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Abstract 

High precision conformal radiotherapy requires sophisticated imaging techniques to aid in target 

localisation for planning and treatment, particularly when organ motion due to respiration is involved. X-ray 

based imaging is a well-established standard for radiotherapy treatments. Over the last few years, the ability 

of Magnetic Resonance Imaging (MRI) to provide radiation-free images with high resolution and superb soft-

tissue contrast has highlighted the potential of this imaging modality for radiotherapy treatment planning and 

motion management. In addition, these advantageous properties motivated several recent developments 

towards combined MRI radiation therapy treatment units, enabling in-room MRI-guidance and treatment 

adaptation. 

The aim of this review is to provide an overview of the state of the art in MRI-based image guidance for 

organ motion management in external beam radiotherapy. Methodological aspects of MRI for organ motion 

management are reviewed and their application in treatment planning, in-room guidance and adaptive 

radiotherapy described. Finally, a roadmap for an optimal use of MRI-guidance is highlighted and future 

challenges are discussed. 

1. Introduction 

External beam radiotherapy is a technique in the treatment of cancer as best practice care in approximately 

50% of all cancer cases (Barton et al. 2014, Rosenblatt and Zubizarreta 2017). The goal of radiotherapy is to 

deliver a prescribed dose to oncologic targets, whilst minimizing the dose delivered to surrounding healthy 

tissues. It is well known that motion of both tumour and nearby organs at risk introduces geometric 

uncertainties into this process, leading to potential underdosage of the target region, and/or overdosage in 

nearby organs at risk. As such, one of the most important advances in external beam radiotherapy has been the 

development of techniques for imaging, planning, and treatment of targets which move as a result of 

respiration, such as in the lung, liver, or pancreas (Keall et al. 2006, Korreman 2012). Many technological and 

methodological advances were reported over the last decade, with investments in research programs, 

technology transfer from research to industry, and development of new generation therapy units designed to 

track moving targets in real-time (Riboldi, Orecchia and Baroni 2012, Kubiak 2016, Keall et al. 2006, Chang 

et al. 2017, Caillet, Booth and Keall 2017). 

The increased confidence in tumour localization enabled by these techniques paved the way for highly 

conformal and dose escalated treatments, such as hypo-fractionated photon treatments and particle therapy 

(Schwarz, Cattaneo and Marrazzo 2017, Kubiak 2016). Strategies to compensate and account for motion such 

as breath-hold, gating or tumour tracking can be adopted (Kubiak 2016, Keall et al. 2006), with the support of 

imaging techniques to accurately guide the treatment and perform adaptive image-guided radiotherapy by 

means of daily monitoring of anatomo-pathological changes (Jaffray 2012, Høyer et al. 2011, Dawson and 

Sharpe 2006, Connell and Hellman 2009, Verellen, De Ridder and Storme 2008). To enable the targeting of 

the tumour under free breathing conditions, the combination of 4D imaging for treatment planning and in-

room image guided strategies is beneficial in both photon (Keall et al. 2006, Caillet et al. 2017) and particle 

therapy (Kubiak 2016, Riboldi et al. 2012). The rapid diffusion of 4D imaging into the clinic (Simpson et al. 

2009) and the clinical evidence and perspectives of image guidance (Verellen et al. 2008) indicate the relevance 

of such a technology.  

Despite these advances, standard X-ray imaging suffers from a number of shortcomings. Above all, poor soft 

tissue contrast makes it difficult to distinguish the tumour from the surrounding tissues. In order to overcome 

this, fiducial markers may be surgically implanted, however this is a time consuming and invasive procedure. 

In addition, X-ray based image guidance exposes patients to additional radiation dose, which at least in some 

cases may be clinically significant (Bujold et al. 2012). At present, 4D Computed Tomography (4DCT) 

represents the standard clinical practice for organ motion management in treatment planning (Keall et al. 2006, 
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Chang et al. 2017): by 2009, an estimated 44% of centres were using 4D CT, indicating an increase in update 

of 7% per year (Simpson et al. 2009). This 4D imaging reflects anatomy at different time points during one or 

more samples of breathing, but the limited number of respiratory phases cannot be considered representative 

of each breathing cycle (intra-fraction variability) at every therapy fraction (inter-fraction variability) (Dhont 

et al. 2018). Therefore, it has to be supported by on-board X-ray imaging to compensate for day-to-day 

variations, and by tumour motion surrogates for intra-fraction motion management during treatment (Caillet 

et al. 2017). Among the latter, external surrogates are clinically used to reduce X-ray imaging frequency 

(Caillet et al. 2017), however their reliability in terms of correlation with internal anatomy is questionable 

(Ruan et al. 2008). 

In light of these issues, Magnetic Resonance Imaging (MRI) has emerged as an ideal technique for the 

guidance of high precision radiation therapy, which is a topic of growing research (Figure 1). MRI provides 

exquisite soft tissue contrast, radiation-free imaging, high temporal resolution with fast sequences and 

functional imaging. These features highlight the potential of MRI to improve treatment accuracy and precision 

across the entire radiotherapy workflow, particularly in the presence of organ motion. For treatment planning, 

the superior soft-tissue contrast of MRI can decrease organ delineation uncertainties (Schmidt and Payne 

2015), whilst the dose-free nature of MRI enables multiple and extended acquisitions, accounting for cycle-

to-cycle breathing variations (Kauczor and Plathow 2006, Biederer et al. 2010, Jaffray 2012, Menten, 

Wetscherek and Fast 2017). During treatment, the new generation of in-room MRI / X-ray treatment unit 

systems (Ménard and van der Heide 2014, Keall, Barton and Crozier 2014, Fallone 2014, Lagendijk et al. 

2014, Jaffray et al. 2014, Mutic and Dempsey 2014) allows direct imaging and both inter- and intra- fraction 

treatment adaptation strategies (Bainbridge et al. 2017a, Menten et al. 2017, Hunt et al. 2018). The recent 

clinical application of hybrid MRI and treatment unit systems (Olsen, Green and Kashani 2014, Raaymakers 

et al. 2017, Kashani and Olsen 2018) represents an important milestone in external beam radiotherapy, and 

this technology is expected to provide improved clinical outcomes and reduce toxicities as well as efficient 

workflows. Finally, functional MRI can enable improved treatment prediction, functionally weighted planning, 

and response monitoring, thereby increasing treatment personalization across the entire workflow of radiation 

oncology (Menten et al. 2017, Bainbridge et al. 2017b, van der Heide et al. 2012, Kauczor et al. 2006, 

Prestwich, Vaidyanathan and Scarsbrook 2015).  

This review aims to provide a comprehensive overview of developments in MRI-guidance and its 

application in external beam radiotherapy for organ motion management. Current MRI techniques to quantify 

organ motion are described and their applications in treatment planning, in-room guidance and adaptive 

radiotherapy reviewed. A specific focus is posed on the clinical application of MRI in both radiotherapy 

planning and treatment delivery in case of moving organs. Finally, a roadmap for an optimal use of MRI-

guidance and future challenges are discussed. Article searching was performed with Scopus investigating terms 

“MRI-guidance in radiotherapy”, “MRI motion radiotherapy”, “organ motion in radiotherapy”, “image guided 

radiotherapy”. We refined searches for specific issues with terms such as “time-resolved MRI”, “4DMRI”, 

“MRI-linac”, “in-room MRI”, “tumor tracking”, “motion modelling”, “functional MRI in radiotherapy” and 

combinations thereof. Only papers published in English between January 1997 and August 2018, were 

included. For details on MRI basics, readers are referred to (McRobbie, Moore and Graves 2017). 

 

Page 3 of 28 AUTHOR SUBMITTED MANUSCRIPT - PMB-107756.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



4 

 

 
Figure 1. Trend of the publications retrieved with the search terms “MRI-guided radiotherapy”, “MRI motion 

radiotherapy”, from January 2002 to August 2018 (Scopus). 

 

2. MRI techniques to quantify organ motion 

In conventional strategies based on X-ray imaging, external surrogates represent the most widespread solution 

for organ motion quantification, and these have been exploited also in MRI. MR-compatible respiratory 

bellows (Rohlfing et al. 2004) or optical systems can be used, and combined with audio-visual biofeedback to 

increase breathing reproducibility (Kim et al. 2012, Lee et al. 2016). However, it is well-known that external 

surrogates are not always representative of the internal motion (Koch et al. 2004, Liu et al. 2004, Ruan et al. 

2008). One of the main advantages of MRI is the ability to acquire the internal information over multiple 

respiratory cycles. At present, MRI approaches capable of resolving organ motion can be broadly classified as 

either time-resolved or respiratory-correlated (4D); the former delivers organ motion data in real-time at 

comparatively low spatial dimensionality, whilst the latter delivers comparatively high spatial dimensionality 

but relies on retrospective reconstruction (Figure 2). Ideally, MRI for motion quantification would involve 

real-time 4D MRI (i.e. sub-second 3D imaging), but due to the intrinsic trade-off between spatial and temporal 

resolution, this is still a challenge.  
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Figure 2. Image acquisition approaches in terms of temporal resolution vs. spatial dimensionality. The ideal acquisition 

strategy would yield real-time 4D MRI; at present this is not possible and remains a future challenge. 

 

2.1. Time-resolved MRI 

In time-resolved MRI, image acquisition is continuously performed at sub-second frame rates (Hugo and 

Rosu 2012). Among time-resolved solutions, the so-called navigator echo approach entails the serial 

acquisition of a 1D image to map the position of the diaphragm, with a temporal resolution of up to ≈10ms 

(Song et al. 2011). An alternative approach is fast 2D image acquisition by means of cine-MRI, which has 

been described in a number of studies for respiratory motion quantification, including lung, liver, pancreas and 

breast (Plathow et al. 2004, Rohlfing et al. 2004, Koch et al. 2004, Dowling et al. 2014, Liu et al. 2004, Blackall 

et al. 2006, Kauczor and Plathow 2006, Stam et al. 2013b, Kirilova et al. 2008, Bussels et al. 2003, Van Heijst 

et al. 2016). Balanced steady state free precession MRI (bSSFP) is a form of T2/T1-weighted gradient echo 

(GE) imaging sequence commonly used for cine-MRI. T2-weighted turbo spin echo (SE) sequences are an 

alternative to bSSFP (Kauczor et al. 2006). Specifically, (Koch et al. 2004) described the acquisition of fast 

dynamic 2D MR images with a temporal resolution of 450ms, whereas (Plathow et al. 2004) reported cine 2D 

imaging of lung cancer patients at about 300ms. Shorter acquisition times can be achieved through the use of 

acceleration techniques, such as parallel imaging or reduced sampling of the k-space (i.e. MRI raw data) 

(Heidemann et al. 2003, McRobbie et al. 2017, Pruessmann 2006) (e.g. (Griswold et al. 2002)), reaching 

approximately 150ms (Plathow et al. 2005, Sawant et al. 2014a). In addition, the flexibility of MRI to acquire 

data in arbitrary image planes allows the orientation of 2D cine-MRI along the main direction of motion 

(Paganelli et al. 2015b, Heerkens et al. 2014). Interleaved orthogonal planes (e.g. sagittal/coronal) represent a 

viable solution to provide pseudo-3D information of the tumour position near the slices intersection (Bjerre et 

al. 2013, Sawant et al. 2014b, Tryggestad et al. 2013b). Also for pseudo-3D acquisitions, parallel imaging 

techniques (Barth et al. 2016) have been exploited to allow the acquisition of simultaneous orthogonal images 

(Mickevicius and Paulson 2017b), thus reducing the acquisition time and improving the respiratory motion 

description. 
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2.2. Respiratory-correlated (4D) MRI 

Time-resolved 2D approaches do not enable a full 3D motion description; for this time-resolved 3D images 

(i.e. real-time 4DMRI) would be required. However, this is currently constrained by the limited frequency at 

which full 3D volumes can be acquired on the current generation of scanners (acquisition time on the order of 

seconds). In many approaches, the limited frequency at which full 3D volumes can be acquired requires the 

patient to breathe slowly or limits image quality (e.g. field of view, spatial resolution) (Blackall et al. 2006, 

Plathow et al. 2006, Dinkel et al. 2009, Plathow et al. 2009).  

To bypass this limitation, developments have entailed 2D multi-slice cine-MRI acquisitions which are 

sorted and stacked into a 4DMRI image, deriving one representative breathing cycle like in conventional 

4DCT. In the majority of cases, retrospective sorting is applied, although in few studies prospective gating 

with predefined bins was also reported (Tokuda et al. 2008, Hu et al. 2013, Du et al. 2015, Li et al. 2017). In 

retrospective methods inherited from 4DCT, sorting of slices is usually based on an external surrogate (Hu et 

al. 2013). Different strategies were investigated to improve the performance of the external surrogate, either 

making use of audio-visual biofeedback (To et al. 2016b) or advanced sorting (Liu et al. 2015, Liang et al. 

2016, Tryggestad et al. 2013d, Du et al. 2015). As previously mentioned however, the use of internal breathing 

surrogates directly extracted from the acquired 2D images has been shown to increase robustness in organ 

motion description with respect to external surrogates (Stemkens et al. 2015, Liu et al. 2016a, Li et al. 2017). 

Two main methods based on navigator sequences (Von Siebenthal et al. 2007, Tokuda et al. 2008, Wachinger 

et al. 2012) or image-derived approaches (Cai et al. 2011, Fontana et al. 2016, Paganelli et al. 2015c, Liu et al. 

2014a, Hui et al. 2016, van de Lindt et al. 2018b, Liu et al. 2017, van de Lindt et al. 2018a, Uh, Khan and Hua 

2016) are reported in the literature, relying on the acquisition of a navigator for sorting data, or on the derivation 

of the information directly from the data itself, respectively. These have been investigated with different image 

acquisition schemes (e.g. cine, sequential or interleaved) (Liu et al. 2015, Liu et al. 2016a) and plane 

orientations. Table 1 provides an overview of these methods based on prospective and retrospective image 

sorting. To our knowledge, a comprehensive comparison of these approaches for the evaluation of the best 

solution is not available, thus limiting their application in a clinical setting. Visual biofeedback was compared 

against a free-breathing acquisition (To et al. 2016b), whereas a direct comparison of an internal surrogate (1D 

navigator) with a concurrently acquired external surrogate was  reported (Li et al. 2016). Multi-slice 2D 

acquisition based on navigator approaches can substantially reduce image artefacts compared with some of the 

image-derived approaches (Paganelli et al. 2018) and could describe intra-cycle variations more effectively 

(Von Siebenthal et al. 2007). One limitation of the navigator methods, however, is that they would require 

sequence modification and may result in longer acquisition time, which is instead overcome by image-based 

approaches exploiting slice acquisition modality without a navigator. Nevertheless, parallel imaging solutions 

based on the simultaneous acquisition of image data and navigator can speed up scanning time (Celicanin et 

al. 2015). Among the solutions reported in the literature (Table 1), the sagittal orientation has been the most 

wide-spread imaging direction, allowing reduced sorting artefacts and a more comprehensive respiratory 

motion quantification (Liu et al. 2014a). However, the trade-off between acquisition time, field of view and 

resolution as well as the clinical experience derived from 4DCT, make axial acquisition an alternative 

anatomical direction to investigate (van de Lindt et al. 2018b). 

Alternative approaches that work directly in k-space rather than image domain have also been investigated. 

These methods sort the k-space data into respiratory bins prior to reconstructing into image space (Breuer et 

al. 2018, Buerger et al. 2012, Deng et al. 2016, Feng et al. 2016, Feng et al. 2014, Weick et al. 2017, Küstner 

et al. 2017, Weiss et al. 2017, Zucker et al. 2017, Jiang et al. 2017b, Mickevicius and Paulson 2017a, Rank et 

al. 2016). In order to sort the data, a breathing signal can be extracted directly from the k-space, an approach 

which is referred to as self-gated or self-navigated acquisition. This is achieved by frequently sampling the 

centre of k-space, and using this data to form a 1D breathing signal. Many of the k-space based methods use 

radial acquisition schemes (Buerger et al. 2012, Deng et al. 2016, Feng et al. 2016, Feng et al. 2014, Jiang et 

al. 2017b, Mickevicius and Paulson 2017a, Zucker et al. 2017) as these sample the centre of k-space with every 
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spoke, making them well suited for self-gating, but cartesian acquisition schemes have also been used (Breuer 

et al. 2018, Küstner et al. 2017, Weick et al. 2017).  

Parallel imaging and under-sampling schemes (Pruessmann 2006, Heidemann et al. 2003, McRobbie et al. 

2017, Lustig et al. 2008), can be utilised to help maximize spatial coverage, to improve spatial resolution while 

respecting a clinically feasible total acquisition time of a few minutes or less (Küstner et al. 2017, Mickevicius 

and Paulson 2017a, Feng et al. 2014). Advanced approaches that use deformable image registration to include 

motion correction in the reconstruction process have been proposed for reducing the acquisition time even 

further (37-41 s) while maintaining high quality images (Rank et al. 2017, Rank et al. 2016), but this comes at 

the expense of long reconstruction times. A recent comparison of several methods showed that it is possible to 

get good quality images with a combined acquisition and reconstruction time of less than 5 minutes 

(Mickevicius and Paulson 2017a). Such methods hold promise for both planning and adapting radiotherapy 

treatments, but currently they are still ‘research methods’. In fact, these require customised sequences and 

reconstruction methods and are not widely available on clinical scanners, limiting their use compared to some 

of the image-domain based methods. 

  

Table 1. Prospective and retrospective 4D MRI sorting methods based on multi-slice 2D image acquisitions.  
 

Method Sorting MR sequence Slice 

orientation 

Slice 

acquisition 

modality 

Slice 

acquisition 

time [ms] 

(Von Siebenthal et al. 

2007) 

2D navigator  Retrospective 2D bSSFP sagittal interleaved ≈180-190 

(Tokuda et al. 2008) 1D navigator Prospective 2D multi-slice 

gradient echo / 

spin echo 

sagittal adaptive 

(interleaved) 

n.a. 

(Cai et al. 2011) body area Retrospective 2D bSSFP axial cine ≈330 

(Wachinger et al. 2012) 2D navigator + manifold 

learning 

Retrospective 2D bSSFP sagittal interleaved ≈180-190 

(Tryggestad et al. 2013c) external+ average 

4DMRI 

Retrospective 2D bSSFP / 

SSFSE 

sagittal / 

coronal 

Interleaved / 

ascending 

≈300/400 

(Hu et al. 2013) external Prospective 2D TSE axial / 

sagittal 

interleaved ≈270 

(Liu et al. 2014b) body area Retrospective 2D bSSFP sagittal cine ≈500/600 

(Paganelli et al. 2015c) image similarity Retrospective 2D bSSFP sagittal interleaved ≈180 

(Du et al. 2015) external signal Prospective 2D TSE sagittal interleaved ≈380 

(Liu et al. 2015) external signal 

+ improved binning 

Retrospective 2D SSFSE axial sequential  ≈500 

(Fontana et al. 2016) image similarity Retrospective 2D bSSFP axial interleaved ≈400 

(Hui et al. 2016) body area + Fourier-

transform 

Retrospective 2D bSSFP sagittal sequential (with 

manual slice 

adjustment) 

≈160 

(Liang et al. 2016) external (probability-

based) 

Retrospective 2D bSSFP axial cine / sequential n.a. 

(Uh et al. 2016) dimensionality reduction Retrospective 2D bSSFP sagittal alternating 

paired slices 

≈330 

(To et al. 2016a) external + visual 

feedback 

Prospective 2D TSE coronal interleaved ≈400 

(Li et al. 2017) external / 1D navigator Prospective 2D TSE sagittal / 

coronal 

sequential ≈500/700 

(Liu et al. 2017)  sagittal/coronal  

diaphragm point-of-

intersection 

Retrospective 2D bSSFP sagittal + 

coronal 

cine 330 

(van de Lindt et al. 

2018b) 

image similarity Retrospective 2D TSE axial interleaved 330 

(van de Lindt et al. 

2018a) 

image similarity Retrospective 2D TSE/TFE coronal interleaved 316/366 

bSSFP: balanced steady state free precession sequence (gradient echo); SSFSE: single-shot fast spin echo; TSE: turbo-spin echo; TFE: turbo-field echo. 

n.a.: not available. 
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3. MRI for organ motion management in treatment planning 

In order to accurately design treatment plans in the presence of respiratory motion, accurate description of 

organ motion is required. In recent years, there has been substantial and growing efforts to incorporate time-

resolved 2D and 4D MRI into radiotherapy treatment planning for organ motion management, either to 

complement CT or as the sole imaging modality (Schmidt and Payne 2015, Kashani and Olsen 2018).  

3.1. MRI-guided treatment planning  

Gated treatment approaches 

In gated treatments, the treatment plan is designed assuming that the beam is only turned on when the 

tumour is in a pre-defined position, with a typical recommendation for gating windows that residual tumour 

motion is less than 5 mm (Keall et al. 2006). In order to perform gating, a real-time indicator of tumour position 

is required and be consistent between planning and treatment. In conventional X-ray imaging, surrogates are 

typically acquired from implanted or external fiducials, with limitations due to invasiveness as well as poor 

correlation with internal anatomy (Park et al. 2018, Ruan et al. 2008). With this respect, MRI enables a non-

invasive and more effective method to directly visualise target structures. Cine-MRI has been used to show 

that surrogacy uncertainties can cause gating errors of up to 38% (Feng et al. 2009, Cai et al. 2010, Liu et al. 

2004). Moreover, cine-MRI acquired at different sessions (2-week interval) was exploited for the definition of 

optimal gating windows (Liu et al. 2004), based on the relationship between the lung and skin movement and 

accounting for inter- and intra- fraction breathing variability. Finally, the use of time-resolved MRI to directly 

derive an internal surrogate for gating purposes was proposed, and its application on the new in-room MRI 

integrated systems described (Crijns et al. 2011, Mutic and Dempsey 2014) (Section 4.1). For the planning of 

gated treatments with cine-MRI, the Viewray system relies on the acquisition of pre-treatment breath-hold 

MRI acquisitions (Bohoudi et al. 2017, Acharya et al. 2016). These are used for contour propagation from CT, 

considering safety margins to account for free-breathing variations during treatment (see section 4.2 for 

additional details).  

Although gating approaches are used in radiotherapy, it has to be noted that planning and treating for only 

one phase of the breathing cycle allows one to ‘freeze’ tumour motion at the expense of reduced treatment 

efficiency and increased complexity.  

ITV approaches 

The most widely adopted approach to deal with anatomic motion in radiotherapy is to place a treatment 

margin around the target volume during the treatment planning phase (Van Herk 2004). In the case of 

respiratory motion, the treatment volume is typically expanded to encompass the full extent of tumour motion 

measured during planning. Treatment is then carried out, based on the assumption that the breathing cycle 

determined during planning is consistent and reproducible throughout treatment. This is the so-called “Internal 

Target Volume” (ITV) approach (ICRU 1999). Current standard of practice is to design the ITV based on 

4DCT, which sorts data to derive a patient representative breathing cycle. Since substantial cycle-to-cycle 

breathing variations may occur, the ITV calculated on this single cycle may differ from the ITV obtained 

averaging over many breaths, with potential detriment of treatment accuracy (Ge et al. 2013, Thomas et al. 

2017). In this context, the use of extended cine-MRI acquisitions has been demonstrated to detect larger 

differences in tumour motion (up to 1cm) when compared with 4DCT, and therefore to reduce uncertainties 

associated with cycle-to-cycle breathing variations in the ITV, with improved margins definition (Akino et al. 

2014, Fernandes et al. 2015, Cai, Read and Sheng 2008, Tryggestad et al. 2013c, Park et al. 2018). Cine-MRI 

was also used to generate maximum intensity projection images, which could be used to define the ITV 

(Adamson et al. 2010). Based on these studies, the inclusion of dynamic MRI over extended imaging periods 

has the potential to increase the accuracy of motion encompassing treatment approaches, by providing a more 

comprehensive evaluation of motion at the planning phase. However, even assuming that motion 

encompassing planning techniques, such as ITV, can adequately compensate for tumour motion during 
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treatment, they still suffer from the shortcoming that an increased amount of healthy tissue is irradiated (Ehrbar 

et al. 2017).  

Mid-position and probabilistic approaches 

In the mid-position approach, the average position (or the phase closest to the average position in case of 

mid-ventilation) of the tumour throughout the breathing cycle is determined, and a planning volume defined 

around this (Wolthaus et al. 2006, Wolthaus et al. 2008). Such an approach results in smaller target volumes, 

but similar dosimetric outcomes compared to the ITV approach (Lens et al. 2015). An extension to the mid-

position approach is probabilistic treatment planning, in which treatment uncertainties are explicitly taken into 

account during the plan optimisation process (Unkelbach and Oelfke 2004, Li and Xing 2000).  

As with ITV approaches, the major limitation of mid-position and probabilistic approaches is the limited 

amount of information on tumour motion provided by a single 4DCT scan, because the average position of the 

tumour may differ across different breathing cycles. It was demonstrated that cine-MRI imaging is useful for 

assessing the probability density function or mean tumour position on multiple breathing cycles, and that errors 

tend to decrease with extended imaging times, typically stabilizing after approximately three to five minutes 

(Cai et al. 2006, Cai et al. 2008, Tryggestad et al. 2013a). These results demonstrate the utility of dynamic 

MRI to enable more accurate treatment planning in mid-position and probabilistic approaches.  

Acquiring mid-position images with MRI can be challenging due to the high velocity of the tumour at mid 

ventilation. One approach is to warp a high quality end-exhale image to the mid-ventilation using deformable 

image registration (van de Lindt et al. 2016). Alternatively, (Stemkens et al. 2017) proposed an approach in 

which a mid-position image is derived from a 4DMRI acquisition in a similar fashion as for 4DCT (Figure 3). 

(McClelland et al. 2017) presented a framework for fitting a motion model directly to unsorted multi-slice 2D 

data, so that they can be combined to form a high-quality 3D volume representing the time-averaged anatomy. 

4D planning 

Treatment planning is typically carried out on a static anatomical image, even though it is known that the 

anatomy features a dynamic behaviour. An alternative approach is 4D planning, in which anatomical motion 

is explicitly taken into account during dose calculation and optimization, by calculating the plan on each phase 

of a 4D image and accumulating the dose or directly including the time dependence of the delivery fluence 

together with anatomical changes (Hugo and Rosu 2012, Chang et al. 2017, Rosu and Hugo 2012).  

For the case where a treatment plan is explicitly designed to be robust against motion (e.g. ITV or mid- 

position/ventilation), the differences between 3D and 4D dose calculations are usually minimal (Rosu and 

Hugo 2012). However, for advanced delivery strategies, such as multi-leaf-collimator tracking and active 

scanning proton therapy (Chang et al. 2017), the role of 4D planning may become more important. In these 

cases, 4D planning can be used to generate a motion-robust plan, providing a better estimate of the delivered 

dose (Bernatowicz et al. 2017, Zhang et al. 2014, Al‐Ward et al. 2018).  

The utility of 4DMRI in providing an extended 4D dataset for dose calculations was demonstrated in proton 

therapy, where organ motion can strongly affect the dose distribution (Boye, Lomax and Knopf 2013, 

Bernatowicz et al. 2016, Zhang et al. 2016). The method is based on using image registration to warp a static 

CT with the motion information provided from a 4DMRI, thus creating a combined 4DCT(MRI) dataset, which 

allows the cycle-by-cycle description of breathing motion. This approach allows the inclusion of respiratory 

organ motion into 4D dose calculations on the basis of the motion derived by the 4DMRI. A first validation of 

4D dose calculation based on 4DCT(MRI) was recently provided by (Bernatowicz et al. 2016, Bernatowicz et 

al. 2017) for clinical liver cancer cases, in which 93% of dose calculation points were within 3%/3mm for 4D 

dose calculations based on 4DCT and 4DCT(MRI) (Figure 3). This approach is particularly useful to reduce 

the maximum dose to critical structures while maintaining target dose coverage in the presence of organ 

motion. However, a high sensitivity to motion variability between the optimised and tested scenario was also 

described, as well as the restriction of the model to the target organ (e.g. lung, liver), which may result in a 

sub-optimal definition of the motion extracted at the structures next to the target. 
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3.2. MRI-based dose calculation 

The most substantial limitation to the use of MRI in treatment planning is that MRI does not provide the 

electron density information needed for dose calculations. As such, research efforts were aimed at trying to 

approximate electron density directly from MR images (so called ‘pseudo-CT’ or ‘synthetic-CT’). Typically, 

dose calculation accuracy of within 2% with respect to the gold standard CT-based planning has been 

considered acceptable (Edmund and Nyholm 2017, Venselaar, Welleweerd and Mijnheer 2001). Various 

techniques exist to approximate electron density data from MRI, such as bulk-density, atlas-based or machine 

learning solutions (Edmund and Nyholm 2017). These were investigated in great detail for 3D MRI imaging, 

particularly in relatively homogenous sites such as the brain and pelvis, and MRI-based planning was 

successfully integrated in clinical workflows (Edmund and Nyholm 2017, Johnstone et al. 2017), with some 

early work also carried out for proton therapy (Maspero et al. 2017). On the other hand, synthetic-CT 

generation in sites affected by respiratory motion (e.g. lung, liver, breast, pancreas, kidney) has been far less 

investigated, with only one published paper that investigated MRI-based planning in sites affected by motion 

(Jonsson et al. 2010). The reasons for this are twofold. First, these sites tend to have more complex and 

heterogeneous electron density distributions, caused by a wider variety of tissue types (e.g. lung, bone and soft 

tissue). This means that errors in the synthetic-CT data are more likely to produce errors in dosimetry compared 

to homogeneous sites such as brain. Second, the presence of substantial respiratory motion makes the accurate 

generation of electron density data particularly challenging.  

For ITV, mid-position/ventilation, or respiratory gating, 3D electron densities may be sufficient for 

planning, if 4D dose optimisation or tumour tracking is applied, electron density is desired for the full 4D 

dataset. A first order approach to derive a pseudo-CT, consists in the previously mentioned bulk-density 

assignment (Kerkhof et al. 2010), in which an automatically generated body contour is filled with Hounsfield 

Units equal to water, while other voxels are set to air. This approach has been investigated in abdominal sites 

for both static (Stam et al. 2013a) and motion-compensated planning relying on 4DMRI data (Glitzner et al. 

2015a, Stemkens et al. 2017). Another solution is the previously mentioned 4DCT(MRI) approach, which uses 

the motion information provided by 4DMRI to warp a 3DCT dataset relative to one single respiratory phase 

(Boye et al. 2013).  

 

 
Figure 3. 4DMRI in treatment planning. 4DMRI acquisitions with contours defined on the Mid Position on the left 

[reprinted with permission from (Stemkens et al. 2017)]. 4DCT vs. 4DCT(MRI) approaches for proton dose calculation 

on the right [reprinted with permission from (Bernatowicz et al. 2016)]. 
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4. MRI for organ motion management in treatment delivery  

Besides the integration of MRI into radiotherapy treatment planning (Section 3), a substantial impact is 

expected from the use of MRI image guidance during treatment delivery, which is now available through a 

new generation of combined in-room MRI-treatment units. The use of such systems is expected to allow on-

line image acquisitions just before and during treatment. This aims at quantifying inter- and intra-fraction 

anatomo-pathological changes by means of imaging, which could be used to accurately deliver the planned 

dose based on the current changing anatomy or to entirely create a new plan, thus performing adaptive 

treatments (Verellen et al. 2008, Hunt et al. 2018).  

4.1. In-room MRI radiotherapy systems 

A number of in-room MRI guidance systems are described in the literature (Jaffray et al. 2014, Fallone 

2014, Keall et al. 2014, Lagendijk et al. 2014, Mutic and Dempsey 2014), two of which developed by 

commercial entities and treating patients: the Viewray MRIdian system and the Elekta-Unity system (Figure 

4, panel A). The first treatments were carried out using the Cobalt-based Viewray MRIdian in 2014 (Olsen et 

al. 2014), while the world’s first MRI-Linac treatment using the Elekta-Unity was in 2017 (Raaymakers et al. 

2017). Both systems utilize configurations in which the treatment beam is oriented perpendicular to the 

magnetic field (Figure 4, panel B). In this configuration, the superior/inferior axis of patient is aligned with 

the magnetic field in the same manner as a conventional MRI scanner, and the linac can rotate independently 

of the magnet and patient. However, magnetic fields applied perpendicular to the treatment beam can 

substantially perturb dose deposition compared to zero field situation, particularly for the higher field Elekta-

Unity system. In many situations, these effects can be compensated for using advanced treatment plan 

optimisation strategies (Raaijmakers et al. 2007). An alternative approach is to change the relative 

configuration of the radiation source and MRI scanner, such that the treatment beam and the magnetic field of 

the MRI scanner are parallel to each other (the ‘in-line’ approach, Figure 4, panel B). This approach is being 

developed independently by two academic groups, and can minimize or even exploit the effect of the magnetic 

field on the dose distribution via penumbral trimming and electron focusing effects (Oborn et al. 2016) 

(Alnaghy et al. 2017). However, the same physical mechanisms can also cause problems in certain scenarios, 

with increases in skin dose up to 1400% observed (Oborn et al. 2014). It appears that this problem can be 

largely mitigated either through optimisation of the magnetic fringe field or electron purging devices (Oborn 

et al. 2014, Keyvanloo et al. 2012). From a device perspective, the disadvantage of the in-line approach is that 

substantial redesign of the MRI magnet is required, and that in order to provide rotation between the beam and 

the patient, either the MRI scanner or the patient must be rotated, both of which are challenging (Keall et al. 

2014, Whelan et al. 2017).  

A solution which avoids all of these problems is the MRI-on-rails approach (Jaffray et al. 2014), in which 

a “near-room” MRI scanner can be moved into the treatment room for pre-treatment imaging, and removed 

afterwards. This approach has the advantage that the magnet can be used for multiple purposes, little redesign 

of existing equipment is required, and interference between the MRI scanner and radiotherapy equipment is 

minimized. On the other hand, the MRI cannot be used for intra-fraction monitoring, and additional time is 

required to move the MRI scanner in and out of the room. A similar approach using a 1.5 T scanner was 

developed in Umea in which the patient rather than the MRI scanner is moved (Karlsson et al. 2009, Menten 

et al. 2017), although this system has recently been decommissioned and replaced with a PET/MRI scanner 

(Brynolfsson et al. 2018). Table II shows a comparison of existing in-room/near-room MRI systems. 

In addition to the existing in-room MRI systems for photon-based treatments, recent studies have started 

investigating the possibility of integrating MRI with particle therapy (Oborn et al. 2017, Hartman et al. 2015, 

Kurz et al. 2017). This concept combines the high precision of particle therapy with the high accuracy enabled 

by in-room MRI. However, the engineering challenges inherent to in-room photon guided system are 

magnified for particle systems, due to the size and complexity of these particle therapy gantries, and the use 
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of large scanning magnets which must be rapidly switched to steer the beam. In addition, magnetic fields 

distort particle beams and this must be compensated for. These issues were investigated in a recent publication 

by Oborn et al. (Oborn et al. 2017). 

 

 
Figure 4. In-room MRI systems. (A) Commercial systems: Elekta-Unity MRI-Linac and Viewray MRIdian. (B) MRI-

Linac configurations: MRI-Linac systems can be constructed in either the perpendicular configuration, or the in-line 

configuration (the images shown here are based on the Australian prototype system, which was designed to facilitate 

operation in both configurations). 

 

Table 2. Comparison of existing in-room or near-room MRI systems. 

System X-ray source Status Field orientation 
Field 

strength 

Gradient 

strength/ 

slew rate 

Elekta Unity 7 MV linac Commercial system Perpendicular 1.5 T 
15 mT/m 

65 T/m/s 

Viewray MRIdian Cobalt or 6 MV linac Commercial system Perpendicular 0.35 T 

18 mT/m 

200 

T/m/s 

Australia 6 MV linac Research prototype 
In-line/ 

Perpendicular 
1.0 T 

10 mT/m 

225 

T/m/s 

Alberta / MagnetTx 6 MV linac Research prototype In-line 0.56 T 
20 mT/m 

66 T/m/s 

Princess Margaret 

Hospital 
Varian TrueBeam linac One off clinical facility n.a. 1.5 T 

33 mT/m 

170 

T/m/s 

Umea University (near-

room) 
Siemens Oncor linac One off clinical facility n.a. 1.5 T 

33 mT/m 

170 

T/m/s 
n.a.: not applicable 

 

4.2. MRI-guided treatment delivery 

Inter-fraction motion management 

Inter-fraction motion management refers to the acquisition of imaging data before each treatment session 

to daily quantify anatomo-pathological changes for an accurate delivery of the planned dose. 
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In MRI-guided treatments, there have been promising results on the use of MRI for on-line inter-fraction 

motion quantification of pancreatic (Jiang et al. 2017a) and breast cancers (Acharya et al. 2016) using the 

Viewray system. In a recent application of MRI in gated treatments (Bohoudi et al. 2017), high-resolution 

volumetric MR images of the patient were acquired immediately prior to treatment, and deformable image 

registration with automatic contour propagation used to account for inter-fractional changes and subsequent 

plan delivery. In the first experience for pancreatic stereotactic body radiotherapy, contours were first 

propagated from the planning scan and then manually re-contoured within 3 cm from the PTV (Planning Target 

Volume), while the patient was in treatment position. For ITV treatment approaches, in-room MRI was used 

to demonstrate that the extent of motion can differ substantially among different treatment fractions, resulting 

in differences in the ITV of up to 46% (Thomas et al. 2017). The latter study highlights the potential of in-

room time-resolved MRI, which allowed the authors to capture extended image data for over 20 minutes. For 

mid-position approaches, recent studies described the acquisition of a 4DMRI to derive on-board mid-position 

images with in-room MRI (Stemkens et al. 2017, Kontaxis et al. 2017). 

A potential issue using current MRI-Linacs systems is that couch motion is very limited. In conventional 

workflows, the couch is moved to facilitate the alignment of patient and beam coordinate systems (Caillet et 

al. 2017). Due to the constrained geometry of MRI-Linac systems (Figure 4), non-axial couch motion is either 

limited or non-existent. However, it has been demonstrated that couch shifts can be replaced by a ‘virtual 

couch shift’ technique, which utilises the multi-leaf-collimator to shift the plan to the new target position (Bol, 

Lagendijk and Raaymakers 2013, Ruschin et al. 2017). Alternatively, the creation of a new plan directly before 

treatment was investigated in the Viewray (Acharya et al. 2016, Bohoudi et al. 2017) and Elekta Unity systems 

(Raaymakers et al. 2017) (see section 4.3 for details), without the necessity of couch shifts. 

Intra-fraction motion management 

A number of approaches exist both in photon and particle therapy to account for intra-fraction motion 

(Caillet et al. 2017, Kubiak 2016), however they typically rely on the correlation between internal markers and 

external surrogates, rather than directly monitoring the tumour. Time-resolved MRI overcome this limitation 

and as such is an ideal modality for intra-fraction motion monitoring. By exploiting combined MRI-Linac 

systems, time-resolved MRI will become a core intra-fraction tool for MRI-guided treatments, providing real-

time anatomy monitoring and facilitating multi-leaf-collimator adaptation for an accurate delivery of the 

planned dose. 

MRI-based intra-fraction monitoring is strongly subject to considerations of spatial and temporal trade-offs 

(Section 2). As such, fast 2D cine-MRI has been the most investigated technique (Heerkens et al. 2014, 

Paganelli et al. 2015b, Koch et al. 2004, Plathow et al. 2004), with the acquisition of interleaved orthogonal 

(sagittal/coronal) cine-MRI slices intersecting the target to track the 3D position of the tumour (Paganelli et 

al. 2015a, Bjerre et al. 2013, Brix et al. 2014, Sawant et al. 2014a, Tryggestad et al. 2013a, Stemkens et al. 

2016).  

In addition, intra-fraction use needs real-time automatic image processing methods to extract motion 

information from the high-frequency cine-MRI data. Several methods were investigated such as template 

matching, neural networks, particle filters, landmark extraction strategies (Figure 5) and image registration 

(relevant references in Table 3). (Fast et al. 2017) compared some of these methodologies in lung and showed 

that image-based 2D tumour motion estimation is feasible with all the investigated algorithms. However, based 

on their results, template matching provides the best compromise between flexibility, speed and accuracy. In 

a study conducted by (Glitzner et al. 2015b), the delay attributed to the multi-leaf collimator adaptation was 

shown to be a minor contributor to the overall feedback chain as compared to the impact of imaging 

components such as MRI acquisition and processing (Borman et al. 2018), which therefore require mitigation 

strategies to predict tumour motion (Yun et al. 2012, Seregni et al. 2016, Krauss, Nill and Oelfke 2011).  

The main issue with the use of 2D cine-MRI for intra-fraction monitoring is that it is difficult to track 

motion in the out-of-plane direction, which can result in anatomical structures appearing and disappearing 

from view accordingly. A possible solution is to derive the full 3D anatomical information based on one or 
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two dimensional data, by using global motion modelling (McClelland et al. 2013). To build such a model, first 

the motion is measured off-line from 4D pre-treatment images. The model is then fitted relating the motion to 

the surrogate data. Finally, during treatment the model is used to estimate the full 3D motion from the measured 

surrogate data. Global motion models have been extensively investigated for a wide range of applications and 

imaging modalities (McClelland et al. 2013), including the use of MRI data to provide the motion 

measurements and/or the surrogate data when planning and guiding radiotherapy (Fayad et al. 2012, Stemkens 

et al. 2017, Stemkens et al. 2016, Harris et al. 2016, McClelland et al. 2017).  

However, motion models have not yet entered widespread clinical use, due to two main problems. Firstly, the 

relationship between the motion and surrogate data can deteriorate over time due to changes in the breathing 

pattern and anatomy. Secondly, the images used to measure the motion are usually respiratory-correlated, and 

hence do not provide a good representation of the true motion including the intra-cycle variation, and its 

relationship to the surrogate data (McClelland et al. 2017, Harris et al. 2016). The use of in-room MRI systems 

may help alleviate the first problem, as the models can be built and updated just prior to, and even during 

treatment delivery. The second problem can be partly addressed by the use of 4DMRI methods that try to 

image the intra-cycle variation (Bernatowicz et al. 2016). Alternatively, methods have been proposed that can 

fit the motion model directly to all the unsorted image data simultaneously (McClelland et al. 2017, Odille et 

al. 2008). 

 

Table 3. Methods for tumour tracking based on cine-MRI acquisitions. 

Method Authors Site Field 

strength 

[T] 

MR 

sequence 

Slice 

orientation 

Image 

acquisition 

time [ms] 

Image 

resolution 

[mm] 

Method 

accuracy 

[mm] 

Processing 

time 

Template 

matching 

(Koch et 

al. 2004) 

Lung 1.5 Fast GE sagittal / 

coronal 

450 n.p. 1-2 n.a. 

(Cervino

, Du and 

Jiang 

2011) 

Lung 3 n.a. sagittal 250 1.37×1.37×

10 

0.6 84 ms 

(Trygges

tad et al. 

2013a) 

Lung 1.5 bSSFP sagittal / 

coronal 

250 2×2×5 0.7-1.6 n.a. 

(Bjerre 

et al. 

2013) 

Kidney 1.5 bSSFP sagittal / 

coronal 

252 1.05×1.05×

7 

1.15 153 ms 

(Brix et 

al. 2014) 

Liver 1.5 bSSFP axial / 

sagittal / 

coronal 

184 1.56×1.56×

1.6 

1.6 90 ms 

(Shi et 

al. 2014) 

Lung 1.5 bSSFP sagittal 250 1.95×1.95× 

(12-16) 

1.95 10-15 s 

(Fast et 

al. 2017) 

Lung 1.5 bSSFP, 

spoiled GE 

sagittal / 

coronal 

500 1.5×1.5×3.

0 

1.7 1ms 

Neural 

networks, 

particle 

filters 

(Cervino 

et al. 

2011) 

Lung 3 n.p. sagittal 250 1.37×1.37×

10 

1.5 150 ms 

(Gou et 

al. 2014) 

Liver, 

Pancreas, 

stomach 

1.5 bSSFP coronal 200 1.87×1.87×

7 

0.70-0.92 

(DSC) 

1.8-33 s 

(Yun et 

al. 2015) 

Lung 0.5 bSSFP sagittal 280 3.1×3.1×20 0.5-0.9 40ms 

(Lee et 

al. 2016) 

Lung 1.5 bSSFP sagittal / 

coronal 

303 1.48×1.48×

5 

n.a. n.a. 

(Bourque 

et al. 

2016) 

Lung 1.5 bSSFP sagittal 250 1.0×1.0×10

.0 

0.6-2 0.8-2 

(Fast et 

al. 2017) 

Lung 1.5 bSSFP, 

spoiled GE 

sagittal / 

coronal 

500 1.5×1.5×3 2 25ms 

Internal 

landmarks 

(Paganell

i et al. 

2015b) 

Liver 1.5 bSSFP sagittal 

(oblique) 

310 1.28×1.28×

10 

1.87 ≈15min 
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(Paganell

i et al. 

2015a) 

Lung 1.5 bSSFP sagittal / 

coronal 

303 1.48×1.48×

5 

1.87 ≈15min 

(Mazur 

et al. 

2016) 

Lung 0.35 bSSFP sagittal 250 3.5×3.5×7 1.4 ≈250ms 

(Fast et 

al. 2017) 

Lung 1.5 bSSFP, 

spoiled GE 

sagittal / 

coronal 

500 1.5×1.5×3 2 150ms 

Image 

Registration 

(Sawant 

et al. 

2014a) 

Lung 1.5 bSSFP sagittal / 

coronal 

152-273 2×3×5 n.a. n.a. 

(Heerken

s et al. 

2014) 

Pancreas 1.5 SSFP sagittal / 

coronal  

500 1.4×1.4×5 n.a. n.a. 

(Zachiu 

et al. 

2015) 

Kidney, 

liver 

1.5 Single shot 

GE 

coronal  83 2.5×2.5×7 ≈2.5 ≈25ms 

(Seregni 

et al. 

2017) 

Liver 1.5 bSSFP sagittal 

(oblique) 

310 1.28×1.28×

10 

1.28 50ms 

(Fast et 

al. 2017) 

Lung 1.5 bSSFP, 

spoiled GE 

sagittal / 

coronal 

500 1.5×1.5×3 1.7 500ms 

n.a.: not available 

bSSFP = balanced Steady-State Free procession; SPGR = = Spoiled Gradient Echo; EPI = Echo Planar Imaging 

4.3. Dosimetric evaluation and adaptation 

Many of the strategies outlined above are focused on geometric motion quantification by means of image 

acquisition to ensure target coverage and accurately deliver the planned dose.  However, an adaptive treatment 

strategy should also adapt treatments in response to dose. Such a workflow is termed ‘closed-loop’ adaptive 

radiotherapy, in which the adaptive decision is made on the basis of optimal dose versus dose delivered and 

the plan re-optimised (de la Zerda, Armbruster and Xing 2007). As for the geometrical scenario, dose 

adaptation can be carried out both inter- and intra- fractionally. 

Whilst the potential of inter-fraction adaptation has been deeply discussed in the literature, it is only with 

the advent of in-room MRI guidance that this became a vendor supported on-line clinical reality. Inter-fraction 

dose adaptation is in fact implemented on the Viewray system (Acharya et al. 2016, Bohoudi et al. 2017), 

where deformable registration is used to propagate contours and Hounsfield units from the planning data, and 

dose calculation is performed and compared to the planned dose. A manual review triggers a decision on 

whether plan re-optimisation should be performed. A recent prospective trial reported promising results of this 

adaptive protocol in PTV dose escalation and/or simultaneous organs at risk sparing for the treatment of 

oligometastatic or unresectable primary malignancies of the abdomen (Henke et al. 2018). An alternative 

workflow was demonstrated in a trial setting using the Elekta Unity system (Raaymakers et al. 2017), in which 

plan re-optimisation was carried out automatically. Both workflows utilise fast Monte-Carlo based dose 

engines to minimise the time for re-planning. For the Viewray system, new plans can be generated in 

approximately 12 minutes, including manual review and re-contouring (Bohoudi et al. 2017). Plan generation 

using the Elekta-Unity system was reported to take approximately 5 minutes in a clinical setting (Raaymakers 

et al. 2017), whilst in the research setting, plan generation ranged from seconds to minutes (Bol et al. 2012). 

In addition, pre-beam re-planning supported by fully automatic contours propagation could save time 

(Kontaxis et al. 2017).  

On the other hand, intra-fraction dose adaptation has yet to be clinically demonstrated but remains a 

tantalising prospect. An intriguing approach to this problem was recently proposed by (Kontaxis et al. 2015b), 

in which authors updated the treatment plan in response to the changing patient anatomy. This algorithm 

fundamentally differs from conventional approaches, which seek an ‘optimal’ solution before treatment is 

started. Instead, if the first delivered beamlet is sub-optimal, this is corrected via modulation of later applied 

beamlets, with the algorithm converging towards the ideal dose at the same time as the dose is being delivered. 

This approach can compensate for both inter and intra-fraction variation, as was clearly described and 
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demonstrated by (Kontaxis et al. 2015a). However, uncertainties in deformable image registration algorithms, 

as well as the computational time required by the algorithm, still represent a limitation to clinical application.  

As previously discussed (Section 3.2), a major challenge for inter- and intra-fraction MRI-based dosimetric 

adaptation is that MRI images do not provide the electron density data needed for dose calculation. To date, 

the most commonly proposed approach to derive in-room electron density maps for moving targets is to 

propagate existing electron density information to daily MR images by using deformable image registration 

(Bohoudi et al. 2017, Raaymakers et al. 2017) or bulk density overrides (Glitzner et al. 2015a, Stemkens et al. 

2017). Alternatives include using a 4DCT(MRI) approach (Boye et al. 2013, Marx et al. 2014) or the use of 

global motion models (Stemkens et al. 2017) (Figure 5). Although neither of these methods are currently 

implemented in real-time, they could be applied retrospectively to enable intra-fraction dose reconstruction 

and accumulation (Bernatowicz et al. 2016, Stemkens et al. 2017).   

 
Figure 5. Time-resolved MRI in treatment delivery. An example of tumour tracking approach by means of anatomical 

landmarks on the left [reprinted with permission from (Paganelli et al. 2015b)]. Dose reconstruction by means of a global 

motion model strategy [reprinted with permission from (Stemkens et al. 2017)]. 

5. Conclusions and future directions 

5.1. Roadmap for MRI-guidance in moving organs  

MRI offers exquisite soft tissue contrast, unparalleled acquisition flexibility, dose-free imaging and 

functional acquisition. Due to these advantages, there is rapidly growing interest in the role of MRI in 

radiotherapy and in its use for organ motion management. This has motivated institutional, commercial and 

research efforts towards the implementation of advanced strategies to accomplish motion management. Based 

on the reported findings, we provide here a roadmap for an optimal use of MRI-guidance in radiotherapy, 

covering both treatment planning and delivery. This aims at supporting further research and potential clinical 

applications in the near-term. Specifically, from the literature analysis we can derive that: 

• In treatment planning, both time-resolved 2D images and 4DMRI should be exploited to account for 

inter- and intra-fraction breathing variabilities. This will allow improved definition of personalized margin 

recipes and could be included in gating as well as ITV or mid-position approaches. Respiratory-correlated 

4DMRI can further provide a dataset for robust planning and complement 4DCT. As reported in (Chang et al. 

2017), 4D imaging should be exploited to enable 4D optimization which can improve plan robustness to intra-

fractional motion for particle treatments or multi-leaf collimator tracking strategies. Vendors are therefore 
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encouraged to implement motion analysis tools, dynamic dose calculation and 4D robust optimization within 

treatment planning systems. Due to the lack of MRI-based dose planning and calculation strategies in moving 

organs, the 4DCT(MRI) approach represents an attractive strategy to preserve electron density information. In 

this case, respiratory phase correspondence and/or image registration algorithms between CT and MRI need 

to be validated, to provide an accurate motion description. MRI (and/or 4DMRI) can be also exploited to 

perform multiple/frequent acquisitions to determine whether adaptive re-planning is needed to maintain plan 

robustness. This is especially the case for particle centres or institutions in which in-room MRI systems are 

not available. 

• In treatment delivery with in-room MRI systems, pre-beam/on-board images are acquired before beam 

on, to update the plan or to create a new one. In this case, fast treatment planning and adaptation is performed 

as done by the MRIdian (Viewray) and Elekta Unity treatment devices. On-line verification and quality 

assurance strategies for such adaptations are essential in the development of these approaches. An independent 

dose calculation engine could be used for verification, and retrospective dose reconstruction performed off-

line. 

During delivery, orthogonal sagittal/coronal cine-MR images should be acquired to allow the 3D motion 

estimation at the centre of the tumour. Alternatively, the sagittal direction is the favoured orientation in the 

literature to capture the major motion directions, and/or patient-specific evaluation based on treatment planning 

data could be investigated to determine the optimal cine-MRI orientation. In combination with cine-MRI 

acquisition, real-time tumour localization methods are likely to be implemented and integrated in the treatment 

workflow. These methods are essential for residual motion quantification in the gating window and for tumour 

tracking and multi-leaf collimator adaptation. Template matching has been shown in the literature to be an 

attractive solution since it is simple, robust and fast to test. However in case of tumour tracking treatments, 

improvements of this approach should be considered to account for non-rigid displacements as well as effects 

of out-of-plane motion. These could be supported by pre-beam/on-board 4DMRI and retrospective evaluations 

such as motion models. Additionally, prediction algorithms need to be considered when system latencies 

hinder acquiring information in real-time. Another important aspect to take into consideration for in-room MRI 

systems is the request for on-line dose evaluation and adaptation, which should be supported by vendors and 

integrated in the treatment workflow. Bulk density analysis could be performed as preliminary approach for 

on-line verification of planned dose vs. delivered dose, since in online adaptive scenarios it may be acceptable 

to have a lower threshold for dose calculation accuracy than for planning. Off-line verification should also be 

performed in this case, for example by utilising global motion models for dose accumulation. 

5.2. Future challenges  

Despite the potential of MRI in radiotherapy, there are a number of challenges to increasing its clinical 

penetration. To overcome these, technological and methodological improvements are required. 

 The first issue for organ motion management with MRI is the inherent trade-off between spatial and 

temporal resolution. The ultimate goal of ‘real-time’ 4D imaging (approximately four or more 3D volumes per 

second with appropriate spatial resolution) remains some distance in the future. At present, state-of-the-art 

imaging for motion compensation relies on time-resolved 2D cine-MRI data, which can deliver approximately 

four interleaved images per second. As far as 4D imaging is concerned, several approaches have been proposed 

relying on retrospective sorting of images or k-space data as well as motion modelling. However, further 

research is needed to define standards for the clinical inclusion of 4DMRI in the radiotherapy workflow. 

MRI does not provide the electron density information needed for treatment planning and/or dose delivery 

verification. This must be overcome for fully MRI-guided treatment. For static anatomical sites such as pelvis 

and brain, electron density recovery from MRI images has been investigated quite extensively within the 

literature, and commercial products have recently been released. However, for anatomical sites where 

substantial motion occurs, further research is required to ensure accurate MRI-based dose calculation. 

Moreover, it is also important to note that MRI suffers from geometrical distortion which could affect MRI-

based dose calculation and organ motion quantification. This aspect was reviewed in (Schmidt and Payne 
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2015) and, to our knowledge, just one publication has been reported dealing with moving organs (Torfeh et al. 

2018). Effects of geometrical distortion are outside the scope of this review but require additional evaluation 

on the accuracy of MRI for treatment guidance and protocols should be defined to account for these 

uncertainties. 

An additional advantage of MRI with respect to X-ray imaging is the possibility to derive functional 

information, which has the potential to enable increased treatment personalization across the entire 

radiotherapy workflow (Bainbridge et al. 2017a, van der Heide et al. 2012, Prestwich et al. 2015). However, 

most of functional MRI techniques in regions affected by motion under free-breathing are still in a very 

preliminary stage. Perfusion MRI and diffusion MRI have been investigated with in-room MRI systems to 

enhance tumour visibility (Wojcieszynski et al. 2016) or preliminary assess tumour response (Yang et al. 

2016), but few studies dealt with organ motion management (Liu et al. 2016b). Functionally guided planning 

in the lung based on hyperpolarised MRI showed potentials in reducing the amount of healthy tissue irradiated 

and has been used to prospectively treat patients in the experimental arm of the double-blind randomised 

Functional Lung Avoidance for Individualized Radiotherapy (FLAIR) trial (Hoover et al. 2014). Additionally, 

the potential of PET/MRI has been demonstrated in both treatment planning (Brynolfsson et al. 2018) and 

tumour response assessment (Varoquaux et al. 2015, Daniel et al. 2017), with attainable results in providing 

anatomical and functional 4D maps (Fayad et al. 2017). However, further research is required in sites affected 

by organ motion and replication and standardization are needed before these techniques achieve the level of 

clinical confidence required in a treatment workflow.  

In conclusion, guidelines and quality assurance strategies for clinical applications of MRI in organ motion 

management need to be defined to support the move of radiotherapy towards high precision techniques and 

personalised treatment. The growing experience in the use of MRI-Linacs is expected to contribute 

significantly towards this goal, especially with the support of clinical studies to evaluate the clinical impact of 

MRI-guided radiotherapy in sites affected by organ motion. 
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