
Journal of Extracellular Vesicles

ISSN: (Print) 2001-3078 (Online) Journal homepage: http://www.tandfonline.com/loi/zjev20

Minimal information for studies of extracellular
vesicles 2018 (MISEV2018): a position statement of
the International Society for Extracellular Vesicles
and update of the MISEV2014 guidelines

Clotilde Théry, Kenneth W Witwer, Elena Aikawa, Maria Jose Alcaraz,
Johnathon D Anderson, Ramaroson Andriantsitohaina, Anna Antoniou,
Tanina Arab, Fabienne Archer, Georgia K Atkin-Smith, D Craig Ayre, Jean-
Marie Bach, Daniel Bachurski, Hossein Baharvand, Leonora Balaj, Shawn
Baldacchino, Natalie N Bauer, Amy A Baxter, Mary Bebawy, Carla Beckham,
Apolonija Bedina Zavec, Abderrahim Benmoussa, Anna C Berardi, Paolo
Bergese, Ewa Bielska, Cherie Blenkiron, Sylwia Bobis-Wozowicz, Eric Boilard,
Wilfrid Boireau, Antonella Bongiovanni, Francesc E Borràs, Steffi Bosch,
Chantal M Boulanger, Xandra Breakefield, Andrew M Breglio, Meadhbh Á
Brennan, David R Brigstock, Alain Brisson, Marike LD Broekman, Jacqueline
F Bromberg, Paulina Bryl-Górecka, Shilpa Buch, Amy H Buck, Dylan Burger,
Sara Busatto, Dominik Buschmann, Benedetta Bussolati, Edit I Buzás, James
Bryan Byrd, Giovanni Camussi, David RF Carter, Sarah Caruso, Lawrence W
Chamley, Yu-Ting Chang, Amrita Datta Chaudhuri, Chihchen Chen, Shuai
Chen, Lesley Cheng, Andrew R Chin, Aled Clayton, Stefano P Clerici, Alex
Cocks, Emanuele Cocucci, Robert J Coffey, Anabela Cordeiro-da-Silva, Yvonne
Couch, Frank AW Coumans, Beth Coyle, Rossella Crescitelli, Miria Ferreira
Criado, Crislyn D’Souza-Schorey, Saumya Das, Paola de Candia, Eliezer
F De Santana Junior, Olivier De Wever, Hernando A del Portillo, Tanguy
Demaret, Sarah Deville, Andrew Devitt, Bert Dhondt, Dolores Di Vizio,
Lothar C Dieterich, Vincenza Dolo, Ana Paula Dominguez Rubio, Massimo
Dominici, Mauricio R Dourado, Tom AP Driedonks, Filipe V Duarte, Heather
M Duncan, Ramon M Eichenberger, Karin Ekström, Samir EL Andaloussi,
Celine Elie-Caille, Uta Erdbrügger, Juan M Falcón-Pérez, Farah Fatima,
Jason E Fish, Miguel Flores-Bellver, András Försönits, Annie Frelet-Barrand,
Fabia Fricke, Gregor Fuhrmann, Susanne Gabrielsson, Ana Gámez-Valero,
Chris Gardiner, Kathrin Gärtner, Raphael Gaudin, Yong Song Gho, Bernd
Giebel, Caroline Gilbert, Mario Gimona, Ilaria Giusti, Deborah CI Goberdhan,
André Görgens, Sharon M Gorski, David W Greening, Julia Christina Gross,
Alice Gualerzi, Gopal N Gupta, Dakota Gustafson, Aase Handberg, Reka A
Haraszti, Paul Harrison, Hargita Hegyesi, An Hendrix, Andrew F Hill, Fred
H Hochberg, Karl F Hoffmann, Beth Holder, Harry Holthofer, Baharak
Hosseinkhani, Guoku Hu, Yiyao Huang, Veronica Huber, Stuart Hunt,
Ahmed Gamal-Eldin Ibrahim, Tsuneya Ikezu, Jameel M Inal, Mustafa Isin,
Alena Ivanova, Hannah K Jackson, Soren Jacobsen, Steven M Jay, Muthuvel
Jayachandran, Guido Jenster, Lanzhou Jiang, Suzanne M Johnson, Jennifer
C Jones, Ambrose Jong, Tijana Jovanovic-Talisman, Stephanie Jung, Raghu
Kalluri, Shin-ichi Kano, Sukhbir Kaur, Yumi Kawamura, Evan T Keller,

http://www.tandfonline.com/loi/zjev20


Delaram Khamari, Elena Khomyakova, Anastasia Khvorova, Peter Kierulf,
Kwang Pyo Kim, Thomas Kislinger, Mikael Klingeborn, David J Klinke II,
Miroslaw Kornek, Maja M Kosanović, Árpád Ferenc Kovács, Eva-Maria
Krämer-Albers, Susanne Krasemann, Mirja Krause, Igor V Kurochkin,
Gina D Kusuma, Sören Kuypers, Saara Laitinen, Scott M Langevin, Lucia
R Languino, Joanne Lannigan, Cecilia Lässer, Louise C Laurent, Gregory
Lavieu, Elisa Lázaro-Ibáñez, Soazig Le Lay, Myung-Shin Lee, Yi Xin Fiona Lee,
Debora S Lemos, Metka Lenassi, Aleksandra Leszczynska, Isaac TS Li, Ke
Liao, Sten F Libregts, Erzsebet Ligeti, Rebecca Lim, Sai Kiang Lim, Aija Linē,
Karen Linnemannstöns, Alicia Llorente, Catherine A Lombard, Magdalena
J Lorenowicz, Ákos M Lörincz, Jan Lötvall, Jason Lovett, Michelle C Lowry,
Xavier Loyer, Quan Lu, Barbara Lukomska, Taral R Lunavat, Sybren LN Maas,
Harmeet Malhi, Antonio Marcilla, Jacopo Mariani, Javier Mariscal, Elena S
Martens-Uzunova, Lorena Martin-Jaular, M Carmen Martinez, Vilma Regina
Martins, Mathilde Mathieu, Suresh Mathivanan, Marco Maugeri, Lynda K
McGinnis, Mark J McVey, David G Meckes Jr, Katie L Meehan, Inge Mertens,
Valentina R Minciacchi, Andreas Möller, Malene Møller Jørgensen, Aizea
Morales-Kastresana, Jess Morhayim, François Mullier, Maurizio Muraca,
Luca Musante, Veronika Mussack, Dillon C Muth, Kathryn H Myburgh, Tanbir
Najrana, Muhammad Nawaz, Irina Nazarenko, Peter Nejsum, Christian Neri,
Tommaso Neri, Rienk Nieuwland, Leonardo Nimrichter, John P Nolan, Esther
NM Nolte-’t Hoen, Nicole Noren Hooten, Lorraine O’Driscoll, Tina O’Grady,
Ana O’Loghlen, Takahiro Ochiya, Martin Olivier, Alberto Ortiz, Luis A Ortiz,
Xabier Osteikoetxea, Ole Ostegaard, Matias Ostrowski, Jaesung Park, D.
Michiel Pegtel, Hector Peinado, Francesca Perut, Michael W Pfaffl, Donald
G Phinney, Bartijn CH Pieters, Ryan C Pink, David S Pisetsky, Elke Pogge von
Strandmann, Iva Polakovicova, Ivan KH Poon, Bonita H Powell, Ilaria Prada,
Lynn Pulliam, Peter Quesenberry, Annalisa Radeghieri, Robert L Raffai,
Stefania Raimondo, Janusz Rak, Marcel I Ramirez, Graça Raposo, Morsi
S Rayyan, Neta Regev-Rudzki, Franz L Ricklefs, Paul D Robbins, David D
Roberts, Silvia C Rodrigues, Eva Rohde, Sophie Rome, Kasper MA Rouschop,
Aurelia Rughetti, Ashley E Russell, Paula Saá, Susmita Sahoo, Edison Salas-
Huenuleo, Catherine Sánchez, Julie A Saugstad, Meike J Saul, Raymond M
Schiffelers, Raphael Schneider, Tine Hiorth Schøyen, Aaron Scott, Eriomina
Shahaj, Shivani Sharma, Olga Shatnyeva, Faezeh Shekari, Ganesh Vilas
Shelke, Ashok K Shetty, Kiyotaka Shiba, Pia R-M Siljander, Andreia M Silva,
Agata Skowronek, Orman L Snyder II, Rodrigo Pedro Soares, Barbara W
Sódar, Carolina Soekmadji, Javier Sotillo, Philip D Stahl, Willem Stoorvogel,
Shannon L Stott, Erwin F Strasser, Simon Swift, Hidetoshi Tahara, Muneesh
Tewari, Kate Timms, Swasti Tiwari, Rochelle Tixeira, Mercedes Tkach, Wei
Seong Toh, Richard Tomasini, Ana Claudia Torrecilhas, Juan Pablo Tosar,
Vasilis Toxavidis, Lorena Urbanelli, Pieter Vader, Bas WM van Balkom,
Susanne G van der Grein, Jan Van Deun, Martijn JC van Herwijnen, Kendall
Van Keuren-Jensen, Guillaume van Niel, Martin E van Royen, Andre J van
Wijnen, M Helena Vasconcelos, Ivan J Vechetti Jr, Tiago D Veit, Laura J Vella,
Émilie Velot, Frederik J Verweij, Beate Vestad, Jose L Viñas, Tamás Visnovitz,
Krisztina V Vukman, Jessica Wahlgren, Dionysios C Watson, Marca HM
Wauben, Alissa Weaver, Jason P Webber, Viktoria Weber, Ann M Wehman,
Daniel J Weiss, Joshua A Welsh, Sebastian Wendt, Asa M Wheelock, Zoltán
Wiener, Leonie Witte, Joy Wolfram, Angeliki Xagorari, Patricia Xander,
Jing Xu, Xiaomei Yan, María Yáñez-Mó, Hang Yin, Yuana Yuana, Valentina
Zappulli, Jana Zarubova, Vytautas Žėkas, Jian-ye Zhang, Zezhou Zhao, Lei
Zheng, Alexander R Zheutlin, Antje M Zickler, Pascale Zimmermann, Angela
M Zivkovic, Davide Zocco & Ewa K Zuba-Surma



To cite this article: Clotilde Théry, Kenneth W Witwer, Elena Aikawa, Maria Jose Alcaraz,
Johnathon D Anderson, Ramaroson Andriantsitohaina, Anna Antoniou, Tanina Arab, Fabienne
Archer, Georgia K Atkin-Smith, D Craig Ayre, Jean-Marie Bach, Daniel Bachurski, Hossein
Baharvand, Leonora Balaj, Shawn Baldacchino, Natalie N Bauer, Amy A Baxter, Mary Bebawy,
Carla Beckham, Apolonija Bedina Zavec, Abderrahim Benmoussa, Anna C Berardi, Paolo
Bergese, Ewa Bielska, Cherie Blenkiron, Sylwia Bobis-Wozowicz, Eric Boilard, Wilfrid Boireau,
Antonella Bongiovanni, Francesc E Borràs, Steffi Bosch, Chantal M Boulanger, Xandra Breakefield,
Andrew M Breglio, Meadhbh Á Brennan, David R Brigstock, Alain Brisson, Marike LD Broekman,
Jacqueline F Bromberg, Paulina Bryl-Górecka, Shilpa Buch, Amy H Buck, Dylan Burger, Sara
Busatto, Dominik Buschmann, Benedetta Bussolati, Edit I Buzás, James Bryan Byrd, Giovanni
Camussi, David RF Carter, Sarah Caruso, Lawrence W Chamley, Yu-Ting Chang, Amrita Datta
Chaudhuri, Chihchen Chen, Shuai Chen, Lesley Cheng, Andrew R Chin, Aled Clayton, Stefano
P Clerici, Alex Cocks, Emanuele Cocucci, Robert J Coffey, Anabela Cordeiro-da-Silva, Yvonne
Couch, Frank AW Coumans, Beth Coyle, Rossella Crescitelli, Miria Ferreira Criado, Crislyn
D’Souza-Schorey, Saumya Das, Paola de Candia, Eliezer F De Santana Junior, Olivier De
Wever, Hernando A del Portillo, Tanguy Demaret, Sarah Deville, Andrew Devitt, Bert Dhondt,
Dolores Di Vizio, Lothar C Dieterich, Vincenza Dolo, Ana Paula Dominguez Rubio, Massimo
Dominici, Mauricio R Dourado, Tom AP Driedonks, Filipe V Duarte, Heather M Duncan, Ramon
M Eichenberger, Karin Ekström, Samir EL Andaloussi, Celine Elie-Caille, Uta Erdbrügger, Juan
M Falcón-Pérez, Farah Fatima, Jason E Fish, Miguel Flores-Bellver, András Försönits, Annie
Frelet-Barrand, Fabia Fricke, Gregor Fuhrmann, Susanne Gabrielsson, Ana Gámez-Valero, Chris
Gardiner, Kathrin Gärtner, Raphael Gaudin, Yong Song Gho, Bernd Giebel, Caroline Gilbert,
Mario Gimona, Ilaria Giusti, Deborah CI Goberdhan, André Görgens, Sharon M Gorski, David
W Greening, Julia Christina Gross, Alice Gualerzi, Gopal N Gupta, Dakota Gustafson, Aase
Handberg, Reka A Haraszti, Paul Harrison, Hargita Hegyesi, An Hendrix, Andrew F Hill, Fred
H Hochberg, Karl F Hoffmann, Beth Holder, Harry Holthofer, Baharak Hosseinkhani, Guoku
Hu, Yiyao Huang, Veronica Huber, Stuart Hunt, Ahmed Gamal-Eldin Ibrahim, Tsuneya Ikezu,
Jameel M Inal, Mustafa Isin, Alena Ivanova, Hannah K Jackson, Soren Jacobsen, Steven M
Jay, Muthuvel Jayachandran, Guido Jenster, Lanzhou Jiang, Suzanne M Johnson, Jennifer C
Jones, Ambrose Jong, Tijana Jovanovic-Talisman, Stephanie Jung, Raghu Kalluri, Shin-ichi
Kano, Sukhbir Kaur, Yumi Kawamura, Evan T Keller, Delaram Khamari, Elena Khomyakova,
Anastasia Khvorova, Peter Kierulf, Kwang Pyo Kim, Thomas Kislinger, Mikael Klingeborn, David
J Klinke II, Miroslaw Kornek, Maja M Kosanović, Árpád Ferenc Kovács, Eva-Maria Krämer-
Albers, Susanne Krasemann, Mirja Krause, Igor V Kurochkin, Gina D Kusuma, Sören Kuypers,
Saara Laitinen, Scott M Langevin, Lucia R Languino, Joanne Lannigan, Cecilia Lässer, Louise
C Laurent, Gregory Lavieu, Elisa Lázaro-Ibáñez, Soazig Le Lay, Myung-Shin Lee, Yi Xin Fiona
Lee, Debora S Lemos, Metka Lenassi, Aleksandra Leszczynska, Isaac TS Li, Ke Liao, Sten F
Libregts, Erzsebet Ligeti, Rebecca Lim, Sai Kiang Lim, Aija Linē, Karen Linnemannstöns, Alicia
Llorente, Catherine A Lombard, Magdalena J Lorenowicz, Ákos M Lörincz, Jan Lötvall, Jason
Lovett, Michelle C Lowry, Xavier Loyer, Quan Lu, Barbara Lukomska, Taral R Lunavat, Sybren
LN Maas, Harmeet Malhi, Antonio Marcilla, Jacopo Mariani, Javier Mariscal, Elena S Martens-
Uzunova, Lorena Martin-Jaular, M Carmen Martinez, Vilma Regina Martins, Mathilde Mathieu,
Suresh Mathivanan, Marco Maugeri, Lynda K McGinnis, Mark J McVey, David G Meckes Jr, Katie
L Meehan, Inge Mertens, Valentina R Minciacchi, Andreas Möller, Malene Møller Jørgensen,
Aizea Morales-Kastresana, Jess Morhayim, François Mullier, Maurizio Muraca, Luca Musante,
Veronika Mussack, Dillon C Muth, Kathryn H Myburgh, Tanbir Najrana, Muhammad Nawaz, Irina
Nazarenko, Peter Nejsum, Christian Neri, Tommaso Neri, Rienk Nieuwland, Leonardo Nimrichter,
John P Nolan, Esther NM Nolte-’t Hoen, Nicole Noren Hooten, Lorraine O’Driscoll, Tina O’Grady,
Ana O’Loghlen, Takahiro Ochiya, Martin Olivier, Alberto Ortiz, Luis A Ortiz, Xabier Osteikoetxea,
Ole Ostegaard, Matias Ostrowski, Jaesung Park, D. Michiel Pegtel, Hector Peinado, Francesca
Perut, Michael W Pfaffl, Donald G Phinney, Bartijn CH Pieters, Ryan C Pink, David S Pisetsky,
Elke Pogge von Strandmann, Iva Polakovicova, Ivan KH Poon, Bonita H Powell, Ilaria Prada, Lynn
Pulliam, Peter Quesenberry, Annalisa Radeghieri, Robert L Raffai, Stefania Raimondo, Janusz
Rak, Marcel I Ramirez, Graça Raposo, Morsi S Rayyan, Neta Regev-Rudzki, Franz L Ricklefs,
Paul D Robbins, David D Roberts, Silvia C Rodrigues, Eva Rohde, Sophie Rome, Kasper MA
Rouschop, Aurelia Rughetti, Ashley E Russell, Paula Saá, Susmita Sahoo, Edison Salas-Huenuleo,
Catherine Sánchez, Julie A Saugstad, Meike J Saul, Raymond M Schiffelers, Raphael Schneider,
Tine Hiorth Schøyen, Aaron Scott, Eriomina Shahaj, Shivani Sharma, Olga Shatnyeva, Faezeh
Shekari, Ganesh Vilas Shelke, Ashok K Shetty, Kiyotaka Shiba, Pia R-M Siljander, Andreia M
Silva, Agata Skowronek, Orman L Snyder II, Rodrigo Pedro Soares, Barbara W Sódar, Carolina
Soekmadji, Javier Sotillo, Philip D Stahl, Willem Stoorvogel, Shannon L Stott, Erwin F Strasser,
Simon Swift, Hidetoshi Tahara, Muneesh Tewari, Kate Timms, Swasti Tiwari, Rochelle Tixeira,
Mercedes Tkach, Wei Seong Toh, Richard Tomasini, Ana Claudia Torrecilhas, Juan Pablo Tosar,
Vasilis Toxavidis, Lorena Urbanelli, Pieter Vader, Bas WM van Balkom, Susanne G van der Grein,



Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=zjev20

Jan Van Deun, Martijn JC van Herwijnen, Kendall Van Keuren-Jensen, Guillaume van Niel, Martin
E van Royen, Andre J van Wijnen, M Helena Vasconcelos, Ivan J Vechetti Jr, Tiago D Veit, Laura
J Vella, Émilie Velot, Frederik J Verweij, Beate Vestad, Jose L Viñas, Tamás Visnovitz, Krisztina
V Vukman, Jessica Wahlgren, Dionysios C Watson, Marca HM Wauben, Alissa Weaver, Jason P
Webber, Viktoria Weber, Ann M Wehman, Daniel J Weiss, Joshua A Welsh, Sebastian Wendt, Asa
M Wheelock, Zoltán Wiener, Leonie Witte, Joy Wolfram, Angeliki Xagorari, Patricia Xander, Jing
Xu, Xiaomei Yan, María Yáñez-Mó, Hang Yin, Yuana Yuana, Valentina Zappulli, Jana Zarubova,
Vytautas Žėkas, Jian-ye Zhang, Zezhou Zhao, Lei Zheng, Alexander R Zheutlin, Antje M Zickler,
Pascale Zimmermann, Angela M Zivkovic, Davide Zocco & Ewa K Zuba-Surma (2018) Minimal
information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the
International Society for Extracellular Vesicles and update of the MISEV2014 guidelines, Journal of
Extracellular Vesicles, 7:1, 1535750, DOI: 10.1080/20013078.2018.1535750

To link to this article:  https://doi.org/10.1080/20013078.2018.1535750

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group on behalf of The International Society
for Extracellular Vesicles.

Published online: 23 Nov 2018.

Submit your article to this journal 

Article views: 2504

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=zjev20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/20013078.2018.1535750
https://doi.org/10.1080/20013078.2018.1535750
http://www.tandfonline.com/action/authorSubmission?journalCode=zjev20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=zjev20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/20013078.2018.1535750&domain=pdf&date_stamp=2018-11-23
http://crossmark.crossref.org/dialog/?doi=10.1080/20013078.2018.1535750&domain=pdf&date_stamp=2018-11-23


Minimal information for studies of extracellular vesicles 2018 (MISEV2018):
a position statement of the International Society for Extracellular Vesicles and
update of the MISEV2014 guidelines
Clotilde Théry 103*£, Kenneth W Witwer 217,218*&£, Elena Aikawa19,79

£

, Maria Jose Alcaraz112,
Johnathon D Anderson288, Ramaroson Andriantsitohaina97, Anna Antoniou70,265, Tanina Arab257,
Fabienne Archer318, Georgia K Atkin-Smith131, D Craig Ayre15,158, Jean-Marie Bach254, Daniel Bachurski301,
Hossein Baharvand195,353, Leonora Balaj143, Shawn Baldacchino321, Natalie N Bauer354, Amy A Baxter131,
Mary Bebawy357, Carla Beckham350, Apolonija Bedina Zavec165, Abderrahim Benmoussa260, Anna C Berardi179,
Paolo Bergese39,111,283, Ewa Bielska282, Cherie Blenkiron277&, Sylwia Bobis-Wozowicz119, Eric Boilard260,
Wilfrid Boireau58, Antonella Bongiovanni106, Francesc E Borràs72,73,250, Steffi Bosch254, Chantal M Boulanger100,261

£

,
Xandra Breakefield140, Andrew M Breglio92,169, Meadhbh Á Brennan82,144,258, David R Brigstock174,221,
Alain Brisson238$, Marike LD Broekman78,134,142, Jacqueline F Bromberg155,379, Paulina Bryl-Górecka136,
Shilpa Buch334, Amy H Buck305, Dylan Burger128,180,337, Sara Busatto148,283, Dominik Buschmann212,
Benedetta Bussolati360, Edit I Buzás160,201

&£

, James Bryan Byrd330, Giovanni Camussi359
£

, David RF Carter181,
Sarah Caruso131, Lawrence W Chamley279, Yu-Ting Chang170, Amrita Datta Chaudhuri218, Chihchen Chen171,172,
Shuai Chen133, Lesley Cheng131, Andrew R Chin25, Aled Clayton23, Stefano P Clerici239, Alex Cocks23,
Emanuele Cocucci220,222

£

, Robert J Coffey373, Anabela Cordeiro-da-Silva346, Yvonne Couch340,
Frank AW Coumans7

$

, Beth Coyle227, Rossella Crescitelli308, Miria Ferreira Criado352, Crislyn D’Souza-Schorey335,
Saumya Das141, Paola de Candia116, Eliezer F De Santana Junior225, Olivier De Wever22,75,
Hernando A del Portillo101,104,117, Tanguy Demaret256, Sarah Deville262,377, Andrew Devitt12, Bert Dhondt22,74,75,
Dolores Di Vizio25&£, Lothar C Dieterich49, Vincenza Dolo315, Ana Paula Dominguez Rubio243,
Massimo Dominici234,333

#

, Mauricio R Dourado298,338, Tom AP Driedonks369, Filipe V Duarte53,
Heather M Duncan150,152, Ramon M Eichenberger120, Karin Ekström306, Samir EL Andaloussi51,127, Celine Elie-
Caille58, Uta Erdbrügger366

&

, Juan M Falcón-Pérez32,94
&

, Farah Fatima351, Jason E Fish233,362, Miguel Flores-
Bellver302, András Försönits201, Annie Frelet-Barrand58, Fabia Fricke68,267, Gregor Fuhrmann86,87,197,
Susanne Gabrielsson126, Ana Gámez-Valero72,251, Chris Gardiner264

&

, Kathrin Gärtner85, Raphael Gaudin99,259,
Yong Song Gho187£, Bernd Giebel266

#

, Caroline Gilbert260, Mario Gimona183, Ilaria Giusti315,
Deborah CI Goberdhan339, André Görgens51,123,266

$

, Sharon M Gorski16,204, David W Greening131,
Julia Christina Gross270,271, Alice Gualerzi115, Gopal N Gupta135, Dakota Gustafson362, Aase Handberg2,4,
Reka A Haraszti325, Paul Harrison281, Hargita Hegyesi201, An Hendrix22,75, Andrew F Hill131

&£

,
Fred H Hochberg200,293, Karl F Hoffmann6, Beth Holder95,159, Harry Holthofer263

£

, Baharak Hosseinkhani83,
Guoku Hu334, Yiyao Huang162,217, Veronica Huber61, Stuart Hunt229, Ahmed Gamal-Eldin Ibrahim26,
Tsuneya Ikezu18, Jameel M Inal313, Mustafa Isin118, Alena Ivanova69, Hannah K Jackson227, Soren Jacobsen38,304,
Steven M Jay324, Muthuvel Jayachandran145, Guido Jenster47, Lanzhou Jiang131, Suzanne M Johnson322,
Jennifer C Jones166

$

, Ambrose Jong30,355, Tijana Jovanovic-Talisman34, Stephanie Jung71, Raghu Kalluri358
&

,
Shin-ichi Kano219, Sukhbir Kaur167, Yumi Kawamura164,365, Evan T Keller327,331, Delaram Khamari201,

CONTACT Clotilde Théry Clotilde.Thery@curie.fr Institut Curie/INSERM U932, 26 rue d’Ulm, 75005 Paris, France; Kenneth W Witwer
kwitwer1@jhmi.edu 733 North Broadway, MRB 829 Baltimore, MD 21205, USA

*These authors are co-corresponding authors and contributed equally to this work. All authors, except for the corresponding authors, are listed alphabetically.
This article was first drafted begining in late 2017 and finalized in September, 2018 with several rounds of feedback from the ISEV Executive Board and JEV Editorial
Board.
&The following authors are members of the 2016-2018 and/or 2018-2020 ISEV Board of Directors: Cherie Blenkiron, Edit I Buzas, Dolores Di Vizio, Uta Erdbrügger, Juan
M Falcón-Pérez, Chris Gardiner, Andrew F Hill (current President), Raghu Kalluri, Jan Lötvall (past President), Malene Møller Jørgensen, Rienk Nieuwland, Lorraine
O’Driscoll, Susmita Sahoo, Carolina Soekmadji, Hidetoshi Tahara, Ana Claudia Torrecilhas, Marca HMWauben, AlissaWeaver, KennethWWitwer, Hang (Hubert) Yin, Lei
Zheng.
£The following authors are Editors of the Journal of Extracellular Vesicles: Editors-in-Chief: Clotilde Théry, Peter Quesenberry, Yong Song Gho; Associate Editors: Elena
Aikawa, Chantal Boulanger, Edit I Buzas, Giovanni Camussi, Emanuele Cocucci, Dolores Di Vizio, Andrew F Hill, Harry Holthofer, Kwang Pyo Kim, Eva-Maria Krämer-
Albers, Saara Laitinen, Cecilia Lässer, Suresh Mathivanan, Esther Nolte-’t Hoen, Takahiro Ochiya, Hector Peinado, Janusz Rak, Neta Regev-Rudzki, Raymond Schiffelers,
Marca HM Wauben, Kenneth W Witwer.
#Authors who aremembers of the International Society for Cell and Gene Therapy (ISCT) Exosomes Scientific Committee include Sai Kiang Lim (Co-Chair), Bernd Giebel
(Co-Chair), Luis A Ortiz, Donald G Phinney and Daniel J Weiss (ISCT Chief Scientific Officer). Massimo Dominici is Past President of ISCT.
$Authors who aremembers of the joined ISEV-ISAC (International Society for Advancement of Cytometry)-ISTH (International Society on Thrombosis and Haemostasis)
EV Flow Cytometry Working group are: Alain Brisson, Frank AW Coumans, André Görgens, Jennifer C Jones, Joanne Lannigan, Sten Libregts, François Mullier, Rienk
Nieuwland, John P Nolan, Marca HM Wauben, Joshua A Welsh.

JOURNAL OF EXTRACELLULAR VESICLES
2018, VOL. 7, 1535750
https://doi.org/10.1080/20013078.2018.1535750

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of The International Society for Extracellular Vesicles.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0001-8294-6884
http://orcid.org/0000-0003-1664-4233
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/20013078.2018.1535750&domain=pdf


Elena Khomyakova45,56, Anastasia Khvorova325, Peter Kierulf178, Kwang Pyo Kim130£, Thomas Kislinger188,363,
Mikael Klingeborn43, David J Klinke II381,382, Miroslaw Kornek66,196, Maja M Kosanović280, Árpád Ferenc Kovács201,
Eva-Maria Krämer-Albers320

£

, Susanne Krasemann273, Mirja Krause90, Igor V Kurochkin28, Gina D Kusuma90,156,
Sören Kuypers84, Saara Laitinen59£, Scott M Langevin33,300, Lucia R Languino232, Joanne Lannigan367$,
Cecilia Lässer308

£

, Louise C Laurent294, Gregory Lavieu103, Elisa Lázaro-Ibáñez14, Soazig Le Lay97, Myung-
Shin Lee50, Yi Xin Fiona Lee62, Debora S Lemos57, Metka Lenassi317, Aleksandra Leszczynska295, Isaac TS Li285,
Ke Liao334, Sten F Libregts297

$

, Erzsebet Ligeti202, Rebecca Lim90,156, Sai Kiang Lim107#, Aija Linē132,
Karen Linnemannstöns270,271, Alicia Llorente177, Catherine A Lombard256, Magdalena J Lorenowicz370,
Ákos M Lörincz202, Jan Lötvall308

&

, Jason Lovett210, Michelle C Lowry235, Xavier Loyer100,261, Quan Lu81,
Barbara Lukomska157, Taral R Lunavat121, Sybren LN Maas371,372, Harmeet Malhi149, Antonio Marcilla252,253,
Jacopo Mariani249, Javier Mariscal25, Elena S Martens-Uzunova47, Lorena Martin-Jaular103, M Carmen Martinez97,
Vilma Regina Martins1, Mathilde Mathieu103, Suresh Mathivanan131£, Marco Maugeri309, Lynda K McGinnis356,
Mark J McVey203,361, David G Meckes, Jr60, Katie L Meehan223, Inge Mertens276,377, Valentina R Minciacchi63,
Andreas Möller189, Malene Møller Jørgensen3,52&, Aizea Morales-Kastresana166, Jess Morhayim48,
François Mullier161,255

$

, Maurizio Muraca342, Luca Musante366, Veronika Mussack212, Dillon C Muth217,
Kathryn H Myburgh210, Tanbir Najrana20, Muhammad Nawaz309, Irina Nazarenko67,154, Peter Nejsum5,
Christian Neri205, Tommaso Neri345, Rienk Nieuwland7&$, Leonardo Nimrichter247, John P Nolan200$,
Esther NM Nolte-’t Hoen369£, Nicole Noren Hooten168, Lorraine O’Driscoll235

&

, Tina O’Grady316, Ana O’Loghlen190,
Takahiro Ochiya163

£

, Martin Olivier153, Alberto Ortiz93,206,242, Luis A Ortiz76
#

, Xabier Osteikoetxea13,
Ole Ostegaard209,303, Matias Ostrowski286, Jaesung Park187, D. Michiel Pegtel11, Hector Peinado207£,
Francesca Perut114, Michael W Pfaffl212, Donald G Phinney224

#

, Bartijn CH Pieters191, Ryan C Pink181,
David S Pisetsky42,44, Elke Pogge von Strandmann184, Iva Polakovicova185,186, Ivan KH Poon131, Bonita H Powell217,
Ilaria Prada37, Lynn Pulliam296,375, Peter Quesenberry231, Annalisa Radeghieri39,283, Robert L Raffai41,296,
Stefania Raimondo343, Janusz Rak151,153

£

, Marcel I Ramirez110,245, Graça Raposo102, Morsi S Rayyan326,
Neta Regev-Rudzki380

£

, Franz L Ricklefs272, Paul D Robbins332, David D Roberts167, Silvia C Rodrigues36,53,
Eva Rohde182,183,208, Sophie Rome319, Kasper MA Rouschop137, Aurelia Rughetti199, Ashley E Russell383,
Paula Saá10, Susmita Sahoo91&, Edison Salas-Huenuleo8,299, Catherine Sánchez35, Julie A Saugstad175,
Meike J Saul213, Raymond M Schiffelers275

£

, Raphael Schneider362,364, Tine Hiorth Schøyen217, Aaron Scott284,
Eriomina Shahaj61, Shivani Sharma289,291,292, Olga Shatnyeva14, Faezeh Shekari195, Ganesh Vilas Shelke307,308,
Ashok K Shetty194,214, Kiyotaka Shiba21, Pia R-M Siljander311,312, Andreia M Silva96,348,349, Agata Skowronek138,
Orman L Snyder II122, Rodrigo Pedro Soares193, Barbara W Sódar201, Carolina Soekmadji189,228

&

, Javier Sotillo120,
Philip D Stahl378, Willem Stoorvogel369, Shannon L Stott80,139, Erwin F Strasser55, Simon Swift278,
Hidetoshi Tahara88

&

, Muneesh Tewari327,328,329, Kate Timms323, Swasti Tiwari65,198, Rochelle Tixeira131,
Mercedes Tkach103, Wei Seong Toh173, Richard Tomasini98, Ana Claudia Torrecilhas240

&

, Juan Pablo Tosar105,244,
Vasilis Toxavidis17, Lorena Urbanelli344, Pieter Vader275, Bas WM van Balkom274, Susanne G van der Grein369,
Jan Van Deun22,75, Martijn JC van Herwijnen369, Kendall Van Keuren-Jensen215, Guillaume van Niel27,
Martin E van Royen46, Andre J van Wijnen146, M Helena Vasconcelos113,347,348, Ivan J Vechetti Jr314,
Tiago D Veit248, Laura J Vella216,226, Émilie Velot237, Frederik J Verweij27, Beate Vestad176,192,336,
Jose L Viñas128,180,337, Tamás Visnovitz201, Krisztina V Vukman201, Jessica Wahlgren310, Dionysios C Watson24,269,
Marca HM Wauben369&£$, Alissa Weaver374

&

, Jason P Webber23, Viktoria Weber40, Ann M Wehman368,
Daniel J Weiss230

#

, Joshua A Welsh166$, Sebastian Wendt268, Asa M Wheelock125, Zoltán Wiener201,
Leonie Witte270,271, Joy Wolfram31,89,147, Angeliki Xagorari64, Patricia Xander246, Jing Xu16,204, Xiaomei Yan384,
María Yáñez-Mó29,241, Hang Yin236&, Yuana Yuana211, Valentina Zappulli341, Jana Zarubova108,109,290,
Vytautas Žėkas376, Jian-ye Zhang77, Zezhou Zhao217, Lei Zheng162&, Alexander R Zheutlin326, Antje M Zickler124,
Pascale Zimmermann9,129, Angela M Zivkovic287, Davide Zocco54 and Ewa K Zuba-Surma119

1A.C.Camargo Cancer Center, São Paulo, Brazil; 2Aalborg University Hospital, Department of Clinical Biochemistry, Aalborg, Denmark;
3Aalborg University Hospital, Department of Clinical Immunology, Aalborg, Denmark; 4Aalborg University, Clinical Institute, Aalborg,
Denmark; 5Aarhus University, Department of Clinical Medicine, Aarhus, Denmark; 6Aberystwyth University, Institute of Biological,
Environmental and Rural Sciences (IBERS), Aberystwyth, United Kingdom; 7Academic Medical Centre of the University of Amsterdam,
Department of Clinical Chemistry and Vesicle Observation Centre, Amsterdam, The Netherlands; 8Advanced Center for Chronic Diseases,
Santiago, Chile; 9Aix-Marseille Université, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Centre de Recherche en Cancérologie de
Marseille, Marseille, France; 10American Red Cross, Scientific Affairs, Gaithersburg, MD, USA; 11Amsterdam University Medical Centers,
Department of Pathology, Amsterdam, The Netherlands; 12Aston University, School of Life & Health Sciences, Birmingham, UK;
13AstraZeneca, Discovery Sciences, IMED Biotech Unit, Cambridge, UK; 14AstraZeneca, Discovery Sciences, IMED Biotech Unit, Gothenburg,
Sweden; 15Atlantic Cancer Research Institute, Moncton, Canada; 16BC Cancer, Canada’s Michael Smith Genome Sciences Centre, Vancouver,
Canada; 17Beth Israel Deaconess Medical Center, Boston, MA, USA; 18Boston University School of Medicine, Boston, MA, USA; 19Brigham and
Women’s Hospital, Center for Interdisciplinary Cardiovascular Sciences, Boston, MA, USA; 20Brown University, Women and Infants Hospital,
Providence, RI, USA; 21Cancer Institute of JFCR, Tokyo, Japan; 22Cancer Research Institute Ghent, Ghent, Belgium; 23Cardiff University, School
of Medicine, Cardiff, UK; 24Case Western Reserve University, Department of Medicine, Cleveland, OH, USA; 25Cedars-Sinai Medical Center, Los

2 C. THÉRY AND K. W. WITWER



Angeles, CA, USA; 26Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA; 27Center for Psychiatry and Neuroscience,
INSERM U894, Paris, France; 28Central Research Laboratories, Sysmex Co., Kobe, Japan; 29Centro de Biología Molecular Severo Ochoa,
Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain; 30Children’s Hospital of Los Angeles, Los Angeles, CA, USA; 31Chinese
Academy of Sciences, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, China; 32CIC bioGUNE, CIBERehd, Exosomes Laboratory
& Metabolomics Platform, Derio, Spain; 33Cincinnati Cancer Center, Cincinnati, OH, USA; 34City of Hope Comprehensive Cancer Center,
Beckman Research Institute, Department of Molecular Medicine, Duarte, CA, USA; 35Clínica las Condes, Extracellular Vesicles in Personalized
Medicine Group, Santiago, Chile; 36CNC, Coimbra, Portugal; 37CNR Institute of Neuroscience, Milan, Italy; 38Copenhagen Lupus and Vasculitis
Clinic, Section 4242 - Rigshospitalet, Copenhagen, Denmark; 39CSGI - Research Center for Colloids and Nanoscience, Florence, Italy;
40Danube University Krems, Department for Biomedical Research and Christian Doppler Laboratory for Innovative Therapy Approaches in
Sepsis, Krems an der Donau, Austria; 41Department of Veterans Affairs, San Francisco, CA, USA; 42Duke University Medical Center,
Departments of Medicine and Immunology, Durham, NC, USA; 43Duke University, Department of Ophthalmology, Durham, NC, USA;
44Durham VAMC, Medical Research Service, Durham, NC, USA; 45École normale supérieure, Paris, France; 46Department of Pathology,
Erasmus MC, Erasmus Optical Imaging Centre, Rotterdam, The Netherlands; 47Department of Urology, Rotterdam, The Netherlands;
48Erasmus MC, Rotterdam, The Netherlands; 49ETH Zurich, Institute of Pharmaceutical Sciences, Zurich, Switzerland; 50Eulji University, School
of Medicine, Daejeon, South Korea; 51Evox Therapeutics Limited, Oxford, UK; 52EVSEARCH.DK, Denmark; 53Exogenus Therapeutics,
Cantanhede, Portugal; 54Exosomics Siena SpA, Siena, Italy; 55FAU Erlangen-Nuremberg, Transfusion and Haemostaseology Department,
Erlangen, Germany; 56Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia; 57Federal University of Paraná,
Department of Genetics, Human Molecular Genetics Laboratory, Curitiba, Brazil; 58FEMTO-ST Institute, UBFC, CNRS, ENSMM, UTBM,
Besançon, France; 59Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland; 60Florida State University College of
Medicine, Department of Biomedical Sciences, Tallahassee, FL, USA; 61Fondazione IRCCS Istituto Nazionale dei Tumori, Unit of
Immunotherapy of Human Tumors, Milan, Italy; 62Genome Institute of Singapore, A*STAR, Singapore; 63Georg-Speyer-Haus Institute for
Tumor Biology and Experimental Therapy, Frankfurt, Germany; 64George Papanicolaou Hospital, Public Cord Blood Bank, Department of
Haematology - BMT Unit, Thessaloniki, Greece; 65Georgetown University, Department of Medicine, Washington, DC, USA; 66German Armed
Forces Central Hospital, Department of General, Visceral and Thoracic Surgery, Koblenz, Germany; 67German Cancer Consortium (DKTK),
Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany; 68German Cancer Research Center (DKFZ), Clinical
Cooperation Unit Applied Tumor Biology, Heidelberg, Germany; 69German Cancer Research Center (DKFZ), Division Signaling and Functional
Genomics, Heidelberg, Germany; 70German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany; 71German Research Center for
Environmental Health, Institute for Virology, Munich, Germany; 72Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, REMAR-
IVECAT Group, Badalona, Spain; 73Germans Trias i Pujol University Hospital, Nephrology Service, Badalona, Spain; 74Ghent University
Hospital, Department of Urology, Ghent, Belgium; 75Ghent University, Department of Radiation Oncology and Experimental Cancer
Research, Laboratory of Experimental Cancer Research, Ghent, Belgium; 76Graduate School of Public Health at the University of Pittsburgh,
Division of Occupational and Environmental Medicine, Pittsburgh, PA, USA; 77Guangzhou Medical University, School of Pharmaceutical
Sciences & the Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou, China; 78Haaglanden
Medical Center, Department of Neurosurgery, The Hague, The Netherlands; 79Harvard Medical School, Cardiovascular Medicine, Boston, MA,
USA; 80Harvard Medical School, Department of Medicine, Boston, MA, USA; 81Harvard University, Harvard T.H. Chan School of Public Health,
Boston, MA, USA; 82Harvard University, School of Engineering and Applied Sciences, Cambridge, MA, USA; 83Hasselt University, Biomedical
Research Institute (BIOMED), Department of Medicine and Life Sciences, Hasselt, Belgium; 84Hasselt University, Biomedical Research Institute
(BIOMED), Hasselt, Belgium; 85Helmholtz Center Munich German Research Center for Environmental Health, Research Unit Gene Vectors,
Munich, Germany; 86Helmholtz-Centre for Infection Research, Braunschweig, Germany; 87Helmholtz-Institute for Pharmaceutical Research
Saarland, Saarbrücken, Germany; 88Hiroshima University, Institute of Biomedical & Health Sciences, Department of Cellular and Molecular
Biology, Hiroshima, Japan; 89Houston Methodist Research Institute, Department of Nanomedicine, Houston, TX, USA; 90Hudson Institute of
Medical Research, Melbourne, Australia; 91Icahn School of Medicine at Mount Sinai, Department of Medicine, Cardiology, New York City, NY,
USA; 92Icahn School of Medicine at Mount Sinai, New York City, NY, USA; 93IIS-Fundacion Jimenez Diaz-UAM, Department of Nephrology and
Hypertension, Madrid, Spain; 94IKERBASQUE Research Science Foundation, Bilbao, Spain; 95Imperial College London, London, UK; 96INEB -
Instituto de Engenharia Biomédica, Porto, Portugal; 97INSERM U1063, Université d’Angers, CHU d’Angers, Angers, France; 98INSERM U1068,
Aix Marseille University, CNRS UMR7258, Marseille, France; 99INSERM U1110, Strasbourg, France; 100INSERM UMR-S 970, Paris Cardiovascular
Research Center, Paris, France; 101Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; 102Institut Curie, CNRS UMR144,
PSL Research University, Paris, France; 103Institut Curie, INSERM U932, PSL Research University, Paris, France; 104Institut d’Investigació
Germans Trias i Pujol (IGTP), PVREX group, Badalona, Spain; 105Institut Pasteur de Montevideo, Functional Genomics Unit, Montevideo,
Uruguay; 106Institute of Biomedicine and Molecular Immunology (IBIM), National Research Council (CNR) of Italy, Palermo, Italy; 107Institute
of Medical Biology (IMB), Agency for Science and Technology (A*STAR), Singapore; 108Institute of Physiology CAS, Department of
Biomaterials and Tissue Engineering, BIOCEV, Vestec, Czech Republic; 109Institute of Physiology CAS, Department of Biomaterials and Tissue
Engineering, Prague, Czech Republic; 110Instituto Oswaldo Cruz, Rio de Janeiro, Brazil; 111INSTM - National Interuniversity Consortium of
Materials Science and Technology, Florence, Italy; 112Interuniversity Research Institute for Molecular Recognition and Technological
Development (IDM), University of Valencia, Polytechnic University of Valencia, Valencia, Spain; 113IPATIMUP, Institute of Molecular Pathology
and Immunology of the University of Porto, Porto, Portugal; 114IRCCS - Istituto Ortopedico Rizzoli, Laboratory for Orthopaedic
Pathophysiology and Regenerative Medicine, Bologna, Italy; 115IRCCS Fondazione Don Carlo Gnocchi, Laboratory of Nanomedicine and
Clinical Biophotonics (LABION), Milan, Italy; 116IRCCS MultiMedica, Milan, Italy; 117ISGlobal, Hospital Clínic - Universitat de Barcelona, PVREX
Group, Barcelona, Spain; 118Istanbul University Oncology Institute, Basic Oncology Department, Istanbul, Turkey; 119Jagiellonian University,
Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Kraków, Poland; 120James Cook University, Australian
Institute of Tropical Health and Medicine, Centre for Biodiscovery and Molecular Development of Therapeutics, Cairns, Australia; 121K.G.
Jebsen Brain Tumor Research Centre, Department of Biomedicine, University of Bergen, Bergen, Norway; 122Kansas State University, College
of Veterinary Medicine, Manhattan, KS, USA; 123Karolinska Institute, Clinical Research Center, Department of Laboratory Medicine,
Stockholm, Sweden; 124Karolinska Institute, Clinical Research Center, Unit for Molecular Cell and Gene Therapy Science, Stockholm, Sweden;
125Karolinska Institute, Department of Medicine and Center for Molecular Medicine, Respiratory Medicine Unit, Stockholm, Sweden;
126Karolinska Institute, Department of Medicine Solna, Division for Immunology and Allergy, Stockholm, Sweden; 127Karolinska Institute,
Stockholm, Sweden; 128Kidney Research Centre, Ottawa, Canada; 129KU Leuven (Leuven University), Department of Human Genetics, Leuven,
Belgium; 130Kyung Hee University, Department of Applied Chemistry, Yongin, Korea; 131La Trobe University, La Trobe Institute for Molecular

JOURNAL OF EXTRACELLULAR VESICLES 3



Science, Department of Biochemistry and Genetics, Bundoora, Australia; 132Latvian Biomedical Research and Study Centre, Riga, Latvia;
133Leibniz Institute for Farm Animal Biology (FBN), Institute of Reproductive Biology, Dummerstorf, Germany; 134Leiden University Medical
Center, Department of Neurosurgery, Leiden, The Netherlands; 135Loyola University Chicago, Department of Urology, Maywood, IL, USA;
136Lund University, Department of Cardiology, Lund, Sweden; 137Maastricht University, GROW, School for Oncology and Developmental
Biology, Maastricht Radiation Oncology (MaastRO) Lab, Maastricht, The Netherlands; 138Maria Sklodowska-Curie Institute - Oncology Center,
Gliwice Branch, Gliwice, Poland; 139Massachusetts General Cancer Center, Boston, MA, USA; 140Massachusetts General Hospital and
Neuroscience Program, Harvard Medical School, Department of Neurology and Radiology, Boston, MA, USA; 141Massachusetts General
Hospital, Boston, MA, USA; 142Massachusetts General Hospital, Department of Neurology, Boston, MA, USA; 143Massachusetts General
Hospital, Department of Neurosurgery, Boston, MA, USA; 144Massachusetts General Hospital, Harvard Medical School, Department of
Neurology, Boston, MA, USA; 145Mayo Clinic, College of Medicine, Department of Physiology and Biomedical Engineering, Rochester, MN,
USA; 146Mayo Clinic, Department of Orthopedic Surgery, Rochester, MN, USA; 147Mayo Clinic, Department of Transplantation Medicine/
Department of Physiology and Biomedical Engineering, Jacksonville, FL, USA; 148Mayo Clinic, Department of Transplantation, Jacksonville,
FL, USA; 149Mayo Clinic, Rochester, MN, USA; 150McGill University, Division of Experimental Medicine, Montreal, Canada; 151McGill University,
Montreal, Canada; 152McGill University, The Research Institute of the McGill University Health Centre, Child Health and Human Development
Program, Montreal, Canada; 153McGill University, The Research Institute of the McGill University Health Centre, Montreal, Canada; 154Medical
Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Institute for Infection Prevention and Hospital Epidemiology,
Freiburg, Germany; 155Memorial Sloan Kettering Cancer Center, Department of Medicine, New York City, NY, USA; 156Monash University,
Melbourne, Australia; 157Mossakowski Medical Research Centre, NeuroRepair Department, Warsaw, Poland; 158Mount Allison University,
Department of Chemistry and Biochemistry, Sackville, Canada; 159MRC The Gambia, Fajara, The Gambia; 160MTA-SE Immuno-Proteogenomics
Research Groups, Budapest, Hungary; 161Namur Thrombosis and Hemostasis Center (NTHC), NARILIS, Namur, Belgium; 162Nanfang Hospital,
Southern Medical University, Department of Clinical Laboratory Medicine, Guangzhou, China; 163National Cancer Center Research Institute,
Division of Molecular and Cellular Medicine, Tokyo, Japan; 164National Cancer Center Research Institute, Tokyo, Japan; 165National Institute of
Chemistry, Department of Molecular Biology and Nanobiotechnology, Ljubljana, Slovenia; 166National Institutes of Health, National Cancer
Institute, Center for Cancer Research, Bethesda, MD, USA; 167National Institutes of Health, National Cancer Institute, Center for Cancer
Research, Laboratory of Pathology, Bethesda, MD, USA; 168National Institutes of Health, National Institute on Aging, Baltimore, MD, USA;
169National Institutes of Health, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA; 170National Taiwan
University Hospital, Department of Internal Medicine, Taipei, Taiwan; 171National Tsing Hua University, Department of Power Mechanical
Engineering, Hsinchu, Taiwan; 172National Tsing Hua University, Institute of Nanoengineering and Microsystems, Hsinchu, Taiwan;
173National University of Singapore, Faculty of Dentistry, Singapore; 174Nationwide Children’s Hospital, Columbus, OH, USA; 175Oregon Health
& Science University, Department of Anesthesiology & Perioperative Medicine, Portland, OR, USA; 176Oslo University Hospital Rikshospitalet,
Research Institute of Internal Medicine, Oslo, Norway; 177Oslo University Hospital-The Norwegian Radium Hospital, Institute for Cancer
Research, Department of Molecular Cell Biology, Oslo, Norway; 178Oslo University Hospital, Department of Medical Biochemistry, Blood Cell
Research Group, Oslo, Norway; 179Ospedale Santo Spirito, Pescara, Italy; 180Ottawa Hospital Research Institute, Ottawa, Canada; 181Oxford
Brookes University, Department of Biological and Medical Sciences, Oxford, UK; 182Paracelsus Medical University, Department of Transfusion
Medicine, Salzburg, Austria; 183Paracelsus Medical University, GMP Unit, Salzburg, Austria; 184Philipps University Marburg, Experimental
Tumor Biology, Marburg, Germany; 185Pontificia Universidad Católica de Chile, Advanced Center for Chronic Diseases (ACCDiS), Santiago,
Chile; 186Pontificia Universidad Católica de Chile, Faculty of Medicine, Department of Hematology-Oncology, Santiago, Chile; 187POSTECH
(Pohang University of Science and Technology), Department of Life Sciences, Pohang, South Korea; 188Princess Margaret Cancer Centre,
University Health Network, Toronto, Canada; 189QIMR Berghofer Medical Research Institute, Herston, Australia; 190Queen Mary University of
London, Blizard Institute, Epigenetics & Cellular Senescence Group, London, UK; 191Radboud University Medical Center, Department of
Rheumatology, Nijmegen, The Netherlands; 192Regional Research Network on Extracellular Vesicles, RRNEV, Oslo, Norway; 193René Rachou
Institute/FIOCRUZ, Belo Horizonte, Brazil; 194Research Service, Olin E. Teague Veterans’ Medical Center, Temple, TX, USA; 195Royan Institute
for Stem Cell Biology and Technology, ACECR, Cell Science Research Center, Department of Stem Cells and Developmental Biology, Tehran,
Iran; 196Saarland University Medical Center, Department of Medicine II, Homburg, Germany; 197Saarland University, Saarbrücken, Germany;
198Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Molecular Medicine & Biotechnology, Lucknow, India;
199Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy; 200Scintillon Institute, La Jolla, CA, USA; 201Semmelweis
University, Department of Genetics, Cell- and Immunobiology, Budapest, Hungary; 202Semmelweis University, Department of Physiology,
Budapest, Hungary; 203SickKids Hospital, Department of Anesthesia and Pain Medicine, Toronto, Canada; 204Simon Fraser University,
Department of Molecular Biology and Biochemistry, Burnaby, Canada; 205Sorbonne Université, Centre National de la Recherche Scientifique,
Research Unit Biology of Adaptation and Aging (B2A), Team Compensation in Neurodegenerative and Aging (Brain-C), Paris, France;
206Spanish Kidney Research Network, REDINREN, Madrid, Spain; 207Spanish National Cancer Research Center (CNIO), Molecular Oncology
Programme, Microenvironment and Metastasis Laboratory, Madrid, Spain; 208Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-
TReCS), Salzburg, Austria; 209Statens Serum Institut, Department of Autoimmunology and Biomarkers, Copenhagen, Denmark;
210Stellenbosch University, Department of Physiological Sciences, Stellenbosch, South Africa; 211Technical University Eindhoven, Faculty
Biomedical Technology, Eindhoven, The Netherlands; 212Technical University of Munich, TUM School of Life Sciences Weihenstephan,
Division of Animal Physiology and Immunology, Freising, Germany; 213Technische Universität Darmstadt, Department of Biology, Darmstadt,
Germany; 214Texas A&M University College of Medicine, Institute for Regenerative Medicine and Department of Molecular and Cellular
Medicine, College Station, TX, USA; 215TGen, Neurogenomics Division, Phoenix, AZ, USA; 216The Florey Institute of Neuroscience and Mental
Health, Melbourne, Australia; 217The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology,
Baltimore, MD, USA; 218The Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD, USA; 219The Johns
Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA; 220The Ohio State University,
College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, Columbus, OH, USA; 221The Ohio State University, Columbus,
OH, USA; 222The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA; 223The School of Biomedical Sciences, University
of Western Australia, Perth, Australia; 224The Scripps Research Institute-Scripps Florida, Department of Molecular Medicine, Jupiter, FL, USA;
225The Sociedade Beneficente Israelita Brasileira Albert Einstein, São Paulo, Brazil; 226The University of Melbourne, The Department of
Medicine, Melbourne, Australia; 227The University of Nottingham, School of Medicine, Children’s Brain Tumour Research Centre, Nottingham,
UK; 228The University of Queensland, Brisbane, Australia; 229The University of Sheffield, Sheffield, UK; 230The University of Vermont Medical
Center, Department of Medicine, Burlington, VT, USA; 231The Warren Alpert Medical School of Brown University, Department of Medicine,

4 C. THÉRY AND K. W. WITWER



Providence, RI, USA; 232Thomas Jefferson University, Sidney Kimmel Medical School, Department of Cancer Biology, Philadelphia, PA, USA;
233Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; 234TPM of Mirandola, Mirandola, Italy; 235Trinity
College Dublin, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute & Trinity Biomedical Sciences Institute, Dublin, Ireland;
236Tsinghua University, School of Pharmaceutical Sciences, Beijing, China; 237UMR 7365 CNRS-Université de Lorraine, Vandœuvre-lès-Nancy,
France; 238UMR-CBMN, CNRS-Université de Bordeaux, Bordeaux, France; 239UNICAMP, Institute of Biology, Campinas, Brazil; 240UNIFESP,
Departamento de Ciências Farmacêuticas, Diadema, Brazil; 241Universidad Autónoma de Madrid, Departamento de Biología Molecular,
Madrid, Spain; 242Universidad Autónoma de Madrid, School of Medicine, Department of Medicine, Madrid, Spain; 243Universidad de Buenos
Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Buenos Aires, Argentina; 244Universidad de la
República, Faculty of Science, Nuclear Research Center, Analytical Biochemistry Unit, Montevideo, Uruguay; 245Universidade Federal de
Paraná, Paraná, Brazil; 246Universidade Federal de São Paulo Campus Diadema, Departamento de Ciências Farmacêuticas, Laboratório de
Imunologia Celular e Bioquímica de Fungos e Protozoários, São Paulo, Brazil; 247Universidade Federal do Rio de Janeiro, Instituto de
Microbiologia, Rio de Janeiro, Brazil; 248Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de
Microbiologia, Imunologia e Parasitologia, Porto Alegre, Brazil; 249Università degli Studi di Milano, Department of Clinical Sciences and
Community Health, EPIGET LAB, Milan, Italy; 250Universitat Autònoma de Barcelona, Department of Cell Biology, Physiology & Immunology,
Barcelona, Spain; 251Universitat Autònoma de Barcelona, Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol,
Department of Pathology, Barcelona, Spain; 252Universitat de València, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia,
Àrea de Parasitologia, Valencia, Spain; 253Universitat de València, Health Research Institute La Fe, Joint Research Unit on Endocrinology,
Nutrition and Clinical Dietetics, Valencia, Spain; 254Université Bretagne Loire, Oniris, INRA, IECM, Nantes, France; 255Université Catholique de
Louvain, CHU UCL Namur, Hematology-Hemostasis Laboratory, Yvoir, Belgium; 256Université Catholique de Louvain, Institut de Recherche
Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Brussels, Belgium; 257Université de Lille, INSERM,
U-1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse - PRISM, Lille, France; 258Université de Nantes, INSERM
UMR 1238, Bone Sarcoma and Remodeling of Calcified Tissues, PhyOS, Nantes, France; 259Université de Strasbourg, Strasbourg, France;
260Université Laval, Centre de Recherche du CHU de Québec, Department of Infectious Diseases and Immunity, Quebec City, Canada;
261Université Paris Descartes, Sorbonne Paris Cité, Paris, France; 262Universiteit Hasselt, Diepenbeek, Belgium; 263University Clinic Eppendorf,
Hamburg, Germany; 264University College London, London, UK; 265University Hospital Bonn (UKB), Bonn, Germany; 266University Hospital
Essen, University Duisburg-Essen, Institute for Transfusion Medicine, Essen, Germany; 267University Hospital Heidelberg, Institute of
Pathology, Applied Tumor Biology, Heidelberg, Germany; 268University Hospital RWTH Aachen, Department of Thoracic and Cardiovascular
Surgery, Aachen, Germany; 269University Hospitals Cleveland Medical Center, Department of Medicine, Cleveland, OH, USA; 270University
Medical Center Göttingen, Developmental Biochemistry, Göttingen, Germany; 271University Medical Center Göttingen, Hematology and
Oncology, Göttingen, Germany; 272University Medical Center Hamburg-Eppendorf, Department of Neurosurgery, Hamburg, Germany;
273University Medical Center Hamburg-Eppendorf, Institute of Neuropathology, Hamburg, Germany; 274University Medical Center Utrecht,
Department of Nephrology and Hypertension, Utrecht, The Netherlands; 275University Medical Center Utrecht, Laboratory for Clinical
Chemistry & Hematology, Utrecht, The Netherlands; 276University of Antwerp, Centre for Proteomics, Antwerp, Belgium; 277University of
Auckland, Auckland, New Zealand; 278University of Auckland, Department of Molecular Medicine and Pathology, Auckland, New Zealand;
279University of Auckland, Department of Obstetrics and Gynaecology, Auckland, New Zealand; 280University of Belgrade, Institute for the
Application of Nuclear Energy, INEP, Belgrade, Serbia; 281University of Birmingham, Birmingham, UK; 282University of Birmingham, Institute
of Microbiology and Infection, Birmingham, UK; 283University of Brescia, Department of Molecular and Translational Medicine, Brescia, Italy;
284University of Bristol, Bristol, UK; 285University of British Columbia Okanagan, Kelowna, Canada; 286University of Buenos Aires, Instituto de
Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina; 287University of California, Davis, Department of
Nutrition, Davis, CA, USA; 288University of California, Davis, Department of Otolaryngology, Davis, CA, USA; 289University of California, Los
Angeles, California NanoSystems Institute, Los Angeles, CA, USA; 290University of California, Los Angeles, Department of Bioengineering, Los
Angeles, CA, USA; 291University of California, Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA;
292University of California, Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA; 293University of California, San Diego,
Department of Neurosurgery, La Jolla, CA, USA; 294University of California, San Diego, Department of Obstetrics, Gynecology, and
Reproductive Sciences, La Jolla, CA, USA; 295University of California, San Diego, Department of Pediatrics, San Diego, CA, USA; 296University
of California, San Francisco, CA, USA; 297University of Cambridge School of Clinical Medicine, Addenbrooke’s Hospital, Department of
Medicine, Cambridge NIHR BRC Cell Phenotyping Hub, Cambridge, UK; 298University of Campinas, Piracicaba Dental School, Department of
Oral Diagnosis, Piracicaba, Brazil; 299University of Chile, Faculty of Chemical and Pharmaceutical Science, Laboratory of Nanobiotechnology
and Nanotoxicology, Santiago, Chile; 300University of Cincinnati College of Medicine, Cincinnati, OH, USA; 301University of Cologne,
Department of Internal Medicine I, Cologne, Germany; 302University of Colorado, School of Medicine, Department of Ophthalmology, Cell
Sight-Ocular Stem Cell and Regeneration Program, Aurora, CO, USA; 303University of Copenhagen, Faculty of Health and Medical Sciences,
Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark; 304University of Copenhagen, Institute of Clinical Medicine,
Copenhagen, Denmark; 305University of Edinburgh, Institute of Immunology & Infection Research, Edinburgh, UK; 306University of
Gothenburg, Institute of Clinical Sciences at Sahlgrenska Academy, Department of Biomaterials, Gothenburg, Sweden; 307University of
Gothenburg, Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Cancer Center, Gothenburg, Sweden; 308University of
Gothenburg, Institute of Medicine at Sahlgrenska Academy, Krefting Research Centre, Gothenburg, Sweden; 309University of Gothenburg,
Sahlgrenska Academy, Department of Rheumatology and Inflammation Research, Gothenburg, Sweden; 310University of Gothenburg, The
Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal, Sweden;
311University of Helsinki, EV Core Facility, Helsinki, Finland; 312University of Helsinki, Faculty of Biological and Environmental Sciences,
Molecular and Integrative Biosciences Research Programme, EV group, Helsinki, Finland; 313University of Hertfordshire, School of Life and
Medical Sciences, Biosciences Research Group, Hatfield, UK; 314University of Kentucky, College of Medicine, Department of Physiology,
Lexington, KY, USA; 315University of L’Aquila, Department of Life, Health and Environmental Sciences, L’Aquila, Italy; 316University of Liège,
GIGA-R(MBD), PSI Laboratory, Liège, Belgium; 317University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Ljubljana, Slovenia;
318University of Lyon, INRA, EPHE, UMR754 Viral Infections and Comparative Pathology, Lyon, France; 319University of Lyon, Lyon-Sud Faculty
of Medicine, CarMeN Laboratory (UMR INSERM 1060-INRA 1397), Pierre-Bénite, France; 320University of Mainz, Institute of Developmental
Biology and Neurobiology, Mainz, Germany; 321University of Malta, Department of Pathology, Msida, Malta; 322University of Manchester,
Division of Cancer Sciences, Manchester Cancer Research Centre, Manchester, UK; 323University of Manchester, Manchester, UK; 324University
of Maryland, Fischell Department of Bioengineering, College Park, MD, USA; 325University of Massachusetts Medical School, RNA

JOURNAL OF EXTRACELLULAR VESICLES 5



Therapeutics Institute, Worcester, MA, USA; 326University of Michigan Medical School, Ann Arbor, MI, USA; 327University of Michigan,
Biointerfaces Institute, Ann Arbor, MI, USA; 328University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, USA;
329University of Michigan, Department of Internal Medicine - Hematology/Oncology Division, Ann Arbor, MI, USA; 330University of Michigan,
Department of Medicine, Ann Arbor, MI, USA; 331University of Michigan, Department of Urology, Ann Arbor, MI, USA; 332University of
Minnesota Medical School, Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and
Biophysics, Minneapolis, MN, USA; 333University of Modena and Reggio Emilia, Division of Oncology, Modena, Italy; 334University of Nebraska
Medical Center, Department of Pharmacology and Experimental Neuroscience, Omaha, NE, USA; 335University of Notre Dame, Department
of Biological Sciences, Notre Dame, IN, USA; 336University of Oslo, Institute of Clinical Medicine, Oslo, Norway; 337University of Ottawa,
Ottawa, Canada; 338University of Oulu, Faculty of Medicine, Cancer and Translational Medicine Research Unit, Oulu, Finland; 339University of
Oxford, Department of Physiology, Anatomy and Genetics, Oxford, UK; 340University of Oxford, Radcliffe Department of Medicine, Acute
Stroke Programme - Investigative Medicine, Oxford, UK; 341University of Padova, Department of Comparative Biomedicine and Food Science,
Padova, Italy; 342University of Padova, Department of Women’s and Children’s Health, Padova, Italy; 343University of Palermo, Department of
Biopathology and Medical Biotechnologies, Palermo, Italy; 344University of Perugia, Department of Chemistry, Biology and Biotechnology,
Perugia, Italy; 345University of Pisa, Centro Dipartimentale di Biologia Cellulare Cardio-Respiratoria, Pisa, Italy; 346University of Porto, Faculty
of Pharmacy (FFUP), IBMC/I3S, Porto, Portugal; 347University of Porto, Faculty of Pharmacy (FFUP), Porto, Portugal; 348University of Porto, i3S-
Instituto de Investigação e Inovação em Saúde, Porto, Portugal; 349University of Porto, ICBAS - Instituto de Ciências Biomédicas Abel Salazar,
Porto, Portugal; 350University of Rochester, Rochester, NY, USA; 351University of São Paulo, Ribeirão Preto Medical School, Department of Pathology
and Forensic Medicine, Ribeirão Preto, Brazil; 352University of São Paulo, Ribeirão Preto Medical School, Ribeirão Preto, Brazil; 353University of Science
and Culture, ACECR, Department of Developmental Biology, Tehran, Iran; 354University of South Alabama, Department of Pharmacology, Center for
Lung Biology, Mobile, AL, USA; 355University of Southern California Keck School of Medicine, Los Angeles, CA, USA; 356University of Southern
California, Los Angeles, CA, USA; 357University of Technology Sydney, Discipline of Pharmacy, Graduate School of Health, Sydney, Australia;
358University of Texas MD Anderson Cancer Center, Department of Cancer Biology, Metastasis Research Center, Houston, TX, USA; 359University of
Torino, Department of Medical Sciences, Torino, Italy; 360University of Torino, Department of Molecular Biotechnology and Health Sciences, Torino,
Italy; 361University of Toronto, Department of Anesthesia, Toronto, Canada; 362University of Toronto, Department of Laboratory Medicine and
Pathobiology, Toronto, Canada; 363University of Toronto, Department of Medical Biophysics, Toronto, Canada; 364University of Toronto, Department of
Medicine, Division of Neurology, Toronto, Canada; 365University of Tsukuba, Tsukuba, Japan; 366University of Virginia Health System, Department of
Medicine, Division of Nephrology, Charlottesville, VA, USA; 367University of Virginia, Flow Cytometry Core, School of Medicine, Charlottesville, VA, USA;
368University of Würzburg, Rudolf Virchow Center, Würzburg, Germany; 369Utrecht University, Faculty of Veterinary Medicine, Department of
Biochemistry and Cell Biology, Utrecht, The Netherlands; 370Utrecht University, University Medical Center Utrecht, Center for Molecular Medicine &
Regenerative Medicine Center, Utrecht, The Netherlands; 371Utrecht University, University Medical Center Utrecht, Department of Neurosurgery, Brain
Center Rudolf Magnus, Institute of Neurosciences, Utrecht, The Netherlands; 372Utrecht University, University Medical Center Utrecht, Department of
Pathology, Utrecht, The Netherlands; 373Vanderbilt University Medical Center, Epithelial Biology Center, Department of Medicine, Nashville, TN, USA;
374Vanderbilt University School of Medicine, Department of Cell and Developmental Biology, Nashville, TN, USA; 375Veterans Affairs Medical Center,
San Francisco, CA, USA; 376Vilnius University, Institute of Biomedical Sciences, Department of Physiology, Biochemistry, Microbiology and Laboratory
Medicine, Vilnius, Lithuania; 377Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium; 378Washington University, Saint Louis, MO,
USA; 379Weill Cornell Medicine, Department of Medicine, New York City, NY, USA; 380Weizmann Institute of Science, Department of Biomolecular
Sciences, Rehovot, Israel; 381West Virginia University, Department of Chemical and Biomedical Engineering and WVU Cancer Institute, Morgantown,
WV, USA; 382West Virginia University, Department of Microbiology Immunology and Cell Biology, Morgantown, WV, USA; 383West Virginia University,
Morgantown, WV, USA; 384Xiamen University, Department of Chemical Biology, Xiamen, China

ABSTRACT
The last decade has seen a sharp increase in the number of scientific publications describing
physiological and pathological functions of extracellular vesicles (EVs), a collective term covering
various subtypes of cell-released, membranous structures, called exosomes, microvesicles, micropar-
ticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise
when working with these entities, whose size and amount often make them difficult to obtain as
relatively pure preparations, and to characterize properly. The International Society for Extracellular
Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (“MISEV”) guidelines
for the field in 2014. We now update these “MISEV2014” guidelines based on evolution of the
collective knowledge in the last four years. An important point to consider is that ascribing
a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information
beyond mere description of function in a crude, potentially contaminated, and heterogeneous
preparation. For example, claims that exosomes are endowed with exquisite and specific activities
remain difficult to support experimentally, given our still limited knowledge of their specific molecular
machineries of biogenesis and release, as compared with other biophysically similar EVs. The
MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to
document specific EV-associated functional activities. Finally, a checklist is provided with summaries
of key points.
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Introduction

In 2014, the ISEV board members published a Position
Editorial detailing their recommendations, based on their
own established expertise, on the “minimal experimental
requirements for definition of extracellular vesicles and
their functions” [1]. A list of minimal information for
studies of extracellular vesicles (MISEV or MISEV2014)
was provided, covering extracellular vesicle (EV) separa-
tion/isolation, characterization, and functional studies.
The major goal of these recommendations was to sensi-
tize researchers (especially the rapidly growing numbers
of scientists newly interested in EVs), as well as journal

editors and reviewers, to experimental and reporting
requirements specific to the EV field. The ISEV board
highlighted the need to consider these issues when mak-
ing strong conclusions on the involvement of EVs, or
specific populations of EVs (exosomes in particular), in
any physiological or pathological situation, or when pro-
posing EVs or their molecular cargo as biological mar-
kers. By stimulating improved reliability and
reproducibility of published EV results, the MISEV2014
authors hoped to further the promise of EVs as biomar-
kers or for therapeutic applications even in the face of
skepticism by some scientists outside the field.



As evidenced by the increasing number of EV publica-
tions in high-profile journals, proposingmajor roles of EVs
in numerous physiological pathways from aging to cancer,
infectious diseases to obesity, EV science has now clearly
achieved widespread interest and enthusiasm well beyond
the EV research community. However, the promotion of
rigorous EV science is an ongoing process; as EV experts
within the ISEV community, we are still concerned to see
that major conclusions in some articles are not sufficiently
supported by the experiments performed or the informa-
tion reported. We therefore aim to revise and renew the
MISEV recommendations and to continue to work toward
their wider acceptance and implementation. In this
“MISEV2018” update, a much larger group of ISEV scien-
tists was involved through a community outreach (the
MISEV2018 Survey), striving for consensus on what is
absolutely necessary, what should be done if possible, and
how to cautiously interpret results if all recommendations
for controls cannot be followed.

We strongly believe that most of the MISEV2014
recommendations are still valid; however, discoveries
and developments within the field during the past four
years necessitate certain amendments. This document
explains how the 2014 recommendations evolved into
MISEV2018 in Tables 1, 2 and 4; provides suggestions
for protein markers to validate the presence of EVs
(Table 3); and, to highlight the salient points, provides
outlines of examplar approaches to address some of the
most important experimental issues. Importantly,
a 2-page checklist summarizing the major aspects to
follow in EV science is provided at the end of this article.

The authors of MISEV2014 were careful to propose
feasible experiments and controls for most experimental
situations, but also to suggest alternatives for particular
situations in which not all guidelines could be strictly
followed, such as for limiting sample quantities. However,
a recent survey of members of ISEV to lay the groundwork
for MISEV2018 [2] showed that, while respondents agreed
almost unanimously on the need for minimal require-
ments, and a majority supported the MISEV2014 initiative
and guidelines as published, almost a quarter of respon-
dents found the guidelines too restrictive or too strong an
imposition on the field. MISEV2018 thus provides clearer
explanations of the need for each recommendation and
highlights the extent of author consensus (or lack thereof)
on each section. An initial draft of MISEV2018 was sub-
mitted to the entire ISEV membership as a Survey asking
for agreement/disagreement and comments on each sec-
tion. The survey specified that, for agree/disagree ques-
tions, > 20% “disagree” responses would prompt
acknowledgment of major dissent in the final document,
while > 40% “disagree” would prompt a focused survey or
discussion of the ISEV board with selected survey

respondents to redraft the relevant section. 329 responses
were received, inwhich therewas such broad agreement on
the MISEV2018 draft that the 40% threshold was not met
for any section. Nevertheless, attempts were made to
address asmany comments as comprehensively as possible,
and thus generate a semi-final version of this text. Finally,
a last round of review was conducted by all previous con-
tributors as well as ISEV and JEV board members and
numerous additional long-standing EV experts. Although
not all suggestions, references, and critiques could be
included in the final product, we are confident that this
document represents the views of EV scientists with broad
and deep expertise.

Consensus: > 99% of MISEV2018 Survey respondents
agreed with the introduction. It has been modified only
slightly since the survey, mostly to convey the survey
mechanism and results.

Note on applicability of MISEV2018: species,
cells, sample types, and experimental
conditions

DoesMISEV2018 apply to all EV studies, or only to some?
EVs appear to be produced by almost all organisms and cell
types studied. Yet EV research to date has focused on
mammalian EVs, chiefly those of human or mouse origin,
and not all cell types or experimental conditions have been
closely investigated. In this document, as in MISEV2014,
specific examples of molecular markers (such as the mar-
kers of EVs in Table 3) are based on studies of specific
species, cells, and experimental conditions. Some may be
broadly applicable, others less so. Nevertheless, the general
principles of MISEV2018 apply to EVs produced by all
organisms and all cells. The need to demonstrate presence
(or enrichment) of EVmarkers and absence (or depletion)
of putative contaminants, when contents or function of
EVs are described, can be generalized to all species, cells,
and conditions. We find ourselves at an exciting scientific
frontier; where such markers are not yet available, we
encourage their development and publication, using the
principles of this document as a guide. Additional specific
examples may then be incorporated into future MISEV
updates.

Consensus: 93% of MISEV2018 Survey respondents agreed
that the examples in this document would be based on
mammalian EVs. However, applicability to non-
mammalian and non-eukaryotic EVs is now addressed.

Nomenclature

ISEV endorses “extracellular vesicle” (EV) as the generic
term for particles naturally released from the cell that are
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delimited by a lipid bilayer and cannot replicate, i.e. do not
contain a functional nucleus. Since consensus has not yet
emerged on specificmarkers of EV subtypes, such as endo-
some-origin “exosomes” and plasma membrane-derived
“ectosomes” (microparticles/microvesicles) [3,4] assigning
an EV to a particular biogenesis pathway remains extra-
ordinarily difficult unless, e.g. the EV is caught in the act of
release by live imaging techniques. Therefore, unless
authors can establish specific markers of subcellular origin
that are reliable within their experimental system(s),
authors are urged to consider use of operational terms for
EV subtypes that refer to a) physical characteristics of EVs,
such as size (“small EVs” (sEVs) and “medium/large EVs”
(m/lEVs), with ranges defined, for instance, respectively,
< 100nm or < 200nm [small], or > 200nm [large and/or
medium]) or density (low, middle, high, with each range
defined); b) biochemical composition (CD63+/CD81+-
EVs, Annexin A5-stained EVs, etc.); or c) descriptions of
conditions or cell of origin (podocyte EVs, hypoxic EVs,
large oncosomes, apoptotic bodies) in the place of terms
such as exosome and microvesicle that are historically
burdened by both manifold, contradictory definitions and
inaccurate expectations of unique biogenesis. If it is
deemed unavoidable to use these or newly coined terms,
they should be defined clearly and prominently at the
beginning of each publication [5]. If confirmation of EV
identity cannot be achieved according to the minimal
requirements of this MISEV2018 publication, other terms
such as extracellular particle (EP) might be more
appropriate.

Consensus: 94% of MISEV2018 Survey respondents
endorsed this nomenclature recommendation. The
remainder were evenly split between dissent and
a preference for no nomenclature recommendation.

Collection and pre-processing: pre-analytical
variables

The first step to recover EVs is to harvest an EV-containing
matrix, such as fluid from tissue culture or from an orga-
nismal compartment. During this pre-analytical phase, an
extended constellation of factors, including characteristics
of the source, how the source material is manipulated and
stored, and experimental conditions, can affect EV recov-
ery. Therefore, it is crucial to plan collection and experi-
mental procedures to maximize the number of known,
reportable parameters, and then to report as many pre-
analytical parameters as are known.

Cell culture conditioned media

For EV isolation/characterization from conditioned media
(an ISEV survey found that the majority of responding EV

researchers studied conditioned medium [6]), basic char-
acterization of the releasing cells and culture andharvesting
conditionsmust be performed and reported. Some precau-
tions, such as regular confirmation of cellular identity (e.g.
by short tandem repeat (STR) profiling or other methods)
[7,8] and identification of cell lineage and provenance
including mode of immortalization [9], are advisable for
all cell studies. Especially important for EV studies is that
the percent of dead cells at the time of EVharvest should be
indicated, since even a small percentage of cell death could
release cell membranes that outnumber true released EVs.
Quantifying the percentage of apoptotic and necrotic cells
may also be useful. (Note, however, that when cells are
treated with high concentrations of EVs, cell-adherent EVs
positive for apoptotic markers may skew results [10,11]).
Other relevant characteristics of the cells, including state of
activation, malignancy, and senescence [12,13], should be
reported where applicable.

Culture and harvesting conditions such as passage
number (or days in culture for suspension cells), seeding
density [14], density/confluence at harvest [14], including
any relevant post-confluence characteristics such as devel-
opment of polarity [15–19] (in that case,were EVs collected
globally or separately, from the different parts of polarized
cells?), culture volume, culture vessel or bioreactor system
(if used [20,21]), surface coatings, oxygen or other gas
tensions (if they differ from standard cell culture) [22,23],
stimulation and other treatments [24–30], and frequency
and intervals of harvest [14] should be given to allow
replication [31,32]. Culture conditions prior to treatment-
(s), if any, should also be given. Note that EV recovery
depends not only on EV release, but also on re-uptake by
cells in culture, which may vary based on culture density
and other conditions. Regular checks for contamination
with Mycoplasma (and possibly other microbes) are
needed, not only because of cellular responses to contam-
ination, but also because contaminating species can release
EVs [33–36]. Exact methods of medium collection should
be given, as well (e.g. decanting or pipetting from flasks,
centrifugation of suspension cell cultures). The suggested
parameters are of course non-inclusive, and others may be
necessary to report for specific types of cells and experi-
ments, including co-culture systems and organoid cul-
tures [37].

All culture medium composition and preparation
details should be provided in methods. This should be
customary for cell culture studies, and is doubly impor-
tant here since supplements like glucose [38–40], anti-
biotics [41], and growth factors [42] can affect EV
production and/or composition. Of special note are
medium components that are likely to contain EVs,
such as serum. EVs are ideally obtained from culture
medium conditioned by cells in the absence of fetal calf
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serum (FCS or FBS), serum from other species, or
other complex products such as platelet lysate, pituitary
extract, bile salts, and more, to avoid co-isolation of
exogenous EVs. When use of these supplements is
unavoidable, experiments should include a non-
conditioned medium control to assess the contribution
of the medium itself. However, depending on down-
stream use, it may not be necessary or desirable to
deplete EVs [43,44]. In the case of depletion, since
nutrient or EV deprivation of cells that are normally
cultured in serum- or lysate-containing medium can
change cellular behavior and the nature and composi-
tion of released EVs [45,46], it is important to specify
culture history (how and when the switch to serum-
free medium occurred, including acclimatization
steps). Alternatively, cells can be exposed during the
EV release period to medium that has been pre-
depleted of EVs. Here, too, effects on cells and EVs
may be expected [47], and the methods and outcome of
depletion vary greatly and should be reported. Several
fairly efficient protocols are available, such as 100,000
x g ultracentrifugation of complete medium (or of
serum following at least 1:4 dilution) for at least
18 hours [48], centrifugation at enhanced speeds (e.g.
200,000 x g [49]) for shorter periods of time, or tan-
gential flow filtration or other forms of ultrafiltration
[50]. Ultracentrifugation at around 100k x g for a few
hours or without dilution will not eliminate all EVs or
EV-associated RNA [51–53]. Commercial “exosome/
EV-depleted” serum and other supplements are avail-
able from an increasing number of vendors. Since the
method of depletion is usually not indicated, conse-
quences on cell growth and EV release may not be
predictable; the exact source, method, and reference
of depleted supplements should be given, and the “exo-
some-free” nature of the product should be checked
carefully before use [54]. Additionally, vendors are
encouraged to report and benchmark the methods of
depletion utilized in their products, while users should
report product and lot numbers as well as any pooling
of biologicals. Finally, medium preparation details,
including heating (heat inactivation) or filtration
steps, should be reported. For example, heat inactiva-
tion of additives such as serum leads to formation of
protein aggregates that may co-precipitate with EVs
and thus also change the growth-supporting properties
of the serum.

Biological fluids
Since more than 30 types of biofluids exist in mammals,
and lavages of numerous compartments add to this num-
ber (despite not being true biofluids), MISEV2018 does

not provide an exhaustive review of the literature on pre-
analytical variables related to all biofluids. Each biological
fluid presents specific biophysical and chemical character-
istics that makes it different from culture conditioned
medium, and this must be taken into account when
isolating EVs. For instance, plasma and serum are more
viscous than conditioned medium. Plasma and serum
contain numerous non-EV lipidic structures (low/very
low/high density lipoproteins), milk is replete with fat-
containing vesicles, urine with uromodulin (Tamm-
Horsfall protein), bronchoalveolar lavage with surfactant,
all of which will be co-isolated to various degrees with
EVs. In each case, specific precautions to separate EVs
from these components may be required. While detailed
biofluid-specific reporting guidelines are beyond the
scope of this MISEV, we encourage development of
such guidelines under the MISEV umbrella.

For EV isolation/characterization from biofluids
such as blood plasma, several previous ISEV posi-
tion papers [55,56] and other publications (for just
a few of many examples, see [57–63]) have listed
reporting requirements that are important for stan-
dardization, and these are still valid today, even if
many questions remain about the effects of specific
pre-analytical variables on different classes of EVs.
Since many of these factors have been covered in
these previous publications, we do not review them
exhaustively here. To give examples of considera-
tions for blood derivatives such as plasma: donor
age, biological sex, current or previous pregnancy,
menopause, pre/postprandial status (fasting/non-
fasting), time of day of collection (Circadian varia-
tions), exercise level and time of last exercise, diet,
body mass index, specific infectious and non-
infectious diseases, medications, and other factors
may affect circulating EVs [64,65]. Similarly, tech-
nical factors including fluid collection volume, first-
tube discard, type of container(s), time to proces-
sing, choice of anticoagulant (for blood plasma)
[66–68], mixing or agitation, temperature (storage
and processing), description of transport (if any),
whether tube remained upright before processing,
exact centrifugation or filtration procedures, degree
of hemolysis, possible confirmation of platelet and
lipoprotein depletion prior to storage [69–73], and
other parameters should be clearly indicated.
Overall, except some that are specific of plasma/
serum (such as platelet removal and coagulation),
the above listed technical details of collection con-
dition apply to all biofluids and must be reported.
Of course, it may be that not all variables have been
recorded for archived samples, and this should be
acknowledged where applicable.

10 C. THÉRY AND K. W. WITWER



Tissue
As a special case of pre-analytical issues, a rapidly
increasing number of groups have reported isolation
of tissue EVs. These studies may involve short-term
culture of tissue explants [74] such as ex vivo tumors
[75], or placenta [76,77], or extraction from whole
tissues [78–84]. Many of the same considerations that
apply for cellular and biofluids studies also apply here,
including confirmation of provenance and condition.
Especially for EV extraction from tissue, it is challen-
ging to ensure that recovered vesicles are truly from the
extracellular space, rather than being intracellular vesi-
cles or artefactual particles released from cells broken
during tissue harvest, processing (e.g. mechanical dis-
ruption), or storage (including freezing). This may be
especially challenging in a tissue like brain, where
similar procedures are used to collect synaptosomes
[85]. Even apparently pure tissue-derived EVs can con-
tain endosome components, which could correspond
to components of intracellular vesicles including unre-
leased intraluminal vesicles of late endosomes/multi-
vesicular bodies (MVBs) that are released artifactually
during tissue processing. The recent awareness of these
challenges has led researchers to perform gentle tissue
disruption (i.e. with the goal of separating EVs from
cells and extracellular matrix, but not disrupting cells)
and several steps of further separation (including den-
sity gradients), followed by strict characterization of
multiple negative markers, leading to more convincing
tissue-derived EV preparations [79]. Use of genetically
modified models to trace EV release from specific cells
[83] is also a useful approach. More research is clearly
needed and encouraged into the isolation, characteriza-
tion, and function of tissue EVs, as compared with
intracellular vesicles and/or non-vesicular extracellular
particles (EPs).

Storage
Storage and retrieval conditions of both the matrix (e.g.
biofluid, tissue, conditioned media) and isolated EVs
may affect EV characteristics, including stability, num-
ber of particles, aggregation, and function
[57,62,63,71,86–96]. In particular, highly purified EVs
may be lost upon storage by adhering to the surfaces of
the storage container. How were biofluids, tissues, or
media prepared and stored (type of storage container,
temperature, etc.) and for how long? Were isolated EVs
analyzed or used for experiments fresh, frozen/thawed,
lyophilized and reconstituted, etc.? If frozen, how was
freezing and thawing performed? In what buffer(s)
were EVs stored? For how long? What, if any, cryo-
protectant was used? How many freeze-thaw cycles did

each sample experience? If EVs were processed and
stored in some other manner, details should also be
provided, along with the procedure to evaluate effects
of storage method and time on EV activity and other
properties, where applicable.

Consensus: 96% of MISEV2018 Survey respondents
endorsed the pre-analytical variables section. Since
44% of respondents also suggested at least one added
literature citation or other amendment in more than
200 total comments, the section was revised to reflect as
many of these suggestions as possible. However, bio-
fluids-specific considerations and SOPs are beyond the
current scope of MISEV; only illustrative examples are
provided. The MISEV2018 Survey comments evidenced
particular interest in urine and milk, consistent with the
“Experts Meet” sessions during ISEV2016 and the
results of a previous ISEV survey (which also highlighted
cerebrospinal fluid) [6]. Beginning with the blood EV
roadmap announced at the ISEV2018 annual meeting
[97], development of more specific recommendations for
individual biofluids and other matrices is encouraged.
The overwhelming response to this section indeed
demands additional research into the effects of pre-
analytical variables on EV studies.

EV separation and concentration: howMISEV2014
evolves in 2018

Absolute purification, or complete isolation of EVs
from other entities, is an unrealistic goal (as for many
biological products). For this reason, and since the
various combinations of EVs and media are colloids
[98], here we use the terms separation and concentra-
tion. Separation (colloquially referred to as purification
or isolation) of 1) EVs from other non-EV components
of the matrix (conditioned medium, biofluid, tissue)
and 2) the different types of EVs from each other, are
achieved to various degrees by the different techniques
available. Concentration is a means to increase num-
bers of EVs per unit volume, with or without separa-
tion. The term “enrichment” can refer to increasing
concentration, i.e. EV counts relative to volume, or to
increasing EV counts/markers relative to another com-
ponent. The extent of separation or concentration can
be assessed by characterization, which will be detailed
in the next section.

How pure should an EV preparation be? The answer
depends on the experimental question and EV end use,
and often segregates by basic and clinical research.
Highly purified EVs are needed to attribute
a function or a biomarker to vesicles as compared
with other particles. Less pure EVs may be required
in other cases, such as when a biomarker is useful
without pre-enrichment of EVs, or in certain
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therapeutic situations where function is paramount,
not the definitive association of function with EVs. Of
note, some presumed contaminants may co-isolate
with EVs and may even contribute to EV function.
Therefore, the choice of separation and concentration
method must be informed by factors that may vary
between studies such that there is no one-size-fits-all
approach. More details on this issue (function and co-
isolated factors) are given in section 5c-d (p.24).

At the end of 2015, according to a worldwide ISEV
survey [6], differential ultracentrifugation was the most
commonly used primary EV separation and concentra-
tion technique, with various other techniques, such as
density gradients, precipitation, filtration, size exclu-
sion chromatography, and immunoisolation, used by
5–20% of respondents each. Relative success of these
different methods in terms of recovery and specificity
to EVs (as compared to non-vesicular components), or
to EV subtypes, has been addressed in a previous ISEV
Position Paper (see Figure 1 of [56]), and is summar-
ized in Table 1 below. To achieve better specificity of
EV or EV subtype separation, most researchers use one
or more additional techniques following the primary
step, such as washing in EV-free buffer, ultrafiltration,
application of density gradients (velocity or flotation),
or chromatography [6,99–102].

A variety of additional techniques or combinations
of techniques have been or are currently being devel-
oped, some of which may become more prominent in
the coming years if they achieve better recovery or
specificity than legacy methods (and this must be
demonstrated as in, e.g. [103]). Such methods include
tangential flow filtration and variations thereon
[21,104–110], field-flow fractionation (FFF) [111],
asymmetric flow field-flow fractionation (AFFF, A4F,
or AF4) [112–114], field-free viscoelastic flow [115],
alternating current electrophoretics [116,117], acoustics
[118], variations on size exclusion chromatography
(SEC) [100,119–121], ion exchange chromatography
[122–124], microfiltration [125], fluorescence-
activated sorting [126,127] (especially for larger EVs
including large apoptotic bodies [128] and large onco-
somes [129]), deterministic lateral displacement (DLD)
arrays [130], novel immunoisolation or other affinity
isolation technologies [131–138], including lipid affi-
nity [139], novel precipitation/combination techniques
[140–142], hydrostatic filtration dialysis [143], high-
throughput/high-pressure methods such as fast pro-
tein/high perfomance liquid chromatography (FPLC/
HPLC) that involve some form of chromatography
[144] and a wide variety of microfluidics devices that
harness one or more principles, including some of

those mentioned above [145–153]. Of course, combi-
nations of methods will continue to be used and may
outperform single-method approaches.

Table 1 summarizes the instructions given in
MISEV2014 for EV isolation (left column), and their
updates in MISEV2018 (right).

Consensus: 93% of MISEV2018 Survey respondents
agreed with the original categorization of techniques
by recovery and specificity in Section 3 and Table 1a;
numerous amendments have been made in response to
almost 90 comments. 98% agreed that reporting of all
methods details should be mandated to allow reprodu-
cibility. 97% agreed with the statement of caution on
proprietary kits.

EV characterization: how MISEV2014 evolves in
2018

EV characterization by multiple, complementary techni-
ques is important to assess the results of separation
methods and to establish the likelihood that biomarkers
or functions are associated with EVs and not other co-
isolated materials. The need for guidelines for character-
ization was emphasized by a consortium study led by
Hendrix and colleagues [161]. These authors found that
only about half of EV-related articles published within
a five-year time period included positive markers of
EVs, and only a small minority complemented positive
with negative markers to track co-isolated non-EV com-
ponents. ISEV recommends that each preparation of
EVs be 1) defined by quantitative measures of the source
of EVs (e.g. number of secreting cells, volume of bio-
fluid, mass of tissue); 2) characterized to the extent
possible to determine abundance of EVs (total particle
number and/or protein or lipid content); 3) tested for
presence of components associated with EV subtypes or
EVs generically, depending on the specificity one wishes
to achieve; and 4) tested for the presence of non-
vesicular, co-isolated components.

Table 2 summarizes the instructions given in
MISEV2014 for EV characterization, and their updates
in MISEV2018. These recommendations apply to EVs
from all sources, including non-mammalian and non-
eukaryotic cells and organisms.

Quantification of EVs

Since quantifying EVs themselves remains difficult (see
below), as minimal information, the total starting
volume of biofluid, or, for conditioned medium, num-
ber of cells or mass of tissue at the time of collecting,
should be indicated for each experimental use. If the
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Table 1. Considerations for EV separation/enrichment.
Major recommendations of MISEV2014. Validity and/or Update in 2018

a) There is no single optimal separation method, so choose based on the
downstream applications and scientific question.

Separation of non-vesicular entities from EVs is not fully achieved by
common EV isolation protocols, including centrifugation protocols or
commercial kits that claim EV or “‘exosome’” purification.

Still valid. Any newly developed or applied technique for EV isolation must
indicate to which of the 4 recovery/specificity options below it aims, and
provide characterization information (see Table 2) to show the extent of
success.

Different methods may be positioned on a recovery vs specificity grid,
ranging from low to high in each dimension. Note that the degree of
specificity of a particular method might vary depending on the type of
biofluid from which EVs are separated.

1) high recovery, low specificity: methods that recover the highest
amount of extracellular material, whatever its vesicular or non-vesicular
nature, i.e. whole or near-whole concentrated secretome. Examples of
protocols include but are not limited to: precipitation kits/polymer (PEG
or others), low molecular weight cutoff centrifugal filters with no further
separation step, and lengthy or very high speed ultracentrifugation
without previous, lower-speed steps.

2) intermediate recovery, intermediate specificity: methods that recover
mixed EVs along with some amount of free proteins, ribonucleoproteins,
and lipoproteins, depending on the matrix. Examples of protocols: size-
exclusion chromatography [154,155], high molecular weight centrifugal
filters [102], differential ultracentrifugation using intermediate time/
speed with or without wash, tangential flow filtration, and membrane-
affinity columns [155,156].

3) low recovery, high specificity: methods that recover a subtype (or
a few subtypes) of EVs with as few non-vesicular components as possible.
Subtypes of EVs can be separated by their size (e.g. by filtration, which
must be combined with another method such as SEC to eliminate non EV
components), their density upon either flotation or pelleting in a density
gradient, their surface protein, sugar, or lipid composition (immuno- or
other affinity isolation including flow cytometry for large particles), or
other biophysical properties such as surface charge. Note that the
designation of “low recovery” is relative to total EVs, and that high
recovery of specific subtypes may be possible using these techniques.

4) high recovery and high specificity, which may not be achievable as of
this writing.

b) Report all details of the method(s) for reproducibility Still valid. Methods reporting is now facilitated by the EV-TRACK
knowledgebase [161] (see also checklist, p.42). ISEV strongly recommends
that authors deposit experimental details with EV-TRACK.

Examples for classical techniques: centrifugation (g-force, rotor,
ultracentrifuge, adjusted k-factor, tube type, adaptor if relevant, time,
temperature, and brake)a; gradients (materials, densities, volumes, and
whether top-down (pelleting) or bottom-up (flotation) gradients were
done, further processing); chromatography (matrix nature, pore size,
volume; volume of loaded sample; volume and number of fractions, type
of the elution buffer; further processing of fractions); immunoaffinity
(antibody reference and amount per volume of fluid, particle number, or
protein amount, incubation time and temperature, matrix, recovery).

Necessary technical detail reporting may have to be established for newly
developed techniques.b-d

c) MISEV2018 additional recommendation:
Some protocols, including those associated with many commercial kits, may
result in EV populations bound to or mixed with introduced components
such as antibodies, beads, polymers, and more. These materials may
affect downstream profiling or functional studies and may also render the
EVs unusable for therapeutic applications. Particular care in performing
functional experiments must be taken (see Table 4), with controls
including procedural controls and possibly with further separation of
EVs.e,f

aFor ultracentrifugation, the k factor can be determined from the rotor type, tube/adapter, and centrifuge speed: the k factor represents the relative pelleting
efficiency of a given centrifuge rotor at maximum rotation speed; for runs with a rotational speed lower than the maximum rotor-speed, the k factor has
to be adjusted: kadj = k x (maximum rotor speed/actual rotor speed)2; we recommend that all possible parameters be reported [157,201]. See also a web
calculator based on a theoretical model of centrifugation and meant for conversion of protocol parameters between rotors [158].

bFor filtration techniques, one must take care to remove cells and other large membranous structures prior to ultrafiltration; otherwise, large structures may
disintegrate and re-form as small vesicles after passing through the filter [159]. Reference numbers of all filters should be specified, as filter type has been
found to influence recovery profoundly [102].

cSEC: the pore size of the matrix should be taken into account. For example, if the pore size excludes EVs > 70 nm in diameter, a population of vesicles may
be excluded.

dBoth size exclusion chromatography (SEC) and density gradients may co-isolate EVs and certain lipoproteins. Sequential techniques may be needed to
achieve separation [160,213].

eNote, however, continuing concerns about the specificity and effects on vesicles of certain precipitation techniques [103,278].
fThis Table does not address several important considerations that are beyond the scope of these guidelines, such as ease of use, cost, and potential for
Good Manufacturing Practice (GMP) production.
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Table 2. Steps of EV characterization.
Major recommendations of MISEV2014. Validity and/or Update in 2018

a) No recommendation on quantification New in MISEV2018:
As a rule, both the source of EVs and the EV preparation must be described quantitatively.
Source: Number of cultured cells (possibly an estimate, if adherent, as well as intervals of
harvest, where applicable), total starting volume of biofluid, or weight/volume/size of
tissue at the time of collection must be indicated for each experimental use. The
appropriate parameters will vary by source, however; e.g. for urine, volume alone may
not be meaningful, and other parameters, such as creatinine level, might be reported.

For the EV preparation, global quantification of EVs should be provided. There is no single
perfect quantification method. The most commonly used are total protein amount and
total particle number. Total lipid quantification could be also considered. None of these
components are exclusively associated to EVs, though: proteins are also soluble, particles
can be protein aggregates, and lipids are also present in lipoproteins. Thus, ratios of
proteins:particles, lipids:particles or lipids:proteins should be reported along with global
quantification estimates as a measure of purity and thus reliability of the quantity
measure.

b) General characterization.
Show:
i. At least three positive protein markers of EVs, including at
least one

-transmembrane/lipid-bound protein
-cytosolic protein
ii. At least one negative protein marker

Still valid but has evolved with increasing knowledge of the existence of different EV types.
Table 3 gives categories of proteins to consider for characterization and some examples. At
least one protein of each category 1 to 3 must be evaluated in any EV preparation (at
least each time pre-analytical and/or EV isolation conditions are modified). Analysis of
proteins of categories 4–5 is recommended for studies that focus on one or more EV
subtypes (e.g. small EVs < 200 nm, vs larger EVs: category 4), or that have identified
a functional soluble factor in EVs (category 5).

1. All EVs bear proteins associated with the membrane or outer membrane (prokaryotic
cells), or with plasma membrane and/or endosomes (eukaryotic cells). To demonstrate
the presence of a lipid bilayer in the material analysed, at least one transmembrane or
GPI-anchored extracellular protein must be shown. Examples include mammalian
proteins expressed (nearly) ubiquitously in all cell types (1a), and proteins specifically
expressed in some cells (1b).

2. In all EVs, the lipid bilayer encloses cytosolic material (eukaryotic cells, Gram-positive
bacteria) or periplasmic material (Gram-negative bacteria) from the secreting cell. To
demonstrate that the material analysed contains more than open cell fragments, at least
one cytosolic/periplasmic protein with lipid or membrane protein-binding ability must be
shown (2a). Other cytosolic proteins are more promiscuously associated with EVs and
other structures and thus should be only optionally used as EV markers (2b).

3. Purity controls include proteins found in most common co-isolated contaminants of EV
preparations: depending on the source of EVs, expected contaminants from category 3a
(lipoproteins and serum-derived materials), or 3b (urine), should be evaluated.

4. Proteins present in subcellular compartments other than the plasma membrane and
endosomes, which may be present in certain EV subtypes (eukaryotic cells).

5. Soluble extracellular proteins with functional activities (cytokines, growth factors,
extracellular matrix) may be detected in EVs: their mode of association to EVs (via
a specific or promiscuous receptor? Or internal?) should be determined. (See Table 2 part
d), below.

c) Characterization of single vesicles: use two different but
complementary techniques, for example:

i. electron or atomic force microscopy (and show both
close-up and wide-field)

ii. single particle analyzers (not electron microscope-based)

Still valid, but has evolved with a rapidly increasing number of techniques used to analyze
EVs.

i. Techniques providing images of single EVs at high resolution, such as electron microscopy
and related techniques, scanning-probe microscopy (SPM) including atomic-Force
microscopy (AFM), or super-resolution microscopy: these techniques are not
interchangeable in the information they provide. When reporting results, both close-up
and wide-field images must be provided.

ii. Single particle analysis techniques that estimate biophysical features of EVs from other
techniques than high-resolution images: size measured by resistive pulse sensing (electric
field displacement), or light scattering properties [nanoparticle tracking analysis (NTA),
high resolution flow cytometry, multi-angle light scattering coupled to asymmetric flow
field-flow fractionation (AF4)]; or fluorescence properties [fluorescence correlation
spectroscopy (FCS), high-resolution flow cytometry]. Chemical composition measured by
Raman spectroscopy.

Other techniques are being developed that may combine these two categories but have not
yet been widely used (see 4c p.20).

Whatever technique is used, all experimental details for both acquisition and analysis must
be reported.

Note that not all techniques are equally adapted to all EVs: large EVs (> 400 nm) and very
small EVs (< 50 nm) are not well quantified by all NTA; small EVs are not easy to detect
by most common flow cytometers. Some large EVs (and aggregates of small EVs) can be
imaged by light/fluorescence microscopy. EVs smaller than the refraction limit or
resolution of a microscope can still be detected by fluorescence, but no structural
information can be obtained, and a single EV cannot be distinguished from a small EV
cluster purely based on structural details.

d) MISEV2018 additional characterization. We now recommend that the topology of EV-
associated components be assessed, that is, whether a component is luminal or on/at the
surface of EVs, at least for those required for a given EV-associated function.
Topology may be particularly important for certain classes of biomolecules. Protease and
nuclease digestions, detergent permeabilization, and antibodies to outer epitopes
(should bind) or inner epitopes (should not bind) can be used to probe topology.
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latter is not possible, for instance due to culture con-
ditions (such as periodic collection in continuous bior-
eactor-based cultures [162]), number of cells at
initiation of culture, expected doubling time, and fre-
quency of collection must be indicated. For some bio-
logical fluids, like urine, the volume depends strongly
on pre-analytical conditions (especially intake of liquid
by the donor), thus additional means of normalization
should be considered, such as urinary creatinine, as
routinely done in the clinic for albumin [163].

EVs have a particulate structure and contain pro-
teins, lipids, nucleic acids, and other biomolecules.
Quantification of each of these components can be
used as a proxy for quantification of EVs, but none of
these values is necessarily perfectly correlated with EV
number.

Particle number can be measured by light scattering
technologies, such as nanoparticle tracking analysis
(NTA); by standard flow cytometry for larger EVs
[164–167] or high resolution flow cytometry for smal-
ler EVs [127,168–176]; by resistive pulse sensing (RPS)
for a wide range of sizes, depending on pore size [177];
by cryo-EM [174]; by a platform combining surface
plasmon resonance (SPR) with AFM [178]; or by
other techniques with similar capabilities. Accurate
quantitation may be possible only within a certain con-
centration and size range that varies by platform; where
possible, this range (or the minimum and maximum
diameter measured) should be reported along with
concentration. The method of volume determination
in flow cytometry should be reported and potential
swarming/coincidence artefacts controlled for [179];
a more detailed guideline article on specifics of flow
cytometry analysis of EVs is in preparation by mem-
bers of ISEV, ISCT and ISAC. Some devices for particle
quantification have the advantage of providing accurate
sizing information amongst a complex mixture of par-
ticles (see Table 2-c: single vesicle analysis). This is not
the case for dynamic light scattering (DLS), which is
accurate only for monodisperse particle populations
[180]. Particle counting by light scatter, RPS, and simi-
lar techniques typically results in overestimation of EV
counts since the techniques are not specific to EVs and
also register co-isolated particles including lipoproteins
and protein aggregates. Possibly, ongoing development
of fluorescence capabilities of NTA devices may ulti-
mately allow EV-specific measurement [181], although
assay sensitivity and the tendency of labeling antibodies
and lipid dyes to form particles pose substantial hur-
dles to such applications [127,182]. Additionally, par-
ticle counting technologies may be biased towards
certain particle size ranges (especially 50–150 nm
[183,184]) because of pore sizes (RPS), size of

calibrator used, sensitivity (for example, smaller parti-
cles scatter less light), and ability to cope with multi-
dispersity (DLS versus NTA) [185]. Finally, proprietary
software used for analysis of data from each device may
apply unknown selection and other processing of data,
resulting in differences in absolute values obtained by
different software or different versions of the same
software (see example in [183]).

Total protein amount can be measured by various
colorimetric assays [Bradford or micro-bicinchonic acid
(BCA)] or fluorimetric assays, or by global protein stain
on SDS-PAGE. The EV sample concentration must be
within the linear range of the reference curve. However,
protein quantification can result in overestimation due
to co-isolated protein contaminants (such as albumin
from culture medium or plasma/serum), especially when
the less specific methods of EV separation are used, or
conversely can prove not sensitive enough if highly
specific methods yield pure EVs. In addition, results
may vary depending on the use or not of detergent to
disrupt EVs and expose the entire protein content prior
to performing the assay; nature and concentration of the
detergent must be indicated.

Quantification of total lipids can be achieved, e.g.
by sulfophosphovanilin assay [186], by measuring
fluorescence of phospholipid dyes that fluoresce only
when incorporated into lipid bilayers, such as DiR
[187], or by total reflection Fourier-transform infrared
spectroscopy [188]. However, the latter requires spe-
cialized equipment, and the former two types of assays
may be insufficiently sensitive for small amount of
EVs. In addition, whether these techniques equally
detect all EVs independent of their specific lipid com-
position must still be established.

Quantification of total RNA can be performed by
global RNA assays including profiles obtained by capil-
lary electrophoresis instruments (see recommendations
in Table 1 of [56]). Such measurements are difficult to
recommend at this time for EV quantification or purity
assays, though, since exRNAs associate in abundance
with other circulating and potentially co-separating
entities: chiefly ribonucleoproteins [189,190], but also
a range of particles including exomeres [112] and lipo-
proteins [191]. RNA measurements remain, however,
an important parameter to report in studies of extra-
cellular RNA.

Quantification of specific molecules. Other methods
of EV quantification, like ELISA [192] bead-based flow
cytometry [193,194], aptamer- and carbon nanotube-
based colorimetric assays [195], and SPR on surfaces
such as antibody-coated nanorods [178,196,197], can
be used to quantify the amount of one or more specific
molecules in the EV preparation. These are generally
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proteins (usually the tetraspanins CD9, CD63 and/or
CD81, but sometimes tumor-specific proteins or other
molecules such as lipids [139]) and can be used to
estimate the amount of EVs containing this particular
component, rather than total EVs. These methods pro-
vide additional information to the above methods and
are in line with characterization recommended in part
4b (p.16).

Single and multiple measures and implications for
purity. Quantification methods are the most informa-
tive for EVs recovered by separation methods with the
highest expected specificity (Table 1a-category 3), and
for these preparations, one quantification method may
suffice; in contrast, more than one quantification
should be used for EVs recovered from low-specificity
methods. Importantly, ratios of the different quantifi-
cation methods may provide useful measures of purity.
For example, protein:particle ratio [198,199], protein:
lipid ratio [186,188,200] and RNA:particle [201] have
been proposed as possible purity metrics, although
their applicability across protein, lipid, RNA and par-
ticle quantification methods remains to be established.
Techniques that measure multiple parameters at once,
such as colloidal nanoplasmonic assays or infrared (IR)
spectroscopy [188,199] may be good optional methods,
despite the need for specific sensors or other
equipment.

Absolute EV sizing and counting methods are
currently imperfect and will require further improve-
ment, aided by appropriate EV reference standards
that are now in development [202]. Nevertheless,
current methods can provide a reasonable indication
of particles per volume and particle size distributions
that are best interpreted when combined with gen-
eral (Table 2b) and single-particle (Table 2c)
characterization.

Characterization of EVs by their protein composition
Selection of proteins for use as EV markers. Since
MISEV2014, the growing recognition of the existence
of many different types of EVs, of different sizes and
cellular origins, has led to publication of several studies
comparing the protein composition of at least two sub-
types of EVs isolated from the same secreting cells.
Some studies compared EVs recovered by medium
speed centrifugation (called large oncosomes [203], ecto-
somes [204], microvesicles [205], cell debris [206], or
large [207] or medium [208] EVs), with those recovered
by 100,000 x g ultracentrifugation (called exosomes in
the first four studies, small EVs in the last two), and
several of these applied additional separation in density
gradients. Another study used differential filtration to

separate large microvesicles retained by 0.65 micron
filters, and small “exosomes” passing through 0.1
micron filters [209]. Others further separated the high
speed pellet to identify subpopulations of small EVs
bearing different surface markers such as A33 antigen
(GPA33) vs EPCAM [19], lipid moieties binding
Cholera Toxin, Annexin-V or Shiga Toxin [139], or
tetraspanins CD63, CD9, and/or CD81 [208]. EVs
were also separated by floating at different densities
within a sucrose gradient (defined as high density “HD-
exo” vs low density “LD-exo”) [210] or eluting at differ-
ent time points in asymmetric flow field-flow fractiona-
tion (AF4) (small “exo-S” vs large “exo-L”) [112]. These
studies together provide a rich source of potential EV
subtype-specific markers. However, since they were per-
formed with different separation approaches and with
different cellular sources of EVs, it is still not possible to
propose specific and universal markers of one or the
other type of EVs, let alone of MVB-derived “exosomes”
as compared with other small EVs.

Consequently, MISEV2018 does not propose mole-
cular markers that could characterize specifically each
EV subtype. Of note, although the ISEV board tried in
MISEV2014 to propose general rules applying to all
EVs, some suggestions of MISEV2014 were still biased
by an “exosome–oriented” view of EVs. Specifically,
Table 1 of MISEV2014 listed, as primary components
to analyze in EVs, 2 categories of proteins present or
enriched in EVs/exosomes (membrane bound and
cytosolic proteins), plus another global category of
proteins « not expected in EVs/exosomes » (such as
mitochondria, Golgi, or nuclear proteins), and a last
category of « contaminants ». In this updated version,
MISEV2018, reference to exosomes and the proteins
expected or not in them (the previously called “nega-
tive controls” of “exosome” preparations) have been
deleted, reflecting an evolving understanding of the
subtypes of EVs and their associations with other enti-
ties. Incorporation of any given component of the
cytoplasm or other cellular compartment into an EV
is determined by 1) proximity to the budding mem-
brane and size of the EV (passive loading) and 2)
specific association with the membrane and any
energy-dependent processes (active loading). There
are of course interactions between these two domains.
Leaving aside the question of active loading, the larger
the EV, the more likely any randomly selected mole-
cular or organellar entity in the cell is to be incorpo-
rated. Therefore, Golgi, endoplasmic reticulum,
mitochondrial, or nuclear components may be
excluded from small EVs (< 200 nm) that are presum-
ably formed distant to these locations, or at least
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strongly depleted relative to the cell (although we can-
not exclude that particular components of such com-
partments may end up in small EVs, especially in
pathologic conditions that could affect incorporation).
However, such proteins may be present in larger EVs,
and even more so in a very large EV, ultimately the
large oncosome [211], which may be as large as some
cells and contain by definition any and all components
except for a whole, functional nucleus. A single nega-
tive control for such large EVs may thus be elusive.

Table 3 highlights three categories of markers that
must be analysed in all bulk EV preparations to
demonstrate the presence of EVs (Categories 1 and 2)
and assess their purity from common contaminants
(Category 3), but no universal “negative controls” rele-
vant to a particular subtype of EVs are suggested. The
three main categories are:

Category 1: Transmembrane or GPI-anchored proteins
localized at the external membrane of pro-
karyotic cells, and plasma membrane and/
or endosomes of eukaryotic cells represent
hallmarks of any type of EVs: their pre-
sence demonstrates the lipid-bilayer struc-
ture specific of EVs, whether they bud
directly off the plasma membrane or after
transit through the endosomal pathway;

Category 2: Presence of cytosolic proteins (eukaryotic
cells and Gram-positive bacteria) or peri-
plasmic proteins (Gram-negative bac-
teria) demonstrates that the analysed
preparation displays the structure of
lipid bilayers enclosing intracellular mate-
rial, as expected for any EV. Proteins pre-
sumably actively incorporated into EVs
are those with ability to bind to mem-
branes or to cytosolic sequences of trans-
membrane proteins. Others, like cytosolic
enzymes or cytoskeletal proteins are more
promiscuous EV components;

Category 3: Some proteins are major constituents of
non-EV structures often co-isolated with
EVs. Evaluation of their presence helps to
assess the degree of purity of the EV pre-
paration. In biofluids like blood plasma,
EVs have been reported to co-isolate with
other particles, including lipoproteins
[212] and a variety of non-integral pro-
teins, such as albumin or soluble acetyl-
cholinesterase. We therefore propose
apolipoproteins A1/2 and B (APOA1/2,
APOB), and albumin (ALB) as the best
negative markers to date [213] for

plasma/serum EVs, and EVs from cells
cultured in the presence of bovine
serum, or liver cells that secrete lipopro-
teins, although it cannot be excluded that
a fraction of such markers may be speci-
fically associated with some EVs [214]. As
another example, in urine, Tamm-
Horsfall protein (uromodulin/UMOD)
forms aggregates that co-precipitate with
EVs unless the fluid is chemically treated
[215]. Overall, however, since we cannot
propose a threshold of abundance of these
proteins in EV preparations below which
acceptable purity is reached, we stress that
it may be more appropriate to assay and
report depletion than to expect a binary
presence/absence of proposed negative
markers.

Category 4: An additional category 4) of proteins should
be evaluated if authors want to claim speci-
ficity of their study to the small EV subtype-
(s): Proteins localized in/on intracellular
compartments of eukaryotic secreting cells
other than the plasma membrane and endo-
somes (i.e. components of the nucleus,
mitochondria, endoplasmic reticulum,
Golgi apparatus, autophagosomes, peroxi-
somes) are found in some types of EVs,
but a priori not enriched in the smaller
EVs (approximately < 200 nm diameter) of
plasma membrane or endosomal origin.

Category 5: Finally, category 5) covers secreted or lumi-
nal proteins that can associate with EVs by
binding to specific (e.g. growth factor
receptors) or to promiscuous (e.g. proteo-
glycan, lipid) receptors on the EV surface:
their identification in EV preparations
should be accompanied by exploration of
the cognate EV-associated receptor(s).

Methods to assess presence of proteins in EV prepara-
tions. Several methods can be used to quantify pro-
teins in or on EVs. Western blotting is the most
commonly used, and it should be performed by loading
side-by-side EV samples and source material lysates
either in specified protein amount or in cell-
equivalent amounts to determine if the analyzed pro-
teins are enriched in EVs as compared with their pro-
ducing cells. This comparison, however, can be easily
performed only for analysis of EVs from cell culture
conditioned medium; it is more difficult for biofluids
(in which EVs may originate from cells in the fluid, but
also from cells delimiting the fluid canals, and thus are
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difficult to attribute in bulk to any given cell type).
Flow cytometry of EVs decorating beads or of bulk
EV populations (i.e. not designed to analyse single
EVs) can be used, but with care to use appropriate
negative controls (antibodies alone, isotype controls,
etc) [48,220]. Numerous multiplexing approaches
have been developed to analyse simultaneously the
presence of a pre-designated set of surface protein
markers on EVs. For instance, one platform uses flow
cytometry after capture on an array of 37 beads, each
bearing a specific antibody [100,194]. Other
approaches use fluorescence scanning [221] or surface
plasmon resonance [222,223] to quantify EV binding to
a surface coated with antibodies to different antigens.
These methods are population-level, not single-EV
techniques, since the final result is an arbitrary unit
of signal for a given protein marker in the global EV
population. Finally, mass spectrometry has become
increasingly economical and accessible for many

laboratories, allowing fingerprint-type assessment of
many proteins at once. For an exhaustive review on
the currently available methods of EV analysis, see
[224]. Undoubtedly, new techniques and devices will
become available, including commercially, in the near
term. Besides the potential of such devices for diagnos-
tic purposes based on amount and type of secreted
EVs, one of the challenges associated with the use of
such devices is whether they might allow sufficient
quantities of specific EVs to be purified so that cargo
(RNAs, proteins) content can be analysed on
a profiling level.

Non-protein components as markers of EVs. Although
proteins are emphasized in the literature and here,
phospholipids present in lipid bilayers are also poten-
tial positive controls for the presence of EVs
[225,226], albeit non-specific as other particles (lipo-
proteins) may also contain these. As an example,
albeit one that may not be exposed on all EVs, outer
leaflet phosphatidylserine (PS) can be evidenced
indirectly by binding of fluorescently-labeled PS-
binding proteins, such as Annexin V [139,167] or
the C1C2 domain of lactadherin/MFGE8 [186,227].
Glycosphingolipids are similarly evidenced by binding
of GM1 ganglioside [139,228]. Other lipids including
cholesterol, sphingomyelin, ceramide, and phosphati-
dyl-choline/ethanolamine/inositol can be detected by
a variety of methods [225] including Raman spectro-
scopy, which was recently used to analyze lipids in
dried EVs [229]. However, in which ratio cholesterol,
sphingomyelin, ceramide, and phosphatidyl-choline
/ethanolamine/inositol are in EVs, and how this dif-
fers from ratios found in lipoproteins is not yet estab-
lished: additional comparative lipidomic studies of
separated EVs and liproprotein subtypes may be
informative.

Alternatively, dyes that are activated by intra-
cellular components can be used to label EVs.
Calcein and CFSE are examples of cell permeant,
non-fluorescent pro-dyes that are cleaved by intra-
cytoplasmic enzymes, resulting in an impermeant
fluorescent molecule; labelling therefore theoreti-
cally differentiates intact EVs from linearized mem-
brane fragments, provided that the required
enzymes are present in EVs [230,231]. Other
tools, like a recently reported protein- and lipid-
binding dye, di-8-ANEPPS [231], may be worth
evaluating for sensitivity and specificity.
Additionally, appropriate negative controls are
necessary in all studies, such as dye only and dye
plus EV-depleted matrix.

Text Box 1. Example of a change from MISEV2014 as a paradigm for
considering negative markers.

Argonaute proteins, chiefly AGO2, the most abundant family member in
mammals, have been previously proposed as negativemarkers of EVs. In
blood plasma and perhaps other fluids, most extracellular AGO is indeed
found outside of EVs [189,190,216]. However, the canonical view of
biogenesis of microRNAs (miRNAs) and their subsequent protection
from degradation depends on AGO proteins. According to this
reasoning, if a mature miRNA is detected, whether in cells, in EVs, or
elsewhere, it is most likely protected by AGO (although other
associations have been reported [56]). Limits of detection of proteins
versus amplified nucleic acids may have contributed to the
interpretation that miRNAs are present in EVs without AGO protein. It is
in any case now established that AGO can be found in mammalian
[217,218] and non-mammalian [219] EVs, not just outside EVs.

Text Box 2. Example of a possible change from MISEV2018 in the
future as markers of non-EV co-isolated components.

The Lyden group recently reported that lipidic structures called
“exomeres” contain lipids and a limited set of membrane-bound
proteins, but do not feature a lipid bilayer and thus do not qualify as
EVs. Exomeres were found to co-isolate with small EVs recovered from
many cultured cell lines [112] but could be separated from EVs by AF4
(which unfortunately is not implementable in some laboratories). It
may be necessary to evaluate this potential contaminant in all EV
preparations. Proteomic analyses of exomeres identified various
proteins in Table 3-category 2, above: heat shock proteins (HSPA8,
HSPA1A, HSP90AB1), actin (ACT*), tubulin (TUB*), and GAPDH. Such
proteins thus probably do not qualify as EV-specific components. In
addition, a few proteins were identified exclusively in exomeres:
hemoglobin (HBA1/A2), IDH1, MAT1A, transmembrane FAT4
(protocadherin, transmembrane plasma membrane), and EXT1/2
(exostosin, transmembrane, Golgi). Although this exhaustive study was
performed with several cell lines, suggesting that the listed proteins
are good candidates as specific markers of exomeres co-isolated with
EVs, these results still have to be confirmed by other groups to reach
validation and inclusion in the next update of the MISEV guidelines.
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Concerning nucleic acids, both DNA and RNA
have been detected in EVs. RNA in EV preparations
can be detected by dyes [232], although some dyes
may also detect non-EV-associated RNA. It is possi-
ble that some nucleic acid species could serve as
negative or positive markers of some EVs. For exam-
ple, strictly nuclear RNAs might be identified as
negative markers in the future, while RNA associated
only with cytoplasmic complexes (e.g. ribosomal
RNAs or mitochondrial DNA) [233,234] may be
more likely to be present in certain EVs. However,
several nuclear RNAs have been found in EVs, and
a variety of data have been presented on specific
versus non-specific incorporation of RNAs into EVs
or subtypes of EVs [56,217,235–241]. More research
is thus needed before specific recommendations can
be made for using nucleic acids as specific markers
of EVs or EV subtypes.

Single vesicle analysis

Quantification and global protein composition apply to
bulk EV preparations. However, it is important to
provide some information on the individual EVs pre-
sent in such bulk preparations. Two different
approaches provide different types of information:

i. Techniques allowing visualization of single EVs
at high resolution may provide information on
both the structure and the composition of EVs,
when combined with antibody-mediated detec-
tion of EV components. However, they may be
difficult to exploit in a quantitative manner, with
analysis of sufficient number of EVs to reach
statistical power.

EVs with diameter larger than the diffraction
limit of light (~ 200 nm) can potentially be visua-
lized as single EVs by regular fluorescence micro-
scopy and regular flow cytometry. For EVs smaller
than this limit, confocal microscopy can detect
fluorescent dots, but these dots can correspond
either to very bright vesicles with diameter smaller
than 200 nm [242], or to clusters of small dim
vesicles, without the possibility to discriminate
between the two [243].

All EVs can be analyzed by: electron microscopy or
by other imaging techniques: SEM [244], TEM by
contrasting and embedding in a mixture of uranyl
compounds and methylcellulose to maintain the
bilayered morphology, cryo-EM [174,245,246]; scan-
ning-probe microscopy (SPM) including atomic force
microscopy (AFM) [247]; and super-resolution

microscopy [248,249]. Note that these various techni-
ques are not necessarily interchangeable or capable of
providing images of comparable quality. For example,
cryo-EM clearly shows the lipid-bilayer, preserves EV
size better than the dehydrating conditions used to fix
samples for TEM, and may be more quantitative, as all
particles in a given volume can be imaged, not just
those that adhere to a surface (the grid).

ii. Single particle analysis techniques that do not pro-
vide high-resolution images but calculate biophysical
parameters of single EVs can be used to quantify
a large number of EVs with a higher statistical power
than many single-EV techniques. For instance, size
can be inferred from particle displacement pattern
by nanoparticle tracking analysis [184,185,250]; light
scattering and/or fluorescence detection in high
resolution flow cytometry [251–255]; multi-angle
light scattering combined with asymmetric flow
field-flow fractionation (AF4-MALS) [256]; displa-
cement of an electrical field in tunable resistive pulse
sensing-based devices; or fluorescence correlation
spectroscopy (FCS) [257–259]. Chemical composi-
tion can be evaluated by Raman tweezers micro-
scopy [251–253].

Other recently developed technologies aim to
combine the advantages of imaging with analysis
of large numbers of events. They are, however,
less commonly used in the EV field and require
further validation in multiple laboratories. For
instance, an imaging flow cytometer that captures
images of single cells going through a fluidic chan-
nel can be used, with a carefully designed set of
controls and settings, to image EVs of all sizes after
labeling with fluorescent lipids, proteins, or antibo-
dies [260,261]. Another recently designed device
involves capture of biotinylated EVs on
a streptavidin surface, followed by successive
rounds of staining with fluorescent antibodies, ima-
ging, and quenching followed by additional rounds
of labeling [262]. Another example uses single-
particle interferometric reflectance imaging sensing
of EVs captured on antibody-coated chips
[263,264], which can be accompanied by fluores-
cence measurements.

Whatever technique is used, all experimental details
must be reported. These include the brand and version
of the instrument and the software, the settings used
for acquisition (diluent buffer, camera, flow rate,
threshold…) and, for analysis, the precise process for
EM or fluorescence microscopy and how the imaged
areas were selected, as well as controls and calibration
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information where relevant. For flow cytometry, an
ISTH working group has recently issued recommenda-
tions [265]. Given the wide range of techniques and
platforms available, many of which remain under
development for EV applications, MISEV2018 cannot
yet give precise protocol recommendations.

New recommendation: determine the topology of
EV-associated components
Importantly, the luminal versus surface topology of var-
ious EV-associated components, including nucleic acids,
proteins, glycans, etc, is not entirely strictly determined.
Theoretically, components localized in the cytosol of EV-
secreting cells should be inside EVs, and hence protected
from mild degradation by proteases or nucleases. While
this protection is usually observed, some studies have
unexpectedly found proteins [266], RNAs [267], and
DNA [41] on the EV surface and sensitive to digestion.
It is not yet clear whether this unexpected topology is due
to debris from dead or dying cells, or is instead the
outcome of as-yet unknown mechanisms of transport of
intracellular compartments across membranes that could
occur in some physio- or pathological conditions.
Certainly, even a small degree of contamination with
intracellular material (with the reverse topology to EVs)
would complicate interpretation.

Topology may also be important for function.
A luminal active component would require mem-
brane fusion or two membrane transport events to
achieve function in a recipient cell, whereas if it is
exposed at the surface of the EV, it may affect target
cells without EV-cell fusion. As a result, we advise
that the actual topology of putative active compo-
nents be determined by performing mild digestions,
permeabilizations, or antibody studies. To give an
example, one might adopt and adapt methods devel-
oped to assess protein insertion within the endoplas-
mic reticulum [268]. Various protocols have also
already been published in the EV community
[56,217,242,266,269,270].

Example of a biochemical approach for assessing
surface exposure of EV components (see for instance
use in [266,270]):

for a given preparation of EVs, prepare four samples:

(1) aliquot 1 is untreated;
(2) aliquot 2 is treated with a degrading enzyme

alone, which should degrade only surface-
exposed components (e.g. proteins);

(3) aliquot 3 is treated with enzyme and detergent
(such as Triton X-100), which will ensure degra-
dation of both surface and internal components
(to verify that enzymatic treatment worked).

Note that detergents may also enhance enzy-
matic digestion of certain molecules indepen-
dently of permeabilization of membranes; an
alternative to detergent is saponin, which per-
meabilizes membranes.)

(4) aliquot 4 is treated with detergent alone, to
make sure that detergent does not affect the
downstream analysis.

For each sample, the cargo of interest is then ana-
lyzed (after careful neutralization of the enzyme) by
an appropriate method (SDS-PAGE, RT-PCR,
PCR…). Extinction of the signal within the enzyme-
treated, detergent-untreated aliquot indicates surface
exposure of the cargo.

For RNA and DNA analysis, RNAse or DNAse must
be used together with proteinase to allow access of
nucleases to protein-shielded nucleic acids.

Alternatively, the topology may be determined using
flow cytometry and fluorescence microscopy with anti-
bodies directed towards either external or cytoplasmic
epitopes on EV membranes. Single vesicle characteriza-
tion by EM or AFM coupled with immunolabeling could
not only provide validation of surface-accessible targets
or internal targets (with permeabilization), but also aid in
differentiating differences in topology among EVs of
different sizes [247].

Consensus: 97% of MISEV2018 Survey respondents
endorsed the structure of the characterization section.
The original version of Table 3 included more proposed
markers of EV subtypes. However, although the
responses ranged from 69% to 93% agreement on dis-
creet categories of markers, some concern was commu-
nicated about the universality of subtype-specific
markers based on the existing evidence. As a result,
the Table was thoroughly revised to focus on classes of
markers that can be applied to all EVs, not just those
from certain cell types or organisms. These revisions
further establish the applicability of MISEV2018 to all
EVs and EV sources.

An original section on negative controls received 79%
agreement and 56 comments; as a result, the approach to
negative controls was substantially amended.

95% of respondents agreed that the current focus on
protein markers is justified; however, lipids are now
included. Although 13 respondents suggested that RNA
markers could be used as generic or subtype EV mar-
kers, and several mentioned post-translational modifi-
cations, these comments were supported with limited or
(usually) no references. Based on the limited endorse-
ment of RNA markers and ongoing uncertainty about
enrichment of RNAs in EVs, no specific recommenda-
tions are made by MISEV2018. Instead, further research
is expected and encouraged.

92% agreed with the topology recommendation (4c).
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Functional studies: how MISEV2014 evolves in
2018

Table 4 summarizes the previous and updated recom-
mendations on functional analysis of EVs. More detailed
justification for these recommendations and proposed
protocols follows the Table. The goals of these recom-
mendations are to avoid over-interpretations or classical
artefacts when analyzing functions of EVs. It is important
to consider several issues when attributing a functional
activity to EVs in general, or an EV subtype in particular.
We describe here the controls and processes that should
be included in all functional studies, unless limited
amounts make it impossible to perform them. For clinical
applications, for instance, after a first step of pre-clinical
validation following these recommendations, systematic
analysis may not be possible (see previous Position Paper
on clinical applications) [95].

Determine the specific versus common functions of
different types of EVs

An important point to keep in mind is that, when
analyzing exclusively the function of a single type of
EV (for instance either small EVs or large EVs that
have been called ectosomes, microvesicles or micropar-
ticles in different studies), one may miss the most
active EV subtype for the particular function studied.
Even if a function is found in the concentrated small
EV preparation, it could also be present, and even
possibly more concentrated, in other EV subtypes
that had been eliminated during the small EV isolation
process: keeping large EVs (e.g. “microvesicles”) and
comparing their activity to that of small EVs should be

a first step in all functional studies. In addition, when
a function found in EVs may be due to soluble mole-
cules that may or may not associate specifically with
EVs, one must consider the possibility that the EV-
associated function is only a minor fraction of the non-
EV-bound soluble protein. Comparing quantitatively
the effects of EV fraction(s), EV-depleted fraction(s),
and also the unfractionated initial fluid, will identify
the relative contributions of each to total activity.

Ideally, all functional studies of EVs recovered from
any source (biofluid, conditioned medium…) could
start by a crude separation of broad categories of EVs
(e.g. large versus small EVs versus EV-depleted frac-
tion, separated by successive centrifugation, filtration,
or chromatography). Importantly, to ascribe function
to different categories of EVs, each fraction should be
retained for side-by-side activity analysis. However,
authors who wish to analyse the function of only one
subtype of EVs can justify this choice by presenting

Table 4. EV-associated and EV-excluded biological activities.
Major recommendations of MISEV2014. Validity and/or Update in 2018

a) Dose–response studies Still valid
In addition: quantitative comparison of the activity of conditioned medium
or biofluid 1) before, 2) after elimination of EVs, and 3) the EVs
themselves, keeping in mind that the EV fraction may include co-isolated
/contaminating materials.

Additional suggested control: quantitative comparison of the activity of the
targeted versus the “discarded” EV subtypes (see part 1 below)

b) Negative or background controls.
For conditioned medium, negative control = complete medium that has not
been conditioned by cells, but still processed in the same way as
conditioned medium

Still valid.
For biofluids, negative controls of disease-associated functions = fluids from
healthy, untreated or otherwise matched donors

c) Controls to assess influence of soluble or non-EV macromolecular
components

c-i.) Density gradients or other rigorous separation method to show activity
is intrinsic to EVs, not just associated

or c-ii.) EV depletion to remove activity
or c-iii.) EV/cell labelling (e.g. fluorescent labelling, with careful
interpretation)

Still valid.
Increasingly, it is possible to separate EVs from non-EV components by
multiple methods, e.g. density gradients and size exclusion
chromatography.

It is recommended that functional assays be performed after rigorous
separations, comparing EV and non-EV fractions to identify what
proportion of activity is associated with each fraction (in case it is not
EVs). If the activity is primarily associated with EVs, depleting the EVs
should also deplete the activity.

The refined separation must be performed at least for a set of biological
replicates, but not necessarily systematically afterwards.

Text Box 3.

As an aside, although we do not go into great detail on this point,
many functional studies presume or investigate EV uptake. Time-
courses and environmental determinants of EV uptake have been
studied for some time [272-274], but challenges exist [275]. Detection
within the cell of signal from an EV-labeling dye or other entity does
not necessarily mean that the EV or its cargo has been internalized.
Some labeling substances are very long-lived, can exist separate from
the presumably labeled entity, and can form EV-mimicking particles
that are difficult to separate from EVs. Another potential artifact is that
labeling EVs with lipophilic or surface-coating fluorophores may
modify physicochemical characteristics of EVs, thus altering detection
mode and/or uptake by target cells. Although we cannot yet make
firm recommendations, we urge researchers to be aware of these
issues and to consider that each specific EV-donor/EV-recipient pair
may behave in a different manner.
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practical or theoretical reasons for selecting specifically
this subtype for the particular experimental purpose,
and further proceed with functional analyses.

Before performing functional assays, it is advisable
to determine whether EVs are detected in the different
fractions, in terms of total proteins, or number of
particles, or ratio of total nucleic acids (RNA, DNA),
or total lipids to particles (i.e. substance x-to-particle
ratios): if none of these EV-associated components are
detectable, the “empty” fractions may be discarded for
further functional tests, once a preliminary experiment
has shown lack of activity. However, any change of
conditions in generation of the biofluid from which
EVs are isolated (i.e. different culture conditions or
treatment for the cells, different types of patients for
biofluids) should be followed by re-analysis of all EV
categories.

Example of an approach to compare activity of
broad subcategories of EVs after separation by dif-
ferential centrifugation (see example of use in [220])

From a given volume of conditioned medium:

several low speed centrifugations, transferring
supernatant into a new tube each time. The pellet
contains cells.

supernatant: 1x centrifugation at medium speed, to
collect large EVs (if mostly live cells), large apoptotic
bodies, etc., with the pellet largely devoid of cells

supernatant: 1x centrifugation at intermediate speed
to collect a pellet enriched in medium size EVs and/or
aggregates of small EVs (to be checked by EM)

supernatant: 1x centrifugation at high speed to col-
lect a pellet enriched in small EVs.

Each pellet is resuspended once in buffer/medium
and re-centrifuged at the same speed (= washed) before
resuspension in a given volume of buffer/medium.

How to normalize amount of EVs used for
comparative functional studies
The most appropriate normalization strategy to com-
pare quantitatively the functions of different EVs will
depend on the scientific question. One can choose to
normalize by either characteristics of the isolated EVs,
or by the source material, or by co-isolated standards.
Characteristics of isolated EVs would include particle
counts, total amount of a biomolecule type in the EV
sample (e.g. proteins, nucleic acids, or lipids), and con-
tent or activity of specific EV-associated molecules.
Source characteristics include the amount of matrix
from which the EVs were obtained (initial volume of
biofluid, initial mass of tissue, initial number of secreting
cells, time of conditioning per cell, etc). Co-isolated
standards would be traceable materials added into the

matrix prior to separation [202]. Multiple normalization
strategies can be pursued [120], and, as emphasized
elsewhere, dose-response studies are recommended
regardless of normalization method. Unfortunately,
there is no clear recommendation that can be made at
this point on which normalization strategy is best.
Instead, the choice of normalization must be reported
and justified, and relevant details of alternative strategies
should be provided. For example, when studying EVs
obtained from some biofluids, e.g. blood derivatives,
normalization by volume may be appropriate. For
other fluids, such as lavage fluids and urine, initial
volume is not easily compared between donors, so
another strategy might be more appropriate. As another
example, for in vitro studies, normalizing by levels of an
EV component (proteins, lipids, RNA), or by particle
number may be appropriate, but the rationale should be
provided, and information on the number of secreting
cells should also be recorded and reported.

The ISEV survey comments on this section evidenced
broad disagreement about normalization strategy, parti-
cularly on the relative merits of protein, nucleic acid,
and lipid quantitation. Additional studies of normal-
ization strategy should thus be encouraged.

Demonstrate that the activity is observed in the
absence of direct cell-cell contact
Theoretically, an EV-associated function, like a soluble
cytokine-dependent function, should be observed
between two cells that are not in direct contact with
each other. Therefore, it should be obtained when the
EV-donor and an EV-recipient cell are cultured in vitro
at a distance, through transwell co-culture systems or
more sophisticated microfluidics-based culture devices,
or by incubating the recipient cells with medium con-
ditioned by the donor cells.

However, the physiological relevance of optimal
conditions of these co-cultures, in terms of respective
numbers of EV-donor and – recipient cells, cannot be
strictly determined. If such assays yield positive results,
they prove that transfer of a signal occurs in a cell
contact-independent manner, in which case the next
necessary step (next section p24), is to distinguish EVs
from soluble components. Lack of positive results at
this step would suggest that cell-cell-contact is neces-
sary for the exchange of signal, but it could still occur
by exchange of membrane–enclosed signals by transfer
of plasma membrane-derived vesicles (like trogocyto-
sis), or localized release of multivesicular body-derived
vesicles at the cell-cell-contact (e.g. an immune
synapse). Thus, a negative result argues against signal-
ing at a distance but does not conclusively disprove
local involvement of EVs.
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Demonstrate that the activity is predominantly
associated with EVs rather than with soluble
mediators
Typically, an EV-associated activity is explored by 1)
separation and concentration of EVs from a biofluid or
cell culture media, 2) application of EVs to a recipient
cell or organism, and 3) observation of a readout phe-
notype. However, to convincingly argue that a detected
readout/function is EV-borne, it must be determined
that the activity is specifically enriched in EVs (possibly
with non-EV components), and not instead due to low
amounts of a highly active soluble molecule remaining
non-specifically in the EV preparation. This point is
particularly important when the proposed or suspected
active molecule on EVs is a cytokine/growth factor/
metabolite usually described as secreted in a soluble
form. For this step, one must compare quantitatively
the activity present in/on the EVs versus in the remain-
ing EV-depleted biofluid, using the same amounts of
materials in terms of initial volume of biofluid. When
evaluating the relative importance of EVs and soluble
mediators, it may be worth remembering that EVs and
soluble mediators may have combinatorial (e.g. syner-
gistic) effects on cells [275,276].

Example of an approach to determine the respec-
tive contribution of EV-bound and soluble non-EV-
associated factors (see example of use in [200]):

from a given volume of biofluid from which cells
have been completely eliminated

split supernatant into 2 equal parts;
keep one at 4°C while processing the other with the

preferred protocol allowing extensive concentration of
EVs, with separation from non-EV components, but
without a need to separate EV subtypes (see Table 1).

Make sure to recover the biofluid from which EVs
have been separated.

Compare activity of the total biofluid, the EV-
containing pellet and the EV-depleted biofluid, using
material coming from the same initial volume of
biofluid.

If the unprocessed supernatant must be concen-
trated to display activity, the supernatant after centri-
fugation must be concentrated in the same way, and
the pellet can be resuspended in the same volume of
concentrated fresh medium as concentrated superna-
tant, before performing the functional assay.

Demonstrate the specific association of the activity
with EVs rather than with co-isolated components
Especially when dealing with concentrated prepara-
tions enriched in small EVs, one must keep in mind
that such preparations potentially contain non-EV

components (ribonucleoprotein aggregates, lipopro-
teins, exomeres, etc.). The proportion of such co-
isolated components differs tremendously with the
type of protocol used to separate EVs, with some (like
polymer-based concentration) displaying particularly
abundant contaminants, and also remnants of the pre-
cipitating agent that can affect cell function [277,278].
In the case of cells infected experimentally or uninten-
tionally (e.g. mycoplasma) with microbes, functional
microbial factors may also be co-isolated with EVs.
Therefore, the functional activity of an EV preparation
may be borne by EVs, or by the additional compo-
nents, or by a combination of both. One must deter-
mine which of these three possibilities is the case. If
small amounts of working materials do not make it
possible to perform these additional investigations, the
authors can explain this situation and interpret their
data as activity present in EV-enriched preparations,
rather than EV-specific activity.

Examples of protocols to demonstrate specific
association of the activity with EVs or a given EV
subtype:

From a concentrated EV preparation obtained by
(ultra)centrifugation, or by centrifugal concentrator:

Option 1) separate contaminants by upward flota-
tion into a density gradient, where only lipid-enclosed
structures float upward in the tube: analyze separately
activity of each fraction of the gradient in the func-
tional assay; note that density gradient medium may
have to be removed, because it can interfere with some
functional assays. Alternatively, a control should be
performed in which the chemical used for the density
gradient is mixed with unseparated EVs.

Option 2) separate soluble contaminants from EVs
by SEC column, where EVs elute in the first fractions,
whereas proteins and ribonucleoproteins and some
lipoproteins are eluted later: analyze separately activity
of each fraction (or of pools of fractions containing
EVs, intermediate, or free soluble components) in the
functional assay;

Option 3) compare activity of intact EVs with that
of detergent-treated samples [279]. Detergent will
destroy vesicular structures, without affecting other
non-lipidic particles. Of course, this technique also
has limitations: 1. the effect of the same amount of
detergent alone in the functional assay should be tested
(it could affect target cells); 2. there could be a few
contaminants that are sensitive to detergents as well
(liposomes and some proteins).

Option 4) immuno-isolate from half of the biofluid
all EVs bearing a surface marker of interest (for
instance an integrin or a tetraspanin used to
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characterize the EVs, but not expected to be required
for the observed activity), and use the specific EV-
depleted supernatant in the functional assay, side-by-
side with the other half of unprocessed biofluid, to
determine if activity has been depleted (hence was
associated with the EVs of interest) or not. Using the
immuno-isolated EVs in the functional assay may com-
plicate interpretation, since the immunoprecipitate will
contain antibodies and beads used for isolation that
may profoundly affect interaction of EVs with the
target cells. Elimination of protein-bearing EVs by
immunoisolation must be demonstrated by showing
the amount of EV-associated protein in biofluid before
(all) and after immuno-isolation (none), and in the
immuno-isolated sample (all).

Other options may arise from ongoing evolutions of
the field. See section “EV separation and concentra-
tion” p11. As exemplified by AF4 [112,114], combina-
tions of ultrafiltration and SEC [280], and tangential
flow filtration combined with other filtration steps
[106], novel EV separation processes are constantly
being developed and published.

Determine whether a function is specific to
exosomes, as compared with other small EVs
As highlighted here, it is now clear that different types
of EVs can present functional activities that are as
important to explore as those elicited by late endo-
some-derived exosomes. However, in the last decade,
many studies have focused exclusively on demonstrat-
ing association of a given function with exosomes. This
section explains the technical limitations of such stu-
dies, and why they are not sufficient to conclude, as is
generally done, that exosomes have specific functions
compared with other EVs.

In particular, numerous approaches have been taken
to inhibit or stimulate exosome secretion in loss- or
gain-of-function experiments. For example, in mam-
malian cells, exosome secretion has been decreased
(100% inhibition is almost never achieved) by inhibit-
ing neutral sphingomyelinases and ceramide genera-
tion (by shRNA, genetic editing, or drugs such as
GW4869, spiroepoxide, cambinol and others) [281–
284]; inducing ISGylation, which promotes lysosomal
degradation of MVB proteins [285]; blocking Rab
GTPases (by expressing dominant-negative mutants
or silencing or knocking out Rab27, Rab11, Rab35, or
others) [286–288], other small GTPases (RAL-1 [289]),
SNARE proteins (YKT6 [290]), upstream regulators of
protein sorting into MVBs (like SRC [291]), or cytos-
keletal proteins (cortactin [292], microtubules [293]);
or using other drugs (e.g. the sodium channel blocker
amiloride [294]). Conversely, ionophores such as

ionomycin (calcium signaling) or monensin (sodium
transport) [295,296], or drugs inhibiting endosomal
acidification and/or autophagic degradation (bafilomy-
cin A1 [297,298]) have been used to stimulate exosome
secretion. Of note, drugs inhibiting EV uptake (e.g.
heparin [299]) could lead to enhanced recovery of
EVs, which could be misinterpreted as an increase of
exosome release.

A few studies have also proposed ways of modulat-
ing secretion of plasma membrane-derived EVs in
mammals: the ARRDC1 protein uses the ESCRT
machinery to induce budding of small EVs at the PM,
and its blocking or depletion inhibits secretion of such
EVs [300,301]. Over-activation of ARF6 has been
shown to increase release of PM-derived large EVs
[302]. Modulation of cytoskeletal remodelers was
reported to affect PM-derived EV release [303–305],
and depletion of DIAPH3 increased large oncosome
release [306]. In prokaryotes, recent insights into the
mechanisms of outer membrane vesicle formation
[307] could suggest other molecules to test in eukar-
yotic cells.

These cell treatment approaches have great potential
and deserve more development; however, it is impor-
tant to recognize several caveats.

(1) Small EV–containing fractions potentially con-
tain EVs originating from late endosomes (“exo-
somes”) and others originating from the cell
surface (plasma membrane), with both classes
sharing common molecular players, including
the ESCRT components TSG101, VPS4, and/or
Alix [308–310]. Therefore consequences of
decreasing or increasing global secretion of het-
erogeneous populations of small EVs should not
be interpreted in terms of functional effects of
exosomes, but rather of small EVs in general.

(2) Tools described until now to block or enhance
exosome secretion have not been well evaluated
for their possible effect on secretion of other
EVs. For instance, ionophores, such as ionomy-
cin, are also potent inducers of large EV and
microparticle secretion [207,311]. Conversely, in
one study, inhibition of neutral sphingomyeli-
nases was shown to enhance secretion of larger
plasma membrane-derived EVs while decreasing
that of small EVs [312]. Another example is
monensin, often used to stimulate EV secretion,
being an inhibitor of apoptotic body formation
[167]. Therefore, it is likely that putative exo-
some modulators will have different conse-
quences in different cells and under different
conditions, and it is important to carefully
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quantify the toxicity of each treatment in each
experimental system, to exclude artefactual
effects on EV recovery due to increased cell
death.

(3) Some EV release modulators affect other major
intracellular pathways that might indirectly
affect EV secretion and modify cell functions
in general (like general intracellular trafficking,
secretory, or autophagy pathways).
Consequently, not only EV amount, but also
EV composition may be changed, together
with changes in protein expression and physiol-
ogy of the secreting cells. As an example, Rab27a
inhibition also decreased secretion of some non-
EV-bound soluble factors [313,314]. Another
caveat to consider is that disrupting the secre-
tion of one EV type may disrupt the production
of other EV types, such that the functional EV
type may be masked by the over-production of
an antagonistic one, leading to an erroneous
conclusion that the disrupted EV type is the
functional EV. Therefore, demonstrating that
only late endosome-derived exosomes bear an
analyzed function remains challenging. Some
previous studies managed to rescue an observed
effect by re-introducing purified exosomes (or
rather small EV pellets) into the functional
in vitro or in vivo assays [292,313,314]. This
approach is indeed recommended, with careful
interpretation taking into account the degree of
rescue and the required amount of EVs.

Until we achieve unambiguous identification of speci-
fic, unique biogenesis machineries affecting only
a given subtype of EVs, we are left with trying to isolate
EV subtypes after they have left the cell. For example, if
multi-tetraspanin-bearing EVs are true exosomes in
a particular cell system, an EV preparation could be
depleted of such EVs and the activity quantified in
comparison with that of an irrelevant IgG- or mock-
depleted population.

How to attribute particular effects mediated by EVs
to specific EV components
Many publications include knock-out or knock-down
of a certain bioactive protein or RNA in the EV donor
cell, after which the effects of the modified EV on
target cells are compared with the effects of non-
modified EVs. If the native effect of EVs is lost, the
authors conclude that EV activity was due to the spe-
cifically targeted protein or RNA. However, such
a conclusion may or may not be valid in the absence

of an extensive characterization of EVs released by the
cells depleted for the targeted molecule. Indeed, dele-
tion of the protein/RNA of interest may also lead to
major alterations of the secreting cell, resulting in addi-
tional changes to the quantity or molecular contents of
EVs, which could also explain the changes in EV-
induced effects on target cells. While a complete
omics analyses of the modified EV population may be
beyond the scope of many studies, there should be an
awareness that other EV components may have chan-
ged as well. At a minimum, a small-scale analysis of EV
number or common EV-associated proteins in the
modified and WT conditions must be performed.
Finally, Direct EVs engineering (e.g. to deplete the
particular putative active molecule) may overcome the
issue of alterations in the secreting cells. However,
possible loss/alteration of EV cargo due to EV manip-
ulation may also occur.

Consider whether an EV-dependent function is
specific to a given EV source
Finally, in all cases, one must be careful in claiming
a specific function of EVs from a particular source: it is
one thing to claim that the EV fraction from Cell X is
potent (versus other fractions), another to claim that
Cell X EVs are potent versus those from other cells. For
example, do my mesenchymal stromal cell (MSC) EVs
do something special, or do milk EVs, urine EVs,
cancer cell EVs do the same? Of course, it will not be
possible to compare EVs from all different sources,
thus the final message must reflect this uncertainty.

Consensus: This functional section had broad support
(> 94% average for each subsection) from MISEV2018
survey respondents and has been revised only mini-
mally. The components of Table 4, on EV-associated
and -excluded activities, received an average 96%
endorsement. One of the least supported components
of the functional section (90% agreement) was the ori-
ginal normalization recommendation (which are found
in the function section but can be applied to character-
ization and other sections as well). This part was sub-
stantially revised based on the submitted comments.

General considerations

Reporting

ISEV endorses the EV-TRACK knowledgebase as
a facilitating and updatable tool for comprehensive
reporting of EV experimental studies [161]. EV-
TRACK invites submission of details on EV isolation
and characterization via a multi-step online template,
then associates each with a particular study or publica-
tion and also returns an “EV-METRIC” as an aggregate
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measure of the level of detail provided. ISEV strongly
encourages all authors to submit their experimental
protocols on EV isolation and characterization to the
EV-TRACK website (evtrack.org), and to consider
applying additional steps if they or reviewers/editors
feel that the calculated metric is low. The important
consideration is not obtaining a particular metric,
which after all may vary widely between basic and
clinical studies; instead, the level of detail required for
approved entries in EV-TRACK ensures that the trans-
parency and reproducibility of procedures can be
assessed. Furthermore, the knowledgebase can be
revised and expanded as technologies and techniques
develop, with input and assistance from the
community.1 Authors are also urged to submit EV
profiling data to public databases such as those curated
and maintained by the European Bioinformatics
Institute, the US National Center for Biotechnology
Information, and the Japanese Center for Information
Biology. In addition, but not as a substitute, data may
be submitted to field-specific databases such as
EVpedia [315,316], Vesiclepedia [317] (formerly
ExoCarta [318]), and the exRNA Atlas [319].2

Notes

1. EV-TRACK submission and EV-METRIC calculation
may assist with but do not replace appropriate peer
review. Interestingly, respondents to the MISEV2018
Survey were split between advocating mandatory EV-
TRACK submission and reporting and recognizing EV-
TRACK as a valuable but optional tool. As a result,
MISEV2018 strongly encourages but cannot mandate
EV-TRACK submission, which most seem to acknowl-
edge as highly valuable.

2. The utility of field-specific databases was questioned by
some respondents, who felt that data from studies ana-
lysing EVs obtained through low-specificity methods
renders these databases difficult to interpret in terms of
specific association of a given molecule/sequence to EVs
or an EV subtype. Submission to field-specific databases
is thus important to update these resources, which are of
value to identify different studies finding the same mole-
cules, but not to demonstrate the exosomal nor EV
nature of the analysed entities. It also does not substitute
for deposition with publicly maintained repositories.

Exceptions to compliance with MISEV guidelines

Some situations may arise in which strict adherence to
the MISEV guidelines is difficult. Not all biofluids, for
example lacrimal fluid, are available in sufficient
volume to separate EVs and perform multiple tests
with each sample; also, only limited numbers of EVs
may be harvested from small numbers of patient-

derived cells, small organoids, and more. In such
cases, multiple samples might be pooled to establish
the reliability of the separation method(s) and charac-
terize EVs before further characterization or functional
studies are performed with individuals samples. If even
this solution is impractical, authors should indicate the
limit of detection of each applied EV characterization
technology and demonstrate that the available material
falls below this limit. However, applying this “escape
clause” means that EVs cannot be rigorously demon-
strated, requiring that authors mention (and reviewers
insist on) the caveats of alternative interpretations, i.e.
that EVs may contribute, but not necessarily exclu-
sively, to an observed phenomenon or molecular
signature.

Consensus: Section 6a (reporting requirements) was
supported by 89% of MISEV2018 Survey respondents.
The comments were split between those who wanted
more reliance on EV-TRACK and those who found EV-
TRACK submissions to be time-consuming or otherwise
cumbersome. 99% of respondents agreed with mention-
ing exceptions to compliance in 6b.

Conclusions

Major points of MISEV2018 (see MISEV2018 quick-
reference checklist, p42):

(1) “Extracellular vesicle” is the preferred generic
term for the subject of our investigations, and
subtypes should be defined by physical and bio-
chemical characteristics and/or conditions/
sources. When other terms are used, careful
definition is required.

(2) A growing number of separation techniques and
combinations thereof are available, variously
balancing recovery and specificity. In all cases,
the EV separation and/or isolation procedure
must be reported in detail, to allow a reliable
replication.

(3) As EV characterization evolves, protein and lipid
markers continue to be highly useful to demon-
strate presence of the generic structure of EVs.
Markers chosen for characterization of EVs may
differ based on cells of origin (including mamma-
lian vs non-mammalian vs non-eukaryotic cells),
and whether claims are generic to all kinds of EVs,
or instead specific to subtypes of EVs (4-b p16,
Table 2, Table 3). Further, newly identified EV-
associated components must be validated by 1)
showing their specific association with EVs or sub-
types and 2) if functionally relevant: topology in/
outside EVs of the functional molecule (4-d p.21).
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(4) Function. Demonstration that a function is asso-
ciated specifically with EVs released from the cell
(Table 4) requires demonstration that the function
occurs without cell-cell contact (5-b p22) and is
not present (or is present to a substantially
reduced extent) in the soluble, non-EV-associated
secreted factors (5-c, d p23-24). Demonstration
that a function is specific to exosomes (EVs of
endosomal origin), as compared with other types
of small EVs, is not recommended as a major
point of any EV study due to the issues elaborated
in section 5-e p25. However, if authors wish to
make this point, the currently proposed exosome-
specific tools cannot be taken for granted, and
several controls should be performed to evaluate
their action on other EVs, on secretion of non-EV
products, and on the general physiology of secret-
ing cells. Additional techniques for separation of
these vesicles and/or genetic tools specifically
affecting their secretion, may become available in
the future (5-e p25).

(5) The EV-TRACK knowledgebase is endorsed by
ISEV to showcase and enhance rigor and repro-
ducibility in EV studies, consistent with the
MISEV guidelines.

(6) Finally, there are exceptions to every rule.
MISEV2018 is meant to guide and improve the
field, not stifle it. If MISEV recommendations
and requirements cannot be met, authors will
then need to explain their unique situation and
describe their attempts to meet the guidelines
and the reason for failure. These guidelines will
also continue to evolve.

Consensus: 89% of ISEV2018 Survey respondents had no
major changes; 29 comments were taken into account in
revisions of this section.
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MISEV2018 Checklist

Numbers refer to sections listed in the Table of contents from:
C. Théry and K.W.Witwer, et al, ”Minimal Information for
Studies of Extracellular Vesicles 2018 (MISEV2018): a posi-
tion statement of the International Society for Extracellular
Vesicles and update of the MISEV2014 guidelines”,
J Extracell Vesicles 2018;7:1535750.
O Mandatory O Mandatory if applicable O Encouraged

1-Nomenclature
Mandatory
O Generic term extracellular vesicle (EV): With demon-
stration of extracellular (no intact cells) and vesicular
nature per these characterization (Section 4) and function
(Section 5) guidelines OR
O Generic term, e.g., extracellular particle (EP): no intact
cells but MISEV guidelines not satisfied
Encouraged (choose one)
O Generic term extracellular vesicle (EV) + specification
(size, density, other)
O Specific term for subcellular origin: e.g., ectosome,
microparticle, microvesicle (from plasma membrane),
exosome (from endosomes), with demonstration of the
subcellular origin
O Other specific term: with definition of specific criteria

2-Collection and pre-processing
Tissue Culture Conditioned medium (CCM, Section 2-a)

O General cell characterization (identity, passage, myco-
plasma check…)
O Medium used before and during collection (additives,
serum, other)
O exact protocol for depletion of EVs/EPs from addi-
tives in collection medium
O Nature and size of culture vessels, and volume of
medium during conditioning
O specific culture conditions (treatment, % O2, coating,
polarization…) before and during collection
O Number of cells/ml or /surface area and % of live/
dead cells at time of collection (or at time of seeding
with estimation at time of collection)
O Frequency and interval of CM harvest

Biofluids or Tissues (Sections 2-b and -c)
O Donor status if available (age, sex, food/water intake,
collection time, disease, medication, other)
O Volume of biofluid or volume/mass of tissue sample
collected per donor
O Total volume/mass used for EV isolation (if pooled
from several donors)
O All known collection conditions, including additives,
at time of collection
O Pre-treatment to separate major fluid-specific con-
taminants before EV isolation
O Temperature and time of biofluid/tissue handling
before and during pre-treatment
O For cultured tissue explants: volume, nature of med-
ium and time of culture before collecting conditioned
medium
O For direct tissue EV extraction: treatment of tissue to
release vesicles without disrupting cells

Storage and recovery (Section 2-d)
O Storage and recovery (e.g., thawing) of CCM, bio-
fluid, or tissue before EV isolation (storage tempera-
ture, vessel, time; method of thawing or other sample
preparation)
O Storage and recovery of EVs after isolation (tempera-
ture, vessel, time, additive(s)…)

3-EV separation and concentration
Experimental details of the method

O Centrifugation: reference number of tube(s), rotor(s),
adjusted k factor(s) of each centrifugation step (= time+
speed+ rotor, volume/density of centrifugation condi-
tions), temperature, brake settings
O Density gradient: nature of matrix, method of gen-
erating gradient, reference (and size) of tubes, bottom-
up (sample at bottom, high density) or top-bottom
(sample on top, low density), centrifugation speed and
time (with brake specified), method and volume of
fraction recovery
O Chromatography: matrix (nature, pore size,…),
loaded sample volume, fraction volume, number
O Precipitation: reference of polymer, ratio vol/vol or
weight/vol polymer/fluid, time/temperature of incuba-
tion, time/speed/temperature of centrifugation
O Filtration: reference of filter type (=nature of mem-
brane, pore size…), time and speed of centrifugation,
volume before/after (in case of concentration)
O Antibody-based : reference of antibodies, mass Ab/
amount of EVs, nature of Ab carrier (bead, surface) and
amount of Ab/carrier surface
O Other…: all necessary details to allow replication
O Additional step(s) to concentrate, if any
O Additional step(s) to wash matrix and/or sample, if
any

Specify category of the chosen EV separation/concentra-
tion method (Table 1):

O High recovery, low specificity = mixed EVs and non-
EV components OR
O Intermediate recovery, intermediate specificity =
mixed EVs with limited non-EV components OR
O Low recovery, high specificity = subtype(s) of EVs
with as little non-EV as possible OR
O High recovery, high specificity = subtype(s) of EVs
with as little non-EV as possible

4-EV characterization
Quantification (Table 2a, Section 4-a)

O Volume of fluid, and/or cell number, and/or tissue
mass used to isolate EVs
O Global quantification by at least 2 methods: protein
amount, particle number, lipid amount, expressed per
volume of initial fluid or number of producing cells/
mass of tissue
O Ratio of the 2 quantification figures

Global characterization (Section 4-b, Table 3)
O Transmembrane or GPI-anchored protein localized
in cells at plasma membrane or endosomes
O Cytosolic protein with membrane-binding or -
association capacity
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O Assessment of presence/absence of expected
contaminants
(At least one each of the three categories above)
O Presence of proteins associated with compartments
other than plasma membrane or endosomes
O Presence of soluble secreted proteins and their likely
transmembrane ligands
O Topology of the relevant functional components
(Section 4-d)

Single EV characterization (Section 4-c)
O Images of single EVs by wide-field and close-up: e.g.
electron microscopy, scanning probe microscopy,
super-resolution fluorescence microscopy
O Non-image-based method analysing large numbers of
single EVs: NTA, TRPS, FCS, high-resolution flow cytome-
try, multi-angle light-scattering, Raman spectroscopy, etc.

5-Functional studies
O Dose-response assessment
O Negative control = nonconditioned medium, bio-
fluid/tissue from control donors, as applicable

O Quantitative comparison of functional activity of
total fluid, vs EV-depleted fluid, vs EVs (after high
recovery/low specificity separation)
O Quantitative comparison of functional activity of
EVs vs other EPs/fractions after low recovery/high spe-
cificity separation
O Quantitative comparison of activity of EV subtypes
(if subtype-specific function claimed)
O Extent of functional activity in the absence of contact
between EV donor and EV recipient

6-Reporting
O Submission of methodologic details to EV-TRACK
(evtrack.org) with EV-TRACK number provided
(strongly encouraged)
O Submission of data (proteomic, sequencing, other) to
relevant public, curated databases or open-access
repositories
O Data submission to EV-specific databases (e.g.,
EVpedia, Vesiclepedia, exRNA atlas)
O Temper EV-specific claims when MISEV require-
ments cannot be entirely satisfied (Section 6-b)
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