Resource Domain D2

Resources Resources

Multi-domain orchestrator A

ProbesProbes

M1 M2
I3-Moncontrol

Resource Domain D1

I2-Moncontrol

I2-Mondata

Data
Consumer

Data
Consumer

Reporters Reporters

Figure 2: A 5G Service Provider using a Lattice based Mon-
itoring subsystem

A specific component of the Multi-domain Orchestrator
(MdO) – the Monitoring Orchestrator (in Figure 2, [8]) takes
care of instantiating and configuring on-demand the required
Lattice monitoring entities (i.e., Data Sources, Probes, Data
Consumers, and Reporters) according to the services running
on the infrastructure, and interacts with the Lattice Monitoring
Controller via the I3-Mon (control) interface. The specific
information to be monitored for each service is obtained
from the QoS / QoE requirements specified by the customers,
such as the SLOs (Service Level Objectives) within the SLA
contract and / or rules describing the reaction of a service to
particular events. Measurements collected by the probes are
sent, via the Lattice Data plane, to the Data Consumers and
then pushed to a permanent storage system (such as a time-
series database) via the I3-Mon (data) interface.

In such a scenario, it will not be possible to make any a-
priori assumptions on what kind of probes will be required
to monitor a specific service until the latter will actually
be up and running on the resource infrastructure. This is a
consequence of how network services described by forwarding

graphs are dynamically embedded on the available resources
[5]. The dynamic deployment and configuration of different
Lattice monitoring elements can resolve any potential issues
related to that as it allows tracking the pattern of the services
being deployed, and adapting the topology of the monitoring
subsystem accordingly. Furthermore, as soon as the moni-
toring elements are put in place, it might also be required
to slightly adjust their behaviour to deal with the additional
dynamics affecting the status of the system. When one or
more components of a service behave in an unexpected way,
some parameters of the related monitoring probes could be
reconfigured on-demand by sending control messages on the
Lattice Control Plane to the related Data Sources, e.g., the
measurement collection frequency can be increased to provide
a more accurate monitoring information as feedback to the
management and orchestration components of the system.

In a similar way, many monitorable objects may become
up and running in the system at a given moment in time
as consequence of the need of scaling up the number of
allocated entities due to e.g., a workload peak. Under these
circumstances, the increased number of measurements coming
from the existing monitoring probes that are sent out on the
Lattice Data Plane might be the cause of the transmission of
very large amounts of data over the network. The amount of
traffic generated by sending those measurements can be esti-
mated on a Data Consumer: the rate at which data is flowing
into a given Data Consumer is constantly internally measured
and can also be retrieved via the Monitoring Controller (i.e.,
through its RESTful API). If that rate becomes greater than
a particular defined threshold, the frequency at which the
measurements are collected from the probes and sent to that
Data Consumer can be adjusted on-the-fly by controlling the
probes configuration. This will have the effect of reducing the
network traffic associated to the transmission of the monitoring
data.

When using Lattice, this process can be done dynamically
without the need to restart any of the monitoring subsystem
components – the configuration of the probes can easily
be adapted by sending appropriate control messages on the
Lattice Control Plane to the relevant Data Sources. A more
detailed description of this dynamic adaptation mechanisms,
based on an actual test case, is reported in the next section.

The above monitoring adaptation logic was developed as a
plug-in of the Monitoring Orchestrator represented in Figure 2:
an algorithm receives as input (i) the incoming measurements
rate estimated on the Data Consumer and (ii) the measurement
rate of each probe sending data to that Data Consumer. The
algorithm determines how those rates have to be adjusted to
keep the incoming overall measurements rate on that Data
Consumer below a given threshold. When this condition is
not fulfilled, the Monitoring Orchestrator triggers a control
event on the Monitoring Controller: proper control messages
are generated and sent over the Lattice Control Plane to the
correct Data Sources in order to adjust the rate of the relevant
probes on-the-fly. The scenario discussed in this section was
implemented in the multi-provider ecosystem envisaged by the

5G-PPP 5GEx project [12], and will further be described in
the next section.

V. REAL-TIME DYNAMIC CONTROL OF MONITORING
PROBES MEASUREMENT RATE

This section describes the outcome of a test performed on a
simplified version of the scenario represented in Figure 2 (i.e.,
a multi-domain infrastructure of a 5G Service Provider), where
a single Resource Domain and a Multi-domain orchestrator
instance were considered. The test case was devised to learn
and discuss additional details on the dynamic adaptation mech-
anisms supported by a Lattice based monitoring subsystem.

The testbed used for this experiment consisted of two
separate physical machines interconnected via a LAN, each
hosting different software components. The first one (the
Resource Domain) was used during the test to run: a Docker
engine instance, a Monitoring Controller and a Lattice Data
Consumer (DC) as well as multiple Data Sources configured
to send measurements over to the above DC. The second ma-
chine hosted an instance of the 5G multi-domain orchestrator
software.

During the test, several monitoring probes were created and
activated on those Data Sources on-the-fly, as result of multiple
network service instantiation requests processed by the multi-
domain orchestrator. Each probe was activated and configured
to collect monitoring information about the resource KPIs of
the Docker containers instantiated to implement the above
service instances. Once activated, each probe was configured
to send measurements over the Lattice Data Plane at a pre-set
default rate.

This experiment was part of the large-scale evaluation
test of the 5G Provider multi-domain orchestration system,
which consisted in assessing the behaviour of the resource
orchestration functions under exceptional high load conditions.
Although this test case reflects real-world situations expected
in the 5G environments, for practical reasons it was carried out
emulating the 5G customers’ requests via a purposely devised
software tool.

The test case helped to learn how the overall network
traffic related to the transmission of monitoring data could
be measured, controlled, and possibly reduced when Lattice
was used for building up the monitoring subsystem. This was
done by estimating the cumulative measurements rate on the
deployed DC and by dynamically adjusting the measurements
collection / sending rate of individual probes in the subsystem.

The cumulative measurement rate estimated on the Data
Consumer DC can analytically be described by the equation:

DCrate =

Nprobes∑
i=1

ri (1)

Where Nprobes is the number of probes sending measure-
ments to the Data Consumer DC, and ri is the rate of the ith

probe. In order to keep the cumulative rate DCrate below a
given threshold DCratemax

, the constrain expressed by Eq. 2
will have to be imposed:

DCrate ≤ DCratemax
(2)

The same constraint can be also used to derive the following
inequality:

Nprobes∑
i=1

rik < DCratemax

Where the original rates are considered for all the probes
and a scaling factor k for those rates is also introduced. The
scaling factor has to be taken into account when calculating
the new rates that should be set on (all) the probes sending
measurements to that DC – Lattice allows performing this type
of reconfiguration dynamically without the need of restarting
any of the software elements of the monitoring subsystem. The
rate scaling factor k can be calculated by solving the equation:

k ≤ DCratemax∑Nprobes

i=1 ri
(3)

The Monitoring Orchestrator represented in Figure 2 was
the component in the Orchestration system responsible to
interact with the Lattice Monitoring Controller to retrieve the
measurement rate estimated on the DC. It also implemented
the adaptation logic described by Eq. 3 and was able to
determine the right scaling factor k required to keep the
measurements rate on that DC below the expected threshold
(i.e., below DCratemax

).
The measurement rate estimated on the DC (described by

Eq. 1) was periodically retrieved via the Monitoring Controller
API (every 30 seconds in this experiment) and the related
collected values have been reported in Figure 3a. As the graph
shows, the cumulative rate on the DC linearly increased along
with the number of active probes in the system – Figure 3b.
The higher the number of active probes in the system, the
higher the cumulative rate of measurements received by the
DC.

Figure 3a depicts how the dynamic adaptation of the moni-
toring probes’ rate happened in this experimental set-up: when
the DC cumulative rate value retrieved via the Monitoring
Controller API became higher than DCratemax

= 1000
measurements/minute, the Monitoring Orchestrator reacted in
order to adjust the configuration of the existing probes: a
control action was propagated via the Lattice Monitoring
Controller to the Data Sources where those probes were up and
running. Control messages were sent over the Lattice Control
Plane, and the rate of the probes was dynamically updated
according to the scaling factor k calculated via Eq. 3. The
reconfiguration happened without the need of restarting any of
the components of the monitoring subsystem that were already
up running.

Figure 3b shows how the number of deployed probes in the
system linearly grew during the test while the incoming service
instantiation requests were processed (100 probes became up
and running after 210 s). When a probe was created, it was also
configured to report measurements at a default rate (expressed

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300

ra
te

(m
a
e
a
s
u
re
m
e
n
ts

p
e
r
m
in
u
te
)

time (seconds)

Dynamic measurement rate control

measurements rate on DC threshold

(a) Cumulative rate on the Data Consumer

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
ro
b
e
s

time (seconds)

Probes in the Monitoring Subsystem

Number of active probes

(b) Total number of running probes

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

ra
te

(m
a
e
a
s
u
re
m
e
n
ts

p
e
r
m
in
u
te
)

time (seconds)

Average probes rate

Average probes rate

(c) Average probes’ measurement rate

Figure 3: Real-time control of the monitoring system

in measurements/minute) to the DC – Figure 3c reports the
average data rate (calculated as the mean value) for all the
probes running in the system on the whole time window of
the test.

Figure 3c shows how the outcome of the above dynamic
adaptation process affected the average measurement rate of
the probes: as previously explained, when the overall mea-
surement rate (expressed in measurements/minute) estimated
on the DC was greater than DCrate = 1000, the individual
rate of all the probes in the subsystem was reduced by the

scaling factor k in order to keep DCrate below the expected
threshold. As result, the average probes measurements sending
rate was reduced from 12 measurements/minute to 8 mea-
surements/minute – this had the effect to decrease the overall
incoming measurements rate on the DC as well as to bring
back the related estimated value below the expected threshold
(Figure 3a, after about 220 seconds).

The main scope of this section was to provide a more
detailed description of the real-time control mechanisms sup-
ported by Lattice. It highlighted, in particular, how an adapta-
tion logic was implemented above the Monitoring Controller,
and how automatic reactions could dynamically be triggered
according to particular events detected in the monitoring sub-
system in order to reconfigure some of its software elements
on-the-fly.

The implementation of the Lattice control mechanisms is
based on a simple request-reply protocol where packets are
exchanged between the Monitoring Controller and e.g., a Data
Source hosting a probe to be reconfigured. Thanks to the used
lightweight protocols and XDR serialisation methods each
control operation implies sending approx 10 KB of data over
the control network. The introduced overhead related to the
implementation of the above control mechanisms is negligible
compared to data that could flow from many different probes
at a fixed (non-adjustable) rate.

Although the considered test case was specifically focused
on controlling the overall amount of network traffic related
to the transmission of monitoring data, alternatively, different
types of events might have been used for triggering dynamic
on-the-fly reconfiguration of the monitoring subsystem. For
instance, the measurements sending rate of the probes may
have been adjusted according to the values reported by the
probes themselves in order to collect finer / coarser grained
measurements in case those values became higher / lower
than expected thresholds (e.g., related to the SLA objectives,
service life-cycle events, etc.). Although these mechanisms are
fully supported by Lattice, they have not been discussed here
for the sake of space and might be the subject of future works.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented and analysed the requirements that
a monitoring subsystem should satisfy and the features it
should support in order to effectively be used in highly
dynamic Cloud network scenarios when hundreds of virtual
entities are continuously created / destroyed by the resources
management and orchestration system in a relatively short
interval of time. It was discussed that the traditional approach
to resource monitoring may no longer be effective. The
monitoring subsystem should provide mechanisms to deploy,
configure and control its entities on-demand and in real-time in
order to properly monitor the service instances deployed on the
infrastructure, and also properly react to the potential different
events happening in the management and orchestration system.

In this paper, a 5G scenario where the Lattice framework
was employed to implement a fully working monitoring sub-
system was presented, and an actual test case demonstrated

how Lattice was allowed to dynamically adjust the rate at
which measurements are collected by the monitoring probes
and sent over the network. This enabled controlling the volume
of the total monitoring network traffic in the system and
preventing potential congestions when the number of active
probes in the system scaled up to reach hundreds of elements.

Future work will explore how Lattice can be used to support
alternative test cases aimed at identifying what additional
features would be desirable to integrate in the framework
implementation. Exploring the performance of the Lattice
control system might also be of interest in order to evaluate
how the monitoring subsystem behaves both under stress and
extreme work load conditions requiring the deployment of
thousands of monitoring probes.

ACKNOWLEDGEMENTS

This work was partially supported by the EU projects: 5GEx
– “5G Multi-Domain Exchange” (671636), NECOS – “Novel
Enablers for Cloud Slicing” (777067).

REFERENCES

[1] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-Merino, L.M.
Vaquero, K. Nagin, and B. Rochwerger. Monitoring Service Clouds in
the Future Internet. In Towards the Future Internet - Emerging Trends
from European Research. IOS Press, 2010.

[2] S. Clayman, A. Galis, and L. Mamatas. Monitoring virtual networks
with Lattice. In 2010 IEEE/IFIP Network Operations and Management
Symposium Workshops, pages 239–246, April 2010.

[3] Zabbix Company. Zabbix - Enterprise open source monitoring software
for networks and applications, 2018 (accessed on 2018-04-25). URL:
https://www.zabbix.com.

[4] M. B. de Carvalho, R. P. Esteves, G. da Cunha Rodrigues, C. C. Mar-
quezan, L. Z. Granville, and L. M. R. Tarouco. Efficient configuration
of monitoring slices for cloud platform administrators. In 2014 IEEE
Symposium on Computers and Communications (ISCC), pages 1–7, June
2014.

[5] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach.
Virtual network embedding: A survey. IEEE Communications Surveys
Tutorials, 15(4):1888–1906, Fourth 2013.

[6] iMatix Corporation. Zero MQ Distributed Messaging, 2018 (accessed
on 2018-04-27). URL: http://zeromq.org.

[7] Nagios Enterprises LLC. Nagios - The industry standard in IT in-
frastructure monitoring, 2018 (accessed on 2018-04-25). URL: https:
//www.nagios.org.

[8] W. Y. Poe, I. Vaishnavi, F. Tusa, J. Melián, and A. Ramos. System
architecture of Intelligent Monitoring in multi-domain orchestration. In
2017 European Conference on Networks and Communications (EuCNC),
pages 1–5, June 2017.

[9] J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Corradi,
and L. Foschini. DARGOS: A highly adaptable and scalable monitoring
architecture for multi-tenant Clouds. Future Generation Computer
Systems, 29(8):2041 – 2056, 2013. Including Special sections: Advanced
Cloud Monitoring Systems & The fourth IEEE International Conference
on e-Science 2011 — e-Science Applications and Tools & Cluster, Grid,
and Cloud Computing.

[10] The Ganglia Project. Ganglia Monitoring service, 2018 (accessed on
2018-04-26). URL: http://ganglia.info.

[11] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-
Yehuda, W. Emmerich, and F. Galan. The Reservoir model and
architecture for open federated cloud computing. IBM Journal of
Research and Development, 53(4):4:1–4:11, July 2009.

[12] A. Sgambelluri, F. Tusa, M. Gharbaoui, E. Maini, and L. Toka et al.
Orchestration of Network Services across multiple operators: The 5G
Exchange prototype. In 2017 European Conference on Networks and
Communications (EuCNC), pages 1–5, June 2017.

