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Abstract

Conservation of lepton number is an intriguing feature common for all particle
interactions so far observed in Nature and it can be understood as a consequence
of an anomalous abelian symmetry of the Standard Model. However, there are
certain hints, most importantly the experimental evidence of non-zero neutrino
masses, pointing at breaking of the lepton number symmetry at certain high en-
ergy scale. Although the new lepton number violating physics can generally lie
beyond the reach of collider experiments, it is also possible to probe it at low en-
ergies. Most importantly, an observation of neutrinoless double beta decay would
provide an evidence of non-conservation of lepton number, shedding light on the
origin of non-zero neutrino mass at the same time. In this work we concentrate
on the effective description of the non-standard mechanisms of this extremely
rare nuclear process, drawing its connection to lepton number violation at high
energies. Moreover, assuming its hypothetical observation we discuss some of the
possible cosmological implications. Specifically, following a brief review of the
long-range mechanisms triggered by 6-dimensional operators, we study in detail
the short-range mechanisms contributing to neutrinoless double beta decay as
9-dimensional operators at Fermi scale. After deriving the nuclear matrix ele-
ments and phase-space factors involved, we determine limits on the respective
particle physics parameters. Constraining these lepton number violating cou-
plings allows to estimate the high-energy scale of the corresponding new physics.
Unlike in the standard case, non-standard mechanisms yield energies of order
of a few TeVs. Presence of lepton number violation at such low scales implies
together with sphaleron transitions a potential washout of a primordial lepton
and baryon asymmetry. Consequently, restrictions may be imposed on scenarios
of the observed matter-antimatter asymmetry generation. We argue that certain
models of high-scale baryogenesis can be generally excluded, if a non-standard
neutrinoless double beta decay is observed.
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Impact Statement

The research carried out in this thesis aims to help determine crucial neutri-
no properties as precisely and robustly as possible by interpreting experimental
searches for so called neutrinoless double beta decay. At the same time, it cor-
relates the results from these laboratory experiments with the early universe
cosmology and related astrophysical measurements.

The hypothetical process of neutrinoless double beta decay involves the simul-
taneous transition of two neutrons into protons within an atomic nucleus, with
two electrons being emitted. It has not been observed so far and the fact that
there are no neutrinos in the final state requires new physics not present in the
Standard Model of particle physics. More specifically, if the neutrino is identical
to its anti-neutrino, the observation of neutrinoless double beta decay would allow
to directly probe the neutrino mass. In this case, neutrinoless double beta decay
is the most promising experimental approach to “weigh” neutrinos. On the other
hand, there is a large variety of other possible mechanisms originating from yet
undiscovered new physics that could lead to neutrinoless double beta decay, and
these are the main subject of this work. Their accurate description and a robust
determination of the process rates crucially require detailed nuclear physics cal-
culations. As we show, this effort consequently allows to draw conclusions not
only about new particle physics, but also about cosmological models explaining
baryon asymmetry of the Universe. Therefore, the present study features interdis-
ciplinary aspects, touching on and interconnecting theoretical and experimental
particle physics, nuclear physics and cosmology. Since we directly aim to assess
and sharpen the implications that can be deduced from the numerous current and
upcoming searches for neutrinoless double beta decay, our analysis will increase
their physics impact. Although the academic contribution of the publications
based on this work lies primarily in the area of particle physics, the overlaps may
have interesting consequences also in the other mentioned fields.

More generally, this work is part of basic, fundamental research and as such
it does not have immediate technological use. On the other hand, it contributes
to a natural endeavour that expands human knowledge, which has to inevitably
precede any subsequent applications. As history has taught us, this kind of
research also gives rise to a variety of side products that can find use in various
areas of industry. Specifically, theoretical research drives experimental efforts
which require the development of innovations and new technologies. Moreover,
theoretical particle physics and phenomenology in general excites the interest of
many, especially young, people, often leading them to pursue a career in the
important economic sector of science and technology.

11
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Introduction

The endeavour of particle physics to discover, describe and understand the
elementary components of matter and their interplay is an integral part of funda-
mental physics. It sheds light on the deepest theoretical concepts governing the
Universe and in the ideal case it is expected to pave the way towards an ultimate
all-encompassing theory. Remarkably enough, our present comprehension of mat-
ter already contained in the Standard Model (SM) of Fundamental Particles and
Interactions [1H7] provides a very detailed and accurate picture of subnuclear
physics. It describes a large number of observed phenomena in a simple theory
and with it we are able to make very precise predictions on particle properties
and process rates, a vast majority of which agree with the experimental data to
a great accuracy. Consequently, the SM represents one of the most successful
physical theories.

Despite the immense success, for example in explaining the data from the
Large Hadron Collider (LHC), the SM unfortunately does not capture complete-
ly the current experimental reality. Moreover, the presence of a considerable
number of free parameters in the SM means it sometimes lacks predictivity and
does not explain all the observed features in a satisfactory manner. As a conse-
quence, the SM is generally considered to be an effective realization of a more
complete high-scale theory, the search for which is the principal goal of Beyond
the Standard Model (BSM) Physics. A major inconsistency of the SM with the
current experimental data is the prediction of vanishing neutrino masses. This
has clearly proven to be wrong by the observation of neutrino flavour oscilla-
tions [8-10]. Although these measurements cannot provide information on the
absolute neutrino mass, they point to mass scales of order m, ~ 0.01 — 0.05 eV
obtained from solar and atmospheric neutrino oscillations, respectively. Cosmo-
logical data, on the other hand, constrain the sum of all active neutrino masses
with the recent limit %2 m,, < 0.17 eV [11]. Therefore, the current state of
knowledge implies that there are at least two neutrinos with masses within the

range ~ 0.01 — 1 eV. In order to be more specific, the absolute neutrino mass has
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1. Introduction

to be probed, e.g. by the KATRIN experiment [12].

The small but non-vanishing neutrino masses naturally guide the direction to
be followed when stepping beyond the SM. Neutrinos are generally very intriguing
particles still evading our full understanding. Not only do they have very tiny
masses, much smaller than the masses of other fermions, but they are also the only
neutral fermions. As the SM incorporates only left-handed neutrinos, they cannot
acquire Dirac masses like all the other fermions. The above features then rather
suggest the concept of Majorana neutrinos, which is currently the most favoured
way of explaining the light neutrino masses. It assumes that neutrinos are of
Majorana nature (i.e. they should be represented rather by Majorana than Weyl
spinors) and as such they can be identified with their antiparticles. Consequently,
if this theoretical construction is indeed realized in Nature, we expect to observe
lepton number violation (LNV). This would be in fact a very clear indication
of new physics, as lepton number is conserved at the perturbative level within
the SM, corresponding to an anomalous Abelian global symmetry. A prominent
(hypothetical) LNV process that can test the hypothesis of Majorana neutrinos
is neutrinoless double beta (0v/f3) decay, which represents the central theme of
this work. It is a simultaneous transition of two neutrons to two protons, two
electrons and nothing else. As will be studied in detail, although the observation
of this expectedly extremely rare nuclear process on its own would not be enough
to pinpoint a particular neutrino mass scheme or track down the underlying BSM

model, still, a number of interesting conclusions could be arrived at.

Figure 1.1: The standard mass mechanism of Ov/3( decay.

Most commonly, Ov3/5 decay is considered to be triggered via the standard
mass mechanism, which is simply given by two SM beta decay diagrams with
the neutrino legs connected using the light Majorana neutrino mass insertion,
see Fig. (1.1} The corresponding Majorana neutrino mass term can be written in
the usual two-component spinor language as m,vyvy, with m, denoting the light

Majorana neutrino mass, and it clearly violates lepton number by two units.
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This term cannot be added to the SM, since it violates its gauge symmetry.
At the SM level it can be generally induced by the unique dimension-5 non-
renormalizable effective Weinberg operator A~'(LLHH) [13], where L and H
represent the SU(2); doublets of the left-handed lepton and the Higgs fields,
respectively, and A is a large new physics scale associated with breaking of the
lepton number symmetry. Indeed, after the electroweak (EW) phase transition
the Weinberg operator produces a small effective Majorana neutrino mass m,, ~
v?/A with v denoting the Higgs vacuum expectation value (VEV). At the tree
level, the UV realization underlying the Weinberg operator typically incorporates
the famous seesaw mechanism |14-18]. The most popular version (seesaw type I)
is based on heavy right-handed neutrino singlets with mass M =~ A yielding the
_ ypv?

light mass of the oscillating neutrinos m, = “-, where y, denotes the neutrino

Yukawa coupling.

The above scenario, despite being the most popular, is not the only possi-
bility to trigger Ov3/ decay. One can think of a variety of other, non-standard
OvpBp3 decay mechanisms. These can be described effectively, i.e. without speci-
fying the underlying new physics. At the nuclear Fermi scale ~ 100 MeV, Ov3p3
decay is most generally represented by effective operators of dimension 9. In
addition, operators of dimension 6 can also generate Ov(3 decay, as they can
substitute one (or even both, but that results in a strong suppression) SM vec-
tor currents in the standard mechanism. Like the neutrino mass term, all these
other operators leading to Ov3(5 decay violate lepton number by two units. The
effective couplings associated to each of the operators characterize the underlying
UV physics and can be constrained employing a microscopic description of Ov3p3
decay together with the current experimental limits on its half life. This complex
computation involves the determination of the nuclear matrix elements within a
suitable nuclear structure model and the calculation of the corresponding phase
space factors. In the same way as it is possible to map the neutrino mass term
to the Weinberg operator; the other low-energy operators triggering Ov53 decay
can be at the EW scale matched to SM effective operators of higher dimensions.
Employing this connection, the scale of the new lepton number violating physics
associated with each such operator can be determined assuming the hypothetical

observation of OvgB3 decay.

Along with lepton number L, baryon number B is another accidental sym-
metry in the SM at the perturbative level. Although the combination of these

symmetries (B+ L) is violated by weak non-perturbative instanton and sphaleron
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1. Introduction

interactions through the chiral Adler-Bell-Jackiw anomaly |19}20], the ‘orthogo-
nal’ combination (B — L) remains conserved. Consequently, apart from neutrino
mass generation, another observation strongly hinting at BSM physics is the
baryon asymmetry of the Universe (BAU). Quantified in terms of the baryon-to-
photon number density it reads n%* = (6.20 & 0.15) x 10719 [21]. Intriguingly,
a possible scheme for generation of this asymmetry is closely related to the sim-
plest seesaw mechanism; leptogenesis [22] suggests that the heavy right-handed
neutrino singlets living at the very high scale decay out of thermal equilibrium
unevenly to leptons and antileptons; thus, a lepton asymmetry is produced, which
is later translated into the desired baryon asymmetry by sphaleron effects. On
the other hand, if the lepton number violating interactions are very efficient at
lower energies, they have in connection with sphalerons the potential to erase a
pre-existing lepton and baryon number asymmetry before it freezes in at the EW
scale. Hence, if the Ov 53 decay rate can be correlated with these washout process-
es, it would also allow to probe or rather falsify certain baryogenesis mechanisms.
The investigation of this connection between LNV at low and high energies is the
main topic of this work.

The thesis is structured as follows. After providing a brief overview of the SM
and pointing out its successes as well as drawbacks hinting at possible solutions
in Chapter 2, we focus specifically on neutrino physics in Chapter [3] Therein
we review the basic concepts surrounding neutrinos such as mixing, oscillations
and in particular aspects of neutrino mass describing several possible ways of its
generation. In connection to Majorana neutrino masses we also introduce Ov(33
decay focussing on the standard mechanism and discussing some features of its
microscopic description as well as the related experimental efforts. In Chapter [4]
we present the effective approach to Ov35 decay and we concentrate primarily on
so called short-range Ov53 decay mechanisms. We provide a detailed derivation
of the involved nuclear matrix elements as well as the phase space factors and as-
suming the current and future experimental sensitivities we estimate the bounds
on the corresponding particle physics parameters. Chapter [5 contains a descrip-
tion of the SM effective operators violating lepton number and the way they can
contribute to O3 decay. Employing these results we compute in Chapter [] the
washout of a primordial baryon asymmetry triggered by each of these effective
operators. We compare the obtained results giving a detailed commentary and we
discuss the implications of a discovery of Ovg/ decay for high-scale baryogenesis

mechanisms.
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2

To the Standard Model and
Beyond

Although this work focuses primarily on BSM physics, let us first discuss what
is known to us and summarize the standard picture of matter we currently have
together with a bit of background on how the well-known Standard Model of
particle physics was developed. It is the proper understanding of this theory,
what motivates best the steps beyond it, towards new theoretical concepts and
possibly more complete particle physics models giving even more insight into the

fundamental laws of Nature.

2.1 Beta Decay & Fermi Theory

Within the historical development of particle physics the construction of the
SM was preceded by the attempts to understand and describe the weak interac-
tions, some of which proved to be fairly successful. At the beginning of this path

there was the desire to understand the physics behind the nuclear beta decay
n—pt+e + U, (2.1)

which, being experimentally observed for the first time at the turn of the 20th
century, is the oldest and most notorious example of a process involving the weak
interaction. Of course, at first, the only weakly interacting (anti)neutrinos were
not observed in the process, but the existence of these elusive neutral particles
was postulated by Pauli soon after on grounds of energy conservation. Neutrinos
were detected much later, in 1956, in the Cowan-Reines experiment [23].

The first quantitative theoretical description of beta decay was proposed by
Fermi in 1934 [24], who assumed a simple contact interaction of 4 fermionic

quantum fields

Lermi = —G (ev"v) (pyun) + h.c., (2.2)
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2. To the Standard Model and Beyond

where G is a coupling constant, v* are the Dirac gamma matrices and e, v, p and
n label the field corresponding to the electron, neutrino, proton and neutron, re-
spectively. This interaction Lagrangian describes not only the decay in Eq. ,
but also related processes such as positron capture. Its effective form presuming a
zero range of the nuclear weak force approximates the corresponding interactions
well at low energies.

After the parity violation of weak interactions was experimentally discovered
by Wu [25], the two-component neutrino theory developed earlier by Weyl [26]
was revived. This hypothesis assumed that neutrinos are massless, left-handed

fermions and as such they obey a two-component Weyl equation of the form

0 :
z% =io - Vg, (2.3)

where o are the Pauli matrices. Despite the fact we nowadays know that this
description is not realistic and that it cannot be perceived as the source of parity
violation in weak interactions, it is a good approximation, which historically
played an important role in the development of relevant theoretical model. It
was the concept of a two-component neutrino that motivated Feynman and Gell-
Mann [27] together with Cabbibo [28] to postulate the following Lagrangian of

weak interactions

G
Lok = —TSJ”JJ, (2.4)

with G denoting the Fermi constant and the current J” being defined as
J" =041 —vs5)e + v,y (1 — )+ uvy” (1 — 75) (dcosbc + ssinfe)  (2.5)

where the up, down and strange quarks u, d and s are introduced, v and v*
denote electron and muon neutrinos and ¢ is the Cabbibo angle hinting at a
rotation in the space of quark fields.

The above simple interaction Lagrangian was proven to be capable to success-
fully describe a lot of experimental data, including (although with less accuracy)

the well-known scattering process
v+p—n+et, (2.6)

which was used to detect neutrinos directly for the first time [23]. However,
despite all the low energy accomplishments (back then all the predictions could be

tested only within a limited kinematical region), the above Lagrangian possesses
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2.2. Gauging the World

one significant flaw, which becomes apparent when one starts thinking about
higher energies - it is non-renormalizable. This is actually obvious already from
the fact that one is dealing with four-fermion interactions, which are of mass
dimension 6. Renormalizable quantum field theories are those with interaction
Lagrangians containing terms of mass dimension d < 4 [29]. As a result, further
theoretical development was needed in order to find a better-behaved theory at
high energies. This theory was created soon after, in the late 1960s and early
1970s, and it is nothing but the electroweak Standard Model unifying weak and

electromagnetic interactions.

2.2 Gauging the World

Although the notion of gauge symmetry appeared for the first time already
in Maxwell’s formulation of classical electrodynamics [30], it remained rather
unnoticed until the introduction of quantum theory, when the real potential of
this elegant theoretical framework was revealed in its full glory.

As first complete gauge theory one can consider the theory of Quantum Elec-
trodynamics (QED), which was developed by Dirac |31] and others at the begin-
ning of the 20th century, i.e., even earlier than the above discussed Fermi theory.
QED is the simplest example of a gauge theory, an Abelian gauge theory, i.e., a
quantum field theory with local internal symmetry corresponding to the Abelian
Lie group U(1). It describes the propagation and interaction of fermionic mat-
ter particles and photons, the gauge bosons of this theory, which mediate the
electromagnetic force.

It was the extension of the beautiful concept of gauge theories to non-Abelian
groups developed by Yang and Mills in 1954 [32], which allowed to describe the
weak interactions in a similar way, and therefore, meant a major step forward
towards the SM as we know it nowadays. This allowed to build a whole variety
of new theories, from which those based on special unitary groups SU(n) have
been later proven to be especially useful for the purposes of particle physics. It is
interesting to mention that the real potential of these theories remained initially
unnoticed, because of the fact that on their own they require all the particles to be
massles, which was obviously in clash with experiments. However, this issue was
resolved by the introduction of the spontaneous symmetry breaking mechanism
into particle physics by Anderson [33], Higgs [34], Englert and Brout [35] and
others [36,[37] in the 1960s. At that point, the SM could start developing.
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2. To the Standard Model and Beyond

At first, the Fermi theory of the weak interactions described in the previ-
ous section was unified together with QED into the gauge theory of electroweak
interactions, sometimes called the Electroweak Standard Model or also, after
its fathers, the Glashow-Salam-Weinberg (GSW) Model [1-3], with the internal
symmetries described by the semi-simple gauge group SU(2) ® U(1). After the
construction (contributed by many bright minds) of the parton model [4,5] and
Quantum Chromodynamics (QCD), an asymptotically free gauge theory with the
SU(3) symmetry group describing the strong nuclear force [6,/7], in 1970s, the
theoretical framework of the SM was completed. In this way the quantum field
description of the three fundamental interactions - electromagnetic, weak and

strong - were incorporated in a single model.

2.3 The Very Standard Model

Following the rather historically themed previous paragraphs let us continue
in more technical terms. The Standard Model of particle physics is a Quantum
Field Theory (QFT) on a four-dimensional Minkowski spacetime including all
renormalizable operators invariant under the local internal symmetries described

by the semi-simple group
Gsm = SU(3)c @ SU(2), @ U(1)y. (2.7)

Here the subscripts C', L and Y remind us of the respective quantum numbers,
i.e., they stand for colour, left-handed chirality and weak hypercharge, respective-
ly. The fact that there is only the left-handed SU(2) group reflects the experimen-
tally confirmed parity violation [25] mentioned previously. As a result, the left-
handed components of fermions transform non-trivially under the SU(2),®@U(1)y
group, while the right-handed only under the U(1)y. The fermionic fields of the
SM are accommodated in the representations of the group Gsy in the way cap-
tured in the upper part of Tab.[2.1} In this chapter, we describe fermions as four-
spinors (unless otherwise stated) with appropriate chiral projections performed,
ie. fryp = (1£)f (where f € {e,d,u}), corresponding to right-handed and
left-handed four-component Weyl fields, respectively. We also define the conju-
gate left-handed four-component Weyl fields as f¢ = C fRT with C' being the
charge conjugation matrix. In later chapters, in context of the SM effective field
theory it will be often more convenient to describe chiral fermions in terms of

two-component left-handed Weyl spinors. For a fermion f we will use the no-
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2.3. The Very Standard Model

Fermions
Name Label Representation
¢
left-handed lepton doublet = (Z L) (1,2, -1
L
right-handed lepton singlet lr {1,1,1}
) T g b\ "*
left-handed quark doublet Q" = Yr L tL {3,2,3}
d, dj dj
right-handed up-quark singlet (u’;{, u%h, u%) {3,1,-%}
right-handed down-quark singlet (d%, d%, dl}{) {3,1, é}
Vector Bosons
Associated Charge — Group Label Representation
weak hypercharge — U(1)y B {1,1,0}
weak isospin — SU(2), w {1,3,0}
colour — SU(3)¢ G {8,1,0}
Scalar Bosons
Name Label Representation
. h* 1
Higgs boson H = 10 {1,2,5}

Table 2.1: The above table summarizes the particle content of the Standard
Model. Labelling used later in the text is introduced and the representa-
tions accommodating the corresponding fields are specified in the usual form
{SU(3)¢, SU(2)L,U(1)y}. The representations 3,3 and 1 are fundamental colour
triplet, conjugate colour triplet and colour singlet, respectively, while 2 and 1 are
fundamental isospin doublet and isospin singlet, respectively. The weak hyper-
charge is given by Y = Q) — T3, where () is the electric charge and T3 the third
component of isospin. In case of fermions the colour indices {r, g, b} are explicitly
shown here for clarity, later on they will be mostly suppressed to make expres-
sions simple. The symbol ¢ denotes lepton flavour, i.e., £ € {e,u,7}. In case of
quarks the three generations are captured by the index 7, namely u’ € {u,c,t}
and d’ € {d, s,b}. The charge-conjugate fermion fields are defined as f¢ = C fRT

with C' denoting the charge conjugation matrix.
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2. To the Standard Model and Beyond

tation fr and f¢ to capture both left-handed and right-handed components of
the given fermion in terms of purely left-handed fields. Therefore, the same no-
tation as the one we employ here for four-component Weyl spinors will be used
for two-component Weyl spinors, but the meaning will be always easily inferable
from the context. In some cases the standard four-component Dirac fermions
f (without employing any projection) will be used. To distinguish their charge
conjugates easily from the conjugates of the projected right-handed Weyl spinors,
they will be denoted as f¢, i.e. with a capital C' in the superscript. The four-
component Dirac fermion can be written in terms of the two-component Weyl
fields as f = (f f), where the bar denotes Hermitian conjugation. The relation
between the notations will be discussed later in connection to neutrinos’ nature.

For a further discussion of the SM it is convenient to write the full SM La-

grangian as a sum of the following four terms,
£SM - EGauge + LFermion + ﬁHiggs + ACYukawa' (28)

The force mediators in the SM are the vector (gauge) bosons associated to
the SM symmetry group in Eq. and they are listed in the second part of
Table [2.1] These fields ensure the gauge invariance of the theory. The first term
of Eq. contains the kinetic terms of the SM gauge fields

1 v 1 7 g 1 a a v
EGauge = _ZBMVB# - ZWHVW - EGW’G K 5 (29)
where
B;w - a,u,By - al/Bp,a (210)
Wi, = 0,W, —0,W, + ge"*WIW}, (2.11)
Go, = 0,Gy — 0,G5 + g [ GG, (2.12)

with ¢ and g, being the weak (SU(2).) and strong (SU(3)¢) gauge couplings,
respectively. The U(1) gauge coupling will be as usually denoted by ¢’. The

structure constants €Y% and % are defined through

{Tiﬂ_j} — jelikrk (2.13)
[/\(17 /\b} — Z~fabc/\v:7 (214)

where 7° and A\ are the generators of the SU(2)1, and SU(3)¢ groups, respectively.

24



2.3. The Very Standard Model

The second term of the Lagrangian ([2.8]) contains the fermionic kinetic terms

and it can be written as

‘CFermion = Z Z‘I/,}/M(au - Zg/YfBM - ZQ%W;)LK (215)

l=e,p,T

- : ST A
+ Z @Q‘W“(@M—zg’YLqBM—ngWM—zgsiGu)Qq (2.16)

q=d,s,b

+ Y ilgy"(9, — iYrg' Bu)lr (2.17)
l=e,pu,T

+ > gy (0, — Y39 Bu)ar, (2.18)
qg=d,u,s,c,b,t

where, of course, the terms in parentheses are the covariant derivatives and Y,” is
the weak hypercharge of a corresponding particle.

Having written only the kinetic terms so far, all the particles are still massless
and they preserve the SM symmetry. One cannot simply write Dirac mass terms
of type szZLl/JR, as the left-handed and right-handed fermions do not live in
the same gauge representations; hence, the gauge symmetry would be explicitly
broken. Since all the fermions are charged under U(1)y, Majorana mass terms
are also out of the question. Mass terms for the gauge bosons are in an equivalent
trouble, as terms of type MpB, B* are not invariant under gauge transformations.

This was the motivation for the development of the mechanism of spontaneous
symmetry breaking of the SM gauge group to a smaller symmetry group of strong

and electromagnetic interactions
SUB)c@SUR2),@U(1l)y = SUB)c @ U(1)em, (2.19)

which is a way the gauge bosons can acquire masses without spoiling the renor-
malizability of the theory as such. To achieve that, the SM particle content must
be complemented by a Higgs doublet, a Lorentz scalar transforming as a dou-
blet under SU(2)y, (see the bottom of Tab. that acquires a non-zero vacuum
expectation value (VEV). The non-trivial transformation under the SU(2)., en-
sures that the non-zero VEV breaks this part of the gauge symmetry and gives
mass to the corresponding vector bosons. Writing the potential of the underlying

Goldstone-type model,
Vi = —W*H'H + X (HH) (2.20)

it can be observed that the corresponding ground state indeed breaks the gauge

symmetry, as the vacuum expectation value reads

(H) = p/VA, (2.21)
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For the purpose of a more explicit description it is useful to introduce the following

parametrization of the Higgs doublet

H=|, _ , (2.22)
7 (h+ioc+v)

where h™| its conjugate h~ and o are massless Nambu-Goldstone bosons [38}39)
corresponding to the three generators of SU(2),. These degrees of freedom are
then “eaten” by the gauge fields, meaning they are transformed into the longitu-
dinal components of the SU(2) vector bosons, which, hence, become massive.

The gauge invariant Lagrangian of the Higgs sector can be written as

{ . T4 7 . Tb
EHiggS = HI (au + §g/B,u + ZQWSZ) (8“ — §g/B“ _ ZQWW2> H

0?2\’
-\ (HTH - 2) : (2.23)
Fixing the gauge such that the unphysical Nambu-Goldstone bosons are re-

moved, i.e. “gauged away”, one transforms into the so called U-gauge with the

Higgs doublet taking the form

H:( 0 ) (2.24)
v %(h—l—v) ' '

Hence, the Higgs Lagrangian (2.23)) in the U-gauge can be written as
1 1 1
U 272 3 1 2 [ 20p 171
Ll = 0uh0"h— M?h® — Noh® — ZAR" + 2 (h+v) FRUALS
+GPWEW + (W3 — 29V B,) (gW™ — 29V B)], (2.25)

where the terms quadratic in the gauge fields inside the square bracket were
diagonalized. As a result, the part of the bracket proportional to v? gives the
mass terms of the intermediate vector bosons, which can be identified as
1
W* ="~
K \/§

with the masses

(W,} + Wﬁ) , Zy = (2.26)

1
Vo W= 9 B).

1 1
My = igv, My = 5\/g2 + g"%v. (2.27)

The combination of Wj and B, orthogonal to Z,, gives the remaining gauge

boson

Ay = —— (dWi+gB,), (2.28)



2.3. The Very Standard Model

which stays massless (it does not have a respective mass term) corresponding to
the photon, i.e. the gauge boson of U(1)e,,. The symmetry breaking affects only
the electroweak sector; therefore the SU(3)c group stays untouched with all its
eight gauge fields, gluons, remaining massless.

Breaking of the electroweak symmetry also allows to add fermion mass terms
to the SM Lagrangian. Coupling the SM fermions to the Higgs doublet one can

write down the Yukawa Lagrangian

Lyukawa = — Z Y£E€H€R— Z y(C]lq’QqHQ;%
£:€,,Uz77— q:d,S,b
q'=d,s,b
- > yuQ'Hgp+he, (2.29)
q=d,s,b
q'=u,c,t

where H = ity H*, with 75 being the second Pauli matrix, is the charge conjugate
of H. The Yukawa couplings yg,ygq, and yg., can be in principle arbitrary real
numbers, the overall minus sign is conventional. Again, going to the U-gauge,
the fermionic mass terms can be identified in Eq.

d
YeU 5 Yaq'V -
Lyukawa O — Z —=lrlr — Z LR

L
l=e,p,T \/§ q=d,s,b \/§

q'=d,s,b
YarV _
— qrqp + h.c., (2.30)
qzu,:c,t \/§ f
q'=u,c,t

where the leptonic masses are simply given as m, = %yw, as the corresponding
terms are diagonal in flavour. On the other hand, the quark mass terms include

(generally non-zero) off-diagonal terms, and therefore, form two different 3 x 3

. d
mass matrices M¥* = %yd/u d/u

plings with elements y;lé/u

transformation, which allows for independent rotations of left-handed and right-

, where y** are matrices of quark Yukawa cou-

. These matrices can be diagonalized using a bi-unitary

handed quarks, explicitly

M = (U U, (2.31)

where m®/*

are real, diagonal matrices with diagonal elements given by the quark
masses. Therefore, these are again proportional to the respective Yukawa cou-
plings and the VEV as well, as in case of leptons. The unitary matrices (two for

up-quarks and two for down-quarks) realizing this transformation thus effectively
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rotate the weak interaction quark eigenstates ¢’ to the quark mass eigenstates ¢™

up, = [Uflimut,  dp = > [Uflamdy, (2.32)
m=1,2,3 m=1,2,3

up = [Ulimug, dg= > [URlimdg. (2.33)
m=1,2,3 m=1,2,3

Taking these redefinitions of fields and substituting them into the fermion-
interaction part of the Lagrangian, the terms describing weak interaction of
charged currents will give
9
V2

g d -m m’
= EWJ (UsUT] apytdy +he. (2.34)

where the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix given by the com-

Lermion D W:ﬂZ[/’YHsz + h.c.

bination of the unitary transformation matrices arises,

Vud Vus Vub
Vokm = UngT = | Vea Ves Vo |- (2.35)
Vie Vis Vi

The phenomenon of quark mixing was first realized by Cabibbo [40] for two gen-
erations of quarks and later generalized for all three quark families by Kobayashi
and Maskawa [41]. The neutral weak currents are flavour-diagonal by definition;
hence, they are left intact by the considered bi-unitary transformations.

The CKM mixing matrix can be conveniently parametrized by four param-
eters: three quark mixing angles 15,943,723 € [0, %} and one complex phase
acp € (0,27, as five other phases can be absorbed by redefinitions of the quark

fields. This parametrization is usually written in the form

C12C13 512€13 s13e” 0P
VekM = | —S12023 — C12513523€"*CF 12023 — S12813523€*CF C13523 )
$12893 — C12813C23€"*CF  —C12823 — S12813C23€"*CP C13C23
(2.36)

where the shorthand notation s;; = sinv;;, ¢;; = cosv;; was used. The presence
of the complex phase acp implies violation of C'P symmetry (i.e. invariance
under simultaneous charge conjugation C' and space inversion P). This theoretical
prediction is in agreement with the experimental observation of corresponding

C P-violating processes.

28



2.3. The Very Standard Model

How Well Does the SM Work? The fact that the SM is one of the most suc-
cessful physical theories has already become common knowledge, as it describes
the majority of particle physics phenomena. It is the most general theory con-
sistent with general principles like Lorentz invariance and unitarity based on the
assumptions of renormalizability and the given particle content. The SM allows
us to make predictions about the behaviour of fundamental particles, some of
which it had anticipated before their actual discovery. Moreover, the agreement
between experimental data and theoretical calculations often reaches an incredi-

ble accuracy.

To be more specific, let us give a couple of concrete examples. Except for the
photon, all the other gauge fields present in the SM were theoretically anticipated
before their experimental discovery. The mediators of the weak force, W= and Z,
were first theorized, as mentioned earlier, by Glashow, Salam and Weinberg and
their existence was confirmed by the UA1 and UA2 collaborations at CERN in
1983 [42-45]. Similarly, the gluons as strong force mediators were anticipated [46]
before their observation at DESY in 1978 [47,48].

Furthermore, during the construction of the SM the existence of the charm
quark [49] and the top and bottom quarks [50] was predicted. The charm quark
was confirmed in 1974 through experimental observation of the .J/1) meson by
teams of SLAC [51] and BNL [52], while the third quark generation was discovered
by experiments at Tevatron at Fermilab - the bottom quark in 1977 [53] and the
top quark in 1995 [541/55].

One of the biggest successes of the SM is then, of course, the predicted discov-
ery of Higgs boson. The implementation of the spontaneous symmetry breaking
into the SM in 1960s implied the presence of a scalar boson in the SM spec-
trum, which was confirmed about 50 years later, in 2012, by the ATLAS [56] and
CMS [57] collaborations at the LHC.

A great potential of testing the SM lies also in precision physics, i.e. theoretical
predictions that can be calculated with great accuracy and which can be compared
to very precise measurements. A famous example of a quantity that has been
calculated extremely accurately is the anomalous magnetic dipole moment of the
electron. The theoretical value a'" = 1159652182.032(720) x 102 [58] includes
contributions up to the order o’ (« is the fine structure constant) and it is in
an amazing agreement with the experimental value a®P = 1159652180.73(28) x
10712 [59,60].
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So Where Is the Problem? After praising the SM as a remarkable theory
and reviewing some of its big successes, it is time to look at the negatives and
discuss the problems it is not able to deal with. Of course, when doing so, the
length of the list of the shortcomings may depend on the initial expectations one
has of the theory. For instance, it is often mentioned that the main flaw of the
SM is the fact it cannot describe gravitational interactions. Despite the validity
of such a statement, if one does not expect the SM to be the ultimate theory
of everything, it is not such a big deal. The problem with the quantization of
gravitational force is broader and the reality that the SM does not describe it
is just a straightforward consequence of the impossibility to treat gravity as a
quantum field theory. From this point of view, the exclusion of gravity is rather
an ignorance than a failure of the SM.

Nevertheless, even if the question of gravity is set aside, there are still a
number of other problems within the SM. Many of them are being paid a lot
of attention, as their resolution would naturally lead towards a better and more
complete particle physics model.

As mentioned earlier, the SM is consistent with most of the experimental data;
nevertheless, it seems this comes to a certain degree at a price of predictivity, or,
as some would say, elegance. The SM as such is often seen to be quite ad hoc,
as its gauge group and particle content are very specific. This is reflected by the
presence of 19 free physical parameters, which are not predicted by the model
and must be determined experimentally: 3 gauge couplings, 2 scalar potential
parameters, 6 quark masses, 3 charged lepton masses, 3 CKM angles, 1 CP-
violating phase and 1 strong CP parameter. Already this may seem to be too
many for an ultimate particle physics model plus one has to bear in mind that
inclusion of neutrino masses further extends this list.

Similarly, the SM does not offer any explanation of the fairly non-trivial and
rather surprising fact that the weak hypercharges (or, equivalently, the electric
charges) of all elementary particles are in simple integral ratios. If a bigger
group like SU(2) is considered, the eigenvalues of its generators are quantized,
as the algebra of such a group is non-trivial. This, however, is not the case for
U(1); therefore, from the theoretical point of view, the particles’ charges could
be anything. Nonetheless, they are observed to be quantized in nature.

Another completely arbitrary aspect of the SM is the pattern of fermions.
There is no satisfactory reason for having three generations of leptons and quarks.

Moreover, no light is shed on the parity violation in case of the weak interactions
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in contrast to the parity of strong interactions, which is left intact.

A possible treatment for some of the above drawbacks can be found within
the group-theoretical framework of Grand Unified Theories (GUTs), see Sec. [3.8]

The hierarchy problem [61] is another issue that is often mentioned along with
the other shortcomings of the SM. It refers to the huge difference between the
electroweak scale (Agy = 246 GeV) and the Planck scale (Ap; = 10" GeV), where
gravity becomes important and thus must be taken into account. Specifically,
what is mostly seen as problematic is the fact that if the SM is perceived as
an effective theory, with Ap; being its cut-off, the radiative corrections to the
Higgs mass diverge quadratically with this very high energy scale. Although
one can assume the bare mass to be of the same order and cancel these large
contributions, this would require an extremely accurate cancellation, generally
known as fine tuning, which is considered to be unnatural. This problem led
to the belief there must be some kind of new physics involved just above the
electroweak scale, which would avoid the big radiative corrections of the Higgs
mass parameter. Low scale supersymmetric models have been the most popular
solutions of the naturalness problem, within which the bosonic loop corrections
are naturally cancelled by their fermionic versions. However, the existence of any
new particles living in the vicinity of the electroweak scale has been disfavoured
in recent years by the LHC.

A number of indications of incompleteness of the SM come from cosmology.
The first of them is the simple fact of our own existence, because the SM does not
address the origin of the observed asymmetry between matter and antimatter in
our universe [62]. There is a variety of BSM mechanisms attempting to resolve
this issue, which we will focus on later in Sec. 3.9

The second important cosmological problem of the SM is the one of cosmologi-
cal constant, which arises from the fact that the vacuum energy density measured
in cosmology is very tiny [6364]. This is in clash with the value of this constant
one would expect on grounds of quantum field theory and currently, there is not
a generally accepted explanation of this issue.

The third big problem of the SM introduced by various cosmological and
astrophysical observations is that it does not include particles that could play
the role of Dark Matter. Although a number of particle physics experiments
desperately search for this theorized form of matter, no firm signal hinting at
the existence of such particles has been observed so far. There are a lot of

particle physics models trying to explain the Dark Matter nature, origin and
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behaviour. Typical candidates for Dark Matter are for instance axions [65,66],

sterile neutrinos [67] or neutralinos in supersymmetric scenarios [68].

As for other issues arising on the interface of particle physics and cosmology
it is worth mentioning the flatness problem [69], the horizon problem [70] and (if
one believes in GUTS) the monopole problem [71]. All these three puzzles can be
solved by inflation |[72-74], a period of an abrupt expansion in the early universe
driven by a hypothesized scalar field called inflaton. Again, inclusion of such a

field in the particle physics picture requires an extension of the SM.

For quite a long time in the history of modern particle physics neutrinos
seemed to be massless. Nevertheless, the zero neutrino mass had been consistent
with experiments (within their accuracy) until the turn of this century, when the
existence of non-zero neutrino masses was confirmed by the observation of neu-
trino oscillations [8,9]. As a consequence, one could then question the validity of
the electroweak theory as such. However, despite the fact that absolute neutrino
masses are not known, from cosmology it is already clear they must be very tiny,
and thus they can be neglected in most processes. Hence, the fact that neutrinos
are massive becomes crucial just and especially for phenomena that would not
be possible with massless neutrinos. The origin, aspects and consequences of

neutrino masses are in more detail discussed in the following chapter.

Regarding other experimental efforts manifesting certain deviations from the
SM, let us mention the measurement of the muon a, = (g9, — 2)/2, i.e. the
anomalous magnetic dipole moment of muon. The most recent results (2001) from
a BNL experiment gave a 3.5 standard deviation discrepancy and an improved
measurement, of this quantity by the Muon g — 2 experiment is currently in

progress at Fermilab [75].

More recently, intriguing anomalies have been observed in various meson de-

cays [76], but it is too early to draw any definite conclusions.

All of the above listed problems support the broadly accepted consensus that
the SM is an effective manifestation of a more complete theory living at some
higher energy scale. However, the often miraculously accurate agreement with
current experimental data hints this scale might be rather large, and therefore,
hardly accessible by experiments. From the point of view of possible discoveries
of new particle physics phenomena, neutrino physics and cosmology thus appear

to be promising research areas.
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2.4 Effective Point of View

If the SM is indeed just an Effective Field Theory (EFT), then it works very
well when all renormalizable operators (i.e. operators up to dimension 4) are
considered, as we could see in the previous section. Nonetheless, in the effective
framework the SM can be extended by non-renormalizable operators originating
from some high-scale physics, which are suppressed by a cut-off scale A. The suc-
cess of the SM then implies smallness of couplings of such operators, and therefore
large cut-off. In some cases the SM predictions agree with the experiments to
such an accuracy that the corresponding scale A (characterizing a given effective
operator) reaches values as high as 10' GeV. The non-renormalizable SM effec-
tive operators violating lepton number will play an important part later in this
work. Let us therefore give here a flavour of the effective approach and mention
some other interesting operators.

The consistent EFT generalization of the SM commonly used for a model-
independent parametrization of new, heavy physics is called Standard Model
Effective Field Theory (SMEFT), for a review see e.g. Ref. |[77]. The construc-
tion of SMEFT simply assumes that the possible UV completions of the SM
contain particles heavier than the electroweak VEV vy = /2(HTH) characteriz-
ing the masses of the SM particle content. As a result, these heavy states can
be integrated out at low energies yielding a series of higher-dimensional SM in-
variantﬂ effective operators, which can be power counted in the ratio of scales
vp/A. Tt is further assumed that the observed Higgs boson is embedded in a
SU(2), scalar doublet with hypercharge 1/2 and that there are no hidden light
states interacting with the SM particle content. Like the renormalizable SM, the
SMEFT is invariant under SU(3)¢c ® SU(2), ® U(1)y and it has the Higgsed
phase SU(2), @ U(l)y — U(1)em- The SMEFT Lagrangian can be developed

in the following way
Lsvirrr = Lo + LY + L0 + £0 4+ (2.37)

where Lgy is the SM Lagrangian and

np (D)
LP) =3 0P with D > 4. (2.38)

D—4
i=1 Az

Here, OZ(D) denotes the i-th of np effective operators at dimension D, which is

suppressed by D — 4 powers of the corresponding cut-off (operator) scale A; and

!By ‘SM invariant’ we mean invariant under the SM gauge group.
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CZ(D) is its Wilson coefficient. The individual operators can generally consist of
SM fields and covariant derivatives so as to be SM invariant.

Let us now discuss briefly the operators appearing at lowest dimensions in
SMEFT concentrating on the implied beyond SM physics. An operator of the
lowest possible dimension is clearly an arbitrary constant, which, as it does not
depend on any fields or derivatives, corresponds to dimension 0. Such a term
obviously respects all the symmetries of the SMEFT, and thus nothing prevents
one from adding it to the Lagrangian. This constant can be interpreted as a
vacuum energy density, which, despite having no measurable effect on particle
physics, couples to gravity causing the accelerated expansion of the Universe.
Therefore, it is possible to determine it from cosmology, where it plays the role
of cosmological constant entering Einstein equations. Estimating the constant
operator itself to be of order one, then the corresponding term in the Lagrangian
is simply given by A* with A being the SM cut-off scale. Unfortunately, as the
measured vacuum energy density is approximately of size (1073 eV)?, it would
imply an extremely small (and obviously wrong) value of A ~ 1072 eV. As a
result, the constant term in question must be very tiny, which either requires an
extreme fine-tuning, or some kind of dynamical mechanism. This is the previously
mentioned open problem of the cosmological constant.

The only term in the SM and SMEFT of dimension 2 is the quadratic term
in the Higgs potential, which in the EFT approach can be written with the SM
cut-off scale as A2HYH. The measured value of the Higgs VEV v = 176 GeV
would then necessitate again a rather small A implying either new physics to be
not far above the EW scale (which does not seem to be the case), or again certain
fine-tuning. This is the above discussed hierarchy problem of the SM.

Four-dimensional operators form together with the operators of dimension 0
and 2 the SM Lagrangian described in Sec.

As for non-renormalizable operators, one can construct only a single operator
of dimension 5 in SMEFT, the so called Weinberg operator LLHH. 1t is of
special importance, as it violates lepton number by two units and as such it
can induce light Majorana neutrino masses. Hence, from the EFT point of view
the fact that non-zero neutrino masses are the first evident inconsistency of the
SM is not so surprising, as they should indeed represent the leading deviation.
The current experimental limits on neutrino masses imply the cut-off scale of this
operator to be roughly 104 GeV. The Weinberg operator will be further discussed
in connection to Ov3S decay in Sec. and together with other lepton number
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violating SM effective operators in Chap.

At dimension 6 the number of independent SM effective operators jumps up to
63 [7§] (for one generation of fermions only), 21 of which are fermionic, and thus
also their hermitian conjugates can be considered. For example, schematically,

the following 4 of the 63 operators violate both baryon and lepton number
QQQL, QQue’, QLu‘d", u‘d°u‘e". (2.39)

Hence, they can trigger proton decay via the main mode p — e*7%. These oper-
ators typically arise e.g. from Grand Unified Theories (GUTs) such as SO(10)-
based GUT outlined in Sec. 3.8 Assuming the current experimental bounds on
proton decay reaching approximately 103 y the cut-off scale of these operators
can be roughly estimated as 10! GeV. Consequently, the new physics is again
either very high, or it conserves baryon and lepton number.

Another interesting group of dimension-6 operators are those violating lepton
flavour, i.e. those that conserve the total lepton number, but violate the individu-
al lepton number of a given generation. Although lepton flavour violation (LF'V)
is present in the SM in the form of neutrino oscillations, an analogous process for
charged leptons is highly suppressed. Therefore, searches for charged LF'V can put
constraints on new physics. The processes with the highest experimental sensi-
tivities are the rare muon decays i — ey, it — eee and p — e conversion in nuclei.
Operators triggering these processes are of the form Oy, = Lyot (e H F,, and
Ougq = (£11,0)(qT12q) (II; stand for possible Lorentz structures) with ¢ = e, y, 7.
The corresponding cut-off scales lie in the range 10* — 10° GeV. We discuss these
operators briefly in the context of this work in Sec.

Operators of higher dimensions can be of phenomenological interest as well.
In Chap. |5| we concentrate on operators violating lepton number by two units,
relevant for Ov55 decay and Majorana neutrino mass. Interestingly, they appear
only at odd dimension in SMEFT, as has been proven in Ref. [79]. In this work
we will study AL = 2 SM effective operators of dimension 7, 9 and a selection of
dimension-11 operators, which are listed in Tabs. and [5.3] respectively.
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The v Physics

As the above issues in contemporary particle physics problems suggest, physics
beyond the Standard Model is a rich field with many interesting research topics
that could be discussed in more detail. Considering the subject of this thesis,
let us concentrate on possible ways in which neutrino physics can pave a path
beyond the SM.

The key role in our current understanding of neutrinos has been played by the
observation of neutrino oscillations. The neutrinos’ flavour change was established
by experiments studying the flux of low-energy electron neutrinos coming from
the Sun and since then this phenomenon has been confirmed and further studied
by a number of other collaborations [8410]. As the SM predicts the electron,
muon and tauon lepton numbers to be separately conserved, neutrino oscillations
provide a clear and solid evidence of its failure. A different description of neutrinos

is necessary - neutrino masses must be introduced.

3.1 Weyl: “Dirac or Majorana?”

The SM neutrinos are Weyl fermions by their nature, i.e. they can be repre-
sented by Weyl spinors. If the three known flavour states are labelled by [v/¢(p, h))
with p and h being their momentum and helicity, respectively, then only the states
with h = —% are possible in the SM, as existence of only left-handed neutrinos is
assumed. Every local Lorentz-invariant quantum field theory must be invariant
under the combined charge-parity-time (CPT') transformation. Therefore, the

C PT-conjugates of the left-handed neutrinos,
74(p, h)) = CPT|v'(p, 1)), (3.1)

exist in the SM and describe the right-handed antineutrinos with p = p, h = —h.
However, for massive neutrinos (and fermions in general) helicity is not a
good quantum number for its dependence on the reference frame. Hence, the

spin direction in the particle’s rest frame is used to label the states in this case
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instead |v/(p, s)) with both values s = &3 possible. The C'PT conjugation still
changes s = j:% to s = :F%, but since the initial neutrino has both signs of
s, one cannot distinguish it decisively from its C'PT conjugate, unless there is
an additional quantum number. This means that a given neutrino is its own
antiparticle and it is represented by a Majorana spinor; hence, it is referred to as
a Majorana neutrino.

On the other hand, if there exists an extra conserved U(1) charge, it allows
to distinguish the neutrino states from their C'PT conjugates. In such a case it is
convenient to represent neutrinos by Dirac spinors (and they are called Dirac neu-
trinos for simplicity) analogous to the other fermions. The only difference is that
the role of electric charge allowing to distinguish between charged fermion and
anti-fermion is for neutral neutrinos supplied by their non-zero lepton number.

In the four-component formalism, the free-field Lagrangian for a Majorana

neutrino reads
1. 1.
Ly = §ZVM’)/“8MVM — iMyMVM (3.2)

and the fact that a Majorana neutrino is its own antiparticle is reflected by the
Majorana condition vy, = v{;. The equation obeyed by vy, is just the standard

text-book Dirac equation
(iv*0, — M)vy = 0. (3.3)

The four-component Majorana neutrino can be expressed in terms of the two-
component Weyl field as vy = (v, DL)T. Note that the bar above the Weyl field
vy, denotes a Hermitian conjugation, not the Dirac conjugation, as it is in the
standard four-component notation. Hence, in the usual two-component spinor
notationﬂ the free-field Lagrangian for a Majorana neutrino takes the form

1
'CM = z'DLé“(?HVL — §M<VLVL —+ I;Lﬂl), (34)

Tn this work we sometimes employ the two-component spinor notation described in depth
in Ref. [80] with the difference that we use a bar instead of a dagger to denote the Hermitian-

conjugated (right-handed) fields, which is often the case in related literature. The unbarred
1
2
a, B, ..., while the barred right-handed spinors transforming under the (0

spinors from the left-handed representation (=, 0) of the Lorentz group carry undotted indices

1
)
carry dotted indices &, 3,.... A spinor with a lowered undotted index is treated as a column

) representation

vector, while a spinor with a raised undotted index is regarded as a row vector. For spinors with
dotted indices it is the other way around. The lowered indices must be always contracted with
raised indices (of the same type). As a common convention, descending contracted undotted

indices and ascending contracted dotted indices are suppressed.
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where o# = (lgy2, —0) and the corresponding two-component Dirac equation

reads
"0, v — MY = 0. (3.5)

If M =0, then v, in the above expressions describe the SM left-handed massless
Weyl neutrino.

For a Dirac neutrino, one needs to add two more degrees of freedom in the form
of another Weyl spinor. In the four-component notation this new right-handed
neutrino state is usually denoted by N. The corresponding left-handed conjugate
field is given as N¢ = CNT with C being the charge conjugation matrix. If N¢ is
represented by a two-component Weyl spinor, then by combining it with the two-
component Weyl field v, one can assemble the four-component Dirac neutrino
vp = (v, N¢)T, where the bar above N¢ denotes Hermitian conjugation. Hence,

the Lagrangian acquires the familiar form
ﬁD = iﬂD’}/uaul/D — TI’LI?DVD7 (36)

where again the bar stands for the Dirac conjugation, not for Hermitian con-
jugation, as it is in the two-component notation. The above expression can be

equivalently written in terms of the two two-component fermion fields v, and N¢,
ﬁD = iDL(}“E)MVLqLi]\_fC&“@uNC —m(VLNC+NCJL). (37)
The respective free-field Dirac equations then read

i&“é‘ﬁﬁul/w — mNe" = 0, i(_fudﬁauNE —myg =0. (3.8)

3.2 Neutrinos Mix

In the synopsis of the SM presented in Sec. neutrinos are simply presumed
to have zero masses, since the SM was designed in the way reflecting the experi-
mental evidence of purely left-handed neutrinos. By relaxing this assumption, a
straightforward way to construct a model with massive neutrinos allowing for lep-
ton flavour violation arises. One can simply mimic the quark sector and include
the neutrinos’ right-handed counterparts into the fermionic spectrum. Then, neu-
trinos can also obtain their masses through the respective Yukawa couplings after

symmetry breaking.
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Hence, adding three flavours of right-handed neutrino singlets N transforming
under the fermionic representation {1,1,0} to the SM particle content, the new

Yukawa terms read

Lvukawa D — > Vi L'HN' + h.c. (3.9)

l=e,u,T
I=1,2,3

where yj; are the neutrino Yukawa couplings. After the symmetry is broken,

these terms give the neutrino mass terms

roken v
£g’auk;(vva) o= Z YLVE,NI + h.c. (310)
£:e7u77— \/§
=123

Hence, the neutrino mass matrix is given by M, = (y“v/v/2) with y” denoting
the matrix of neutrino Yukawa couplings. To get the actual neutrino masses,
this matrix must be diagonalized. Similarly to the quark sector, the left-handed
and right-handed neutrinos and charged leptons do not have to be diagonalized
by the same unitary transformation (a bi-unitary transformation is employed
again), which results in lepton mixing. Therefore, following the same procedure
as before, a unitary mixing matrix for leptons arises in the charged currents
after they are expressed in the mass eigenbasis. This mixing matrix is known
as Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix and it relates the flavour

neutrino eigenstates v (¢ = e, u, 7) to the mass neutrino eigenstates v* (i = 1,2, 3)

as follows
Ve ! Veo Veo Ve vt
vh | = VPMNS V2 = Vﬂl Vug Vug 1/2 . (311)
v’ % Vie Vo Vi v

As a result, in the weak charged currents (CC), it is not the neutrino mass
eigenstate, that interacts with the charged lepton of a specific flavour, but it is a

superposition of neutrino mass eigenstates given by the PMNS matrix,

Loc D = Z ZL”y“W*yf +h.c. = =N Z EL”y“W;Vgiuz +he. (3.12)

2 l=e,p,T \/§ l=e,p,T

i=1,2,3
In analogy to the quark CKM matrix, thanks to the freedom given by arbitrary
phase redefinitions of the lepton fields, the PMNS matrix can be conveniently

parametrized by only four physical parameters - three mixing angles 65,63,
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023 € [0,%] and one (Dirac) CP-violating phase 8., € [0,27]. Explicitly, the

parametrization reads

l
6CP

C12C13 S$12C13 s13€”"
V(Dirac) - il it
PMNS — | —S12€23 — C12513523€7°CF  (C12C23 — S12513523€°°CF C13523 )
il 6L
512823 — C12513C23€"°CP  —C19823 — S12513C23€"CP C13C23

(3.13)

where the short-hand notation s;; = sin 6;; and ¢;; = cos 8;; is used.

Besides this straightforward approach of “copying the quark sector”, one could
also deal with neutrino masses in a very minimalistic way - without assuming any
new neutrino states besides the three SM ones. If that is the case, the previous
discussion implies neutrinos must be their own antiparticles; hence, they are

Majorana fermions with a Majorana mass term.

If only this term is present, then neutrino masses are given by the correspond-
ing Majorana mass matrix, which is symmetric. As implied before, the extension
of the SM Lagrangian by this violates the lepton number. This is obvious consid-
ering that there is no way how to distinguish between neutrino and antineutrino;

therefore, the corresponding lepton number cannot be defined.

The actual neutrino masses are again obtained by diagonalization of the mass
matrix, which again results in lepton mixing and introduction of the PMNS
matrix. Although the Majorana mass matrix is symmetric (thus, it has fewer
independent components), more parameters are needed in the respective mix-
ing matrix, because in this case only the charged lepton fields can be rephased.
Rephasing Majorana neutrinos would make their masses complex. Consequently,
in the Majorana case there are 3 physical C'P-violating phases instead of a single

one and the PMNS matrix can be parametrized as

e

0
Majorana Dirac Dirac
VP(MI\fs ) = FEMNS)P:VP(MNS) 0 01, (3'14>
0

o = O

where p and o are the Majorana phases, but various conventions are used for P
in literature [81]. Without loss of generality the range of these phases can be

restricted to p,o € [0, 7.

41



3. The v Physics

3.3 Neutrinos Oscillate

The only experimental proof of the described lepton mixing are neutrino os-
cillations. The standard theoretical description of this phenomenon presented in
the following text involves a number of simplifications, but it leads to the correct
result. Starting at time ¢ = 0 with a neutrino flavour eigenstate created in a
charged current process, it can be expanded in terms of neutrino mass eigen-
states using the above described PMNS mixing matrix, for which the short-hand

notation V' = Vpyng will be used in the following, i.e. one can write
vt =0)) = ) =3 Valv'), (3.15)

where the complex conjugation of the mixing matrix elements comes from the
fact that the corresponding states are created by conjugate fields 7* acting on the
vacuum. The mass eigenstates are also eigenstates of the Hamiltonian in vacuum

(having definite energies) and as such they evolve in time as

=2 Vi

(3.16)

where E; = \/p? + m? is the energy of the eigenstate ¥ with m; being the cor-
responding mass and p the momentum. Making the assumption of considering

ultra-relativistic neutrinos, the energy can be well approximated by the expression

m2 ma
\/p2+m§zp—l—2j;—|—p(9<z>. (3.17)

p4

From the above it follows that at a given time t the evolved neutrino state

can be expressed as a superposition of flavour eigenstates
t)) = > Vie Y Vi), (3.18)
i v

where ¢’ is the flavour of the neutrino detected after time ¢. Therefore, the

probability of neutrino oscillation between flavour eigenstates ¢ and ¢ reads

2
P —v") = (" |v(t)* = Z%?Wie‘m”@”lve’)

= ViV Ve (BB (3.19)

7]
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and employing Eq. (3.17)) the following result can be obtained

, Am2. L
P — ") = 0 — 43 Re {‘/Z‘/Z/iw]“/;j] sin® ( iy )

i<y 4E
Am?. L
+23 [V VeV Vi sin( - ) (3.20)
i<

where the approximation p ~ E and ¢t ~ L valid for ultra-relativistic neutrinos
was used - L is the distance between the two points of production and detection.

From Eq. it is apparent that for oscillations to be possible neutrinos
must have non-degenerate masses, which means that for three neutrinos there
must be at least two with non-zero mass. At the same time, the flavour mixing
must be non-trivial, i.e. V' # 1. Although the oscillation probability depends on
all three mixing angles 615, 613, #23 and the Dirac CP-violating phase, it does not
depend on the Majorana phases appearing in diagonal matrix P. This is due to
the fact that the PMNS mixing matrix appears in Eq. always in products
of the form V;;V;7;. Consequently, the phenomenon of neutrino oscillations does
not distinguish between the Dirac and Majorana nature of neutrinos, as the same
probabilities are obtained for both options. A possible way how to distinguish,
whether neutrinos are Dirac or Majorana fermions, would be an observation of a
lepton number violating process, which will be discussed later on.

The combination of matrices Vj;Vi;Vi;Vyi, is real only in case that ¢ = /,

which means that

) Am?.L B B

P =) =1- 42 \AZE S (45) =P — Y. (3.21)
i<j

Hence, CP symmetry is preserved in survival experiments, i.e. when the flavours

of the produced neutrino and of the neutrino detected at distance L are the same.

On the other hand, CP violation, i.e. a process, for which P(v* — ") # P(v* —

"), can be observed in appearance channels (when £ # ¢').

The formula describes neutrino oscillations for the case of three flavours
and as such it includes subleading and CP-violation effects. However, for the ef-
fective description of this phenomenon consideration of only two-flavour scenario
turns out to be substantial, as it gives a good description of many neutrino os-
cillation experiments. In case of two neutrino flavours, the corresponding mixing
matrix is real (i.e. there is no CP-violating phase) and can be parametrized by

a single mixing angle 6 (an equivalent of the Cabibbo angle parametrizing the
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mixing of two quark generations) as follows

N ;=2 cosf) sin6
Vs = | . (3.22)
—sinf cosf
The resulting oscillation probability (for ¢ # ¢’) then reads
, Am2.L
PWN=D (% 5 v¥) = sin?(26) sin? ( ;nEJ ) . (3.23)

Since the mixing matrix in Eq. is real, the CP-symmetry is clearly preserved
in the 2-flavour case and PNr=2)(pf — ) = PNs=2) (¢ — '),

Neutrinos propagating through a dense medium like the Sun or the Earth
experience the coherent elastic forward scattering from the particles they meet,
which can significantly impact the oscillation probability. The influence of matter
on the neutrino flavour changes has been described by Mikhaev, Smirnov and
Wolfenstein, and thus it is usually referred to as the MSW mechanism [82,|83].
The key feature behind this effect is that electron neutrinos and antineutrinos
interact with matter in a different way than other flavours. Specifically, v* and
V7 scatter off electrons only via neutral currents, whereas v¢ can have both neutral
and charged current interactions with electrons. This leads to an additional term

in the corresponding potential, namely
V = +v2Gm., (3.24)

where G is the Fermi constant, n, denotes the number density of electrons and
the sign is positive for neutrinos, while negative for antineutrinos. Due to this
sign, the oscillation probabilities for neutrinos and antineutrinos can differ as a
result of the MSW effect.

Considering for simplicity again only two neutrino generations, v and v*, and
a constant matter density, the resulting formula for the oscillation probability of
neutrinos in matter has an analogous form as in vacuum

Am%L)

4F ’

P(v® — v#) = sin?(26,,) sin’ ( (3.25)

but now it depends on the modified mass difference Am?2, and mixing angle 6,,.
Hence, observations over long-baselines (large L) should yield significant matter
effects. Most importantly, for a particular setting of the parameters a resonance
of the oscillation probability occurs in the matter case. Since its presence depends
on the sign of Am?, this phenomenon can be used to determine the neutrino mass

ordering discussed in the following section.
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3.4 Probing Neutrino Mass and Mixing

At present, most of our knowledge of the neutrinos’ comes from neutrino
oscillation experiments. In the usual convention, the observations of neutrinos

from the Sun yield the angle #;, and the mass difference Am?2, = Am3, =
2

m3 — m?. The angle 653 and the relative mass Am?2, = |m3| = |m3 — m3|
then can be determined based on measurements of atmospheric neutrinos, or
also long-baseline accelerator neutrinos. The complementing angle #;3 and mass

scale AmZ, can be obtained from short-baseline reactor neutrino experiments, or

from long-baseline v, — v, oscillations. Since 107° V2 = Am2, = Am3, >
Am2, ~ |Am3,| = |Am?,,| ~ 107° eV, the full Eq. (3.20) can be indeed well-

approximated by Eq. (3.23). The actual values of all mixing parameters can
be found e.g. in Ref. [84], where a global fit of experimental oscillation data is
performed. As the sign of Am2,  is not measured, yet, two different orderings of
the neutrino mass eigenstates can be thought of. If v; denotes the neutrino having
the largest v, component and v3 is the one with the smallest v, contribution (see
Fig. , then the three masses can be ordered either as m; < my < mg, or as
ms < m; < mo. These two scenarios generally correspond to the existence of
either one, or two heavier mass states, respectively, which would have important
consequences for the neutrino models. The first mass ordering with Am?2, > 0
is usually referred to as normal hierarchy (NH), while Am?2, < 0 corresponds to
inverted hierarchy (IH). Both possibilities are illustrated in Fig. where the
notation used for the atmospheric mass is Am2, = Am32,(NH) = Am?,(IH) for

the two orderings, respectively. Given the smallest neutrino mass is known, the

other two larger masses can be for individual hierarchies determined as

m2<NH> = \/ m% + Amgolﬁ mz(IH) = \/m?% + AWl‘gol + Amgtma (326)
ms(NH) = \/m% + Am2, + Am2,,, mi(IH) = /mj + Am2,,. (3.27)

The absolute neutrino mass scale remains unknown, which in the limit when

all of the masses are relatively large leads to the quasi-degenerate scheme, i.e. for

2
atm*

m? ~ m2 ~ m? > Am?2 . On the other hand, if the lightest mass is very small

the relative sizes of neutrino masses for the two hierarchies read

my(NH) < mo(NH) ~ /m2| < m3(NH) ~ \/m2,,,, (3.28)
ms(IH) < my(IH) ~ \/m2,,, ~ mo(IH). (3.29)
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Figure 3.1: The normal (left) and inverted (right) hierarchy of neutrino mass
eigenstates taken from . The contributions of individual flavour eigenstates

to particular mass eigenstates are represented by the colour bands.

The identification of the actual neutrino mass hierarchy realized in Nature should
by achieved by current or upcoming neutrino oscillation experiments. Intrigu-
ingly, some of the oscillation measurements hint presence of additional, sterile
neutrinos at low energies. Most recently, a 4.80 excess has been reported by the
MiniBooNE collaboration , which when combined with previous data from
LSND experiment yields 6.10 deviation from the standard oscillation model.
On the other hand, cosmological observations favour the existence of only three
SM neutrino generations .

The absolute neutrino mass scale could be determined by measurements of
the energy distribution of electrons in beta decay, as the non-zero neutrino mass
would impact the kinematical endpoint of the spectrum. Namely, it would cause a
downward deflection from the straight-line Kurie plot corresponding to vanishing
neutrino mass. The functional dependence of the spectrum reads

dN,
dE.

= (B. — Q)\/(E. — Q)* — m3, (3.30)

where the ()-value of the decay appears, FE, is the electron energy and the neutrino

ms =\ 3 |Vil2m? (3.31)

can be determined from the observed curve. The current upper limit on absolute

mass parameter
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neutrino mass given by tritium decays is 2 eV at 95% C.L. [89]. The next genera-
tion experiment, KATRIN [12], is expected to reach the sensitivity of mg = 0.2 eV
at 90% C.L. and 50 discovery potential of mg = 0.35 eV.

Detectable imprints of neutrinos are left in a number of different astrophysi-
cal and cosmological observations, which can in consequence provide information
on neutrino properties. Hence, another constraint on neutrino masses can be
obtained from astrophysics and cosmology, particularly thanks to the neutrinos’
effects in cosmic structure formation. The corresponding measurements are sen-
sitive to the total sum of masses of all active neutrinos, > m;. The currently best
limits are based on Cosmic Microwave Background (CMB) data collected by the
Planck collaboration [90]. However, apart from CMB experiments, upper bounds
on Y. m; can be set for instance also from large scale structure surveys, Hubble
constant measurements, high-redshift Type-I supernovae observations, or baryon
acoustic oscillations measurements. A recent thorough analysis |[11] combining a
number of effects yields the upper limit > m; < 0.17 eV.

Another possibility to probe neutrino masses (and not only that) is to search
for neutrinoless double beta (0v3/3) decay. As this work focuses mostly on aspects
of this hypothetical nuclear process, we will review it in more detail in the next

section.

3.5 Neutrinoless Double Beta Decay
Generally, a process of nuclear double beta decay can be considered
(A, Z) - (A, Z +2) +2e” (4 missing energy), (3.32)

in which a nucleus with A nucleons and Z protons transitions to another one with
two more protons and the same nucleon number by emission of two electrons and
possibly other light particles. In the most standard case, these light particles are
two antineutrinos and the process is a simple ‘double copy’ of the standard beta
decay, cf. Eq.[2.1} which is referred to as two-neutrino double beta (2v38) decay.
This process has been experimentally observed and the measured half-lives are in
the range 10’ —10?! y, depending on the isotope [91-93]. Alternatively, a nuclear
double positron (S77) decay leading to a daughter nucleus (A, Z — 2) can be
also thought of.

If there are no neutrinos on the right-hand side of Eq. , the process is
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called neutrinoless double beta decay [94], which mostlyﬂ refers to
(A, Z) = (A, Z+2) +2e. (3.33)

Hence, from the particle physics perspective Ov53 decay is a simultaneous con-
version of two neutrons to two protons, two electrons and no other particle, which
makes it very interesting. Since there are only two leptons emitted and no an-
tileptons, this process clearly violates lepton number by two units. Consequently,
as will be argued in Subsec. [3.5.2 it requires the Majorana nature of neutrinos
representing one of the best probes of this BSM hypothesis. As a result, a strong
experimental effort is being made to observe this unique process. Unfortunately,
even if OvBp3 decay really exists in Nature, its observation will be very difficult,
as it is predicted to be extremely rare - the current experimental lower limits
on its half-life are around 10 y. Moreover, it must be distinguished from the
mentioned two-neutrino double beta decay, which is significantly more probable.

Various aspects of Ovf3 decay have been covered in detailed reviews [95}96].

3.5.1 Experimental View

The construction of an experiment capable of detecting a nuclear process with
such an extremely long half-life is a major challenge. In case of Ov53 decay there
are several significant issues that must be dealt with. Primarily, as only specific
nuclei can double beta decay, a large mass of a typically scarce isotope is needed.
If the law of radioactive decay is used in the (in this case very well justified)
approximation T}, > t, then the expected number of events N in a Ov33 decay

experiment in time ¢ reads

€NA t
N =log,(2)——aM —5,85 (3.34)
w Tlo/fﬂ

where ¢ is the experimental signal detection efficiency and N4, a, W and M
are the Avogadro’s number, natural isotopic abundance of the parent nuclide,
atomic weight of the given isotope and the isotope mass, respectively. Even
if no background and perfect signal detection is assumed, then considering a
OvB3f decay half-life Tj /5 ~ 10%6-10*" y, hundreds of kilograms of the isotope are
necessary in order to get only a single event a year. This is further complicated by

2v35 decay events representing an intrinsic background that can be discriminated

2Note that additional particles other than neutrinos can still be emitted. A typical example

is the emission of Majoron.
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Experiment Isotope Status M [kg] Tlo/”f # limit [y]
CUORE 130 running 200 (3.5 x 10%)
EX0-200 136X e running 110 1.1 x 10%

nEXO 136X ¢ R&D 5000 (107-10%)
GERDA Ge running 21.6 5.3 x 10%°
in progress 40 (~ 102)
KamLAND-Zen 136X e running 383 1.1 x 102
in progress 600 (2 x 10%)
LEGEND Ge R&D 200 (~ 10%7)
R&D 1000 (~ 10%)
Majorana Dem. 6sGe running 44.1 1.9 x 10%
NEXT 136X e in progress (demo) 100 (5.9 x 10%)
SNO-+ 130T in progress 1300 (2 x 10%)
SuperNEMO  #2Se (1*Nd) in progress (demo) 100 (~ 10%)

Table 3.1: An overview of major Ov3/ decay searches, both current and future.
For each experiment the following information is shown: used isotope, operational
status, the deployed mass M of the isotope in question and the measured or
expected (for experiment in preparation these values are shown in parentheses)
sensitivity TIO/VQB A, For some experiments (GERDA, KamLAND-Zen, LEGEND)
characteristics of more stages of development are given. In case of SuperNEMO,
the primary isotope to be tested is ®2Se and in future the measurement will be

repeated with a '"°Nd source.

from the OvBf3 decay events only by measurement of the energy of the emitted
electrons, as the outgoing neutrinos are undetectable. Moreover, the narrow peak
of OvBf decay in the obtained energy spectrum can be overlapped by the tail of
the peak corresponding to 2v33 decay, which places demands on the energy
resolution of the experiment. Besides that, there are other factors that must be
taken into account, when the convenient experimental approach is to be chosen.
However, no optimal solution of all the related problems exists resulting in a
variety of Ov(53 decay experiments, some in operation, other being constructed
or planned, see Tab. for a list of the major collaborations.

One of the most important characterizations of each Ov3[ decay search is the
used isotope. In order to be able to study OvB3 decay experimentally, an even-

even (i.e. nuclei with even proton and neutron numbers) isotope must be chosen,
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for which single beta decay is energetically forbidden, or at least suppressed by
respective selection rules. In Nature there are about thirty-five different even-even
nuclei that can undergo a double beta decay. The experimentally most favourable
ones for the Ov53 decay quest can be selected on a basis of a number of criteria.

Naturally, one is in particular interested in factors that can improve the re-

sulting decay rate; the general formula can be written in a factorized form
Louss = [AM(A, Z)PG(Q, Z), (3.35)

where the particle physics playing a role in the decay enters in form of the pa-
rameter A\, M(A, Z) is the nuclear matrix element (NME) and G(Q, Z) is the
corresponding phase-space factor (PSF). The NMEs as such differ for different
nuclei (although not too dramatically) and mechanisms triggering the decay. Sim-
ilarly, the involved PSF depends on the isotope and also on the particle physics

involved. It can be also shown that it varies with the fifth power of the )3 value,
Qﬁb’ = E[ — EF — 2m6, (336)

where m, denotes the electron mass and E; and Er are the energies of the initial
and final nuclei. Consequently, the decay rate is significantly enhanced in case of
isotopes with high values of ()gs, which makes them favourable for Ov33 decay
searches. Usually, one of the eleven isotopes in Nature with Qs > 2 MeV is
considered. A high value of (g is useful also for another reason - the background
of natural radioactivity drops significantly above ~ 3 MeV, which makes it much
easier to control. For a similar reason, isotopes with a slow two neutrino mode
are desirable.

There are also other features favouring specific nuclei like natural abundance,
price of enrichment or good understanding of the nuclear physics of the given
isotope. Nonetheless, there is no ideal isotope, which would be convenient in
every of the presented aspects. Different isotopes have different advantages and
disadvantages, which is also why the isotopes employed in current or planned

experiments vary. Most attention is paid to the eight nuclei
481, T6(te. 82Qa 1000 [ 1161 180T, 1360 150N (3.37)

and their characteristics are summarized in Tab. [3.21
In the idealized case of no background, the sensitivity of a Ov33 experiment

is proportional to
LN

12 X (3.38)
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Isotope a [%] Qps [keV] G [107 y!]

BCa 0187  4273.7 24.81
Ge 7.8 2039.1 2.363
82Se 9.2 2995.5 10.16
100Mo 9.6 3035.0 15.92
1160q 7.6 2809.1 16.70
130Te 345 2530.3 14.22
136X e 8.9 2457.8 14.58
150Nd 2.6 3367.3 63.03

Table 3.2: A list of the most commonly studied double beta decaying isotopes and
their basic characteristics: natural abundance a, the Q)3g value and the phase-
space factor G (for the standard mechanism, see Sec. [3.5.4)).

where the involved quantities were defined earlier. If no event has been observed
within the time ¢, then for N = 1 the expression yields an upper limit on the
decay rate. However, since the background of Ov53 decay is rather non-trivial,
as discussed in the above paragraphs, it must be taken into account to get a more

realistic formula [97]. The number of background events in time ¢ is given by
Ny, =bMAFt, (3.39)

where b denotes the background rate in counts/(keV-kg-y) and AFE is is the energy
window around ()gs in keV. It is assumed that the background is approximately
constant over the interval AFE, which is valid unless a large AF is considered, as
then the two-neutrino events may enter. The expression for the inverse half-life

sensitivity including background behaves as

Ty o ;a b]\AﬂE. (3.40)
Consequently, the background significantly constrains the sensitivity, as the ex-
pression improves slowly with exposure, as (M t)’%, while the background-
free sensitivity is proportional to (M¢)™!.

An overview of current and planned Ov3/ decay experiments is contained in
Tab. [3.1] where also the used isotopes are specified. For the reasons described
in previous paragraphs, a variety of experimental approaches trying to reach the

highest possible sensitivity in different ways exists. Currently, major experimental
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efforts focus on 0v33 decay detection in "®Ge, 13°Te and 13%Xe, but very promising
experiments are being designed also for several other isotopes [98].

The high-purity Germanium detectors have the best energy resolution of all
techniques used for Ov /3 decay detection, which helps to reduce the background.
On the other hand, their fabrication costs are high and the value of Qs is low-
er for Germanium than for other isotopes; therefore, the experiments must be
well-shielded. Currently, the leading Germanium Ov(33 search is the Germa-
nium Detector Array (GERDA) [99], a successor of the International Ger-
manium Experiment (IGEX) and the Heidelberg-Moscow Experiment. It began
data-taking in 2011 and presently it provides the best bound for Germanium.
Another Ov3 decay experiment using Germanium is the Majorana Demon-
strator [100], which started acquiring data in 2016 and it is able to search also
for other rare events, namely axions and light WIMPs. A joint collaboration of
GERDA and Majorana Demonstrator called LEGEND (The Large Enriched
Germanium Experiment for Neutrinoless Double Beta Decay) |101] com-
bining their know-how and resulting in a tonne-scale Ov /3 decay experiment has
been recently established. The anticipated sensitivity of this project is an aston-
ishing 10?® years.

The advantages of the 3Te isotope are the highest natural abundance reach-
ing 34.5% and relatively high value of Qs (~ 2.5 MeV). Similarly as in case of
Germanium, there are two major collaborations using Tellurium as the double-
beta-decaying isotope. First, there is the Cryogenic Underground Observa-
tory for Rare Events (CUORE) [102], which started searching for Ov 3/ decay
signal in TeO, crystals in 2017 and its expected 10-year sensitivity is 3.5 x 102
years with background level of 0.001 counts/(keV-kg-y) [102]. Naturally, it is also
used to search for other rare events. The second large Tellurium experiment is
SNO+, an upgrade of the Sudbury Neutrino observatory (SNO) detec-
tor [103]. It is currently under construction and the first phase of data-taking
should start in 2019 [104},/105]. Despite a lower energy resolution, SNO+ will be
able to compete with other experiments, as it will use an organic liquid scintilator,
which can be loaded with large amounts of 3°Te.

Xenon differs from the other isotopes, since it is a scintilating noble gas and as
such it allows for use of different experimental techniques. There exist three big
collaborations with facilities focusing on detection of Ov33 decay in 3Xe, which
are in various stages of development. KamLAND-Zen [106] is one of them -

it is an upgrade of the previous KamLAND experiment, which was designed to
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measure reactor neutrino fluxes. It has the shape of a balloon containing 3¢Xe
dissolved in the liquid scintilator, which is shielded by another volume of the scin-
tilator around it. Starting in 2011 it has completed two phases of measurement
resulting in currently the best available limit on Ov33 decay and a new phase with
bigger mass of the isotope is in progress [107]. The next experiment searching
for Ov3/3 decay in '3%Xe is the Enriched Xenon Observatory (EXO) [108].
It uses pure enriched Xenon both as source and detector and the first phase
called EXO-200 began in 2011. The proposed new version of this experiment,
nEXO [109], seems to be very promising, as the recent report [110] quotes an
expected discovery sensitivity at 30 of T7% = 4.1 x 10*" y. The third Xenon
Ov B[ search to mention is called Neutrino Experiment with a Xenon TPC
(NEXT) [111]. As the name suggests, this experiment uses enriched gaseous
Xenon in a high-pressure time projection chamber, which implies an excellent
energy resolution (better than 0.5% at 2500 keV) and availability of a topological
signature. Presently, the 10-kg demonstrator NEW is in operation and the second
phase of the experiment, NEXT-100, will be deployed in 2019.

In all of the above described experiments the source plays the role of the de-
tector at the same time (source = detector experiments). However, there are also
Ov3f3 searches with separate source and detector, e.g. SuperNEMO [112], which
is currently testing its first module, the SuperNEMO demonstrator. The biggest
advantages of this experiment are the possibility of probing multiple isotopes and,
similarly as in case of NEXT, the ability to track the emitted electrons using the
track calorimeter technique, which was established by the preceding experiment,
NEMO-3.

To sum up, the most stringent bounds on OvB3 decay are currently from
Ge [113] and 3°Xe [114], which read, respectively,

(s = Tij2 ("4 Ge = ",Se + e e ) > 53 x 107y, (3.41)
T3 = Tijz (55Xe — '3Ba+ e e™) > 1.1 x 107y, (3.42)

at 90% confidence level (CL). The largest planned future experiments searching

for Ov3f decay are expected to reach sensitivities of the order of T3, ~ 10%7 y.
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Figure 3.2: The black box theorem depicted diagrammatically, taken from
Ref. [115].

3.5.2 Black Box Theorem

As mentioned above, Ov53 decay is tightly related to the Majorana nature of

neutrinos. In fact, the equivalence
Neutrinos have Majorana mass <= Ovf3/ decay exists (3.43)

holds and it can be very easily understood in effective terms. The implication
that a nonzero Majorana neutrino mass automatically means that it is possible
to trigger Ovff decay can be verified from the fact that the effective Majorana

mass dimension-3 operator (in the two-component formalism)
OV = VLVy, (344)

can be always extended to give the Ov33 decay diagram in Fig. by attachment
of the SM vertices. The converse of this statement then simply relies on the
opposite use of the same SM rules to connect all the external legs of the effective

Ovp3f decay operator of dimension 9
Oopp = €‘e“d“d“u‘u” (3.45)

back together to give only neutrinos; thus, reconstructing the effective Majorana
mass operator. The latter implication is known as Schechter-Valle, or black-
box, theorem [116H118], which is graphically shown in Fig. (3.2). Consequently,
if OvfBf5 decay is observed, this contribution to neutrino mass will always be
induced. Nonetheless, it must be noted that it is highly suppressed by the four-
loop factor and the W-boson propagators. A back-of-the-envelope estimate yields
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3.5. Neutrinoless Double Beta Decay

the Majorana mass

my, ~ (1617T2)4 mlgv MeV® =~ 107 6V, (3.46)
where myy is the mass of W boson and MeV is the typical energy of the fermions
e, u, d taking part in the decay. The obtained number is obviously too tiny to be
experimentally testable. Therefore, the experimental evidence of the O35 decay
would not necessarily mean that it is related to the origin of the light neutrino
mass. Although the possibility that Ov35 decay is triggered directly by the light
neutrinos or their heavy counterparts entering the type-I seesaw mechanism is
the best motivated one, the source of lepton number violation (LNV) can be
completely different. It is even possible to imagine a situation, when the above
black-box contribution is the only contribution to the light neutrino mass - e.g.

a model with right-handed scalar triplet and no Dirac neutrino mass terms.

3.5.3 Discriminating among Different Mechanisms

The classification of different Ov 35 decay interpretations usually cited in the
literature simply distinguishes between the standard mechanism, i.e. 0vgp
decay induced by the light neutrinos (while all other possible contributions are
assumed to be negligible) and so called non-standard mechanisms. The latter
corresponds to OvfS3 decay triggered by some other underlying lepton number
violating operator, typically by heavy neutrinos entering some kind of seesaw
mechanism, as described in Sec. [3.6] In the following, a brief review of the stan-
dard Ovf3f mechanism is given and later on the attention is paid to the effective
approach to the non-standard Ov 3 decay mechanisms, which is the main subject
of the present work. As will be discussed in Chap. [4] one can generally distin-
guish between long-range and short-range non-standard Ov /3 decay mechanisms.
While for the former, the neutrino exchange between the two nucleons must be
taken into account, in the latter case one deals with a contact interaction.

For our later arguments it will be important to discriminate among different
OvfBp decay mechanisms, or at least, to distinguish between the standard and
the non-standard mechanisms. There are several possibilities how to do so. One
can e.g. measure the energy distribution and angular correlation of the emit-
ted electrons. In the standard mass mechanism the two electrons are preferably
emitted back-to-back, which is not always the case for exotic Ov3( decay contri-

butions. In this regards, the long-range mechanisms have been studied in detail
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in Refs. [119-124]. In Chap. , where we focus on the short-range mechanisms, we
calculate, plot and comment also on the corresponding energy and angular cor-
relation distributions. Experimentally, it is possible to probe these distributions
e.g. in the SuperNEMO experiment |112}/125].

Another test distinguishing among different Ov3/ mechanisms that could be
performed is the search for Ov33 decay in multiple isotopes [126H128], which mo-
tivates the development of several experiments using different nuclei. At the same
time, the comparison of Oy decay with electron capture or Ov5 51 decay [129],
or the comparison of Ov35 decay to the ground state and an excited state |130]
could suggest the mechanism responsible for Ov33 decay.

Further, inconsistencies between the experimental results from Ov3f5 decay
and from the determination of the sum of neutrino masses using cosmological
considerations could potentially also hint at the existence of non-standard Ov3p3
decay contributions [131]. On top of that, LNV could be also probed by other
experimental means. For instance, searches for LNV in resonant processes at high

energy colliders could determine the corresponding scale more directly [132}133].

3.5.4 The Standard (Mass) Mechanism

The standard mechanism of Ov 33 decay (often called ‘mass mechanism’) relies
on presence of the Majorana neutrino mass term induced by the operator in
Eq. (3.44) in the Lagrangian £ of given theory. In the four-component Weyl-

spinor formalism this mass term reads

;M,, (viCvL) + hec. (3.47)

and it can be generated in numerous ways. Typically it originates from some new,

£Majorana =

high-energy physics living at a scale A via some kind of a seesaw mechanism,
see Sec. . However, the mass term in Eq. can be also understood
as an effective operator without need of specifying the underlying high-energy
physics. At the SM level, this mass term is induced by the unique five-dimensional

Weinberg operator
C : :
£ = ngijékzL’TC’LkH]Hl +h.c, (3.48)

where Cyy is the corresponding Wilson coefficient. After the electroweak symme-

try breaking one gets

(5) . 1 va2
(broken) 5 A

(V}CC’I/L) + h.c, (3.49)
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va
2A

Cw. Hence, as expected, the new physics responsible for light neutrino masses

and the small masses of neutrinos M, are obtained for big A and/or small
must lie at high energies or it must be weakly coupled to the SM.

Using this new vertex and two V' — A vertices of the SM, the standard Ov53 de-
cay mechanism is obtained, see Fig. [1.1, The corresponding transition amplitude
contains the expression

g+ mi mi c
Xi: e R Z+m PL%% = Z 62%m%€1 ) (3.50)
where P = %(1 — 75) is the left-handed projector, V,; are elements of the first
(electron) row of the neutrino mixing matrix, m; denotes the mass of the i-th
neutrino mass eigenstate, ¢ is the neutrino four-momentum (¢ ~ 100 MeV) and
e1,2 are the two emitted electrons in the four-component Dirac-spinor notation.
The ¢ in the numerator in Eq. (3.50)) drops out due to the chiral projectors. For

light neutrinos the m? term in the denominator can be safely neglected,
Z eV — 7 fy#elc, (3.51)

and the Majorana neutrino propagator can be understood as a ‘mass insertion’
rule, which corresponds to the spin flip (outgoing left-handed Majorana neutrino

can be reckoned for ingoing right-handed Majorana neutrino). Obviously, it is

m; < _0.5 eV

the ratio NI T

that strongly suppresses the Ov35 decay rate in case of
the standard mechamsm.
Therefore, the standard mass mechanism of Ovf35 decay is sensitive to the

so-called effective Majorana neutrino mass,
Mee = Z “mi, (3.52)

where the sum is over all light neutrinos with masses m,, weighted by the square of
the elements of the mixing matrix Vpyns. This quantity is equal to the (ee) entry
of the Majorana neutrino mass matrix. Assuming the standard picture with three
light neutrinos and employing the parametrization of the PMNS matrix given in
Eq. , the effective mass is given by

Mee :m1]V |2622"’—|—m2|V62|2+m3|V ‘26%0

2 2 2 2 o
= MCloCrae®" + MysSiyChy + Mmasise (3.53)

where, as before, ¢;; = cos0;;, s;; = sinb;; and 0,3, 0,3 are the mixing angles and
p,o are the Majorana CP-violating phases. Note that the Dirac CP-violating

phase dcp does not enter the above expression.
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Decay Rate Derivation

Using the effective mass, the inverse OvB3 decay half life for the standard

mass mechanism in a given isotope reads

2

Gy M, %, (3.54)

— mee
h /é = ‘
Me

where, as in the general case, GG, is the PSF and M, the corresponding NME
of the process. The normalization with respect to the electron mass m, yields a
small dimensionless parameter €, = m../m.. The standard mechanism PSFs for
various isotopes are calculated in Ref. [134] and some of them are shown in Table
3.2l The NMEs can be written as

M, = (g,%;MGT — v Mp + giMT) , (3.55)

where Mp, Mgr and Mp are the Fermi, Gamow-Teller and Tensor NMEs, re-
spectively. These are defined as [135]

Mp = (h"(q%)), (3.56)
Mer = (BT (%) (04 - 7)), (3.57)
My = (h"(¢*) [3(0a - ta) (0 - F) = (00 - 00)]) | (3.58)

where o = (01,02,02)T denotes the vector of Pauli matrices operating on the
nucleon spin space and 4, = rq/|re| is the direction unit vector between two
nucleons. Further, h¥'(¢?), h%T(¢?) and h”(¢?) are functions of the square of the
neutrino three-momentum given by a product of neutrino potential originating
from the propagator of the exchanged neutrino and the relevant nuclear form fac-
tors describing the momentum-distance dependence of nuclear interaction |135].

The NMEs of the nuclear Ov3/ transitions are notoriously difficult to cal-
culate and limits derived from Ov@/ decay are affected for any contribution.
There are several distinct nuclear structure model approaches to the calculation
of the Ovff3 decay NMEs. The main ones are the following: Interacting Bo-
son Model (IBM) [135-137], Quasi-particle Random Phase Approximation (QR-
PA) [138-141], Nuclear Shell Model (NSM) [142/[143|, Energy Density Functional
(EDF) [144], Relativistic Energy Density Functional (REDF) [145] and the Pro-
jected Hartree Fock Bogoliubov (PHFB) [146] model. In case of QRPA and NSM
there are more independent groups working on different variants of the compu-

tation. Nonetheless, despite all the tremendous efforts to improve the nuclear
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theory calculations, the latest matrix elements obtained using various approach-
es differ in many cases by factors of ~(2 — 3). Every method has its strengths
and weaknesses and the discussion, which approach should be used, is ongoing
and far from its end [147].

For instance, the QRPA and related methods work in large configuration
spaces with many single-particle orbits included. Opposite to that, the configu-
ration space in the NSM is usually based just on a few single-particle orbitals.
On the other hand, the advantage of NSM is that all correlations around the Fer-
mi surface are included, while the set of correlations in the QRPA is restricted.
The EDF-based approach together with so called generator coordinate method
(GCM) treats carefully the collective correlations, which may not be described
by the NSM and the QRPA. The IBM also captures the collective motion and,
being an approximation of the NSM, it shares the advantage of a large number
of correlations. The price for that may be seen in a bit more phenomenological
approach to nuclear structure. Based on these facts, it may be surprising that
the NMEs obtained by the IBM are similar to those calculated by QRPA, but
rather different from the results provided by the NSM. The reason for that is so

far unclear.

Phenomenological Implications

Assuming Majorana nature of neutrinos and using the bounds on Ov33 de-
cay half-life together with the computed values of NMEs and PSFs one can, up
to some uncertainty given by the nuclear-physics input, use Eq. to get
the upper limit on the effective neutrino mass. Since the effective mass incorpo-
rates neutrino mixing, the standard mechanism of Ov53 decay is directly related
to phenomenology of neutrino oscillations. Employing the measured oscillation
parameters a limit on absolute neutrino mass scale can be set, too, complement-
ing constraints from cosmology and single beta decay experiments. Naturally,
this limit will depend on the considered neutrino mass hierarchy, which can be,
consequently, also probed in this way. When relating the effective and absolute
neutrino masses, the uncertainties of the experimentally determined parameters
must be taken into account. Another complication, which affects the calculation,
are the unknown CP-violating phases.

In Fig. the effective neutrino mass in dependence on the mass of the light-

est neutrinos is depicted for both normal and inverted hierarchies. The regions

99



3. The v Physics

in colour thus represent the parametric space allowed by data from neutrino os-
cillation experiments. Cosmological observations and beta decay measurements
constrain the graph from the right. Searches for Ov3S decay restrict this plot
from the top, as they set an upper bound on effective neutrinos mass. Specif-

ically, the current experimental results lead to the following limit on effective

neutrino mass [114]

Mee] < 0.06 — 0.17 €V, (3.59)

with an uncertainty due to the different values for NMEs calculated by various
nuclear structure models.

If one considers the lightest neutrino mass to be larger than Am?, and Am2,,
which is a setting probed by current experiments, a quasi-degenerate scheme is
obtained. In this regime the limit on absolute neutrino mass m, < 0.5 eV can be

obtained from effective neutrino mass using the current experimental data.

0.1;

0.01:
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0.001;
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Figure 3.3: Effective neutrino mass as a function of the lightest neutrino mass
shown in the logarithmic scale both for normal (Am? > 0) and inverted

(Am? < 0) hierarchy. The 30 regions due to error propagation are shaded. Taken

from Ref. [148].
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As can be seen from Fig. [3.3] in case of normal hierarchy the values of the
parameters can conspire in such way that the effective neutrino mass vanishes.
If this unfortunate possibility is realized in Nature, or even if the effective mass
is non-zero, but very small (m,, < 107%), observation of 033 decay would be
practically impossible, unless certain non-standard mechanism contributes more
significantly. In case that the absolute neutrino mass is determined (from cosmol-
ogy or beta decay), then (considering the realistically reachable values of absolute
neutrino mass) it would automatically mean that neutrinos are either ‘inversely
hierarchical’, or ‘normally hierarchical’ and quasi-degenerate. In either case, the
effective mass would have a non-zero value and the potential Ov53 decay signal
would be fairly likely.

The important feature of the effective mass for the inverted hierarchy is that
its minimal value is non-zero, see Fig. [3.3] Reaching this value is the long-term
goal of Ovf33 decay searches, because even non-observation of any signal would
be useful. It would imply either that neutrino mass ordering is not inverted, or
that neutrinos are not of Majorana nature (unless some kind of more complicated
LNV physics causes the non-observation of Ov3 decay). Logically, if the inverted
hierarchy is confirmed by a different measurement, the unsuccessful Ov33 quest
would mean that neutrinos are not Majorana particles. Based on the current
experimental data the minimal value of the effective neutrino mass in the inverted
hierarchy corresponds to =~ 0.02 eV. The respective half lives are of order 10*7 y;
therefore, the lower limit of inverted hierarchy could be probed by planned future
experiments.

The information about Majorana CP-violating phases is also encoded in the
effective neutrino mass and in principle it can be extracted, but it is a rather chal-
lenging issue. Naturally, only one phase (or their combination) can be obtained
plus additional information about the absolute neutrino mass is needed. Realis-
tically, the determination can be achieved either for the inverted mass ordering,
or in the quasi-degenerate regime of normal ordering.

So far, the role of the Ov33 decay experiments in standard Majorana neutrino
phenomenology including ‘only’ the three SM generations of neutrinos was dis-
cussed. Nonetheless, if neutrinos are Dirac particles (which is, after all, a fairly
straightforward extension of the SM, as shown in Chap. , then, of course, no
OvfBp decay can be observed and the effective mass is identically zero. If only
a tiny Majorana mass parameter appears in the neutrino mass matrix, so called

Pseudo-Dirac neutrinos [149] are obtained and the effective neutrino mass is non-
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zero, although very small. Alternatively, the neutrino picture can be also bigger
than assumed. A popular modification is through the inclusion of light sterile
neutrinos with masses in the range from eV to MeV [150-153], in which case the
half life is still given by Eq. , but with different masses m; and couplings
Vei [131,154H156].

3.6 Neutrinos May Seesaw

As discussed in the Sec. there are two straightforward ways how to make
neutrinos massive - one can either mimic the charged fermion sector and introduce
Dirac neutrino mass terms, or the Majorana nature of neutrinos can be assumed,
which allows for addition of Majorana mass terms to the SM Lagrangian. While
the former possibility requires presence of sterile neutrinos, the latter one does
not involve any new neutrino states. However, both options suffer from certain
drawbacks. In order to get Dirac neutrino masses of correct size the corresponding
Yukawa couplings must be very tiny - several orders of magnitude smaller than
the Yukawa couplings of other fermions, which seems to be unnatural and fine-
tuned. The same problem arises for Majorana masses. On top of that, the
Majorana mass terms explicitly break the SU(2), gauge symmetry.

The issue of artificially introduced small neutrino masses can be resolved
employing the so called seesaw mechanism. This approach in general assumes
the existence of heavy particles living at a high energy scale, which in turn makes
the masses of the SM neutrinos very small in a rather natural way. Moreover, the
involved heavy degrees of freedom are typically motivated by other BSM physics.
There are a number of different set-ups, but only three types of seesaw mechanism
can be constructed at tree level, if just one type of new particle is assumed
to be added to the SM content [157]. Effectively, tiny neutrino masses can be
obtained from the Weinberg operator introduced in Sec. and further discussed
in Sec. 3.5l This lowest-dimensional SM invariant effective operator naturally
provides the strong suppression of neutrino masses given by a large cut-off scale
A ~ 10 GeV derived from non-observation of Ov33 decay. Seesaw mechanisms
described in the following text can then be understood as UV completions of the

Weinberg operator.

Seesaw Type I The original construction of a seesaw mechanism [14-17] is

based on the addition of right-handed neutrinos. Since these are SM singlets,
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gauge invariance allows to write not only the Dirac mass term but also the Ma-

jorana mass termf

1
N
L l(\/Ia)j orana 5

S Myl NTON? +he., (3.60)

np = (]\”2) (3.61)

the Dirac and Majorana mass terms
1

Ly = Z vy, L' HN' —

,3

M ]rsNT CNY + hee. (3.62)
1,2,3

y 4y

1,2,3

can be combined to give in the broken phase the expression

1
Ly = §ninCMnL +h.c., (3.63)
where the 6 x 6 mass matrix of the form
0
M = ( . mD) (3.64)

was introduced. By block-diagonalizing this matrix,

—mpMy;/mE 0 )

3.65
0 My (3.65)

Maiag = UTMU =~ (

the masses of the eigenstates

U uﬁc _ 11 m’, M5! ugc _ Vﬁi—(m*DM:M_I)NIC (3.66)
Nt —M;/m% 1 Nt NI — (My/mE)vt

are obtained. As a result, the first diagonal element of the matrix in Eq. (3.65),
which is proportional to the second power of Dirac mass matrix and inversely
proportional to the right-handed Majorana mass matrix, effectively describes the

mass of the light left-handed neutrinos

1
M) = —mp—m?. (3.67)

3 Although one right-handed neutrino singlet per generation is considered in the following
text, it is actually not necessary. Current experiments demand at least two neutrinos to be
massive; therefore it is in fact enough if two right-handed singlet neutrinos are added to the

SM particle content.
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The second diagonal element is simply the Majorana mass matrix giving effec-
tively the masses of the new right-handed neutrinos. This setting allows for a
naturally small mass of the SM neutrinos, as the Majorana mass parameter can
be chosen to be arbitrarily large. If the neutrino Yukawa couplings are set to be
of order one and the Majorana mass is taken to be of order 10** GeV, the masses
of the light left-handed neutrinos are of the desired order m, ~ 0.1 eV.

Another interesting observation is that the additional neutrino states, despite
being often called ‘sterile’, are not completely sterile in the mass eigenbasis -
as apparent from Eq. , there is a small contribution from the light SM
neutrinos. However, this contribution is negligible, as it is inversely proportional

to the large Majorana mass parameter.

Seesaw Type II The introduction of additional neutrino states is not the only
possibility to get naturally small neutrino masses. The SM neutrino masses do
not have to be generated through the standard Yukawa couplings like all other
SM fermions. The second type of seesaw mechanism [158-H160] is based on the

idea that the light neutrino masses are induced by a heavy scalar SU(2)-triplet,

AT AT
{1,32l=A,=A, - 7=V , (3.68)
A0 —LAF
V2
which allows for new Yukawa couplings of the form

Lo viawa = > yOL" CGr*)ALL +hec.. (3.69)

l=e,p,T

U'=e,u,T

Hence, when the scalar triplet acquires its VEV, the neutrino mass matrix reads
M, = y?(ApL). The VEV (A.) can be expressed in terms of parameters appearing

in the respective scalar potential
LA_seatar = MAT[AAT] + [pHT (i7?) A} H + h.c] (3.70)

as

(AL) ~ (,sz O) : (3.71)

2M3 0
where p is expected to be of order M and v is the SM Higgs VEV. Therefore,
in analogy to the first seesaw: if Ma is chosen to be large enough, i.e. Ma > v,

then small masses of the SM neutrinos are naturally achieved,

2
M= YA (3.72)
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Seesaw Type III Another possibility to construct a seesaw mechanism is to
assume the existence of new fermionic SU(2), triplets T4 [161], which interact

with the SM content in an analogous way to the right-handed neutrino singlets
in Eq. (3.62), i.e.
L= S yOLTOG)(TL-MH+ Y ME(TLTOTL +he..  (3.73)

l=e,pu,

= T =1,
J=1,2,3 J=1,

1
M = (')t ey (3.74)

and for M?F >> yTry the SM neutrinos become light.

Inverse Seesaw This type of seesaw mechanism motivated by string theories
[162] represents a low-scale tree-level scheme for light neutrino mass production.
It relies on the assumption of a non-minimal lepton content of a given model,
namely, on the addition of extra singlet leptons. Generally, any number of such
particles can be added to any gauge theory [18]. Minimally, an extension of the
SM particle content by a pair of left-handed two-component lepton singlets N¢
and S can be assumed [163]. Considering three generations of these new singlets,
the 9 x 9 mass matrix of the neutral leptons in the basis {vf, N'° S4} (where
A =a,b,c) reads

0 mp 0
MS=|mL 0 M|, (3.75)
0 MT .

where mp is the Dirac neutrino mass matrix as usual, while M and p are the
mass matrices corresponding to the SU(2); singlets. There are no Majorana
mass terms corresponding to v, and N - the relevant entries of the matrix are
zero, as predicted by some string models. The only Majorana mass matrix is the
matrix p corresponding to the extra singlet S. As such it is the source of lepton
number violation and if 4 = 0, the (B — L) symmetry is restored, the matrix M
degenerates and one is left with three massless neutrinos.

For p nonzero and provided that 1 < mp < M the resulting mass matrix of

the light neutrino eigenstates is given by the following expression

ME = mpM~ M) m],. (3.76)

4Again, only two triplets are needed, although three (one for each flavour) are considered in
this text.
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While in the standard seesaw mechanisms the neutrino masses tend to zero with
growing size of the involved Majorana mass matrix, in the present case neutrinos
become light for ;x — 0; hence, one talks about ‘inverse’ seesaw. The smallness of
1 in this kind of SM inverse seesaw mechanism can be considered to be natural,

as sending p to zero enhances the symmetry of the theory |164}/165].

Linear Seesaw An interesting variant of the inverse seesaw mechanism can be
realized within SO(10) models (which will be briefly discussed in Sec. with
broken D-parity [166]. Although originally developed within the supersymmetric
SO(10) framework, it can be employed also in non-supersymmetric scenarios.
The minimal fermionic content of the SO(10) model contained by three copies of
the 16 representation is extended by three gauge singlets S“. Hence, the mass

matrix for the neutral fermions in the basis {v¢, N7° S4} reads

0 mp 1y,
MS=1mE 0 M|, (3.77)

m? M7 0

where mp is the Dirac neutrino mass, M denotes the heaviest Dirac neutrino
mass term mixing /N-S and my is the small term mixing v-S, which is responsible
for breaking of the (B — L) symmetry. The resulting mass matrix of the light

neutrinos generated by this seesaw is
MIIjS ~ mgM_lmL + (M_lmL)TIﬂD, (378)

and the fact that this formula depends linearly on mp (and therefore also on
corresponding Yukawa couplings) gives the presented seesaw mechanism its name.
Obviously, the small neutrino masses are ensured by the large unification scale
M, which suppresses them independently of the (B — L) symmetry breaking
scale. This is a very interesting feature, as it allows for (B — L) symmetry
restoration/breaking at low energies (without spoiling the light neutrino masses

or the unification), where the related phenomena can be probed experimentally.

Other Neutrino Mass Models Although the seesaw mechanisms are proba-
bly the most commonly quoted schemes of neutrino mass generation, there are a
number of other alternatives. These can be phenomenologically even more inter-
esting, as they often predict, unlike the standard seesaws, a low-energy origin of

neutrino masses. The required smallness of the masses is either achieved by an
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introduction of a small parameter violating lepton number (in the same way as
in case of inverse or linear seesaw), or by a loop suppression, which can be com-
bined with small Yukawa couplings. The former possibility is employed e.g. in
supersymmetric models [167], where the violation of lepton number corresponds
to R-parity breaking. The latter option refers to radiative models, where the
tiny neutrino masses are generated by calculable radiative corrections [168|, for

instance at two loops [169).

3.7 Left-Right Symmetry

One of the minimal extensions of the SM is the so called left-right symmetric
extension [170-174], which is appealing particularly for its automatic inclusion
of non-zero neutrino masses and the seesaw mechanism. Consequently, it repre-
sents also a typical UV completion leading to Ov35 decay and as such it will be
discussed in various contexts within this work. There were expectations that the
typical scale at which the left-right symmetry is restored would lie at rather low
energies, within the range of the LHC, which would then observe the related new
physics. Nonetheless, these hopes have not been supported by the collected data,

so far.

As mentioned earlier, parity P is explicitly broken within the SM model, but
it seems to be rather suggestive to conjecture its restoration at higher energies
and assume it is broken spontaneously via some type of Higgs mechanism. The
minimal left-right symmetric extension of the Standard Model gauge group is the

following
QLR:SU(S)C®SU(2)L®SU(2)R®U(1)B_L, (379)

where B — L is the difference between baryon and lepton number and the elec-
tromagnetic charge is in the left-right symmetric case given by
B—-L

Q=T +Tap+ —5— (3.80)

The fermionic particle content of left-right symmetric models is given by a

straightforward left-right symmetric extension of the SM content, i.e. the right-
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handed doublets are introduced

NE l
Lt = L) =1 (3.81)
I lr
i = (ZR) & (ZL) — Q' (3.82)
R L

As a result, the right-handed neutrinos are naturally included and neutrinos can
acquire masses in the left-right symmetric models. The presence of the right-
handed neutrino partners is also essential for cancellation of the B — L gauge
anomaly, as can be inferred from Eq. (3.80).

The Higgs sector of left-right symmetric models can vary. The minimal break-

ing scenarios mostly include a scalar bi-doublet’]
0 4+
d={1,2,20} = ¢i ¢f) , (3.83)
1 Py
containing the SM Higgs, which subsequently gives masses to quarks and leptons.

The corresponding VEV reads

(@) = (Um ! ) , (3.84)

where v = /v? + v3 and it mixes the left-handed and right-handed gauge bosons
as described below.

On top of the bi-doublet, typically a pair of scalar triplets
Ap={1,3,1,-2}, Ar={1,1,3,-2}, (3.85)
or doublets
xr=1{1,2,1,-1}, xr={1,1,2,—-1}, (3.86)

must be added to the Higgs sector in order to break the left-right gauge group
down to the SM. In fact, the right-handed scalar is enough to do so, but inclusion
of the left-handed triplet (or doublet) ensures that parity is preserved in the
left-right phase (so called “manifest left-right symmetry”), i.e. the SU(2), and
SU(2)r gauge couplings are equal: g, = gg.

SHere, the representations are labelled in the wusual way in the order
{SU3)¢, SU(2)1, SU(2)r, U(1)p—1}.
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It can be proven [175] that if no additional fermions besides the SM fermionic
content are considered, at least two bi-doublets must be present in the scalar
sector to account for the correct SM flavour physics. In case only a single bi-
doublet is incorporated, the Yukawa Lagrangian implies that the up-quark mass
matrix is proportional to the down-quark mass matrix (independently of the VEV
structure); thus, the CKM matrix becomes trivial Vogy = 1.

Hence, the left-right symmetry is broken in two steps. At first, the neutral
component of right-handed scalar triplet (or doublet) acquires the VEV vg and
breaks the left-right gauge group to the SM gauge group

SU3)e ® SU2)r @ SU(2)r @ U(1)p_r 8 SU(3)e ® SU(2), @ U(1)y,
(3.87)

where M is the energy scale of the phase transition and the weak hypercharge

Y can be expressed as
Y =2T33,+ (B—L). (3.88)

In this step the parity symmetry is also broken. Subsequently, the bi-doublet
acquires its VEV and breaks the SM gauge group to SU(3)c ® U(1)g. The
experimental data imply that vg > ve1, Ves.

The gauge sector of the left-right symmetric models incorporates the extra
three gauge fields of the SU(2)g group, which are usually denoted as W}. Simi-

larly as in the left-handed case it is convenient to define
Wi T Wi,
7 )

These vector bosons become massive after the left-right symmetry is broken and

Wi, = (3.89)

their masses are proportional to vg. Therefore, they are expected to be much
heavier than the SU(2), vector bosons Wf, Z,,, which receive masses proportional
to ve1 and veo in the second step of symmetry breaking.

The masses of the charged and neutral gauge bosons are described by corre-
sponding mass matrices and their diagonalization leads to the mixing. Therefore,
the mass eigenstates of the charged gauge bosons are given by the following mix-

ture of the right-handed gauge bosons with their left-handed partners

Wi, =W, cos( + Wg,sin ¢, (3.90)
Wy, = =W, sin ( + W, cos ¢, (3.91)
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where

Vp1Vp2

VR —f

tan( = (3.92)

and vy, is the VEV of the neutral component of the scalar triplet A, which is
assumed to be v, < vg1,ves. If the additional assumption ve; > ves is made,
then the mixing angle ¢ becomes small and Wy, W5 can be well approximated by

Wi, Wg. The corresponding masses then satisfy

Mgy, ~ Mg, cos® ¢ + Mg, sin® ¢, (3.93)
Mgy, ~ Mg, sin® ¢ + Mg, cos®C. (3.94)

Similarly as in the SM, the neutral vector bosons can be conveniently trans-

formed into a new basis

Z, = cos QWWj’ — sin Oy tan QWW}%u — tan 6y \/cos 20w B,,, (3.95)
Veos 20y o
A, =sin HWW5 + sin HWW,:)%M + y/cos 20w B,,, (3.97)

where B, denotes the gauge field corresponding to U(1)p-r, Z, and Z,, are the
massive (after the symmetry breaking) neutral vector bosons, A, stands for the
massless photon and 6y, is the weak mixing angle.

As in the case of the charged gauge bosons, the massive neutral gauge bosons

mix and the mass eigenstates Z; and Zy are given by combinations

Zvy = Zycos€ + Z, sin, (3.98)
Zop = —Zysin& + 7, cos &, (3.99)

and assuming v% > v3, + v3, > v?, then

(cos 2‘9W)3/2 Ugn + Ué?

tan 2§ ~ 3.100
an 24 2 cos* Oy v ( )
The masses of the neutral gauge bosons are given by
My = M} cos® &+ M}, sin* €, (3.101)
M3, = M} sin® € + M} cos® €. (3.102)

If the phenomenological limit v% >> v3, +v3, is assumed, then the left-handed

and right-handed gauge bosons decouple and their masses are proportional to the
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VEVs v and vg, respectively. Expectedly, in the same limit the SM relations like
My, = My, cos Oy are reproduced.

The possibilities of the light neutrino mass generation are related to the scalar
content of the left-right symmetric model. Typically, one of the above seesaw
mechanisms are implemented, in order to ensure the experimentally required
smallness of the masses. As there are right-handed neutrinos in the left-right

symmetric models, the most general neutrino mass matrix takes the form

M
M, = ) (3.103)
HID MM,R

where, as before, mp stands for the Dirac mass matrix, while M, ;, and My, g are
the Majorana mass matrices corresponding to the left-handed and right-handed
neutrinos, respectively.

Depending on the included scalar fields, different mass terms can be generated
within a given model. The Dirac mass term typically originates from Yukawa

couplings involving the scalar bi-doublet,

L= S yo L COLY + 58 L COLY + e, (3.104)
l=e,u,T
V=e,u,T

with ® = 02®*¢2. Hence, in the broken phase the Dirac neutrino mass matrix

and the mass matrix of charged leptons are given by

mp = y¥ve1 + 7 ves, (3.105)
my = v o9 + 72001 (3.106)

Further, if the LR symmetry is broken by the right-handed scalar triplet Ag,
then the Yukawa couplings for the right-handed lepton doublet can be written as

1 ,
LOR = 3 S yaf(Le) O ArLl + he, (3.107)
l=e,u,T
U'=e,u,T

where the Higgs triplet is assumed in the adjoint representation Ap = Ag-7 and
its decomposition under the charge eigenstates is same as in Eq. (3.68]). After
acquiring the VEV

(Ag) = (O O) 7 (3.108)

URO
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the LR symmetry is broken as well as parity and the right-handed neutrino re-

ceives the mass

1 /
Lita=5 X varveN" ON" +hec. (3.109)
l=e,p,T
V=e,u,T

As a result, the mass matrix M, p = y2Rup > v allows for the implementation
of type-1 seesaw mechanism.

If the left-handed scalar triplet Ay is present in the Higgs sector, then after
acquiring the VEV

(Ar) = (0 O) (3.110)

ULO

it generates the left-handed Majorana mass matrix My, 1, = y2Loy, and the seesaw
of type II can be constructed.

In principle, nothing prevents one from combining the type I and type II
seesaws, which gives the ‘full’ seesaw matrix of the form (3.103)). The resulting

light neutrino mass matrix reads

1
MEF = My, — mp mp. (3.111)
’ M r
Assuming for simplicity that vgs = 0, then this combined seesaw formula can be

easily expressed specifically for the left-right models as

MLR = yALy, &ycb [y2r] 1y T, (3.112)
UR
and considering the hierarchy vg > vg; > v the smallness of the obtained
neutrino masses is ensured.

In models with the left-right symmetry breaking driven by the right-handed
doublet y g instead of the triplet Ag, the small neutrino masses can be induced
using the inverse [163] and/or linear |176-178] seesaw mechanisms, provided that
a singlet fermion {1,1,1,0} is available. Alternatively, with a left-handed or
right-handed fermionic triplet at hand, the seesaw of type III can be implement-
ed [179].

A number of different Ovf35 decay mechanisms can be constructed in the
left-right symmetric models |115]. Besides the earlier discussed standard mass
mechanism based on the exchange of light neutrino (see Fig. , one can think

of several non-standard mechanisms involving exchange of heavy neutrino as well
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Figure 3.4: The exotic short-range Ov35 decay that can be constructed in the
left-right symmetric models using either a heavy neutrino (left), or right-handed
triplet Higgs (right). Taken from Ref. [115].

as light and heavy W vector bosons. In the simplest exotic case the light neutrino
exchange is substituted by a heavy right-handed neutrino exchange, which means
that the involved vector currents and emitted electrons must be also right-handed,
see Fig. [3.4] (left). For a model with manifest left-right symmetry, g, = g, the
corresponding contribution is proportional to the following combination of the

model parameters

1 S, 1 1

=2l

et 4
i—1 mn; MWR

: (3.113)

where my, denotes the heavy neutrino mass, respectively, while U is the mixing
matrix of heavy neutrino states. As the propagating neutrino is heavy, the in-
teraction can be considered to be contact and we refer to this contribution as to
short-range mechanism. The corresponding operator will be 9-dimensional and is
thus suppressed by the fifth power of the cut-off scale A, as indicated. A model-
independent approach to these mechanisms will be discussed in detail in Chap. [4]
Another short-range contribution can be in the left-right symmetric framework
obtained also using the right-handed triplet Higgs Ag. This contribution is then

proportional to

1 3 my, 1
— = E U2 : 3.114
A E M mR, My, ( )

where ma,, is the mass of Ap and the heavy neutrino mass originates from the
couplings of the right-handed triplet. The corresponding diagram is shown in
Fig. [3.4] (right).

As the right-handed currents are present in left-right symmetric models, one

can also think of Ov53 decay mechanisms, in which the neutrino exchange does
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Figure 3.5: The exotic long-range Ov53 decay that can be constructed in the left-
right symmetric models with vector currents of opposite (left), or same (right)
chiralities. Taken from Ref. [115].

not violate chirality, i.e. the contribution is not proportional to the neutrino mass.
In such cases the two outgoing electrons are of opposite chiralities. Two possible
contributions of this type are depicted in Fig. [3.5] The left diagram involves
vector currents of opposite chiralities, whereas the right diagram contains two
left-handed currents, one of which is attached via the chirality-changing mixing

angle ¢ of the W bosons. The corresponding contributions are proportional to

1 3 1
— = ViWei—s— 11
A2 — ‘/vel el MI?VR ? (3 5)
1 3 tan ¢

1= L

for the left and right diagrams in Fig. [3.5] respectively. Here, W is the active-
sterile neutrino mixing matrix and V' is the PMNS matrix introduced earlier.
This type of mechanisms is generally called long-range and they will be further

discussed in effective terms in Chap. [4]

3.8 Going High - Do We Have the GUTs?

The left-right models can be understood as a step on path towards a Grand
Unified Theory (GUT) with SO(10) gauge group. GUTs as such are for a number
of reasons very attractive extensions of the SM and the SO(10) based GUT is
one of the most favourable candidates for a unifying model. Generally, a GUT is
a gauge theory based on a simple group Goyr containing the SM gauge group as

a subgroup. A simple gauge group means there is only a single gauge coupling
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gour unifying the three fundamental forces appearing in the SM. The idea of
GUTs originated in 1974, when Glashow and Georgi suggested to embed the SM
group into the SU(5) gauge group [180]. Soon after, the SO(10) based GUT
was proposed [181]. Apart from that, exceptional Lie groups Es and Eg can
be used for the construction of the unification models. From the early nineties,
along with the growing interest in low-energy supersymmetry (SUSY) also the
supersymmetric versions of GUTs were developed and studied.

There is a fairly long list of features that make the idea of GUTs, and par-
ticularly SO(10) unification, glamorous. The most obvious is, of course, the
unification of the three SM couplings. The corresponding transition from the
semi-simple Lie group of the SM to a greater symmetry described by a simple Lie
group then promises a somewhat more constraining framework, which should be
able to reduce the arbitrariness of the SM.

GUTs give several model-independent predictions. They always contain ex-
otic particles coupling both to quarks and leptons; therefore, the lepton and
baryon numbers are not conserved [17]. As a result, new phenomena like neutron-
antineutron oscillations, lepton flavour violating processes and, particularly, pro-
ton decay are possible. Although baryon number can be violated also in different
ways, GUTs provide a very suitable framework. The main proton decay mode is
p — et + 7% and the predicted proton decay half-life can be in a simple approxi-
mation estimated as [182]

1 Méyr

7_t‘,heory ~ 7 (3117)
p 062 mpd
GUT D

where agyr is the gauge coupling fine structure constant given at the unifica-
tion scale Mgyr and m,, is the proton mass. The current experimental bound

determined by the Super-Kamiokande collaboration [183] reads
TP > 1.29 x 10%y, (3.118)

therefore, one can write

(3.119)

exp

theory 4
Tp 1 < Maur )

N — ,
Tp Qgur

~ 2.6 x 1016 GeV

and the unification scale must lie above 10! GeV.
As mentioned earlier, the SM cannot provide any explanation of the numer-

ical values of particular hypercharges (or, equivalently, electromagnetic charges)
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assigned to individual fermions. This drawback can be cured within the unifica-
tion framework, where the fermion charges are quantized. Thus, quantization of
charges is another remarkable model-independent prediction of GUTs. Further-
more, unifications generally predict the existence of topologically nontrivial con-
figurations of the Higgs and gauge fields, so called magnetic monopoles [184}/185].
These could be produced during the symmetry breaking in early universe via the
Kibble mechanism [186].

3.8.1 SO(10) Unification

A variety of SO(10) based models with different symmetry breaking chains
reproducing the SM gauge group at the EW scale can be constructed. For the
context of this work it is particularly interesting that the left-right symmetric
model discussed in the previous section can be taken to be an intermediate step
of the SO(10) symmetry breaking. The simplest example of such a scenario is

the chain

SO(10) Mevty g, o 2iny G (3.120)

with the Grr gauge group being the only intermediate symmetry. For the first
breaking step either 45, or 210 representation must be present in the Higgs
sector of the assumed model and for the subsequent breaking inclusion of the
rank-reducing scalar 126 is necessary. Moreover, in order to get the Standard
Model Higgs the scalar representations 10 and 126 must be added.

A very elegant feature of an SO(10) GUT is the fact that an entire genera-
tion of fermions, including the right-handed neutrino, can be assigned to a single
16-dimensional spinor representation of SO(10), which can be demostrated by its
decomposition under the SM gauge group (as the intermediate step the decom-

position into the submultiplets of the left-right symmetric group G is shown)
16 M {37 27 17 +%} ® {17 27 17 _1}
®{3,1,2,-i} & {1,1,2,+1}
S 3,2, 44} @ {1,2,-3}
®{3,1,+3}&{3,1,-2} & {1,1,+1} & {1,1,0}. (3.121)
Since both left-handed fermions and their charge conjugates are located in the

same representation, the left-right symmetry is within the SO(10) GUT frame-

work a finite gauge transformation in the form of charge conjugation.
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The presence of the right-handed neutrino together with other fermions within

a single representation supports the idea of a high-energy origin of light neutrino

masses. The Yukawa couplings are within the SO(10) models generally obtained

by coupling of a pair of the fermionic representations 16 to the scalar represen-
tations 10, 126 and 120, i.e.

£3909 — 16, (Y1010 + Y120120 + Y126126) 16, (3.122)

Yukawa

where Yy are matrices of Yukawa couplings in fermion flavour space. After
symmetry breaking the fermion masses are generated. The neutrino masses and
mixings are in the SO(10) GUTs related to those of charged fermions. The neutri-
no mass matrix has the same form as in the left-right symmetric case Eq. ,
leading to the seesaw formula of the type in Eq. . If a non-minimal fermion-
ic content is assumed, then a linear seesaw described in Sec. [3.6] or a seesaw of
type III can be employed.

Unfortunately, the SO(10) unification in its purest form does not shed any
extra light on the existence of three fermion families; therefore, to cover the
SM particle content three copies of 16 representations must be put in by hand
for a realistic model. In this regard, a possible way to reason the repetition of
fermion families has been proposed and it is based on gauging the direct product
of SO(10) with a discrete family group, e.g. Ay [187-189].

A variety of symmetry breaking scenarios of the SO(10) gauge group reproduc-
ing the SM group at the electroweak scale exist and concrete possibilities depend
on the assumed Higgs sector. In minimal scenarios, at least two Higgs represen-
tations are necessary |190-192] - the representation 45 is used to break SO(10)
to an intermediate symmetry of the same rank and either 16 or 126 reduces the
rank and breaks the intermediate symmetry (rank 5) to the SM (rank 4).

The 45-dimensional representation is particularly important, as it is the ad-
joint representation of SO(10) and as such it contains the gauge bosons of the

theory. The decomposition of 45 under the groups G, r and Gg); reads

45 MUty (322 1@ (3,22 -11a{81,1, 0}®{3,1,1, 1}
®{1,3,1,00 0 {3,1,1,-1} ® {1,1,3, 0} @ {1,1,1, 0}
Mery 411,41} @ {1,1,0} & {1,1, -1} & {3,2,+1}
®{3,2,-3}o{3,2,-i} o {3,2,+3} & {3,1,+2}
®{3,1,-2} & {8,1,0} ®{1,3,0} & {1,1,0}. (3.123)
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Figure 3.6: Solutions (Mayr, Mg, @cur) to the unified RG running for the next-
to-minimal models with the symmetry breaking chain . The value of agyr
is indicated by the colour of the dots, whereas the point sizes represent the mul-
tiplicity of individual models represented, as explained in the legend. The crosses
identify models satisfying the CKM constraint (+) and models with manifest
left-right symmetry (x).

Apart from the 12 SM gauge bosons residing in the last three SM submultiplets
some of the extra 33 gauge bosons are charged both under SU(3)c and SU(2),
which means they can mediate lepton-quark transitions allowing e.g. proton

decay. Hence, these fields must be assumed to live at high energies.

The scale of the left-right symmetry breaking Mg can in principle lie any-
where between Mgyr and the electroweak scale. Although scenarios with the
left-right scale close above the electroweak scale can be constructed (and they are
of great interest for their testability at the LHC), the recent RGE analysis [193]
of a large number of the next-to-minimal models with the above breaking chain
has confirmed that in this case the preferred size of Mg is much higher, above
10'° GeV. In Fig. the models scattered in the Mgy — M r parameter space
are displayed. As there are usually several different models giving the same pre-
dictions for the energy scales and observables, the size of each dot represents the
multiplicity of the individual next-to-minimal left-right models. The colour of
the dots indicates the value of the gauge coupling constant, ranging from =~ 1/47
(purple) to ~ 1/33 (red). The models that are manifestly left-right symmetric,
i.e. they are invariant under the exchange SU(2); <+ SU(2)g, are indicated in
Fig. by a cross (x) underneath the corresponding dots. A specific set of repre-

sentations must be contained by the model to reproduce the SM fermion masses
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Figure 3.7: Combined effect of all observables on the solutions (Mgyr, MLRr)
of the unified RG running for models with the SM content only at the EW
scale. Here, the colours of the dots indicate the potential contribution of exotic
scalar fields in the given model to proton decay or LFV interactions. While
the vertical lines and corresponding shading represent the contribution to LFV
from gauge interactions, the horizontal lines and the respective shading show the
gauge contribution to proton decay. The point sizes represent the multiplicity of
models, as in graph The crosses again identify models that satisfy the CKM

constraint (4) and models with manifest left-right symmetry (x).

and mixing. The models satisfying this constraint are denoted by a plus sign (+)
underneath the dot. The Fig. [3.6|clearly shows a cumulation of models in the bot-
tom right corner of the figure, around Mgyr ~ 10'° GeV and Mpp ~ 10 GeV.
This reflects the natural running of the SM gauge couplings, which get close to
one another around 10'® GeV, in combination with a small number of exotic

representations included in the studied models.

As can be seen from Fig. [3.7] a large portion of such scenarios is excluded by
current experimental constraints, namely by proton decay (from the top) and LEV
(from the right). The size of the dots again represents the number of models with
given sizes of scales Mgyt and M r. However, the colour of the dots now indicates
the potential contribution of exotic scalar fields to proton decay, or LFV. The
blue dots are unconstrained, while green, orange and red dots denote dangerous
contributions to either proton decay, or LF'V, if the relevant couplings are of orders
1072 —1,107*— 1072 and 107% — 1074, respectively. The levels of saturation and
the dashed and solid lines show the potentially dangerous gauge contributions

to proton decay (horizontal lines) and LFV (vertical lines). The low saturation
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to the left from the vertical solid line (LF'V) and below the horizontal solid line
(proton decay) indicates the models excluded by the current experimental limits.
The mid level of shading used between the solid and dashed lines identifies the
prospective exclusion by future experiments, assuming one order of magnitude
improvement. The full saturation is clearly used for models unconstrained by
gauge contributions. As apparent, using the current experimental limits the gauge
contributions to proton decay disfavour values of Mgy below ~ 10'° — 106 GeV,
while the gauge contributions to LFV exclude models with the left-right scale
Mg < 10° GeV.

Besides the above observables, Fig. captures also bounds that can be set by
the current limits on neutrino masses. Considering left-right symmetric models
with both type I and type Il seesaw mechanisms implemented (see Sec. , let us
denote the standard Dirac-type neutrino Yukawa coupling as ¥, and the Yukawa
coupling corresponding to the left-handed triplet Higgs A; as y®f. Since the
VEV of Ay is given by vy ~ v?/Mpp [174], the following conservative range of

the masses can be imposed

m 2 x 101 GeV
0.16 < — =~ [y — | | - ) < 1. 3.124
s ] () 3124

Here, we have taken the conservative bound on the mass of neutrinos, namely
msP = > m,, < 0.3 eV [90] and the lower limit provided by the atmospheric
mass splitting /Am?2,, ~ 0.05 eV for normally ordered neutrinos. Note also
that 10* GeV is the familiar value of the seesaw scale. The thin dotted vertical
lines in Fig. then show the mass scales of the right-handed neutrino satisfying
the constraint in Eq. [3.124] for values of the combined couplings y/y?r — y2 ~
1,1072,107* and 107° from right to left. As expected, a large left-right scale

clearly leads to the correct neutrino masses even for a reasonable coupling of
order < 1. On the other hand, a certain fine-tuning of the couplings is necessary
for smaller My . Taking into account all the maximal constraints, the parametric
space of the energy scales is restricted to a rather small region with 1014 > Mpp >
10° GeV and Mgyr = 10 GeV.

3.9 Baryon Asymmetry of the Universe

Probably the most obvious observation requiring physics beyond the SM is
the apparent baryon asymmetry of the Universe (BAU). Numerically it is usually
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expressed as the baryon-to-photon number density ratio [90]

ne = (”Bn_”B> — (6.09 £ 0.06) x 10719, (3.125)
”
which can be determined from the power spectrum of temperature fluctuations
in the Cosmic Microwave Background (CMB), or from the abundancies of light
elements in the intergalactic medium. There are a number of theories trying to
explain how this value has been generated. Probably the most popular scenario
of baryogenesis is the leptogenesis mechanism, which is based on the generation

of a (B — L) number density asymmetry at some high scale.

3.9.1 Conditions for Baryogenesis

As pointed out by Sakharov [62], there are generally three necessary conditions

on a theory for baryogenesis to happen from a symmetric initial state:
1. Baryon number violation,
2. C' and CP violation,
3. Departure from thermal equilibrium.

The first condition is quite obvious, as any theory of baryogenesis is to evolve
a baryon symmetric to a baryon asymmetric Universe, which means that inter-
actions violating baryon number are vital.

The second condition requires that C' and C'P are not exact symmetries. In-
deed, if C' was not violated, then the probability of the process X — B + Y would
be equal to the probability of the conjugated process X — B + Y, where X, B
and Y denote generic particles with B carrying a baryon number. Hence, the
baryon number of products of these two interactions would be equal in absolute
value and opposite in sign; thus, the net baryon number B would vanish. More-
over, because of the C'PT theorem, C'P symmetry would imply that the rate of
the process I(r;,p;,s;) — F(r;,p;,s;) and the rate of its time-reversed version
F(rj,—p;,—sj) = I(r;, —p;, —s;) must be equal. Here, the quantities r,p and s
in the brackets denote position, momentum and spin characterizing a particular
state. Therefore, even though a baryon asymmetry in certain region of the phase
space can be created, after integration over all momenta and summing over all

spins the baryon asymmetry would vanish.
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Finally, the departure from thermal equilibrium is needed since if all particles
remained in thermal equilibrium, no preferred direction of time could be defined
and the C'PT theorem would not allow for any baryon excess. Hence, any present
C'P violating interactions would be irrelevant. Since the baryon number B is odd
under C' and C'P transformations, the need for the third Sakharov condition can
be understood based on the calculation of the thermodynamic mean value of B
at temperature 7' =1/ [194]

(C T)"Y(CPT)eT B]
(CPT)B(CPT)™ ]
= —<B>T, (3.126)

where the Hamiltonian H is assumed to commute with C'PT. Consequently,
(B) = 0, i.e. the average of baryon number in thermal equilibrium at temperature

T vanishes.

3.9.2 Leptogenesis

One of the most popular mechanisms explaining the BAU is leptogenesis [22,
195H198|. The original formulation of this theory assumes that at a high energy
scale there exist new heavy neutrino states /NV;, which goes in hand with the type-1
seesaw mechanism described in Sec. [3.6|and as such is very well motivated. These
neutrinos are held in thermal equilibrium by processes of the type N; <+ L + H
as long as the temperature of the Universe satisfies T' 2 M;, where M; is the
mass of the lightest heavy neutrino N;. However, as the Universe cools down,
the decay of the heavy neutrinos starts to dominate and if their lifetime is long
enough, then an important part of them decays out of equilibrium. Taking into
account also the one-loop-level contributions it can be shown in general that
the heavy neutrinos decay to leptons and antileptons unevenly. As a result, the
second and third Sakharov conditions are satisfied.

The C'P asymmetry generated by decays of the ¢-th heavy neutrino is given
by expression

¢ (T(N; = L'H) = T(N; — L'H))
5 (D(N; = LPH) + T(N; — LUH))

(3.127)

and the processes contributing to the above decay widths are depicted in Fig.

If the heavy neutrinos are hierarchical, i.e. M; < My, Ms, then €, contributes
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LY

Figure 3.8: Diagrams of heavy neutrino decaying to a lepton and Higgs. The tree-
level decay rate is CP-symmetric, and thus in order to generate a non-zero lepton
asymmetry the loop-level diagrams must be taken into account. Specifically,
the asymmetry originates from the interference of the tree-level and one-loop

contributions.

dominantly to the total lepton asymmetry [22]. The non-zero contribution to
Eq. (3.127)) is generated at loop level, as it comes from interference terms be-
tween the tree-level and one-loop diagrams shown in Fig. 3.8 and the approximate

resulting asymmetry written in terms of seesaw parameters reads [199]

1 1 M?
~—— N1 [ ) vyt } <J> 3.128
“1 87 (y,y0) 11 J; m (y y )13 (y y )u ! M? ( )

with

f) = Vi (-2 +1og, 1T

(3.129)

Since M7 /M7 > 1, j # 1, the formula in Eq. (3.128)) can be simplified as

[y

3 1 M,
—————> Im [ voyh)  (voy! ] —. (3.130)
87T (Yz/y;f/)ll j;l ( )1] ( )1] M]
The hierarchical heavy neutrino case can also lead to interesting predictions.
Particularly, it is possible to derive the well-known Davidson-Ibarra upper bound
on € [197],
3 M
e S ——

ST v (m3 - ml), (3131)

where my and mgs denote masses of light neutrinos, the squared difference of which
is known from oscillation experiments. As the above limit depends also on the

smallest heavy neutrino mass, the lower bound

M, > 10° GeV (3.132)
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can be obtained using the value of €; required by the observed baryon asymmetry.

As outlined, the departure from thermal equilibrium is provided by the ex-
pansion of the Universe. The interaction rates which are slower than or similar to
the Hubble expansion rate cannot equilibrate the particle distributions, as they
are not fast enough. The non-equilibrium dynamics is generally described by
Boltzmann equations. Assuming the single flavour scenario the evolutions of the

N number density and the lepton number density n; are governed by [195,200]

an1 e

Hz=t == (Ip+Ts) (nx, =3, (3.133)
dTlL e

HZ@ = €1FD (an — n]\(fll> — FWnL, (3134)

respectively, where H is the Hubble expansion parameter and z = M; /T with T
denoting temperature. The superscript ‘eq’ labels the values of the number den-
sities in thermal equilibrium. Further, the rate I'p accounts for both decays and
inverse decays of Ny, while the other decay rates take into account 2-2 scattering
processes involving the heavy neutrino. There are scatterings of two types. First,
I's is the rate of AL = 1 scattering processes mediated by Higgs, for which both

s-channel

NiL' < tQ, N L' < tQ (3.135)
and t-channel

Nit < L'Q, Nit & L'Q (3.136)

contributions must be taken into account, see Fig. 3.9 Here, ¢ denotes top quark
and @) and L are the SM quark and lepton doublets as before. The second type
of scatterings violate lepton number by two units and together with the first type
and the inverse decays of N; they contribute to the washout rate I'y,. These

AL = 2 interactions mediated by the heavy neutrino N; read
L'H < L'H, L'L'<~ HH, L‘'L'< HH (3.137)

and are illustrated in Fig. [3.9]

From the right-hand side of the Eq. one can readily infer that it is
indeed the N; decay what produces the lepton number asymmetry (the first
term), while all the other processes diminish it, as they contribute to I'yy coming

with a negative sign in front. By solving this set of Boltzmann equations the
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]_{ Lel LZ/ H

]
S

Figure 3.9: The AL = 1 (top row) and AL = 2 (bottom row) scattering processes

in the thermal bath contributing to washout of lepton number asymmetry.

lepton number density ny(7.) at the critical temperature T, of the electroweak
transition can be obtained.

To get a baryon number asymmetry one has to consider sphaleron processes
violating baryon number [201] (thus, also the first Sakharov condition is fulfilled),
or more precisely, the (B+L) symmetry. These non-perturbative processes are de-
scribed within the thermal field theory and they correspond to tunnelling between
two topologically different energy minima (vacua) of the field configurations,
which cannot be related by continuous gauge transformations. The sphaleron
processes are effective within a wide range of energies from 100 to 102 GeV,
where they can convert the lepton number asymmetry generated at some high
energy scale to the desired baryon number asymmetry [201]. This conversion is
efficient down to the EW scale at the boundary between unbroken and broken
phase, where the observed value of baryon asymmetry is frozen in. Defining the
lepton and baryon number density normalized to the photon number density as
nr = nr/n, and ng = ng/n., the conversion of the lepton asymmetry to the final
baryon asymmetry is given by [202]

8Ny + 4Ny

C L TR (T, 3.138
B 14Nf+9NH”L( ) (3.138)

where Ny and Ny denote the number of fermion families and Higgs doublets,
respectively, in a given theory. The parameter d... captures the increase of the
photon density during the recombination epoch and T, is the critical temperature

of the electroweak phase transition. In the SM these quantities acquire values
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T. ~ 135 GeV and dyec &~ 1/27. The lepton asymmetry 7. (7..) then corresponds
to the value at the sphaleron decoupling temperature [203].

In the above described vanilla scenario of leptogenesis, the hierarchy of heavy
neutrino masses has been considered. The situation gets a bit more complicated,
if the heavy neutrino states are mass degenerate. In such case resonance effects
may occur [204]. To compute the resulting asymmetry in this scheme, one needs
to take into account the decays of all the heavy neutrinos. Consequently, the
upper bound on ¢; generally depends also on masses M, and M3 [205] and some
of the heavy neutrino states can be as light as 100 GeV, while still providing the
correct baryon asymmetry.

Generally, a variety of baryogenesis mechanisms have been proposed in the lit-
erature [206). The earliest well-motivated implementations of baryogenesis were
developed within the framework of GUTs, in which all three Sakharov conditions
can be naturally fulfilled [207]. Unifications embed quarks and leptons in the
same representations and as such they naturally incorporate the required baryon
number violation. At the same time, they typically include a number of CP-
violating complex phases on top of the SM one. Finally, the decays of the heavy
particles living around GU'T scale are slow in comparison to the expansion rate of
the early Universe, which ensures the desired departure from thermal equilibrium.
Since the (B + L) number is violated within the SM by sphaleron transitions, the
preexisting (B+ L) asymmetry would be erased. This is also the reason why min-
imal GUT baryogenesis producing (B + L) asymmetry fails to work. The desired
asymmetry must be therefore created in the (B — L) number, which is conserved
in the SM. Intriguingly, the SO(10) GUT incorporates the U(1)p_  subgroup,
breaking of which can consequently lead to production of baryon asymmetry via
a mechanism akin leptogenesis. Unfortunately, the relevant breaking scales are
often far above the electroweak scale making the related hypotheses hard to test.

Besides the GUT baryogenesis a lot of attention has been paid to the elec-
troweak baryogenesis [201,208-210]. This idea is particularly attractive, for it
could be probed by collider experiments. As mentioned above, the baryon num-
ber is violated in the SM by sphaleron processes and CP violation is present in
the CKM mixing matrix. Nonetheless, electroweak baryogenesis unfortunately
cannot rely purely on the SM CP-violating phase, as an additional source of CP
violation is necessary for generation of the observed baryon asymmetry. The re-
quired departure from thermal equilibrium is provided by the phase transition,

if it is of first order. Since this is not the case of the SM symmetry breaking,
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consideration of a BSM model, e.g. two Higgs doublet model, is necessary.

A number of other scenarios of baryogenesis also exist. For instance, within
a supersymmetric framework the Affleck-Dine mechanism of baryogenesis [211]
can be naturally incorporated.

The above discussion has been given to provide an example of particular bary-
on asymmetry generation mechanisms. In the context of this work we will discuss
general washout processes associated with Ov53 decay that can erase preexisting
(B — L) asymmetry and endanger some of the baryogenesis scenarios. As we will
see, the specific scheme generating the baryon asymmetry is not important for

our argument. What matters is the energy scale, where baryogenesis happens.
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4

Non-Standard
Ov 3B Decay Mechanisms

After reviewing the standard mass mechanism of O3/ decay in previous chap-
ter, let us now concentrate on the non-standard mechanisms basing our discussion
on Ref. [212]. From a theoretical point of view, the non-standard Ov 5/ decay can
be most generally (i.e. taking into account any other mechanism than the stan-
dard one) described by considering the new physics contributions parametrized in
terms of all effective low-energy currents that are allowed by Lorentz invariance.
Using this convenient approach the nuclear physics part of OvS3 decay can be
clearly distinguished from the underlying particle physics model.

4.1 The Effective Ov33 Decay Lagrangian

The general Ov3 decay Lagrangian consists of long range and short range
parts [122,213]
Lovsp = LLr + Lsr, (4.1)

which corresponds to parametrization of different Ovf35 decay contributions in

terms of effective operators of dimension 6 and 9 (in the standard four-component

notation),
Lon: SERCOF (411,d) (ellpw) ~ —— (aTlyd) (¢TI (4.2)
LR - \/§ 1 2 A%R 1 2 ) .
2
Lsr : ¢srGr (allyd) (allyd) (ellge€) ~ (allyd) (allyd) (ellse).  (4.3)

2my, Ayp

Here, II; (i = 1,2,3) denote symbolically the Lorentz structures involved and

2
EL\R/gF , ESZI;? E are general effective couplings, which are small as they implicitly
P

incorporate the suppression by the powers of the corresponding cut-off scales A
and Agg, to which they can be related. Further, Gz denotes Fermi constant and

m,, is the proton mass.
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Figure 4.1: Effective low-energy contributions to Ov33 decay. The four different
diagrams on the right-hand side correspond in the respective order to the stan-
dard mass mechanism, long-range mechanisms proportional to e;z and €7 5 (this

contribution is negligible, as € is small) and short-range mechanisms proportional

to €gr.

Graphically, the contributions to Ov3/ decay including effective couplings e
are illustrated in Fig. [4.1] While the first three diagrams on the right-hand side of
Fig. [4.1) correspond to the long-range part of the general OvS decay Lagrangian,
the last diagram represents a short-range contribution. The first diagram on the
right-hand side of Fig. gives the Ov3[ decay triggered via the standard mass
mechanism. The contribution of the third diagram is proportional to €y, and
thus it can be neglected. Taking into account the low-energy scale of nuclear beta
decays, the standard pointlike lepton number conserving electroweak vertices are

in Fig. depicted as effective four-fermion interactions.

Contributions to Ovf33 decay can be constructed at various levels. While
Fig. [£.1] illustrates effective Ov33 decay contributions at £ < 100 MeV, in total
six different types of diagrams can be drawn in the SM broken phase, i.e. right
below the EW scale. These are shown in Fig. where they are associated to
the mechanisms from Fig. [£.1] they contribute to.

The blobs D, represent in these diagrams the generated LNV operators of
dimension d effective in the energy region under the electroweak scale and the
fermion legs coming out of these blobs have origin in the interactions of the under-

lying UV physics; i.e., none of them is attached via additional SM vertices. The

90



4.1. The Effective Ovf3 Decay Lagrangian
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Figure 4.2: Contributions to O3/ decay depicted in the SM broken phase. From
top to bottom they correspond to the standard mass mechanism, long range mech-

anism and short-range mechanism, respectively. The underlying LNV physics is
hidden in the effective AL = 2 LNV operators Dy of dimension d [214].

blob D3 in the top diagram is just the standard aforementioned neutrino mass
operator. The operators D, and Dg allow for a construction of Ov53 decay dia-
grams contributing to the long-range part of the general Ov53 decay Lagrangian.
Finally, the remaining three diagrams incorporating D5, D; and Dy contribute
to the short-range part of the general Ov3 decay Lagrangian. Each operator Dy
will contribute to Ov33 decay via all six diagrams. However, it can be expected

that there will always be one dominant contribution.
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Long-Range Contributions The long-range part of the Lagrangian (repre-
sented by the last diagram on the first line in Fig. in terms of effective cou-
plings €3 corresponding to the pointlike vertices at the Fermi scale ~ 100 MeV
(i.e., the Fierz rearrangement can be used) reads [122]

Lir= or T a b a +26§J¢TJB ; (4.4)

\/§ K Ot,ﬁ

where the tilde above the sum means that we sum over all contractions allowed
by Lorentz invariance except for combination when av = 8 = (V' — A), as this one
is taken separately with coupling normalized to one The hadronic and leptonic
Lorentz currents are defined as J! = u0,d and jz = eOgv of given helicity,
respectively. The fields u, d, e and v are 4-component Dirac bispinors representing
the up-quark, down-quark, electron and neutrino, respectively. The operators

O, can take the forms

Ovia =" (1£7s), (4.5)

OS:I:P = (1 :|: ’)/5), (46)
)

Oris = 5w )1 £ %), (4.7

A very detailed and extensive description of the long-range Ov/35 decay contribu-

tions was given by Ali et al. [124].

Short-Range Contributions In the present work most attention will be paid
to the short-range contributions to OvfSf decay following the Ref. [212]. The
short-range mechanisms are represented by the last diagram on the second line in
Fig. and the general effective Lagrangian can be schematically written as [213]
Lo =5 - Yo e Jodogo + ST Topwgo + €38 Jopdo + €18 Jo " + €598 Jojul

P chiralities

(4.8)

Here the place holders o and the sum indicate that the currents involved can
have different chiralities and for every different combination there is a separate
effective coupling €?. The possible hadronic and leptonic currents in Eq. (4.8])

read

JR/L = ﬂ(l :|: ’75)d, J]%/L = ﬂ’y”(l :l: ’75)d, J}%?L = ﬂduy(l :|: ’}/5)d, (49)

JriL = e(1 £75)e,  j" = eyt'ysef, (4.10)
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where the usual definition o0, = % [Yus 7] is used. The presence of the charge-
conjugated field e = Cle in the lepton current means that the electron lepton
number is violated by two units, as expected. Despite the fact that all possible
combinations of chiralities from Eq. can be considered in Eq. , a number
of them will give the same results, thus only a few specific choices will have to be
distinguished in the end.

The effective couplings €} are dimensionless, as the Lagrangian in Eq. is
conventionally normalized by the factor G%./(2m,), where m,, is the proton mass
and G denotes the Fermi constant.

An independent basis of low-energy Ov53 decay effective operators of dimen-
sion 9 can be chosen in a number of ways and to avoid any confusion about the
one considered in this text, we spell the individual operators explicitly out in
Table 4.1 The labelling of these operators is analogous to the one used for the
corresponding effective coupling in Eq. , ie., O ~ € with the superscript
specifying the chiralities of the particular bilinears in their respective order. The
redundant or vanishing combinations of chiralities of the three currents are elim-
inated from this list. Specifically, we omit operators OFLL OLRL - ORLE and

OFRE which give trivially zero, because of the identity
[ao"™ (1 + 75)d] [0, (1 = 5)d] = [uo™ (1 = 7y5)d] [40,, (1 +75)d] = 0. (4.11)

Note that no terms with vector, tensor or axial-tensor electron currents, ey*e® = 0
and €0, (117;)e = 0, are contained in the Lagrangian Eq. (4.8)). This is a trivial
consequence of the Pauli exclusion principle.

As a result, the operators listed in Tab. form a complete basis of 24
linearly independent 9-dimensional effective operators invariant under the gauge
group SU(3)c ® U(1)g, which trigger Ov(3 decay. To be explicit, we use the 4, j
indices to specify also the considered colour contractions. However, in the present
basis these are rather trivial, as they always contract the quarks within the same
Lorentz bilinear, thus forming colour singlets.

To make sure we have the correct total number of independent effective opera-
tors, we have used the Hilbert series method [78,215] as a consistency check. The
result of 24 dimension-9 Ov/[(-decay-trigerring operators respecting the gauge
group SU(3)c @ U(1)q agrees also with Ref. [216]. Nonetheless, it seems to us to
be unnecessary to include operators with quark bilinears transforming as octets
under SU(3)¢, because using Fierz transformations these can be traded for op-

erators involving tensor Lorentz structure, which are included in Tab. [£.1 For
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[y (1 + ) di] [0 0 (1 = 75)d,] [€7"v5¢°]

4
4

RR
O
RL
O;
RR
O3
RL
05
LR
O3

LL
O3

Table 4.1: Basis of low-energy, 9-dimensional Ov33 decay operators invariant

under the SU(3)¢c ® U(1)g gauge group.
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instance, the following Fierz identity holds for operator QXL

O%LL = [ﬂiO"uy(]. — ’)/5)dl} [ﬂj(f’wj“. — ’}/5)(1]} jL
]

=2 {ﬂi(l —75)d; [ﬂj(l - 75)651} JL — [ﬂi(l - 75)614 [ﬂj(l - 75)dj] Jr-
(4.12)

Next, the well-known group-theoretic formula for the Gell-Mann matrices A*
(where a =1,...,8),

1 1
5z’j5kl = géz-lékj + 5()\(1)1'[()\@)]”', (413)

induces the SU(3)¢ Fierz identity, which can be applied on the first term on the
right-hand side of Eq. (4.12)) as

OF = [a(1 = 15)(\)ad"] [ (1 = 35)Aa)d] ji
2[5 =] [0 - )]
= [@'(1 =) Aad"] @ (1 = 75)Aa)ud'| 1 — zlaolm‘ 414

Consequently, if we neglect the first term on the right-hand side of Eq. ,
the operator O is identified with the operator OFFL and as such it can be
omitted. According to Ref. [217] this is well justified, as the operator containing
colour octets does not contribute to Ovg3 decay. The same procedure can be
applied to all the other operators involving tensor quark currents. Hence, all of
them can be exchanged for the operators with colour octets and after neglecting
these the basis is reduced to colour-singlet operators consisting only of Lorentz
scalar or vector bilinears. However, we will calculate also the direct limits on the
operators O3 including tensor bilinears for comparison with existing literature.
Therefore, our approach is independent of the assumption that colour non-singlet

currents do not contribute to Ov33 decay.

Effective Couplings From The Decay Rate Let us now briefly motivate
the calculations contained by the rest of this chapter. As we will discuss later
in more detail, the theoretical formula for the OvS3 decay half life 7'/, can be
written as

Ty = (€)*Gi My, (4.15)
where G; are the relevant phase space factors (PSFs) and M; stand for the nucle-

ar matrix elements (NMEs) for a given isotope and operator, which is assumed
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8 V+A V+A S+P Tr . ° RR,LL LR ° .
e[ x 10 € €fy_a fvya Csip fry € €& €3 €3 €4 6

“Ge 41 021 37 066 007 19 0.11 1.30 0.83 0.90 9.0
Xe 26 011 22 026 003 10 0.05 043 0.66 046 4.6

Table 4.2: Here, we summarize the upper limits on effective Ov3/3 interactions (in
units of 107®), which were obtained by updating the limits given in Ref. [115] using
the latest experimental bounds TS; >5.3%x10% y and T, f}% >1.07x 10%° y. Only
one contribution is assumed to be non-zero at a time. The coupling €, = m, /m,
corresponds to the standard mechanism and as such it gives the limits of 0.21 eV
(Ge) and 0.13 eV (Xe) on the effective Ov 3 mass. The limit on €3 depends on the

chirality of the hadronic currents: e™*** (hadronic currents have same chirality),

ek® (hadronic currents have opposite chirality).
to be dominant. The coefficient €] is the effective coupling of this specific oper-
ator. Considering the current experimental limits on Ov/35 decay half life, the
bounds on the effective couplings can be calculated using Eq.. In Tab.
we summarize the results for both the short-range and long-range parts of the
Lagrangian, which were take from [115] and updated using the most recent ex-
perimental limits. The calculation performed in Ref. |[115] uses the leading NMEs
calculated by the QRPA method and approximate PSFs.

In the rest of this chapter a detailed derivation of the bounds on the effective
couplings respective to the short-range operators is performed. The discussion is,
however, kept fairly general and a significant part of the presented formulae as

well as the overall approach can be applied to any Ov83 decay mechanism.

4.2 Neutrinoless Double Beta Decay Rate

In the following we calculate the Ov 33 decay rate for SR effective operators.

The starting point is the differential decay rate given by [21§]

d3P1 d3P2
(2m)3 (2m)3

dl' = 27|R|26(E1 + Es + Er — Ey) (4.16)
with |R|? denoting the square of the full matrix element of the Ov35 decay pro-
cess, which is summed over the spin projections sq, ss of the electrons and the
final nuclear state Sp. As already defined before, Er and E} stand for the energies

of the final and initial nuclei, respectively, and the outgoing electrons have the
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four momenta (F1, p;) and (Es, p2). The magnitudes of the electron 3-momenta
are denoted as p; = |p;| = /E? — m2, with the electron mass m, = 0.511 MeV.
The Qgs value of the transition, i.e. the kinetic energy release of the electrons,
is determined by Qs = E;r — Er — 2m.. Note that the recoil energy of the
final nucleus is neglected in the above formula, which is well justified, as for the
isotope masses M of interest it can be estimated as Q35/(2M4) = O(0.1 keV),
The differential rate can be expressed (due to the energy conservation and the
overall rotational invariance) in terms of the energy E; € (m., Qss + m.) of one
of the electrons and the angle 8 € [0, 7] between the two electrons, defined by
the relation cos = p; - f)2.|z| Therefore, the energy of the second electron is then
given by Ey = Qgg + 2m. — Ej.

Formally, the full matrix element of the Ov33 decay process can be written as

_ +
R - <OF€I)1S16P282

Ls |OF), (4.17)

is the final state

composed of the 07 daughter nuclear state and the two emitted electrons. The

where )(’)}r> denotes the initial nuclear state and <(’)j§eplslep282

wave functions of the Of and OF states in terms of their constituent nucleons
and the wave function of the two electrons in Eq. are understood to be anti-
symmetrized. The quark level Lagrangian Lqg in Eq. is considered in the
most general form expressed in Eq. . Symbolically, the following short-hand
notation can be used

G
2m

Lor = S eximdZ s, (4.18)

P KE

where we sum over K and =, which collectively label the different electron-quark-
quark current combinations jJJ', including different chiralities, and the Lorentz
contractions, respectively.

A detailed derivation for the specific long-range scenario combining the (V —A)
and (V + A) currents was published by Doi et al. [219,220] and Tomoda [218§].
More recently, an extensive calculation for the general long-range Lagrangian was
given by Ali et al. [124].

For every effective non-standard Ov3[ decay contribution the hadronic part
is given by a product of two quark currents. Therefore, one must perform a
summation over a set of intermediate nuclear states |N), which is a daunting task,

because all states up to an energy E ~ 100 MeV must be taken into account.

!Throughout this text, unit vectors are denoted by ¥ = v/|v|.
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For this reason, the summation is commonly treated in the so called closure

approzimation, which means that a sum over a complete set of states is performed,

> (o] &
N

NYN

TE|of) = (of| JRTE|of). (4.19)

For the short-range case the intermediate transition occurs at very high energies,
lq| ~ 100 MeV, corresponding to the inter-nucleon distance, compared to the
nuclear transition itself at (Qsz =~ 1 MeV. Therefore, the closure approximation is

very well justified.

What also complicates the calculation is the fact that the hadronic part is
entangled with the leptonic one. To make the calculation feasible, an approxima-
tion is made wherein the electron wave functions are evaluated at the surface of
the nucleus, i.e. at r = R with R being the radius of the nucleus [134,[219]. As a
result, the leptonic part can be separated from the hadronic one. It is possible to
improve the approximation by using the simplified nucleon wave functions and
calculating the weighted average electron position |134]. However, no sizeable

error is introduced by the approximation employed in this text.

Using the outlined approach the overall Ov53 decay matrix element R can
be factorized into the nuclear and atomic parts, which can be further treated
separately. First, the product of the leptonic matrix elements must be inte-
grated over the phase space of the two emitted electrons. Consequently, the
so-called phase-space factor (PSF) is obtained, which depends only on the given
leptonic current and the electron wave function at the surface of the nucleusf]
Second, the nuclear matrix element (NME) must be computed. We start with
a non-relativistic expansion of each nucleon current J% by means of a Foldy-
Wouthuysen (FW) transformation taking terms to order |q|/m,. Subsequently,
we calculate the product of the two currents and evaluate the matrix elements of
the corresponding two-body operator in the nuclear many-body wave functions.
The FW approximation works well for Ov53 decay, as the typical momentum
transfer in the process is of order |q| ~ 100 MeV, and therefore |q|/m, ~ 0.1.
Although in the resulting products of hadronic currents we generally keep also
only terms to order |q|/m,, in certain cases higher order terms are also taken

into account because of a significant enhancement of the associated form factors.

2Naturally, the phase-space factors of the associated 2v33 decay will also depend on the

outgoing neutrino wave functions.
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4.2. Neutrinoless Double Beta Decay Rate

Altogether, the full matrix element is given by

i% |et,s) (OF| JRTE |OF ). (4.20)

G
R = 2%%€K<6p181

A detailed evaluation of the leptonic matrix elements using the appropriate elec-
tron wave functions is given for the short-range case in Sec. resulting in the
corresponding PSFs. The short-range nucleon matrix elements are evaluated as
outlined above, including appropriate q2-dependent form factors, in Sec. . The
final nuclear matrix elements are derived in Sec. 4.7

Combining the PSFs and NMEs, the fully differential rate for 07 — 0% 0v33
decay as expressed in [218220] can be written in the fornf]

d*T
dEideosg ~ C Wi lall E 121
dB,dcos 0 Cw(Ey) (a(Ey) + b(E}) cosb), ( )
where
G1m?
- 3 4.99
C=T6m (4.22)
w(El) = E1E2p1p2a (423)

with Es, p1 and p, given as functions of Fj.

As we stick to the notation of [218-220], the electron mass m, is added in
the numerator so that it cancels the mass m,. in the denominator of the so-called
neutrino potential in the following Eq. . Similarly, the coefficient 1/m,,
in Eq. is included in the calculation of the nuclear matrix elements, see
Eq. .

Consequently, the total decay rate I' (and the inverse value of the decay half
life T} /5) reads
2

T2

2 [ T B (Eya(By). (4.24)

The Eq. (4.21)) yields the single electron energy distribution

dl
ap, = 2Cw(Ea(Ey), (4.25)

and the energy-dependent angular correlation
b(En)
E)) = .
Oé( 1) (I( El)

3Let us note that for 0% — 2 0v33 decay, there is an additional term in Eq. (4.21]) of the
form c(E7)(cos? 6 —1/3).

(4.26)
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4. Non-Standard Ovf3/ Decay Mechanisms

If we define the integrated quantities
Qpp+me Qpa+me
A= dEvw(E)a(E), B= / dEw(E)b(Ey),  (4.27)

and their ratio K = B/A, we obtain the angular distribution

dl’ r
=—(14+ K ) 4.2
i (1+ K cosf) (4.28)

The single electron energy distribution and the angular correlation can be mea-

sured only by certain experimental setups like e.g. the SuperNEMO experiment
mentioned earlier in Subsec. Nevertheless, the calculation of these quan-
tities is included in this work, as the contained information can be useful for

distinguishing the underlying mechanism of Ov (33 decay.

4.3 Leptonic Phase Space Factors

Let us first focus on the atomic part of the Ov/35 decay, i.e. on the derivation
of the leptonic phase-space factors quantifying the effect of the two relativistic
electrons emitted in the process. First of all, the partial wave expansion can be
applied to the position-dependent wave function of each electron. If we denote the
asymptotic momentum at a far distance from the nucleus and the spin projection
of the electron by p and s, respectively, then the electron wave function expands

in terms of spherical waves as
_ Sipe Py 4.9
eps(r) = eps’ (r) +eps’ (r)+ ..., (4.29)

where the S/, and the P/, waves are given by [218]

65};/2 (I‘) _ ( g—1<E77ﬂ)>£s ) 7 65;/2 (I‘) — (gl(E,r)(a' ’ f‘)(aAﬁ)Xs) . (430)
fl(EvT)(o-'p)Xs —f_l(E,T)(O"I‘)XS

Here, g.(E,r) and f.(E,r) denote the radial wave functions of the ‘large’ and
‘small’” components. Asymptotically, the electron energy goes to £ = /p? + m?
and the electron spin state is described by the two-dimensional spinor x,. The
Pauli matrices o in the above formulae operate in the electron spin space.

The asymptotic boundary condition satisfied by the radial wave functions
reads [21§]

(gnw,r)) O (\/%};”esin (prwln(zpr)—;wzﬁwz)), (4.31)

fe(E,T) pr \/% cos (pr +yIn(2pr) — 37l + Az)
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4.3. Leptonic Phase Space Factors

with kK = £(j + 3), Ik = j £ 3, y = aZE/p and A stands for a phase shift,
Further, p = |p| is the magnitude of the electron momentum, j denotes the
total angular momentum of the electron, Z stands for the atomic number of the
daughter nucleus and « is the fine structure constant. The radial wave functions
Eq. can be approximated inside the nucleus by the leading terms of the

expansion in r as follows

(Q_I(Eﬂn)) ) (A_l)’ (4.32)
f(B,7) A

(e ) (A2 At ) g
—fa(Br) T\ AL [faZ + (B - mo) Ra 7)) |

for Si/2 and P/, waves, respectively. Here, R, is the radius of the daughter
nucleus and A, are normalization constants. In the limit Z — 0 the radial

wave functions take the form of spherical Bessel functions and the normalization

EFxm,
An =\ —p— (4.34)

Nonetheless, in the present work, instead of using the above approximations

constants become

we derive the phase-space factors employing the numerically calculated radial
wave functions as described in [134]. The performed numerical solution makes
use of a piecewise exact power series expansion of the radial wave functions.
Additionally, the nuclear size and electron cloud screening corrections are taken
into account on top of the standard Coulomb potential of the daughter nucleus,
V(r) = —aZ/r, with charge Z.

The full potential we consider thus reads

V(r) = ~oZSGEA el <R (4.35)
—2Z x o(r), r> R,

with ¢(r) denoting the Thomas-Fermi function, which describes the electron
screening. To incorporate the finite nuclear size a uniform charge distribution
in a sphere of radius Ry = RyAY? with Ry, = 1.2 fm is considered. As a result,
the non-trivial r-dependence of the above potential for » < R arises.

To calculate the electron currents involved in Ov53 decay we in principle need
to evaluate the wave functions at the position of the corresponding transition. To
do so exactly would require inclusion of the wave function of the nucleon under-

going the respective decay - either by employing a simplified harmonic oscillator
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4. Non-Standard Ovf3/ Decay Mechanisms

wave functions |134], or ideally, from the nuclear structure model used to calcu-
late the NMEs (cf. Sec. [.7). In the present work, we however follow [134] and
adopt the approximation of evaluating the electron wave function at the nuclear

radius r = Ry,

fx1(E)
g+1(E)

fx1(E, Ra), (4.36)
g+1(E, Ra). (4.37)

This choice reflects the fact that nucleons mostly decay at the surface of the
nucleus due to Pauli-blocking of inner states.

In order to obtain 0T — 0% transitions, parity-even nucleon operators must
be accompanied by Si/ — Si/2 and Py — Pz electron wave functions, while
parity-odd operators need to be combined with S/, — P/ wave functions. We
do not take into account the 07 — 2T transitions, as it is relatively suppressed
by the corresponding ()gs value. Also, in the following we will restrict ourselves

to the case of S}/, — 51/2 wave functions providing the leading order contribution.

Terms 1, 2, 3 The Lorentz scalar electron current appearing in first three
terms of the short-range Lagrangian (4.8) reads

j = ei(z)(1 £ 5)e5 (2), (4.38)

where the electron wave functions depend on the same coordinate variable, as
a contact interaction is considered. In the S/, — Si/» wave approximation and
using Tomoda’s notation we obtain{]

_ 1-P,

0 ()

(éP151 )51/2 (1 + ’75)(63282)81/2

(cm2)" 20(1 £ 75)in (e’

Q

971(627 7n)XSz )
fl (627 T) (0- ’ f)2)ng ’
(4.39)

= (9—1(61>T)Xll filer,r)xd, (o - f)l)) Yo (14 75) 072 (

4Here, all the gamma matrices are considered in the standard Dirac representation, i.e.
1 0 0 o 0 1 C—i 0 —i09
= s = , = s =1 = .
Yo 0 —1 Y o 0 Vs 10 Y270 oy 0
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4.3. Leptonic Phase Space Factors

where the operator P, ., interchanges the electrons, and thus the expression is
antisymmetrized under the exchange of the electrons. In this case the effect of
antsymmetrization is trivial, but we show it explicitly to note that the current is
antisymmetric, as it should due to the Pauli principle.

Next, we expand and square the Eq. . After summing over spins and

using the properties of the spinors xs we get

> (e(1+ vs)es ) (Ex(1 £ 7s)ed)

51,52

=) [( 1X51 o - D2)oaxs, + [1~ Xsl(U’ﬁ1)02st)

81,892
2
+ (77 ooxss + fuxd, (- 1) (0 Pa)oavs,)|
=2[fY + k(b1 Do) (4.40)

where fl(?), fl(Br are defined in Eq. and f~'71, fiy, f, i7" are introduced
in Egs. —. For the interference term combining a left-handed with a
right-handed electron current, the calculation is analogous to the procedure shown
above, but the plus sign in the definition of f11 %+ changes to a minus sign and the
corresponding expression we denote as fn,, see Eq. . If both the involved

scalar currents are left-handed, the same result as for two right-handed currents
holds.

Terms 4, 5 The vector electron current present in the fourth and fifth terms
of the Lagrangian (4.8)) reads

i* = (@) ysed (x), (4.41)

and in the Sy, — S}/2 approximation it is obtained as

— 1 - Pe e
617“7565 (212>

(éplsl )51/271175( 5252 )51/2

Q

(e ornsins (emsa)”

- (9—1(61,7“)9621 fl(ﬂﬂ“)XL(U ) 131)) Y0V V58 Y2 ( gq(Ez,T)i(sg ) . (442)
fl(e%r)(a ) p2>XS2
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For 1 = 0, after squaring, summing over spins and using the properties of the

spinors s, we have

> (evurses) (Eses)

51,52 w,v=0
2
=Y [f_l_lxlldzxsg + fnxL(U P1)(o - P2)02X52}
81,52
=3 {fé@’) + féG)(pl : pz)} ; (4.43)

where fég) and féé) are defined in Eq. (4.49) and f~'~!, fi; are given by Eqgs. (4.51)
and (4.52)). A similar derivation is possible for spatial 1 = k; however, it does

not enter the contributions to 07 — 01 transition.

Interference terms 1, 2, 3 - 4, 5 Using the same procedure the PSFs for the
interference between terms 1,2, 3 and terms 4,5 of Lagrangian (4.8 are received

(in case of the vector electron current we take p = 0),

> (Eryused ) (e (1 +y5)es)t

51,52 n=0
— — A A T
= Z [f ! 1X110-2Xs2 +f11X11(0'Pl)(U'PQ)@XsJ
51,52

X [(f711XL(U - P2)oaXs, + fllell(o' : 131)02st)
+ (77" oaxe, + fuxd, (0 B1) (0 - Ba)oaxs,)|

1 A A
= F5 [0 + £ (b1 )] (4.44)

where f0 and f{§) are defined in Eq. and f~'1 fi, £, fi ' are intro-
duced in Egs. —. As before, the phase space factor for © = k does not
enter the calculation of 0% — 0 transitions.

Hence, the resulting PSFs in the S/, —S}/2 approximation for the short-range

mechanisms can be summarized as

> (@1 +y5)es) (@1 £y5)es) = 2[ A + Ak (D1 B2)] (4.45)
_ _ 1 PR
> @mses)@mses)T| =g |1+ fis (b1 )] (4.46)
51,82 w,v=0
_ _ 1
Z (61%75620)(61(1 + ’Y5)€20)T = ¢§f1(g)a (4.47)
51,82 =0

where the scalar product between the asymptotic momentum vectors of the two

electrons appearing can be parametrized using the opening angle 0 < § < 7 as
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4.4. From Quarks to Nucleons

P1 - D2 = cosf and the quantities fi(;)) = fi(f)(El,Ez) and fi(;) = fi(jl)(El,Eg) are
given by

A = PP+ AP+ AT = —2[f AT 7

(4.48)
fég =16 |If 7P + | ful?], fég =32 fu), (4.49)
e =4l -1, fig = 0. (4.50)

All these phase space factors are defined in terms of the underlying energy-
dependent wave functions of the two electrons, cf. Eq. (4.30)),

f7 = g (B)g-a(B), (
fi1 = fi(Ey) f1(Es), (4.52

7 = g-1(Bn) fu(Ey), (

A7 = A(E)g(E). (

The obtained results agree with those of Pés et al. [213] and Tomoda [218],
except for the extra interference term fl(i), in Eq. between the left-handed
and right-handed scalar electron currents, and the fact that these authors use
the notation of Doi [219,220], while we have used that of Tomoda [21§]. The

phase space factors corresponding to u = j or v = j in Eqgs. (4.46|) and (4.47))

are not shown, as their corresponding contributions to Ov /3 decay do not trigger
0" — 0" transition, in the case of S; /2 — S1/2 approximation, we are interested in

(although they are relevant when general 0t — J7 transitions are considered).

4.4 From Quarks to Nucleons

In order to determine the nuclear matrix elements generated by all the possible
colour singlet quark currents present in the effective Lagrangian in Eq. (4.1)), we

first have to transition to the nucleon level. If we define the nucleon isodoublet
N = (p ) (4.55)

then the nucleon matrix elements of the both left-handed and right-handed scalar,

vector and tensor quark currents are in the respective order given by [221]

(plu(1 £ 45)d |n) = N7+ | Fs(q®) + Fps(q*)s| N, (4.56)
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4. Non-Standard Ovf3/ Decay Mechanisms

_ Fu(g?
o)) = N7 | Bl - T Do | v
myp
_ Fo(q?
+ N7t lFA(QQ)”y“’}% _ Frlg )75q“] N, (4.57)
2m,,

(pl o™ (1 +5)d |n) = N+ [ + ;ew/ﬂwpg} N, (4.58)
where the prime denotes only that two different isodoublets are considered and
we defined

Fr(¢? Fr,(q?
7 = Fr(?)o + i ) gy ey T (g 0o vy )
P P

(4.59)

and 71 is the isospin-raising operator, which transforms a neutron into a pro-
ton. As can be seen, the above matrix elements are functions of the momen-
tum transfer defined as ¢ = p, — p,, where p, = py» and p, = pn are the
neutron and proton momenta, respectively. All the form factors Fx(¢*) with
X € {S,PS,V,W, A, P, T1,T5, T3} depend on the square of the transferred mo-
mentum. The scalar and axial-tensor terms are omitted from the Eq. ,
because the corresponding currents vanish in the isospin-symmetric limit [222].
In addition, they are suppressed by a factor 1/m, without being enhanced by a
pion resonance. For these reasons they can be safely neglected.

The nuclear form factors in Eqgs. — are an important part of the
discussed calculation, as they can enhance particular NMEs. Except for Fpg(q?)

and Fp(q*) we parametrize their dependence on ¢? in the so-called dipole form,

2 gx
Fx(¢) = 01 q2/ma ) (4.60)
with the coupling constants gx denoting the value of the form factor at zero
momentum transfer, i.e. gy = Fx(0).

For instance, using the electromagnetic form factor and the conserved vector
current (CVC) hypothesis it is possible to determine the vector form factor from
experiment as

Fo®)=—2  go=1, my =084 GeV. (4.61)

(14 ¢2/m)
This parametrization is typically chosen because it gives a good description of
Fy(¢?) for the values |q| € [0, 200] MeV, which are relevant in case of Ov 3 decay.
For large momentum transfer ¢ > 1 GeV? a better parametrization given in [223]

exists. Nevertheless, there is no reason to employ it in the present work.
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In case of the induced form factor Fy(¢?) its relation to the Pauli form factor
Fy(¢*) [223] and to the isovector anomalous magnetic moment of the nucleon
allows to determine experimentally the following parametrization

Fu(@) = — g =y — tn = 370,  mw = my = 0.84 GeV,
(1+¢2/miy)

(4.62)
with g, and g, denoting the anomalous isovector magnetic moment of the proton
and neutron, respectively.

The dipole form of parametrization can be used also for the axial vector form

factor. The experiment yields

Fa(q®) = ga=1.269, m4=1.09 GeV, (4.63)

gAa
(1+¢2/m3)"
where value of the coupling constant g4 comes from neutron decay [224], while
m4 is determined in neutrino scattering [225].
Although the previous three form factors could be determined experimentally,
in case of the induced pseudo-scalar form factor Fp(q¢?) it is not possible to proceed
in the same way. Hence, in this case we stick to the parametrization based on the

partially conserved axial-vector current (PCAC) hypothesis, which was suggested
in [220], i.e.

ga 1 4m} m?
Fo(q?) = LA (i [p— 4.64
PO = a1+ mz< ) (464)

where m, = 0.138 GeV is the pion mass.

The value obtained from Eq. reads gp = Fp(0) = 231, which is con-
sistent with the analysis in chiral perturbation theory [227] claiming gp = 233.
Another confirmation is provided by recent muon capture measurements giving
FP(QQ)% at |q| = 0.88m,, with the muon mass m, = 0.105 GeV. The experi-
mental value 8.06 £ 0.55 [228] agrees with the calculated one, which is 8.0.

Recently, the zero momentum transfer values for the scalar Fi(¢*) and pseudo-
scalar Fpg(q?) form factors have been focussed in a lattice QCD study [229].
Therein quoted theoretically calculated values are g¢ = 1.02 & 0.11 and gpgs =
34949. However, there is not much information available about the corresponding
¢* dependence.

Hence, for the scalar form factor we use the following dipole-form parametriza-
tion

gs
FS(QZ) = W, gs = 1, mg = my = 0.84 GeV, (465)
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while in case of the pseudo-scalar form factor we take

gps 1
(1+q2/m3g)* 1 +¢2/m2’

FPS<q2) - gps = 349 mpg = my = 0.84 GeV.

(4.66)

Note that the lattice QCD calculation of gpg depends on the extrapolation pro-
cedure, as the value of the pseudo-scalar form factor diverges in the chiral limit at
q*> = 0. It is beyond the scope of this work to verify the large enhancement of gpg
quoted by Ref. [229]. The parametrization (4.66) reduces to the simple monopole
form 1/ (1 + ¢*>/m?2) used in chiral perturbation theory; however, it includes the
finite size of the nucleon.

Least is known about the tensor form factors. There is no information pro-
vided by experiments and the theoretical values usually quoted in literature are
rather old. Only the value of gr, = Fr,(0) = 0.987 4+ 0.055 has been also de-
termined in the recent Ref. [229]. The old calculation using the MIT bag model
gives gr, = Fr,(0) = 1.38, g, = Fr,(0) = —3.30 and gr, = Fr,(0) = 1.34.
Nonetheless, the last two form factors Fr,(¢?) and Fr,(¢*) do not appear in our
calculation; therefore, we will need only Fr, (¢?), for which we take

(¢*) = % gr, =1, mz, = my = 0.84 GeV. (4.67)

= (1 N Q2/m2Ti)2v

4.5 Non-Relativistic Expansion

As a next step towards the calculation of NMEs we need to expand non-
relativistically the nucleon matrix elements from Sec. [£.4, Therefore, to obtain
them we employ the Foldy-Wouthuysen transformation [230,231], which corre-
sponds to an expansion in powers of the velocity v/c or equivalently in powers of
pl/m,.

Let us therefore summarize here the non-relativistic expressions obtained for
all the possible nucleon currents in Egs. —. As before we use the
difference between the proton and neutron spatial momenta q = p, — p,, and we
also define the momentum sum Q = p, + p,. Generally, we retain all terms to
order |q|/m,, in the performed expansion. However, in case of terms accompanied
by the enhanced form factors Fp(q?) and Fps(q?) (see the earlier discussion) we

keep expressions to order q*/m; and even higher.
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Scalar Bilinears The right-handed (upper signs) and left-handed (lower signs)
combinations of the scalar and pseudo-scalar nucleon currents are non-relativistically

expanded as follows

Fps(q?)

Jeip = Fs(gH)I +
S+P S(Q) om

oc-q+..., (4.68)

P

where o = (01, 09,09)" and I denote the vector of Pauli matrices and the 2 x 2

identity matrix, respectively, both operating on the nucleon spin space.

Vector Bilinears In case of the nucleon current with a single Lorentz index
there are four different components: vector, axial vector, induced pseudo-scalar
and weak magnetism. The non-relativistic expansion of their right-handed (upper

signs) and left-handed (lower signs) combinations can be written as

Fa(q®) Fp(q?)

oo = 9" |Fv(d®)I + :

v+a — G [V(Q) om, oc-QF 4m§
Fy(¢®) + Fw(q?) .

Fy(q?)
o, Qil + S, i(o x q)

Fp(q?)
4dm

qo0 - Q]

+ g#i [_

:FFA(QQ)O'i +

0 - q] +.... (4.69)

2
p
Tensor Bilinears The non-zero nuclear components corresponding to the right-

handed (upper signs) and left-handed (lower signs) combinations of the tensor and

axial-tensor nucleon currents read
Jrir, = Fr,(6*)9" ¢ egno’ + (99" — ¢"°g")T;
i vpo 7 mni
+ 56" (901900 = 9090)T" + Fr, (6*) gomone™ 0| + ..., (4.70)

with the definition
7
2m

T =

[(Fri(¢®) = 2Fn(¢%) '] + Fr,(¢*)(0a x Q)] . (4.71)

P

The terms with the momentum sum Q describe the nucleon recoil, and therefore
they are commonly referred to as recoil terms |218].

As OvBp decay involves a simultaneous transition of two neutrons, a combi-
nation of two of the above nucleon currents must be always considered. For the
standard mechanism simply the product of two left-handed vector bilinears needs
to be evaluated. In case of the long-range effective Lagrangian Eq. , combi-

nations of a left-handed vector current with all the other possible currents must
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4. Non-Standard Ovf3/ Decay Mechanisms

be inspected. Finally, based on the effective Lagrangian Eq. five different
products of non-relativistically expanded nucleon currents have to be calculated
to cover the short-range Ovf3/ decay mechanisms.

Let us now provide a detailed and explicit calculation of these products of the

non-relativistically approximated hadronic currents for each of the five terms of
the effective short-range Lagrangian Eq. (4.8)) defined as

—_

I o = 3 [Jo,adop + Jopdoal (4.72)
My = § [ o] (1.73)
Iy o = ; JE o+ ol (4.74)
Moy = 5 [Hadops + T Tepa]. (4.75)

£y = ; b Jop o) (4.76)

Each product is symmetrized in indices a <+ b that label two distinct neutrons in
the decaying nucleus. The placeholders o denote again that each current can be
right-handed or left-handed. Different combinations of chiralities of the nucleon
currents can generally lead to different signs of particular terms in the resulting
expression for a given product. These will be worked out in detail below.

In the following we present the explicit expressions for the products shown
in Eqgs. —. We generally include all the terms up to the linear order
in q/m,. Higher order terms are retained only when they are enhanced by large
form factors Fpg and/or Fp. All the products are written in terms of the nucle-
on momenta difference q and sum Q, Pauli spin operators o and the direction
unit vector between two nucleons, T4, = ry/|re|- In this work we concentrate
on 07 — 0% transitions. Hence, employing the angular momentum and parity
selection rules all terms containing an odd number of o and/or an odd number
of q, Q occurrences in each product vanish, provided that only S/, — S}/ wave
approximation of the electron wave functions is assumed. On the right-hand side
of every line we show the approximate order of magnitude of the given term and
the corresponding approximation of the electron wave functions it must be com-
bined with in order to contribute to the desired 07 — 07 transition. We also
keep track of signs corresponding to different combinations of chiralities of the
considered currents and we show them as a row vector in front of every single
term of the expressions. For the first three products of hadronic currents given in
Eqgs. — there are three sign possibilities corresponding to the following
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combinations of chiralities (in this ordering): RR, LL and (1/2) (RL + LR). In
case of the fourth and fifth product in Egs. — a row of four signs is giv-
en, as in these cases the two hadronic currents have different Lorentz structures;
hence, all the four possible combinations of chiralities have to be considered (in
this ordering): RR, LL, RL and LR.

Term 1: JJj The product of currents JJ is
1

Iy = 5 [Joadop + Jopdoal (4.77)
= (+ + +) F5(¢") LIy [O(1) S = 8]
40 B D g+ 000058

where the term proportional to F3g(g?) can be re-coupled using the following
relation [232]

1 1 1
(0a-q)(oy-q) = g(aa o3)q° — 3 q’ - g(q £a5)?| Sabs (4.78)

with Sab = 3(0'(z . f‘ab)(ab . fab) — (Ga . O'b).

Term 2: J"J,,j Forthesecond term of the short-range part of the Lagrangian

we get the following approximation of the nuclear currents

1 v
H2,ab = 5 [Jgf; ouv,b + Jétb Jo,uu,a} (479)
= (= — 2)2F2 ()00 0) +.... 0(1) S - 5]

Term 3: J"J,j Approximating the nuclear currents for the third term we

obtain
30 = ; [Jcliat]o,u,b + ngt]ou7a:| (4.80)
= (+ + +) FA(P) LI [O(1) S — 9]
(= ) F)on- o) 0(1) 5 5]
(4 ) 2D gy, q) 0(1) 5§
(4 4 ) EAD D) (s )y ) [001) 5 -8
(— — +) qu(a‘a-q)(ab-q)—l—..., [O(1) S — 5]
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4. Non-Standard Ovf3/ Decay Mechanisms

where the term proportional to (Fy(¢2) + Fi (¢%))” can be re-coupled as follows

(0o xq)(oy xq) = —=(0,-00)d> — = |a® — =(q - Tw)?| Sas- (4.81)

1 1[ 1
3 6 3

Term 4: J*J,j” The product of tensor and vector nuclear current in the

fourth term can be non-relativistically approximated as

Mo = 5 [ Topn + T (4.82)
~ g”o{(_ — 4+ 4) iFa(¢*) Fr(¢°) (04 - 03) [O(1) § = 5]
(++ - ) iW(aam(am)} 00) § - 5]

+g/{<+ ) RO ) Lo+ To) [O() S P

Fyv(¢®) [Fr,(¢%) — 2Fn,(q?)]

(= = ——)1i o ¢l 0, [0(0.1) S — P
- - - o) B
X [Io(op x Q)i + Iy(0a X Q)] [0(0.1) S — P]
.y @) ()
( ) Im,
x [L(ay x Q)i + Iy(oa x Q)] [0(0.1) S — P
(@) + Fw(e?)] Fr(6°)
( ) é 4m,,
X [2¢;(0q - 04) — 04i(q - 03) — ovi(q - 04)] (0(0.1) S — P)
(= -+ W[(%'Q)%JF(UVQ)%J

[0(0.1) S — P]
(4 4 — ) Fa(q?) [Fr, (f;) — 2Fn,(¢%))
X [(oa x q)ily + (0 X q)il] [©0(0.1) S — P]
(_ — + _|_) ZW
X [04i(Q - 0p) + 04i(Q - 04) — 2Qi(0, - )] [0(0.1) S — P
(_ - + _|_) Z'FWQO
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4.5. Non-Relativistic Expansion

X [(0a - q)ow + (01 - ) 0] [0(0.1) S — P]

P E ) 15, g Q)fa - o)

&+ --) 16m3

+0u(q- Q)(q - 0.) —2Qi(q - 04)(q - o)) } +....
0(0.1) S — P

Term 5: J#Jj, Approximating the nuclear currents in this case we obtain

M, = ; (T2 T+ T (4.83)
~ g%{(+ + 4 +) Fs(@®) Fv () Ly [0(1) S - 5]
(+ + — ) FPS%ZJI;:A(qQ)
x[(oa-Q)(oy-a) + (02 a)(oy- Q)] [O1) S - 5]
(- =+ F”S(%ZZP(QQ)q°<aa'q><ab~q>} () S -5
+ g“i{(— + =) ;FS(QZ)FA(QZ) CAEHA [0(1) 5 - P|
(- = --) }W@m [©(0.1) S — P
+ + +4) iFS(q2) [FviiiJr Fw (q?)]
x (00 x @)L, + (o x q)'IL] [0(0.1) S — P]
(_ _ 4 +) FPS(i;Z:A(q ) [O_z(a_b q) _|_0_li)(o_a q)}
(0(10) S — P
(4 ) OB 116, q) 4 (o)
0(1) S — P
(+ =+ o) B )1y 4 (- @)1) [0(1) 5 - P)
(+ 4 _) FPS(q;,'z;:’P(qz)qi(a_a . q)<o_b . q)} 4.

[0(10) S — P]
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4. Non-Standard Ovf3/ Decay Mechanisms

4.6 From Nucleons to the Nucleus

Taking the Eqgs. (4.68))-(4.71)) to obtain the resulting nuclear currents we have

to sum over all neutrons in the initial nucleus
Je(x) = ZT_T_(S(X — ra)JIEW, (4.84)

where r, denotes the positions of individual neutrons and J[Em stands for any of
the nucleon currents’]

Hence, considering a product H%ab of two non-relativistically expanded nucle-
on currents and summing over all neutrons in the initial nucleus the corresponding

nuclear transition operators can be written as

Hi(x,y) =Y 74708(x — 1ro)d(y — )15 - (4.85)
a#b
Using the five products in Egs. — the nuclear transition operators for
the short-range effective Lagrangian can be obtained. While those corresponding
to the terms 1, 2 and 3 are Lorentz scalars and as such they completely decouple
from the leptonic current, in case of terms 4 and 5 the nuclear part forms a
Lorentz vector which is contracted with the vector electron current.

Having constructed the nuclear Ov33 decay transition operators using the gen-
eral nucleon operators with their g and thus distance dependence parametrized
by experimentally constrained form factors, we can now proceed towards the fi-
nal and most challenging step, the determination of the Ov35 decay NMEs. The
calculation of the matrix elements at the nuclear level requires an understanding
of nuclear structure and given the highly complex nature of the many-body prob-
lem, it is not possible to solve it from first principles. Let us define the nuclear

matrix elements as
My = (OF| Hi |0F ), (4.86)

where <(’);‘ and <O}r’ denote the wave functions of the final and initial nuclear
state under consideration, respectively, and the transition operator is given in
Eq. . To calculate the wave functions and thus also the transition operator
in Eq. one of the nuclear structure models briefly discussed within Sub-

sec. must be employed. In principle, transitions via the intermediate states

°In case of positron emission, the sum runs over protons and the operator 7, is replaced by

operator 7_.
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4.7. Know Your NMEs

formed by a single beta decay-like transitions from one nucleon current should be
considered, which would require knowledge of the corresponding wave functions.
However, it is customary to exploit the completeness of all intermediate states
and make use of the closure approzimation in directly calculating the above ma-
trix element. For the short-range operators the intermediate transition occurs at
very high energies |¢| &~ 100 MeV, corresponding to the inter-nucleon distance,
compared to the nuclear transition itself at (Jgg =~ 1 MeV. Therefore, the closure

approximation is very well justified particularly in case of the contact interaction.

4.7 Know Your NMEs
Using Eqgs. (4.85)-(4.86)) and the five derived products in Eqs. (4.77)), (4.79),

({4.80), (4.82)), (4.83) we obtain five matrix elements corresponding to the five
terms of the short-range Lagrangian in Eq. (4.8). For the purpose of the following

calculations it is enough to restrict ourselves only to terms that are of order 1
or highelﬂ and that combine with the Sj/; — S/ wave functions. The resulting

simplified matrix elements for the five different short-range operators then read

M= (+ + +) gatMp (4.87)
(+ + ) lgj;j% (MEE — MEP),
My = (= — —) 297, Mar, 4.88
Mz= (+ + +) v Mp (4.89)
(— — +) GMEp
(+ + -) %ﬁg (MEE — MT)
(4 ) o)’ (M'GTHM;)
12m2 2
(= = +) g (M = M),
My = (= — 4+ +) ig"gagr M, (4.90)
(+ o+ = i 5 (M = MF).

6We will keep also the term in Eq. (4.80) proportional to (Fv(qz) + FW(qQ))z, which is
slightly smaller; however, it is customary to retain it, as the corresponding contribution may

be still important.
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4. Non-Standard Ovf3/ Decay Mechanisms

ME = (+ + ++) ¢"gsgy Mp (4.91)
gagps ( ~
(++ = =) g (MET - M7
p
gprgps PP PP
(= = +H "5 (M = MPPPY .
p

Let us now explain the notation used above. The signs reflect the possible
combinations of chiralities of the involved quark currents in the way explained
above Eq. ([£.77). Further, we have split the form functions Fy(¢?) appearing in
Eqgs. (4.77)), (4.79), (4.80)), (4.82)), (4.83)) into the so-called charges, i.e. the values
at ¢ =0, Fx(0) = gx and the ¢g-dependence as

1 1

Fx(q") :FX(O)(1+Q2/m%/)2 EgX(1+q2/m%/)4’ (4.92)

where X € {S,V, W, Ty, T, Ts}. Since always products of two form factors appear,
it is convenient to define the function
_ (@) Fv(e®) _ 1

9xgy (1+¢2/m)"

h(q®) (4.93)

which is subsequently absorbed into the definition of the accompanying nuclear
matrix elements appearing on the right-hand sides of Egs. —, as de-
scribed below. The A, P and PS form factors have a different g-dependence,
and thus are treated separately. For products Fu(q¢?)Fx(q®), Fa(q*)Fa(q?) the

combined ¢-dependence is given by

. 1 1
") = i P (L ) (484
Foan(q?) = ! (4.95)

(14¢2/m?)"
respectively.
In case we have a product of one of the pseudoscalar couplings (P or PS)

with the axial-vector coupling A or some other coupling X, then

-, 1 1
hAP(q ) - (1 + q2/m?4)4 (1 + qg/m%)’ (496)
hp(g?) = —— ! (4.97)

(14 ¢ /m2)* (1 +¢?/m2)’
respectively. Finally, for a product of two pseudoscalar couplings the g-dependence
is defined as

1 1

hPP(q ) = (1 —|—q2/m%/)4 (1 + q2/m72r)2.

(4.98)
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4.7. Know Your NMEs

Having defined all these g-dependent functions we can proceed to definitions
of all the NMEs on the right-hand sides of Eqs. —. These NMEs can
be generally calculated in any nuclear structure model [135,/138,233]. Within
this detailed treatment of the short-range Ov5S decay mechanisms we stick to
the formulation of [226] and [135]. We start with introducing the notation

(Ha) = (OF| Y. 7573 Hay
a#b

o}y, (4.99)

where H,;, represents any two-body transition operator. This two-body operator
involves a function H, which, following [226] and [135], is constructed in momen-
tum space as the product of the so-called neutrino potential, v(g), times the above
defined ¢g-dependent parts of the form factors fL(q2). Since we consider short-range
mechanisms with a d-function in configuration space, the Fourier transform is a
constant, and the neutrino potential in momentum space is [135,[226]

o(g) = 21 (4.100)

- )
™ MMy

where the standard normalization has been used[]

Let us now introduce functions

ho(cf)zg ! ho(q), (4.102)

T MMy

where the placeholder o notes that the same redefinition is used for all the above
defined types of ¢-dependencies arising from the form factors. Then, for instance,

we can write the Fermi, Mg, and Gamow-Teller, Mg, matrix elements entering

Bas. (59 (E0) as

Mp = (h(¢?)), (4.103)
Meor = (h(qQ)(O'a cop)), (4.104)

"Incidentally, for the long-range mechanism the neutrino potential is

2 1
q)=————, (4.101)
T q(q+ A)
with A denoting the closure energy. Therefore, this formulation is convenient for calculating
both short-range and long-range matrix elements, one just simply needs to specify the neutrino

potential.
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4. Non-Standard Ovf3/ Decay Mechanisms

wherd?]

h(q2):g ! ! .- (4.106)
T memy (14 g2 /m3)

Let us now employ the introduced notation and present the definitions of

other NMEs appearing in Eqgs. (4.87)-(4.91). In case that the Gamow-Teller
matrix element in Eq. (4.104]) comes with one or two powers of the axial-vector

coupling, we define
My = (ha(¢*) (04 - 1)), (4.107)
MEE = (haa(¢®) (o4 - 00)), (4.108)

respectively.

Matrix elements My, and M. appearing in the third short-range operator

read
1 q?
m2 or = <m§h(q2)(aa : ab)> , (4.109)
1 1 1 .
miz%M/T = <Tn§ |:q2 — §<q . I‘ab)2:| h(q2)Sab> . (4.110)

Since ¢ ~ 100 MeV in Ov3( decay, these contributions are suppressed by a factor
of ©(0.01) relative to the standard NMEs M¢gr and Myp. However, we include
them because this suppression is partly compensated by the enhancement of
the corresponding form factor. The calculation of these new matrix elements is
straightforward, as the combination of neutrino potential and form factors gives
simply a function of q2.

Similarly, the matrix elements M7, MY and MEE, MFTE are defined as

L P q* 2

— = =h . , 4.111
gMGT < 2 p(q) (04 o) (4.111)
Loer (L [q2 — 1(q.fcal,)2 hp(q*)Sap (4.112)
m2 r m2 3 ’

and
L MEE = @ hap(@®) (o, - o) (4.113)
m;g GT m% AP a b ) .

8 As aside, in order to do calculations in coordinate space, one simply takes the Fourier-Bessel

transforms of the product of the neutrino potential v times the function h,

Wy =2 / T @)

h(g)q*dg, (4.105)

T MMy

where A\ = 0 for Fermi and Gamow-Teller contributions and A = 2 for a tensor contribution.
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1 IAP 1 [ 2 1 A 2
mgMT - <m}% q 3((1 rab)

h AP(qZ)Sab> , (4.114)

respectively. As well as in the previous case, these terms are smaller by a fac-
tor of 0(0.01) relative to the standard terms Mgy and Myp. Nonetheless, the
enhancement of the gp coupling compensates for this suppression.

Next, the terms /\/l/GPj{D , MFP induced by the first short-range operator, which

are given as

1 / 2

M = (Lhnela?)(o0 a0, (4.115)
p p

Lorr = (L2 = 2q-8u)?] her(e®)S (4.116)

mQT—mgq 301 ab pp\q )Sab ) - .
p

Although these matrix elements are also suppressed by a factor of @(0.01), if the
pseudoscalar coupling gpg is larger by two orders of magnitude as claimed in [229],
then they become comparable with the standard Fermi and Gamow-Teller matrix
elements Mp and Mgr, or even larger.

The matrix elements MY and M4PF present in the third short-range oper-

ator are defined

1 4
m/\/l’(’f;P = <§ﬁhpp(q2)(aa : o‘b)>, (4.117)
D D
L orr = @ 2—1( )2 hpp(d*)S (4.118)
m4 T - m4 q 3 q. ab PP q ab / - .
p p

Considering again the values ¢ ~ 100 MeV relevant for Ov35 decay, the above
matrix elements are smaller by a factor of O(107%) relative to the standard terms
Mer and Mp. However, the enhanced pseudoscalar coupling gp appears here
in the second power and balances the suppression. Also these new terms can be
easily calculated, because the neutrino potential is just a function of q2.

The matrix elements A;lé? and /\;l?P , also called recoil terms, are defined as

1 - :
mgMég = <(?n]23thP(q2>(o'a : Ub)> : (4.119)
%Mép = <W1L12) [Q q - ;(Q Pap)(q - Tap) hAP(QZ)Sab> : (4.120)

Provided that the pseudoscalar coupling gpg is larger by two orders of magnitude,
these terms become important despite the overall suppression by the factor of

0(0.01). However, since the operator Q is not simply a function of q?, these
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4. Non-Standard Ovf3/ Decay Mechanisms

matrix elements are difficult to calculate. A good estimate can be obtained by
replacing (Q - q)/m2 with the expectation value in the state ’O}r>, namely with
<Q : q/m127> ~ 0.01. In such a case we can write

L oap Q-q
- Mer = < m2 >MGT, (4.121)

ete.

Eventually, the fifth short-range operator contains the terms /\/l/qopp, M’YQOPP

that read

m—/\/t’%”’ <q°n?hpp( 2) (o, - a'b)> , (4.122)

p p

m3 3<

p

L
N T P

hpp(qQ)Sab> : (4.123)

p

Similarly as for all the other terms involving the pseudoscalar form factors, the
relative suppression is balanced by the enhancement of couplings gp and gpgs.

It is important to remark that in case of the product 11 4 in Eq. , the
enhancement of the pseudoscalar form factor gps can make the third-order term
of the non-relativistic expansion of the pseudoscalar nucleon current important.
This term is anticipated to be of the order Fpg(q*)O(q®/m3), and therefore,
its product with the first-order pseudoscalar term of the expansion would give
a contribution F3¢(¢*)O(q"/m,) ~ O(1). This term is omitted in the above
detailed discussion, as we consider only terms up to the order of q/m, in the
non-relativistic currents. However, we conjecture that the extra contribution in
question will always be sub-dominant to the terms in Egs. and , as
those should be larger by two orders of magnitude. Although the exact relative
size of these contributions depends on the corresponding NMEs, there is no reason
to believe that the NMEs arising from the third-order term of the non-relativistic
expansion of the pseudoscalar current should be exceptionally large.

As mentioned earlier, different nuclear structure models can be used to com-
pute the NMEs. In this work we employ the NMEs calculated in the Interacting
Boson Model (IBM), specifically, the version IBM-2 [135-137|. It is important to
emphasize that we do not calculate the exact values of all the above listed NMEs.
Instead, we replace (q/m,)* = 0.01 as a rough average, and neglect the effect of
differently-shaped q?-dependence of form factors. These approximations reduce
all the NMEs to Mg, Mgr and M. Values of these basic NMEs we take from
Ref. [137] and we list them in Tab. [4.3]
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An improvement that is being made in the employed nuclear structure calcu-
lation is the introduction of short-range correlations (SRC), which are of crucial
importance especially for the herein studied short-range mechanisms. They can
be taken into account by multiplying the potential v(r) in coordinate space by
a square of a correlation function f(r). Most commonly, the Jastrow function is
used. It has the form

fi(r) =1—=ce ™ (1= br?), (4.124)

where @ = 1.1 fm™2, b = 0.68 fm™? and ¢ = 1 for the phenomenological Miller-
Spencer parametrization [234], and a = 1.59 fm 2, b = 1.45 fm > and ¢ = 0.92
for the Argonne parametrization [235]. The above formulation is in momentum
space, but in our case we can employ the Fourier-Bessel transform of f;(r) to

take SRCs into account.

4.8 Decay Half-life and Angular Correlation

By combining the results derived for the leptonic and hadronic parts of the
process, we can construct the coefficients a(F1) and b(F;) in the fully differential
rate Eq. (4.21)) for the short-range 07 — 0% 0v(3 mechanisms as follows

2 2

3 1 5
a(El) = 2f1(§]) ZQMI +§fég) Z epM;
I=1 I=4
0 3 > :
F /16 Re <Z 61M1><Z 61M1> . (4.125)
I=1 I=4
3 2 1 5 2
b(Ey) = 2f1(3: Z eeMp| + gfe(;é) Z etMr (4.126)
I=1 + 1=4

These expressions incorporate the NMEs from Egs. — and the PSFs
from Egs. (4.48)-(4.50). The summations as indicated run over the different
current types ¢ = 1,2,3,4,5 including their different chiralities, I = (i, XY Z)
with X\ Y, Z € {L, R}. Further, the sign in front of fl(g) in Eq. is negative
(positive) for R (L) chirality of the interfering electron scalar current. The +
in the subscript of the norm in Eq. symbolically denotes that the terms
containing €; and € corresponding to the same electron chiralities combine with
fl(Br, while the relevant PSF for terms with opposite electron chiralities is fﬁl

Note also that the interference term between currents ¢ = 1,2,3 and 7 = 4, 5 does
not contribute to b(E;) due to vanishing fl(é) PSF, as given in Eq. (4.50)).
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4. Non-Standard Ovf3/ Decay Mechanisms

Mp Mer My

©Ge —42.8 104.0 —26.9
88e 371 872 —27.3
0Mo —46.8 111.0  24.2
B0Te —379 848 —16.6
B¥Xe —29.7 66.8 —12.7

Table 4.3: Nuclear matrix elements Mg, Mgr and Mrp for selected isotopes,
adopted from [137].

Tab. summarizes for selected isotopes the basic nuclear matrix elements
Mp, Mgr and Mp on which the short-range NMEs M are based. The val-
ues are taken from Tab. IV of [137]. These matrix elements are expressed in
dimensionless units, which means that they are multiplied by the mass number
dependent radius R4 = RyA'/? of the nucleus where Ry = 1.2 fm.

Based on [134] and the description given in Sec. we numerically calculate
the radial electron wave functions. Using these and combining Eqs. , ,
, and , we then construct the single electron distribution dI'/dE;
and the angular correlation a(F7) for the three relevant phase space factors that
can occur under the presence of short-range operators, i.e. 1(?) (for operators
i = 1,2,3 with a scalar electron current), fég) (for operators i = 4,5 with an
axial-vector electron current) and fl(g) (for interference between the two classes).
Note that the contribution fl(é) to the angular coefficient b(E;) induced by the
interference terms is identically zero. The electron phase space distribution fi; is
the same one that is obtained for the standard mass mechanism (calculated also
in the closure approximation).

The results for the OS5 decay isotopes “°Ge, *Te and *Xe are shown in
Fig. 4.3l Therein we plot both the normalized single energy distributions and
the angular correlation as functions of the kinetic energy EX® = E; — m, of one
of the emitted electrons ranging from zero up to the ()gs value of the isotope in
question. As one would expect, the available kinetic energy is preferably shared
by the two electrons equally, which results in a hill-like shape of the single energy
distribution dI'/dEF™ in all three cases. The distributions corresponding to fi;
and fgs are almost identical, and therefore hard to distinguish experimentally.

The latter one has just a slightly flatter profile. The flatness of the profile is
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Figure 4.3: These plots show, from top to bottom, the results for the three selected
0v33 decay isotopes °Ge, **Te and **Xe. On the left-hand side we always show
the single electron energy distribution dI'/dE¥™ as function of the kinetic energy
E¥n = B, —m, for the three different phase space factors in Eq. , namely
fi1, fes and fi6. On the right-hand side the energy-dependent angular correlation
a(EY™) between the two electrons as function of the kinetic energy EX™ for the
phase space factors fi; and fgs (identically zero for fis) is depicted for each

nucleus.

more significant for the interference term f15. The angular correlation a(E¥™)
for fi; is always negative, which means that the electrons are preferably emitted
back-to-back. On the other hand, for fgs the angular correlation is positive, thus

reflecting the fact that the electrons in this case prefer to fly in a similar direction.
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7 _ _ 0 0 0 1 1 1
Gty G 6 o Gl Gl Gl Gl Ku K

Ge 472 264 1.7 =390 0 195 0 —0.83 0.74
823 204 108 59 —181 0 9.10 0 —0.89 0.84
1Mo 31.8 170 84 —286 0 142 0 —0.90 0.84
130 e 284 153 87 —248 0 124 0 —0.87 0.81
16Xe 29.2 157 90 —254 0 127 0 —0.87 0.81

Table 4.4: Here, we summarize the phase space factors ngk) and corresponding
angular correlation factors Kj; and Kgg (K16 = 0 is always identically zero)
calculated for selected isotopes in analogy with [134]. All the presented PSFs are
given in units of 1071° y=1,

This difference potentially allows for distinguishing experimentally the scenarios
with the fge factor from the standard mass mechanism as well as from scenarios
corresponding to fi;.

Following the definitions in [134], we calculate the integrated PSFs as

(a)
a 2C Gij Qpptme a
(@ _ J / dEyw(Ey) £ (By, Qup + 2m, — By),  (4.127)

Y In24R%

Mme

where gﬁ]) =2, gﬁ) =2, gég) =1/8, géé) =1/8, gig) =1, g%) = 0. The quantities
C' and w(E;) are defined in Eqs. and (4.23)), respectively, and the factor
1/R? has been introduced in Eq. to match the standard notation, in which
it compensates for the corresponding factor in the NMEs as discussed above.
The numerical values of the PSFs GZ(?) were calculated in analogy with [134]
and are provided in Tab. . As mentioned before, the PSF G%) is identically
zero. Moreover, the factor Ggll)_, which corresponds to the interference between
a right-handed and left-handed scalar electron current, also vanishes.
Employing the above PSFs, the inverse Ov83 decay half-life can be written as

2 2

3 5
Tl_/é = Gg? ZEIMI + Gé%) Z e;M;
I=1 I=4
3 5 *
T GlgRe (Z 61/\41) <Z€1M1> : (4.128)
I=1 I=4

Again, as in Eq. (4.125)) the sign in front of the factor Gg%) is negative (positive)

for R (L) chirality of the electron scalar current involved in the interference term.
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XX,LR
T3 o 1™ ler®] 1™ les ™| les®| led ™7 e

RL,LR
1 |

€5

Ge 5.3 x 102 1.5 1.5 190 110 220 250 60 50
130Te 2.8 x 1024 3.5 34 420 240 490 550 140 120
136%e 1.1 x10% 057 057 84 50 110 110 23 19

Table 4.5: Above we list the sensitivity estimates on the absolute values of the ¢;
couplings (in units of 1071%) from current experimental bounds. Only one given
contribution is assumed to be non-zero at a time. We specify the chiralities of the
involved quark currents, since the corresponding bounds differ. The label XX
denotes the case when both chiralities are the same, i.e. XX = RRor XX = LL,
while the label LR stands for opposite chiralities of the two quark currents. We
also include the used experimental bounds at 90% confidence level, reported by
recent searches at KamLAND-Zen [236], GERDA [237] and CUORE [23§].

The integrated angular correlation factors can be determined as

B G
Ky =—=- 4.129

where jk = 11, 66, 16. Since fig = 0, the factor K¢ also trivially vanishes.
The resulting numerical values of K1, and Kgg are listed in Tab. As already
discussed, in view of their opposite sign, a discrimination of the two types of non-
standard mechanisms will be possible in an eventual measurement of the angular

correlation.

4.9 Bounds on Couplings

A particular underlying particle physics model may in principle generate sev-
eral different contributions to Ov33 decay. Furthermore, the mixing among the
corresponding Wilson coefficients can induce contributions through radiative ef-
fects from the scale of new physics, through the electroweak scale and down to
the QCD scale. In the above presented formulae for the Ov33 decay rate we
take into account all possible short-range contributions. The therein included ¢;
factors are understood to be effective at the QCD scale. When determining the
numerical limits on these effective couplings we make the customary simplify-
ing assumption that only one term ¢; is different from zero, and hence only one

mechanism contributes at a time.
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RL,LR

= |

XX,LR
05 [l 16 (e 1] 1™ g™ Jex ™ e

Ge 1077 035 035 44 26 50 58 14 11
8¢ 1077 019 019 25 15 30 34 7.8 6.5
10Mo 1077 02 02 16 89 16 20 8.7 6.5
BOTe 1077 0.18 0.18 22 13 26 29 7.5 6.1
Xe 1077 019 019 28 17 35 38 7.6 6.4

Table 4.6: As Tab. , but using a prospective limit Tlf%ure = 10%" y of future

experiments.

Therefore, employing the above described calculation of the Ov53 decay half-
life and considering the currently most stringent experimental bounds on Ov3p3
decay for the isotopes °Ge [237], **Te [238] and '*°Xe [236] we estimate the
upper limits on the €; factors and the resulting numerical values are shown in
Tab.[4.5] Moreover, we also provide the values of the effective couplings that could
be reached assuming a common future experimental sensitivity of 775" = 10°7 y.
In this case we include two additional potentially interesting isotopes, *2Se and
10Mo. In both tables, we show the upper bounds on the absolute values XY
where the superscript XY labels the chiralities of the involved quark currents. As
before, XX denotes the case of equal chiralities, i.e. XX = LL and XX = RR.
Note that the bound on ¢4 is independent of the choice of chiralities, which is not
true for the other operators.

We stress again that for the calculation of the numerical results shown in
Tabs. [4.5] and [4.6) we employed the values of M p, Mgr and Mr given in Tab.
The values of the other NMEs were estimated by replacing (q/m,)? = 0.01 as a
rough average, and by neglecting the effect of differently-shaped q2-dependence
of form factors.

The numerical limits on the effective couplings calculated using the current
experimental sensitivity are between ~ 107!° and 107%. This range of orders
of magnitude is, as expected, generally a bit more stringent than the one of the
updated results from Ref. [115] shown in Tab.[4.2] Note that our results for €; and
€5 depend on the chiralities of the involved quark currents, while in Tab. there
is a single limit for each of these couplings. This is due to the additional NMEs we
consider, as some of them come with signs dependent on the considered chiralities.

The new bounds on these two couplings are also significantly more stringent,
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which is primarily due to the large extra NMEs enhanced by the pseudoscalar form
factors. We have checked that if we restrict ourselves only to the leading order
NMEs used in Ref. [115], we receive values similar to those shown in Tab. [4.2]
Other differences between our results and those from Ref. [115] have origin in the
fact that we take NMEs calculated using different nuclear structure model and
non-approximated PSFs. Clearly, when employing the prospective future limit on
OvpB decay half-life, all the limits (cf. Tab. become more stringent ranging
from 107 to 107Y. Based on Eq. we can see that the derived bounds on
the effective couplings generally correspond to new physics scales in multi-TeV

energy region.

4.10 QCD Running of Couplings

Above we estimated the limits on the effective couplings of exotic short-range
mechanisms at the scale of QCD Agcp ~ 1 GeV making the assumption that only
a single operator contributes at a time, and thus neglecting also the mixing of dif-
ferent Wilson coefficients. However, taking into account the Ref. [239] allows us
to be more accurate. Employing the therein described procedure we can assume
the effective couplings to be present at a certain new physics scale Axp &~ 1 TeV
and run them down to Aqgcp, where we can set again the corresponding limits
using the current experimental sensitivity to Ov53 decay half-life. The resulting
numerical constraints then can be compared with results from collider experi-
ments. Although this effect is not of a big importance in case of the long-range
mechanisms, it can have an important impact on the herein focussed short-range
operators [239).

For a set of coupled Wilson coefficients ¢ = (cy, ¢a, ..., ;)T the Renormaliza-

tion Group Equations (RGEs) are given by

C‘ffo(gL — 7T c(p). (4.130)

Here, 7 is the anomalous dimension matrix in the MS-scheme, which can be at

one-loop level written as
v=—-2(b—2CFl), (4.131)

where b is a p-independent constant matrix and Cr stands for the colour factor.
The solution to Eq. (4.130) reads (in matrix form)

c(n) = U(p, Axp) - ¢(Axp), (4.132)
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5 Wl e et e ™| leg ™| 18] fed ™| 1ex™] les™ ] les™|

BGe 53x10%® 062 036 8 160 260 580 400 25 12
130Te 2.8 x 102 1.4 083 200 350 580 1300 880 59 28
136xXe 1.1 x10%  0.24 0.14 32 72 130 250 190 9.6 4.7

Table 4.7: This table is analogous to Tab. [£.5] but for the effective couplings
defined at the average new physics scale Axp = 1 TeV.

with matrix U describing the evolution of the coefficients ¢ between the low and
high energy scales denoted by p and Axp, respectively.

In our case we are interested in evolving the effective couplings c¢; = €;(1 TeV)
of the short-range operators triggering Ov33 decay at the scale Axp = 1 TeV
down to the QCD scale, where it can be confronted with experimental data. The
corresponding evolution matrix U = U(Aqcp, Anp) of Wilson coeflicients between

Anp and Aqep is rather sparse. Its only non-zero elements are the following [239)

sxx_ [ 239 002 o (084 —2.19 [ 035 096i
(12) — > 31) — ) (45) — .
—-3.83 0.35 0 4.13 —0.06¢ 2.39
XX _ LR __ LR __
USY =070, UL =062, UL =413 (4.133)

Here, the subscripts label the respective short-range operator(s) and the super-
scripts the chiralities of the quark currents involved. Hence, for instance, the
matrix U()g)( gives the mixing between the first and second short-range operators
involving quark currents with the same chiralities. If we employ Eq. and
the approximated values of NMEs Egs. —, we get the bounds on cou-
plings ¢; displayed in Tab. [£.7 Although we assume here again only one effective
coupling to be non-zero at a time, now we make this assumption at the new
physics scale Axp and using the above solution of the Wilson RGEs we evolve the
couplings to Aqcp to calculate the Ov33 decay rate, potentially with more than
one coupling active due to mixing.

If we compare the numerical results presented in Tab. with the previously
calculated bounds in Tab. no common trend is apparent - some of the new
limits are weaker and some more stringent than before. Note that now we have
two different limits concerning the fourth short-range operator. As the corre-
sponding QCD-running depends on the assumed quark current chiralities, the

bound on |e4| is split into two different values ¢~ and cf®. Due to the fact that
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4.10. QCD Running of Couplings

the corresponding RG evolution matrix elements are smaller than 1, both the
resulting limits on |¢4| are less stringent. When it comes to the mixing between
OXX and O, one would expect the limit on |c5*| to be more stringent because
of the expectedly strong contribution from OX (large NMEs). However, this ef-
fect is suppressed by smallness of the relevant element of the evolution matrix,
(U312 = 0.02. Hence, to sum up, despite the strong variation in sensitivity to
the couplings ¢; the bounds in Tab. do not differ drastically from those shown
in Tab. 4.5
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5

OvBB Decay From SMEFT

While in the previous chapter the general effective approach to Ov33 decay at
low energies (Fermi scale) was described, in the present chapter the SM-invariant
effective operators generating the low-energy Ov55 decay effective operators after
EW symmetry breaking will be discussed based on Ref. [240]. In Chap. |3| this
correspondence has been already outlined in the case of the standard mass mecha-
nism and it can be summarized as follows. Since the light neutrinos are electrically
neutral fundamental fermions with tiny masses, one typically considers neutrino
masses to be generated at certain high scale A, where the U(1)g_r, the only non-
anomalous global symmetry of the SM, is broken. This then allows neutrinos to
acquire nonzero Majorana masses after EW symmetry breaking. However, since
the renormalizable SM respects U(1)p_; symmetry, all the manifestations of this
symmetry breaking at low energy scales are described by operators of some higher
dimension. Consequently, the neutrino masses are suppressed by certain power
of the cut-off scale A.

If we further assume that all the new physics lives high above the EW scale,
then regardless of the details of the new high-scale theory all the new phenomena
occurring below the EW scale are described by higher-dimensional operators.
Hence, observable low scale manifestations of all high-energy models leading to
small Majorana neutrino masses are just consequences of effective operators that
break the B — L number. The LNV processes, which are most relevant for Ov3g,
are those with AL =2 and AB = 0, and thus in the following we focus on these.

5.1 AL = 2 SM Effective Operators

Listing all the effective operators that respect particular symmetries is a rather
tricky and tedious task. To our knowledge, there are two main references focus-
ing on the SM-invariant operators violating lepton number by two units. The
first enumeration by Babu and Leung [241] was later reviewed and extended by

de Gouvea and Jenkins [214]. The latter study thus provides so far the most
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(c) (d)

Figure 5.1: Diagrams illustrating the v/ decay contributions from AL =2 SM
effective operators: (a) 5-dimensional Weinberg operator (standard mass mecha-
nism), (b) 7-dimensional operator leading to long-range contribution, (¢, d) op-

erators of dimensions 9 and 11 leading to short-range contributions.

exhaustive, although by no means complete, list of the AL = 2 SM invariant
effective operators. In this work we will discuss operators up to dimension 9 and
a representative fraction of dimension-11 operators. Our aim is to describe the
contribution of these operators to the effective low-energy Ov/35 interactions, as
shown in Fig. Most of them will not contribute directly at tree level, but

rather at various loop levels.

In the following discussion we are using a list of AL = 2 SM effective op-
erators that is mostly based on Ref. [214]. We further make use of the Hilbert
Series method [78]215] to check that no important effective operators are omit-
ted. Specifically, running the code accompanying Ref. [78] we obtain all possible
independent operator patterns that can be constructed from the given set of fields
and that violate lepton number by two units. By operator patterns we mean the
field content of particular operators without specified gauge and Lorentz struc-
ture. Each such pattern comes in the series with the corresponding multiplicity
factor denoting the number of possible independent contractions (both Lorentz
and gauge) of that particular field content, which lead to independent effective
operators invariant under given symmetries. Hence, comparing the series with
our list ensures that we capture all possible types of AL = 2 operators made of

SM fermions and the Higgs at dimensions of our interest.

Similarly to Ref. [214] we do not cover operators involving gauge fields and
derivatives, as these are expected to be more difficult to be generated at tree
level from an underlying renormalizable theory [241]. Moreover, we specify only
the possible SU(2), contractions and we are not interested in various possible
Lorentz and SU(3)¢ structures. The labels f; and f¢ refer to left-handed Weyl
spinors with f denoting a fermion according to Tab. and f¢ being the charge-
conjugate of the SU(2), singlet right-handed charged fermions. As has been
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5.1. AL =2 SM Effective Operators

proved in Ref. [79], the AL = 2 SM-invariant effective operators are always of
odd dimension. In addition to the single Weinberg operator of dimension-5 in
Eq. , we show the resulting sets of operators of dimensions 7, 9 and 11 in
Tabs. and [5.3] respectively. All the therein listed operators are written in
terms of the first generation of fermions, although some may be non-trivial only
if more generations are considered, as indicated.

The resulting Lagrangian summarizing all the considered interactions thus

reads

L:LSM+iog,+Zioé+ziog+zL - (5.1)

A5 i A% i Agi 7 AZli

Here, Lg)s is the SM Lagrangian, Oy stands for the dimension-5 Weinberg oper-
ator suppressed by the corresponding typical energy scale A5. The SM-invariant
effective operators of higher dimensions are denoted as O% with D =7, 9, 11.
The corresponding suppression is always given by AB;“, where the energy scale
Ap, subsumes any mass scales and couplings of an underlying UV-complete the-
ory. It is important to remark again that, as well as before, in all the following
calculations we will always assume only a single AL = 2 SM-invariant effective

operator on top of the SM Lagrangian is present at a time.

5.1.1 Dimension 5

It is a well-known fact that there is just a single AL = 2 SM effective operator
(modulo generations) at dimension 5. This is confirmed by Hilbert series having

the trivial form
HEL=2 = L*H? + he. (5.2)

As mentioned, the Hilbert series is merely a polynomial in the given fields, hence
it does not provide any information on the actual gauge and Lorentz contractions

involved. The Weinberg operator reads
O, = L'L’H*H'ejpey, (5.3)

where the fields are defined in Tab. and the indices 17, , k,[ together with
the corresponding e-contractions define the SU(2),, structure of the operator. As
we have mentioned earlier, it generates the light Majorana neutrino masses after

EW symmetry breaking. As a result, it contributes to Ov53 decay through the

v2

effective neutrino mass of the order m, = e
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@ Operator my LR er

> . . 7t
1 DDDHYH'H Hiewey % f (%) — -
2 LI L*ecHe;jer Ye U — —

- Lerl A T
34 LDDQ* Hejen  {#%yp's % ery
3,  LLIQMHlepey — (5% &% StE
4, LiLj@iUTCerjk 1%’;2 1}\: % fgtllz
i DUQurHYey et &
8 LiécdcchjGij 352%2)/3 %2 o 260t

Table 5.1: Dimension-7 AL = 2 SM-invariant effective operators. In each case
the dominant contributions to Ov/3 decay via the effective neutrino mass (m,,)
and long-range (LR) mechanisms are displayed. In column ey g the Ov5p3 long-
range interaction triggered by a particular operator is shown. The notation used
for labelling different contributions is explained in Sec. [5.2.3]

5.1.2 Dimension 7

The Hilbert series for AL = 2 SM effective operators of dimension 7 reads
HA=2 = decHLue + 2d°HL*Q + e°HL? + H3HL? + HL*Q'ue + h.c., (5.4)

where the integer coefficient in front of the second term indicates the multiplicity
of the given pattern. Indeed, requiring the Lorentz and SM invariance, there are
two independent ways how to contract the fields in question. Specifically, there
are two independent operators corresponding to the second term, Oz, and Osy,
which differ by their SU(2), structure, see Tab. [5.1]

The resulting set of operators, including explicitly specified SU(2);, contrac-
tions, is shown in Tab. In general, we do not discuss in detail the operators
given by a product of invariant operators of lower dimension; however, we list
them here for completeness. This is the case of the operator O 2 highlighted
in italic. As one can immediately observe, this operator is simply the Weinberg
operator multiplied by the singlet combination HH. Next, we mark operator Oy,
by a dagger, since it is a Fierz transformation of operator O,,, and thus it is not
an independent operator. In addition, the existence of this operator requires more
than a single fermion generation, otherwise it trivially vanishes. Therefore, it does
not contribute to Ov33 decay on its own. However, the same reason means that
this operator cannot be solely responsible for the observed neutrino oscillations.

Therefore, in the minimal case there would have to be a misalignment between
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5.1. AL =2 SM Effective Operators

the operator flavour structure and the charged-current mixing. Assuming so, O,,
may still contribute to Ov35 decay with only a O(1) suppression; hence, it is

retained in our results.

5.1.3 Dimension 9

At dimension 9 the Hilbert series covering the operator terms of our interest

is given by

HE=? = (d°)° deL?ue + (d°)? e*ue® + 2 (d°)° e LQue + 4 (d°)° L*Q?
+ d°eec L*uc + 2d°e°L*Q + d°eH?H Luc + 2d°ec LQue’
+ 3d°H*HL*Q + d°L°Luc + 4d°L*QQue + d°L*u‘uc® + d°H>L*Q
+ (e L' + e H*HL? + e“L*Qu¢ + ecHL*L 4+ ecHLQQ
+ HYHE?L? + HL2Que + 2H*H L2Que + 2L°Q u¢* + hee.,  (5.5)

and the corresponding effective operators are displayed in Tab. [5.2l The opera-
tors ‘derived’ from lower-dimensional ones are again included just to provide a
complete list. For instance, operator O, g4 is a product of Weinberg operator and
two singlet combinations HH. Similarly, operator Oy is the Weinberg operator
with the LHe¢ singlet combination attached. The asterisk in case of operator
015, marks that it vanishes for a single generation of fermions; therefore, it does
not contribute to Ov3 decay. Analogous to operator Oy, one needs to include
another source of lepton flavour violation in order to reproduce the observed
neutrino oscillations. In such a case, 09, may also contribute to Ovj33 decay.
Unlike O4,, operator O;5, cannot be Fierz-transformed to any of the other listed

operators. Finally, note that operator Oz does not appear in [214].

5.1.4 Dimension 11

The number of AL = 2 SM effective operators of dimension 11 is relatively
large. However, many of them manifest a fairly similar behaviour, when contri-
butions to Ovf3f decay are studied. Therefore, we concentrate here only on a
restricted selection of 11-dimensional operators displayed in Tab. We include
all operators that trigger Ov33 decay at tree level, but we skip e.g. operators that
do not appreciably contribute to Ov53 decay through long-range or short-range

interactions. All products of invariant sub-operators are omitted.
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Table 5.2: List of AL = 2 SM-invariant effective operators at dimension 9. Next
to the dominant contributions to Ovf3 decay via the effective neutrino mass
(m,) we provide also the dominant contributions triggered by long-range (LR)
and short-range (SR) mechanisms. In columns e g and esg we show the types of
Ovpp long-range and short-range interactions excited by a particular operator,
using here the definition €5 = e§ LRE 1 keep the table more compact. To specify

different contributions we use the notation explained in Sec.
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Table 5.3: As Tab. (.2] but showing selected effective AL = 2

operators of dimension 11.
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5. 0vBp Decay From SMEFT

5.2 Relation to the Low-Scale Operators

Now we will take all the above listed SM effective operators and determine
how they contribute to Ov3/ decay, i.e. in other words, how they relate to the
low-energy Ovff decay Lagrangian discussed in Chap. [l At first, we identify
operators triggering Ov(5 decay directly at tree level. Naturally, the Weinberg
operator O; does so through the effective neutrino mass, cf. Fig. (a). As
for higher-dimensional operators, the following contribute to Ov33 decay at tree

level after EW symmetry breaking,

Dimension-7 : Os,, Osp, Ouq, Os; (5.6)
Dimension-9 : Os, Og, Or7, O11p, O124; O1ap, O19, Oa9, Ors; (5.7)
Dimension-11: O244, O2sa, Oase, O324, O3, O37, Oazas Oura,

Os3, Osaas Os4dy Ossa, Os9, Ogo. (5.8)

These operators of dimension 7, 9 and 11 trigger Ov33 decay, respectively, via
diagrams (b), (c) and (d) in Fig. [5.1] The only exceptions are the dimension-9
operators Os, Og and O; contributing at tree level to the long-range mechanism
(otherwise typically contributed by dimension-7 operators) after all three Hig-
gs fields, which they contain, acquire their VEVs. Since we want to estimate
the dominant contribution of a single D-dimensional operator to Ov3/3 decay, we
derive its radiative corrections to all other LNV operators of the same and low-
er dimension. Clearly, this leads to numerous possible contributions, which we

handle utilizing an algorithm outlined below.

5.2.1 SU(2)r Decomposition and
Effective OvB3 Couplings

When constructing all possible Ov33 decay contributions of a given AL = 2
SM effective operator we first decompose it into its SU(2); components, and
subsequently, we apply the same procedure to each of them. For an operator with
d number of SU(2), doublets there are 2d/2 components. Hence, for instance O3,
has 4 different SU(2);, components,

Oga — LiLijchlEijEkl

= VLeLuLhOdC — GLVLuLhOdC - VLeLdLh+dC + GLVLdLh+dC. (59)
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5.2. Relation to the Low-Scale Operators

The earlier identified operators triggering Ov35 decay directly at tree level
must, after the EW symmetry breaking, give straightforwardly one of the terms
of the low-energy Ovf53 decay Lagrangian discussed in previous chapter. Conse-
quently, e.g. the SU(2), components on the right-hand side of Eq. including
hY give (up to an overall factor) one of the terms in Eq. after the Higgs ac-
quires its VEV. All the other AL = 2 SM effective operators contribute to Ov53
decay at certain loop level, as radiative corrections to the tree level contributing
operators. Therefore, the appropriate loop contractions relating different AL = 2
SM effective operators must be constructed, estimated and compared. To do so
we employ the algorithmic approach described below. In this way a dominant
contribution triggered by each of the AL = 2 SM effective operators (unbroken
phase) can be related to a corresponding term of the low-energy Ov3(5 Lagrangian
(broken phase). This results in relations among the new physics scales A; of the
SM effective operators and the effective couplings €J appearing in Lagrangians
and . As we have discussed in great detail in Chap. , bounds on
these effective couplings can be determined using the current experimental limits
on the OvB3 decay half-life. Hence, in principle, limits on scales A; can be also
set. We start here with a derivation of the relations between unbroken-phase and

broken-phase contributions.

6D Long-Range Contributions

In the broken phase there are four distinct 6-dimensional operators, with the
desired particle content u, d, e and v, giving long-range Ov33 decay contributions.
In the above list of AL = 2 SM effective operators we can identify seven of them,
which after the SU(2), decomposition and EW symmetry breaking reproduce
one of these four low-energy long-range terms directly at tree level. The obtained

correspondence can be summarized as

O34, O3, O5 — epvpuurde, (5.10)
Oua, Os = €rvputdy, (5.11)

O7 — upvpetdy, (5.12)

Og — devpeu’. (5.13)

While operators 3a, 3b, 4a and 8 are 7-dimensional and induce Ov3( decay con-
tributions containing a single power of the EW VEV wv, operators 5, 6 and 7,

on the other hand, appear at dimension 9 and contribute with the third pow-
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5. 0vBp Decay From SMEFT

er of v. Therefore, the 9-dimensional operators become relevant only when the
respective contributions are comparable with the leading-order contribution gen-
erated by a competing operator of dimension 7E| Contributions proportional to
v3 can be also induced by the compound operators of dimension-9 formed by
products of 7-dimensional operators with the singlet HH, as shown in Tab.
If a given operator of dimension 7 contributes at second or higher loop level, even
v5-dependent contributions produced by a 9-dimensional operator multiplied by
HH may become relevant. For instance, let us consider that the leading con-
tributions generated by operators 3a and 3b are suppressed by two loops. Then
the resulting general contribution to the 6-dimensional Ov3/3 decay operator in

Eq. (5.10) can be (before EW symmetry breaking) written as follows

. 1 O 1 Oz 1 O
7T+9+11 = (1672)2 A3 T (1672)2 A3 1672 A5
1 Os(HH) 1 Ou(HH) + Os(HH)
1672 A5 1672 A AT

(5.14)

As a next step we relate the above 7 different AL = 2 SM effective operators
triggering Qv decay at tree level to the low-energy Ovj3(5 decay Lagrangian
(4.4). Taking the four operators of dimension 6 from the right-hand sides of
Egs. - and rewriting them using four-spinor notation we have

ervpurde <> e(1+ ) v u(l+75)d, (5.15)
ervpucdy <> e(1+vs)va(l —s5)d, (5.16)
upvretd, <> u(l+ys5)ve(l —s)d, (5.17)
devpeus «» d(1+75)ve(l — ) u. (5.18)

Employing appropriate Fierz transformations we can rewrite the right-hand
sides of Egs. (5.17) and (5.18) in the conventional field ordering prescribed by

Eq. (4.4); hence, we get

e(l=rs)du(l+s)v=ger" (1+7)vuy (1-)d (5.19)

e(l—v)ud(l+y)v=—ev"(1+75) v uy, (1 +7s)d. (5.20)

N — DO —

'However, there is not always a desired operator at dimension 7. Obviously, there is no
7-dimensional SM effective operator generating the low-energy contribution given in Eq. (5.12]).
Hence, this type of long-range contribution will be always proportional to v3, as can be also

inferred from considerations of possible UV completions of this operator.
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5.2. Relation to the Low-Scale Operators

From these equalities the relations between the scales of the SM effective operators
on the left-hand sides of Egs. (5.10|- [5.13) and the effective couplings € can be

obtained as

Tr

Os, - Al Vol (5.21)
)‘BSMU . /\?éSMU
R QT << P A G
O - )‘BSMU V2 O, - )‘%SMU?) \/i ’ '
5 - Ag 6 - Ag
O, . )\ZlBSM'U?’ _ QGF€V+A Oy - )‘3BSMU _ 2Gp€“§iﬁ (523)

A? V2 A V2
where the contributions of the SM effective operators appearing on the left-hand
side have always the form vV# /AP=* with Ny being the number of Higgs fields
present in a given operator and A denoting the typical energy scale of a considered
operator of dimension D. To illustrate the scaling generated by a typical tree level
UV completion of each operator we include the powers of a generic new physics
coupling Aggsas. We take the third power of this coupling for the 7-dimensional
operators, as the typical UV diagram looks like those in Fig. [6.13, and thus
incorporates three BSM vertices. For the 9-dimensional operators including three
Higgses one additional BSM coupling is assumed. In all the following calculations

we simply set Agsyr = 1.

9D Short-Range Contributions

An analogous procedure must be followed in case of the AL = 2 SM effective
operators generating the short-range Ov /33 decay contributions at tree level. The
situation is simple for the term in Eq. proportional to €}. Since it consists
only of scalar Lorentz bilinears by definition, it can be easily identified with
the appropriate SM effective operators. However, the terms of the short-range
Lagrangian proportional to the other four epsilons involve «y-matrices, and thus
must be Fierz-transformed to acquire a scalar form. The Fierz transformation
applied to some of the long-range contributions can be used also in case of the
short-range terms with couplings €5 and €} containing just vector bilinears. To

transform the second term of Eq. (4.8) with €3 the following identity can be
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employed

[ﬂ %[’V (1 £ 5) a} [UbQ [V 1) (1 i%)db}
-2 [Ua(l + %)db} [da(l £ ) us] — [Wa(1 £ 7v5)d”] {Ub(l + 75)db} : (5.24)

Since the two terms on the right-hand side have different SU(3)s structures
(represented by indices a, b), they cannot be combined into a single one and both
of them must be considered in order to excite the effective coupling €5. This kind
of contributions will not be discussed in the following, as we always assume just a
single AL = 2 effective operator to be present at a time. Similarly, considering a
specific choice of chiralities in the fourth term of Eq. (the one proportional

to €}), it can be Fierz-transformed as

Tayu(1+75)d" [T 517,771 (1 = 5)d’] &7 (1 + 75)e”
= =201, (1 = 5)d” [up (1 — 75)e] 2(1 4 75 )d*
— it (1= s)e’ [ap(1 = 75)d’ | (1 + 5)d”, (5.25)

and the conclusion is the same as in case of €5.

As in the long-range case, we can now relate the contributions of the relevant
SM effective operators to the effective couplings €], €3 or e2. The operators that
excite €3 or €} contribute also to the terms of Eq. with effective couplings €}
and €7, respectively. Hence, due to the fact there are no operators contributing
uniquely to €5 and €}, these can be indeed omitted. As a result, the equations
connecting the effective scales to the respective operators listed in Eq. with
the three effective couplings €, eZP R and er in Tab. read

)\4
O116, O124, O1ap BS5M
AA - C;Fel (5.26)
V2 m
O24a; O28a; Oase, O304, O34, O37, Oss Bij\f g
G o2
O47a7 O47d7 Oss - Bf\]\? G2 LL,RR
@ =9 5.27
O - )‘BSM 2mp 7 ( )
76 * A5
A\
O1g, Oy : BSM
19 20 A5 GF€5 (5 28)
PV 2 ’ '
054(17 (954(1, (955(17 0597 Ogo : Bi]\?v e
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5.2. Relation to the Low-Scale Operators

Again, for illustration of the scaling generated by a typical tree level UV com-
pletion of each operator we include the powers of a generic new physics coupling
Apsy- Adding an extra particle to the typical UV completion of a 7-dimensional
operator depicted in Fig. [6.13| one clearly has to add also one additional vertex;
therefore, the operators of dimension 9 scale with the fourth power of Aggy;. The
11-dimensional operators have two extra Higgses compared to the dimension-9
operators, and thus two additional BSM couplings are necessary, resulting in the

sixth power of Aggys. In all the following calculations the value Aggyr = 1 is set.

5.2.2 Estimation of Wilson Coefficients

In general, our aim is to estimate for each of the above listed SM effective op-
erators the value of same- and lower-dimensional Wilson coefficients induced by
radiative effects. We achieve so by constructing all possible loop diagrams lead-
ing to the corresponding operators. Since each such radiative correction would
be absorbed by the respective Wilson coefficient in the matching procedure, it
provides an estimate of the size of the given contribution. Here, we should stress
that this approach implicitly imposes certain requirements on the underlying UV
theory. Since we estimate the Wilson coefficients by closing loops of heavy par-
ticles, it must be assumed that the resulting contributions are determined by
the heavy mass of new physics, i.e. that the underlying theory is ‘natural’. A
straightforward ‘counterexample’ to this approach is e.g. the supersymmetric
treatment of the SM hierarchy problem, i.e. a UV model featuring cancellations
between different loop contributions. In such case our estimation would not work.
Nonetheless, there are several examples in history of particle physics, for which
this guiding principle proved to be successful - for instance, in case of hadronic
resonances or the charm quark [242]. Therefore, bearing in mind its limitations
the use of this approach seems to be well justified and the Wilson coefficients can

be estimated as follows:

1. We begin with specifying both the SU(2);, component of the SM effective
operator (A) that we want to study and the SU(2), component of the
operator (B) it should be reduced to. We will apply our algorithm to each
SU(2), component of every SM effective operator (A) and reduce it to all
operators (B) of lower or same dimension that contribute to Ov/ decay at

tree level.
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Iz ]iL Z 9/(167T2)
I f W g/06m)
fe fi  H yy/(167)
fe fr h yp/(167%)
Z ij ]iL 9/(16%2)
W= Iz Jii g/(167%)
H- r R /06
ho fL fc yf/(1677'2)
(h) i fe wvyp/(1677)
WW-|H- h\WHHY —  1/(167?)

Table 5.4: Effective Feynman rules - contraction of the fields given in the first
two columns via a loop lead to radiation of the field shown in the third column.
On the right-hand side the coefficient indicating the corresponding contribution
is displayed. Here, f; and f¢ are left-handed Weyl spinors with f denoting a
fermion according to Tab. and f¢ being the charge-conjugate of the SU(2),
singlet right-handed charged fermions.

2. When closing the loops to match the lower-dimensional operators (B), we
make use of any SM Feynman rule that keeps or reduces the dimension
of the initial operator. The employed Feynman rules leading to one-loop
and two-loop contractions are explicitly listed in Tab. and Tab.
respectively. All of these rules need to be considered in order to obtain all
possible 0v35 decay contributions (see Fig. and in what follows they

will be discussed in detail.

3. We consider that every closed loop gives a factor 1/(1672) and all the loops
are regulated via a momentum cut-off A - each integral over a fermionic
propagator introduces one power. Let us emphasize that this approach
would fail if we were to estimate the loop corrections within a pure EFT
approach. In such case dimensional regularization involving only SM masses
should be used. As stressed earlier, in this work we approximate the size
by the assumption of a ‘natural” UV theory rather than using a pure EFT.
Consequently, we can introduce heavy masses (or a cut-off scale A) that
would be integrated out in a pure EFT approach, where the Appelquist-

Carazzone decoupling theorem [243] applies.

144



5.2. Relation to the Low-Scale Operators

fr fe h° yf/(167T2)2
fe I ot yp/(167%)?
i W+ g/(167%)?
Iz fL Z 9/(167T2)2

h Z Wt Z |W- wvg*/(167%)?
Z HYW* W|H™ 2vg®/(1672)

Table 5.5: Effective Feynman rules - contraction of the fields in the three columns
on the left gives a double loop. On the right-hand side the coefficient indicating
the corresponding contribution is displayed. Here, f;, and f¢ are left-handed
Weyl spinors with f denoting a fermion according to Tab. and f¢ being the
charge-conjugate of the SU(2), singlet right-handed charged fermions.

4. Three examples of the application of the rules given in Tab. are diagram-
matically depicted in Fig.[5.2] All of them capture a reduction of a higher-
dimensional operator to the neutrino mass operator (the Weinberg operator
after the EW symmetry breaking). A contribution induced by two contrac-
tions from the 9-dimensional operator Oy, = L'L’ QidC@ij is shown on
the left. The diagrams in the middle and on the right then represent the
contributions from the 11-dimensional operators Ogy, = L' L7 Q;ucQ u and
Ogra = L'LIQ*d°Q;de H' H™€ ji€pm, Tespectively. When constructing the left
and centre diagrams the algorithm first merges the fermions into loops and
the radiated neutral Higgs bosons are in the following iteration assigned
their VEVs. The charged Higgs bosons in the middle diagram are simply

connected to form a loop. In case of the diagram on the right, two pairs

X%
N o vp o (R%)  (h) YL

Figure 5.2: Diagrams illustrating the reduction of Ojy, (left), Ogy, (centre) and

Oa7, (right) to the neutrino mass.
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X ,
v (h°) er VL er de ur

Figure 5.3: Depicted here is the reduction of operators Os3 (left) and Oy5 (right)

to a long-range Ov(3 decay contribution.

of fermions are merged into neutral vector bosons, which are subsequent-
ly joined to create the third loop. These diagrams lead to the following

neutrino mass contributions

2.9 2.9 2.9
12a Y, U 24a Yaql 27a g v
™= Germza ™ T empa ™ T et O

Generally, the algorithm in every iteration tests all n-rules (with n indicat-

ing the number of legs on which the given rule acts) for their applicability

to all possible combinations of n legs of the diagram within total m legs.

5. There are operators that can be reduced to a compound operator consisting
of a certain tree level contributing operator and an HH pair, as we have

pointed out earlier. This decoupled Higgs boson and its hermitian conjugate

2
42, or can be contracted to

1
1672

sponding Ov /3 decay contribution is proportional to f (%) = (16% + X—i)

can either acquire their VEVs giving a factor of
each other, forming a loop and producing a factor Hence, the corre-
In some cases even more different ways how to reduce a given SM effec-
tive operator to the required low-energy Ov53 decay operator exist and one
may need to consider sums of various contributions like in the example in
Eq. . Nevertheless, these multiplicities are neglected in the herein
presented results, as we concentrate only on a description and comparison

of qualitatively distinct Ov3/3 decay contributions.

6. The next set of Feynman rules incorporated in our code is depicted
in Fig. p.3l There we show a reduction of the 9-dimensional operator
Oo3 = L'LI LFecQpd°H H™¢;y¢,, (om the left) and the 11-dimensional op-
erator Oy5 = L'L/L*d°L;ucej, (on the right) to a long-range Ovj3f decay
contribution. In the left diagram the rule merging one fermion with a Hig-

gs boson is used in order to generate the fermion needed. Similarly, in the
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5.2. Relation to the Low-Scale Operators

Figure 5.4: Diagram showing the reduction of Q4. to the neutrino mass.

right diagram we have to merge a fermion with a vector boson to create
the correct quark. However, before doing so a Higgs VEV must be used to
flip the helicity of the fermion. This rule is included explicitly among other
Feynman rules, but to ensure convergence of our algorithm, up to three
additional Higgs VEV insertions are allowed per diagram. The resulting

contributions thus read

Gre® __yygv  Gred  we(yq)*o’ (5.30)
V2 o (1672)2A37 /2 (16m2)3A3" '

Sh (15 S+P 23 _ S-P
with €;° = €31 p and €7° = €5 p.

7. Note that in the above contributions corresponding to Fig. [5.3] we distin-
guish between the internal (default notation) and external (denoted by 3¢*)
Yukawa couplings. We do so because the flavour of the external ones is fixed
to the first generation in order to get a Ovf55 decay contribution, while for
the internal Yukawa couplings one can in principle sum over all flavours.
This is an important feature, which can significantly influence the results

of our calculation, as we will discuss later.

8. The following three features that must be taken care of is demonstrat-
ed in Fig. depicting the reduction of the 11-dimensional operator
Opue = LiLijeCQlécHleeijekm to the neutrino mass. Because of the
SU(2)y, structure L'L7¢;;, one first has to convert the electron into a neu-
trino, which requires the introduction of ‘¢-channel” rules. In the present
case we employ an exchange of a W boson between two fermion legs result-
ing in an additional loop. Since this rule does not reduce the dimension of
the operator, it must be treated separately, otherwise (if treated naively in

the same way as all the other rules) it would lead to an infinite number of
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Figure 5.5: Diagrams depicting the additional ‘¢-channel’ rules that have to be

considered separately so that a converging algorithm is obtained.

10.

iterations. Diagrams corresponding to this and other considered ‘t-channel’
rules are displayed in Fig.[5.5 Specific cases requiring introduction of very

rare rules we treat manually.

The next feature that the automate algorithm must take into account is
the fact that only contributions containing loops with an even number of
fermions are valid. If an odd number of fermions appears in a loop then the
diagram will be proportional to the external neutrino momentum and/or
will vanish. For this reason the number of fermions in every loop con-
tribution is tracked in each iteration step. If loops with an odd number of
fermions appear in the final diagram, an extra neutral gauge boson exchange
must be added. This has to be taken into account also in the previous step.
Each diagram in the upper row of Fig. 5.5 contains always an even number
of fermions generated in the t-channel, whereas the number is odd for the
diagrams in the lower row. In the latter case one of the outgoing fermions
can be therefore contracted with another fermion leg of the initial operator

(without radiation of any other particle).

In some cases one ends up with three free legs, which have to be merged
together to close a multi-loop. Consequently, the corresponding Feynman
rules treating these cases are necessary in the algorithm. An example il-
lustrating this feature can be found in Fig. |5.4, where after closing two
fermion legs by radiating a Z boson and applying the ¢-channel rule one is
left with three fields (two fermions and the neutral gauge boson) that must
be connected into loops. In Tab. we list the corresponding three-field

rules included in our algorithm and the resulting contribution obtained for
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X *
veoowy wy m

Figure 5.6: Three different neutrino-mass contributions of operator Oy are
shown. On the left, we depict the contribution involving gauge couplings that
is dominant, when first-generation internal Yukawa couplings are considered.
The center and right diagrams represent the contributions dominant for third-

generation internal Yukawa couplings.

the example Oyy, is

e g
mite = T62)A (5.31)
11. To summarize, we apply the algorithm described in the above paragraphs
to every SU(2)p-decomposed AL = 2 SM effective operator reducing it
via all possible loop contractions to all possible lower-dimensional or equal-
dimensional operators contributing to OvgB3 decay directly at tree level.
The last step that is left is the identification of the most dominant Ov3j3

decay contribution generated by a given operator; this is described below.

When comparing our results for contributions to the standard mass mecha-
nism with those derived in Ref. [214], several discrepancies can be found. For
instance, in case of operator Oy, the neutrino mass in Tab. recovered by our

algorithm reads

2 2
29a,1st Y v
m, - (1671'2)3 X? (532)
while Ref. [214] gives
2 2
29a,3rd __ yu v v
m = et A (%) (5:33)

The origin of this mismatch lies in the way the dominant contribution is de-
termined. The contribution in Eq. (5.32)) is the dominant one only when first-
generation internal Yukawa couplings are considered, cf. Fig.[5.6l On the other
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Ye Yr Ya Yo Yu Yt g

2.1x107% 0.01 20x107® 24 x1072 9.4 x107% 0.99 0.46

Table 5.6: A summary of the values of SM couplings used in the numerical

evaluation of the contributions to Ov33 decay.

hand, for internal Yukawa couplings of the third generation, the contribution
in Eq. becomes dominant, cf. Fig. (center and right). Since in our
approach we store all the contributions and compare all of them in each case,
the conclusion we arrive at depends on the considered generation of the inter-
nal Yukawa couplings. The same discussion applies to the mass contributions of

operators Oryy, Oy and Ors.

5.2.3 Determination of the Operator Scale

After gathering all the possible O35 contributions triggered by a given oper-
ator, we can compare them using the numerical values for the couplings listed in
Tab. and identify the dominant one. When doing so, we consider all fermions
to be of first generation. The energy scale A characterizing each operator is pure-
ly for the purpose of comparison set to the value A = 2186 GeV derived from
the equality # = X—Z The reason we pick this particular value is that many
operators can be reduced to a compound operator involving an HH pair, which
can be contracted either to the vacuum, or into a loop. Therefore, it induces both

2 and a contribution with the factor : L Since

v P
A2 67

in such cases we always want to retain both these contributions, it is convenient

a contribution with the factor

to assume the value of A ensuring their equality.

For every AL = 2 SM effective operator we find its dominant contributions to
the standard mass mechanism, long-range mechanism and short-range mechanism
of OvBS decay. All the results are listed in Tabs. [5.1] and 5.3, We show
there also the corresponding effective couplings €7 excited by a particular Ov3S
decay contribution. Always, a specific convenient scalar Lorentz structure (i.e.
consisting only of scalar bilinears) of a given operator is assumed in order to relate
it to the low-energy Ov53 decay operators, and thus to the effective couplings e?.
Taking into account other Lorentz structures of the initial operator could lead to
excitation of other €] couplings.

In what follows we will for simplicity consider only the dominant contributions
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5.2. Relation to the Low-Scale Operators

of a given operator as listed in Tabs. [5.1], 5.2l and [5.3], i.e. we will not sum over all
possible contributions. Moreover, as previously mentioned, we do not account for
the multiplicity of particular contributions either (although different reductions
of a specific operator can lead to the same tree level contributing Ov35 decay
operator).

Let us at this point comment a bit on Tabs. and [5.3] When specify-
ing the Ovf3( decay contributions we employ the following short-hand notation
f (%) = (ﬁ + X—i) Some operators allow for more than a single independent
Lorentz or SU(3)¢ contraction, but these we do not specify. If a dash is shown
instead of one of the contributions, then the corresponding reduction of the op-
erator cannot be achieved in our approach. What we call ‘s-channel’ rules would
have to be included to obtain these contributions, as will be further discussed
at the end of the following chapter. In a number of cases the operators induce
several qualitatively different (although quantitatively fairly similar) long-range
contributions differing only by a flavour of one Yukawa coupling. Hence, we show
the possible flavours separated by vertical lines in the superscript of the given
Yukawa coupling. The €7 couplings excited by these multiple contributions are
presented in the same ordering as the flavour labels of the Yukawa coupling.
On top of that, for some of these operators one of the Yukawa flavour labels is
written in brackets, which denotes that the corresponding contribution includes
ifying the used notation is the operator 34 with the long-range contributions

e\ul(d>
(1671.2 2 2 AS

fact deal Wlth 3 individual contributions 167r2 b ST ( ), W 25 ( ) and

yex
(167r2) A

In the following calculations, only a single dominant contribution of a given

only the factor %3 and not the loop factor ﬁ in f (%) A good example clar-

s ( ) and the corresponding excited couplings €t |2ey 4. Here, we in

S+P V+A
S+P? V+A

and eZ*f,, respectively.

25 exciting the couplings €
operator will be always considered. Assuming a hypothetical observation of Ov 3
decay with a value of the half-life TXe = 10%" y, the operator scale A can be easily
determined and further used as a basm for calculation of the lepton number asym-
metry washout in the early Universe. In practice, we proceed as follows: after
collecting all contributions of a given operator we fix the couplings according to
Tab. (choosing either first, or third generation for the internal Yukawas - see
our later discussion) and express the inverse Ov decay half-life in dependence
on the operator scale A, which we define as the maximum among all contribu-
tions. This is because the inverse half-life is proportional to A*~”, and thus the

dominant contribution corresponds to biggest A (for a lower operator scale the

151



5. 0vBp Decay From SMEFT

dominant contribution would give a faster decay). Within the described approach
any enhancement given by other contributions of similar size is neglected, which,
however, will not affect the obtained results significantly. Besides that, this ap-
proximation also disregards any potential interference effects. In presence of more
than one contribution their mutual cancellation is possible, but since we always
assume, at the moment hypothetical, observation of Ov53 decay, it would actu-
ally strengthen our argument, implying even stronger washout of lepton number

asymmetry.
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6
Falsifying Baryogenesis

The observation of a baryon asymmetry in the Universe is one of the most
significant evidences for BSM physics and any new theory of particle physics must
be at least consistent with this phenomenon. However, an observation of new
physics in the form of LNV at relatively low energies can also provide important
implications on the origin of baryon number prevalence. As we will show in this
chapter, which we base on Ref. [240], this interesting interplay between LNV at
low and high energy scales provides a great motivation for an intensive search for
OvpBp decay.

6.1 Effective Washout

We will now focus on the study of the washout effects of AL = 2 SM effective
operators on a pre-existing net lepton asymmetry. Although we will discuss all
the operators in Tabs. and [5.3] only a single one will be assumed to be

active at a time.

6.1.1 Boltzmann Equations

The net lepton density in the early Universe can be determined from the classic
Boltzmann equation formalism. For a particle species N the generic Boltzmann

equation readd]

zHn,—— =— Y [Na---<ij---]. (6.1)

Here, z = my /T with my referring to the mass of particle N and T to temper-
ature; ny = ny/n, denotes the number density ny of particle N normalized to

the equilibrium photon number density n, & 2.47%/7* the Hubble parameter

'More detailed discussion on the Boltzmann equation formalism can be found e.g. in
Refs. [244H246].
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6. Falsifying Baryogenesis

is given by H =~ 1.66,/g. T?/Ap with g, ~ 107 being the effective number of
relativistic degrees of freedom in the SM and Ap; = 1.2 x 10'® GeV the Planck

scale. Further, the short-hand notation

. NNTG g
[Na...HZ]...]:qu(]\]a...%@j...)

N 'ta

;N e ..

is used, where a, N and 7,j are the initial and final state particles, respective-
ly, with the corresponding number densities ny,n, and n;,n;. The superscript
‘eq” then labels values of these densities in thermal equilibrium. The thermally
equilibrated space-time scattering density in v°? is given by

d*py By d*p, Eq
AN o =i )= [ PN = —
7*(Na )= st H 2E,2mp "

X Hl QEdé’;) ] (27) 454< N+ Zpa ;pi> MP, (6.3)

where n and m is the initial and final number of particles, respectively, and | M |?
denotes the squared amplitude of the process summed over initial and final spins.
The momentum and energy of the particle NV is denoted by py and FEy, while
momenta and energies with subscripts a and i correspond to other particles in
the initial and final state, respectively. Now it would be convenient to express
the products of integrations over momenta of individual particles as a single
integration over the total momentum P = (F, ﬁ) Following Ref. [246], we make

use of the expression
n—1
| — /d4P54 (P PN — Zpa>
n—1
:/5\/1’?’02—364 (P—pN—;pa> ds dP, d©2, (6.4)

with s = P? — |ﬁ > and € denoting the two-dimensional solid angle of the three-

momentum P. By inserting the above unity into the scattering density we can
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6.1. Effective Washout

rewrite the Eq. as

P Nas i) = /ds/dQ/de/——l\/Ee*PO/T
ﬂ
dSpN n—1 d3pa 4ot n—1
_9PN _CPa_|y P—py—
* ] 2Ex(20)? XaH 2E,(2m)? S Py 2

< | g | 't (= Som) e

i=1
- 2(2)4/d3\/§/de/P02/s - 1e’P°/T/dePS”dPSm x |MP2, (6.5)

where [dPS™ and [dPS™ are the initial and final state phase space integrals,
respectively.

Under the assumption that |M|?* does not depend on the relative motion of
particles with respect to the thermal plasma and using [ d€2 = 47 the integration

over Py and ) yields

/yeq(Na..._>ij...)—

VsK, (‘f) dPS"dPS™ x |[M|*,  (6.6)

with K, denoting the modified Bessel functions of the second kind.

Let us consider that this kind of process is mediated by an effective contact
interaction of all N = n + m particles. If it is further assumed that all the
involved particles are scalars, then |M|? oc 1/A*"V =4 with A denoting the cut-off
scale of the effective operator in question. Moreover, |M|? does not depend on
the variables of the phase space integral; therefore, the calculation of v°4 is rather

straightforward and we can write

. 1 I'(N —2)['(N - 3) TN
Y= X X . (6.7)
22(27)2N=3  T'(n)I'(n — HI'(N —n)I'(N —n—1)  A2N-8
where the following expression
Sn—2
dPS" = . 6.8
/ 47r)2” 3T(n)l'(n—1) (6:8)
for the phase space integration in the limit /s > m; (i = 1,--- ,n), in which all

particles are massless, has been employed.

6.1.2 Approximated Scattering Density

The situation becomes less trivial for effective interaction involving fermions,

as in such a case the matrix element of the process will generally depend on their
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6. Falsifying Baryogenesis

energies. Based on a naive dimensional analysis, the squared amplitude will for
each fermion include an additional factor of E compared to the case involving
only scalars. The quantity £ with a dimension of energy can be determined from
the details of interaction kinematics. The phase-space integration of |M|? for
an interaction of a large number of particles is fairly complex, if fermions are
present. However, a reasonable approximation can be obtained. We perform the
integration in two simplified scenarios, for which the energy E of each fermion is

replaced by
1. the centre-of-mass energy /s,
2. the average energy /s/n (y/s/m) for an initial (final) state fermion.

The calculation of the integral is in both these schemes analogous to the case
involving only scalar particles. We have compared the results obtained in this
way with the exact integration for a few selected operators concluding that the
scattering rate is well-approximated by the geometric mean of the two results
obtained for the above scenarios.

Specifically, we can assume a presence of ny fermions within the n-particle
initial state and my fermions within the m-particle final state.ﬂ Then the first

scheme gives the following expression for the square of the matrix element

Ny /2
2_ Vs
[M:|" = AN—4+Ng/2° (6.9)

with Ny = ny + my, while the second one yields

M = (Vs/n)" 2 (y/s/m)™17 (6.10)

AN_4+Nf/2

Consequently, we get

2Nf—2

Ny(Na---—ij--- (6.11)

) = (2myen—3 ~ C1(2)
" (N + N;/2 —3)[(N + Ny /2 —2) y T2N+N;—4
P(n)l'(n—1)I'(N —n)I(N —n—1) = AN+N=8”

where

_ _ 1
¢ =1 and Co = W (N — )N (6.12)

2The dimension D of the effective operator is related to the number of particles contained
by the operator as N + N;/2 = D.
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6.1. Effective Washout

for the two different simplifying scenarios.

In addition, if identical particles appear in the initial and final state, one has
to take into account the corresponding symmetry factor due to the phase space
integral as well as the numerical factor reflecting the number of possible ways
the states can be created or annihilated. Moreover, interchanging particles in
the initial and final states of each operator leads to physically distinguishable
lepton number washout processes. Therefore, a sum over all contributions given
by different permutations must be taken. The resulting estimation of the thermal

rate v reads

7=/ (Z05Y) x (Zr5Y), (6.13)

where the sums cover both the permutations and the symmetry factors. Based
on our explicit checks the above approximation agrees with the exact results up

to a 10% discrepancy obtained for some of the 7-dimensional operators.

6.1.3 The Minimal Washout Temperature

To provide an example of application of the above derived formulae we will
now demonstrate the calculation of the lepton number washout rate from the
operator Oy = L'ecucd®H7¢;;. One of the processes triggered by this operator is
Le¢ — utd°H (symbols denote particles) and the inverse process is induced by
the complex conjugate of Og. On top of that, permutations of the field operators
must be also included; hence, the operator Og gives also a physically different
process u¢d°H — Le® (and again, the inverse process u¢dH <« Le® is induced by
(9;2). As operator Og contains 5 fields, it can trigger processes of type 3 <+ 2 and
1 <» 4. However, due to the phase space integral (see Eq. ) the processes
1 <+ 4 are suppressed with respect to the 3 <+ 2 processes. The total lepton
number washout rate from operator Og is then given by the sum of all thirty
distinguishable permutations - twenty of them arise from 3 < 2 and 2 < 3
processes, while ten correspond to 1 <+ 4 and 4 <> 1 processes. It is important
to note that 3 <+ 2 and 2 <> 3 are physically different processes; for example,
ud°H < Le® is not equivalent to Le¢ <> u¢d°H.

Making the assumption that the SM Yukawa interactions and the sphalerons

are in thermal equilibrium allows expressing all relevant chemical potentials in
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6. Falsifying Baryogenesis

terms of the chemical potential of the lepton doublet L’ (¢ = e, u,7) 247}

namely
4 4
My = ﬁ;“% Hes = Hrt — izg:uu,
5 19
e = == y Mg = —— . 6.14
u 63%:”” ¥ nguu (6.14)

In the limit of a small asymmetry [n—n| < n°! we can write the relation between

chemical potential and the normalized density n as

T 1 B no_n M
ned = 'r/eq ~ € ~ 1+ T and ned = neq ~ ]_ T
Na _ N0 _ oK (6.15)

ned e T
Here, n°t = n®/ngt = 1/2 for ¢f and n*4 = 3/2 for u® and d° due to the colour
factor. In case of the doublets L* and H we take n°d = 1. Since all the chemical

potentials can be related to the chemical potential of the lepton doublet, it is

now enough to calculate the time evolution of the lepton doublet density. The

densities of other particles can be obtained from 7, using Egs. (6.14) and (6.15]).

The Boltzmann equation corresponding to L¢ has the formﬁ

d _ -
zHn, (717Le = [Leec <~ uchH] + (other permutations)
z

. (nLene—c NyeNgeN

eq _eq  _eq_eq_eq

) 74 (Lee® — usdeH) 4 - - -
ning n

uttqe Vg
= e ed(L ec — uCdeH) +
11

= L ) (.16

where in the last two equalities we used Eqs. (6.14) and (6.15). Further, we
consider the fermions of first generation and a universal chemical potential among

three lepton flavours. As mentioned before, one should include all the possible

3To be precise, we should note that the charged lepton Yukawa interactions for the three
generations e, u, T are not in thermal equilibrium above temperatures 7' > 105 GeV, 10° GeV
and 10'2 GeV, respectively. Nevertheless, except for the Weinberg operator the cut-off scales of
all other operators we study lie around or below 10° GeV. Consequently, the assumption that
all the EW sphalerons and all SM Yukawa interactions are in thermal equilibrium in the given

temperature interval is valid.
4To obtain the correct symmetry factor when more identical doublets are present in the oper-

ator (e.g. LL or HH), the operator should be decomposed in terms of the SU(2); components.
For the SU(2)1 doublet components n°? = 1/2 (and 3/2 for the coloured ones).
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6.1. Effective Washout

permutations of the 2 <+ 3 and 1 <> 4 processes. For the antiparticle, i.e. for
L., an analogous Boltzmann equations could be written. Eventually, employing
Eq. it is possible to calculate the thermal rate v°? and inserting it into the
Eq. we obtain the total washout effect induced by the operator Og

dnar,  11V/195T1

zHn, dz Tr7AS

NAL,- (6.17)

The performed computation can be generalized to describe the washout effect
from a dimension-D operator as

dnALe T2D—4

zHn, P :—CDWUALE. (6.18)

We can regard the washout processes to be in equilibrium if their interaction rate

'y is large in comparison with the expansion rate of the Universe, i.e.

>1

~ Y

H ~ nHADPS P,

Dw _ ep 7770 _ o e ( a )w_g (6.19)

- Ap

with ¢, = 72¢p/(3.34/9=) ~ 0.3 cp. Hence, to certain approximation, the washout

is effective within the following temperature interval

Ay \ T
Ao (%Am)

We set here the upper limit 7' < Ap on the washout imposed by the validity of

A ST < Ap. (6.20)

the effective operator approach. However, as will be discussed later, the lepton
number can be further washed out above Ap within an underlying UV theory.
Clearly, a precise value of the lower bound of the temperature interval can be
computed by solving the Boltzmann Eq. from the baryogenesis scale down
to the EW scale, where the value of the observed baryon asymmetry has to be
reproduced. For the translation between the lepton and baryon number asymme-
tries the Eq. can be employed. The resulting more stringent lower limit

on the efficient washout effects reads

R 1072 ﬁ
Ap ~ [(QD —9)In <b> NP9 U2D_91 (6.21)
B

where the primordial asymmetry (generated probably in a non-thermal fashion)
has been conservatively assumed to be of order one and v denotes the EW VEV
as earlier. As expected, this lower bound is larger than \p obtained simply based
onI'y > H.
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6. Falsifying Baryogenesis

As for the 5-dimensional Weinberg operator, it has been already shown [24§]
that Majorana masses of neutrinos would imply an upper bound on the scale
of baryogenesis T' < 10'2 GeV (1 eV/m, )% The reason is that the underlying
LNV interactions allowing for the generation of the masses would together with
sphaleron processes erase both the lepton and baryon asymmetries. The con-
straint induced by current limits on 0v3f3 decay is T' < 2 x 1012 GeV as argued in
Ref. |[133]. In this work we will primarily concentrate on higher-dimensional LNV
operators, studying the corresponding correlation of the washout effects with the

triggered Ov5 decay rate.

6.2 Falsification of High-Scale Baryogenesis

In Chap. [5| we have listed all the dominant contributions of AL = 2 SM
effective operators to the long-range and short-range mechanisms of Ov53 decay
induced either at tree, or any higher loop level. We will now study how these
exotic contributions correlate with mechanisms erasing the baryon asymmetry.

We assume one AL = 2 SM effective operator, with given operator scale A,

to be active at a time. This operator then has the following two effects:

1. It induces the lepton number asymmetry washout, which is efficient within
a certain temperature range with A being the upper limit. The approach to
calculate this effect has been described above. We assume a lepton asym-
metry of O(1) is injected at a certain temperature 7' and the Boltzmann
equation then allows to compute the surviving baryon asymmetry at the
current temperature. In this way we determine the minimal temperature
Ap, for which the surviving asymmetry still equals the observed asymmetry.
As a result, if the lepton number asymmetry is injected above A D, then the

washout processes erase it below the observed value.

2. Tt induces Ov@f decay triggered via neutrino mass, long-range and short-
range mechanisms. We calculate the Ov3[5 decay rate as function of A.
For a given experimental sensitivity to Ov53 decay we then obtain the
corresponding A and determine the temperature range in which the lepton

number asymmetry is strongly washed out.

The main results of our computation are summarized in Figs. and

which show the temperature ranges of highly effective washout for all the studied
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6.2. Falsification of High-Scale Baryogenesis

operators. Different colours indicate operators of different dimensions; namely,
the bars for operators of dimension 7, 9 and 11 are purple, green and magenta,
respectively. The scale A of the given operator sets the upper bound of each
temperature range using limits on effective couplings €7 from Tab. derived
assuming an observation of Ovf33 decay at the future sensitivity 775 = 10°7y.
The particular contribution used in the calculation varies with the figure. All the
dominant contributions are considered in some cases, in others only long-range,
or short-range contributions are taken into account leading to an effective scale
Aiong 0T Agnort, Tespectively. The effective operator approach does not allow us to
determine the washout above the typical operator scale A, which thus must be
interpreted as the upper limit of validity of this treatment.

Note that there are always two lower limits shown for each bar. The dark
bar segments depict the interval [5\, A] of strong washout mentioned above with A
denoting the temperature, at which an asymmetry of order one can be injected to
yield the observed baryon asymmetry down at the EW scale, cf. Eq. . On
the other hand, the smaller lower limit corresponding to the light bar segments
is given by temperature A, for which I'yy/H = 1, see Eq. .

Based on Figs. and [6.5] a general observation can be made that all
the temperature ranges lie much lower than the well-known cut-off scale of the
Weinberg operator reaching roughly 10'* GeV. Further, the ranges correspond-
ing to higher-dimensional operators lie lower. While the temperature intervals of
dimension-7 operators reach as high as 10 — 10° GeV, the operators of dimen-
sions 9 and 11 typically wash the lepton number asymmetry out closer or even
right above the EW scale. This behaviour is given by the derived sizes of the
operator cut-off scales, as those determine the position of the washout ranges.
To determine A we always use a dominant non-standard (long-range or short-
range) contribution of particular effective operator to Ovff decay. Nonetheless,
we calculate also the contributions to the standard Ov3/ decay mechanism, from
which the scales of neutrino mass generation are determined and marked in our
figures by orange diamonds and arrows. Whenever this orange indicator is shown
above the corresponding temperature range (i.e. above A), the neutrino mass

contribution to OvB3 decay dominates.
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6. Falsifying Baryogenesis

6.2.1 Long-Range Contributions

First we will focus on the operators contributing dominantly to one of the
long-range mechanisms. In our discussion we will detail various aspects one has
to take into account when constraining the scale of the operators using OvfS

decay and that can influence the identified washout intervals.

Impact of Sensitivity on Ov33 Couplings Although the operators Os, sp.44
yield the same scaling as Og (discussed in Ref. [132]),

3a,3b,4a,8
Gre; v

= (6.22)

their specific hadronic and leptonic current structure, which we derived in Sec.[5.2.1]

causes that they excite different effective couplings,

Goodn, @i d-dh a=ad 62)
cf. Eq. and Eq. [5.23] The nuclear matrix elements for distinct long-
range mechanisms (characterized by the effective couplings) vary, which leads
to different sensitivities, see Tab. [£.2] As a result, the corresponding operator
scales differ significantly: Az, = 6.6 x 105 GeV vs. Aspaq = 3.3 X 10° GeV vs.
Ag = 7.5 x 10* GeV, see Fig.[6.1

The bounds on e% and egig for Oz, and Osy 44, respectively, are more strin-
gent, which results in a higher operator scale. Consequently, the washout rate
induced by these operators is suppressed when compared to the one of Og. To be
more concrete, if 0v33 decay is observed at the future sensitivity 775 = 10*’y, a
dominant contribution of Og would imply exclusion of baryogenesis models above
5\8 ~ 900 GeV. On the other hand, for operators Os, 4, only mechanisms above
5\3b’4a ~ 4 TeV can be excluded and in case of O3, the exclusion limit is even
higher, reaching A3a A 10 TeV. Considering searches for LNV at the LHC similar
differences can be crucial, as they can decide on the possibility of observation of

the associated new physics on the collider.

Impact of Field Content Although it could be naively expected that the
9-dimensional operators contribute dominantly to one of the short-range mech-
anisms, it turns out it is not always the case. For instance, the dominant con-

tributions of the operators Osg¢ 7, which contain three Higgs doublets, are of a
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6.2. Falsification of High-Scale Baryogenesis
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Figure 6.1: Assuming observation of Ov3f decay at TS e =1
induced by given operators is effective in the presented temperature ranges. The
7-dimensional operators are indicated in purple, 9-dimensional ones in green and
11-dimensional ones in magenta. The interval of strong washout between A and A
(see Eq. (6.21)) is represented by the darker bar segment. The lower limit of the
lighter segment denoted as A corresponds to the temperature, where 'y, /H = 1,
see Eq. . We take into account both the long-range and short-range Ov/3(
decay contributions of the given operator. The scale of the Weinberg operator
when induced by a given higher-dimensional operator is denoted by orange sym-
bols. While the diamond-shape marks indicate the exact value of the scale, the
arrows pointing up or down denote a scale larger or smaller than the plot range.
For the purpose of this plot, all the SM Yukawa couplings appearing in the Ov53
decay contributions are assigned their first generation values. The rough mass
reach of the LHC searches and the temperature range below the EW scale (where

sphaleron processes are inefficient) are depicted by two grey horizontal stripes.

long-range type and they read

5,6 3 7 3
Gre v v Gre v
LA and T =

V2 16m2A3 T V2 AY

(6.24)

respectively. Due to different SU(2), structures of the operators the scaling of the
above contributions also differ. Unlike operator O7; = L‘Q’ e_CQkH FH'H " €i1€jm,
the operators Os = L'LIQ*d°H' H™ H;¢ €4 and O = L'LIQrucH' H* H;e ;) con-
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6. Falsifying Baryogenesis

Figure 6.2: The left diagram applies to the 7-dimensional operators Os,, Osp, O4q
and Og contributing to a long-range mechanism with one Higgs VEV only. The
center and right diagrams show contributions of 9-dimensional operators obtained
by closing a Higgs loop and by the insertion of Higgs VEVs, respectively. While
the operators Os¢ allow for both these contributions, the operator O; triggers

only the latter one.

tain an H, which can be contracted with one of the other two Higgses into a loop,
and thus give an additional contribution. Hence, for operator O; there is only the
contribution scaling as 1/A%, cf. Fig. [6.2l The presence of three Higgs fields in
case of all these three operators leads to a suppressed washout in comparison to
other 9-dimensional operators. As a result, the corresponding limit on the scale

above which baryogenesis can be excluded is higher, cf. Fig.[6.1

6.2.2 Short-Range Contributions and their Interplay
with Long-Range Contributions

Not always is it easy to decipher the dominant contribution as it was in case
of the operators discussed above. As outlined in the following paragraphs, a non-
trivial interplay of various features can influence the relative size of long-range

and short-range contributions of particular operators.

Impact of SU(2); Structure on Dominant Contribution We will first
demonstrate the non-trivial interplay of various contributions on the comparison
of operators O11, and Oqy;, differing only by their SU(2), structure. The operator
O11p triggers a tree level short-range contribution, whereas Oy, contributes only
at one-loop level, cf. Fig.[6.3]

G _ ¢ G’

= - — 6.25
om,  16m2A5"  2m, A5’ (6.25)
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6.2. Falsification of High-Scale Baryogenesis

Figure 6.3: While the left diagram depicts an operator contributing only at one-
loop level at short range, e.g. Oj14, the center one shows a direct tree-level
contribution triggered e.g. by Oq1;,. At long range both these operators contribute

with the same loop-suppression as depicted on the right.

11a,b . . .
where €5 “” = €; and the corresponding experimental bounds can be found in

Tab. As for the long-range contribution, both operators give

V2 16m2A3° '
The only difference is in the effective couplings of these two operators, namely
ette = e% and e%lb = egig. Hence, 011, and Oqy;, can be reduced to Oz, and Os,

respectively, see Fig. |6.3]

The effects of long-range and short-range contributions and their mutual com-
petition can be studied from Fig. 6.4, where we show separately the washout
ranges obtained when considering only the operators’ contribution to the long-
range (upper left plot) or the short-range (lower left plot) Ovfgf decay mecha-
nisms. As mentioned above, the short-range contribution of Ojy, is loop sup-
pressed in comparison to Oyy;. As a result, the scale AJ'® of the former operator
is lower than the scale Aélb of the latter one, which means that Oy, induces a
stronger washout. Both these operators give the same long-range contribution,
but due to their specific SU(2), structure they excite distinct effective couplings,
el and €}'’) which leads to different operator scales, A} = 3.3 TeV > Al'® and
AP = 1.6 TeV < A, respectively. We summarize this comparison in Tab. ,
where the following interesting effect can be observed. On one hand, the opera-

tor Oy, behaves the expected way, i.e. the respective short-range contribution is

165



6. Falsifying Baryogenesis

Olla Ollb
1st gen 3rd gen 1st gen 3rd gen
Ty GeV™® 1.3 x 107646 AS 1.8 x 1078A~% 0.01AS
long-range
A 3299 31504 1623 15501
Tyjp Gev™ 1 911A~10 1.8 x 108A~10
short-range
A 991 3345
dominant () non-excluded long long short long

Table 6.1: The dependence of T3/, [y] on the scale A [GeV] is shown for both
operators Oj1p, and considering both first and third generation internal Yukawa
couplings. In each case we also calculate the respective operator scale assuming
that OvBB decay is observed at Tj/, = 10%" y. Based on their comparison the
dominant and not-yet-excluded contribution is identified as the one with higher
A. Therefore, the short-range contribution dominates only for O;y, with first

generation internal Yukawa couplings.

dominan‘cﬂ and the long-range one becomes larger only for scales A = 9.9 TeV. On
the other hand, a similar long-range contribution of the operator O;;, dominates
already above scales A > 163 GeV, since the corresponding short-range contri-
bution is loop suppressed. Hence, based on this particular example one can see
that different SU(2)., structures of the same operator can significantly influence

the identification of the dominant contribution.

Impact of Flavour Structure on Dominant Contribution As only first
generation quarks and leptons can participate in Ov 33 decay, the external Yukawa

couplings (i.e. those sitting in the vertices with external fermion legs in the Ov /3

5The higher scale can be always identified with the more dominant contribution, as already
argued in Sec. [5.2.3] and the reasoning is following: assuming observation of OvSf decay at
T1X/°2 = 10%7 y the scales Ajong and Agport can be independently determined. Taking the lower
one of them would lead to exceeding the experimental limit for the contribution with the higher
scale. Therefore, we have to choose the higher scale, as it guarantees picking the dominant
contribution that is still consistent with experiment. Hence, the dominant contribution can be
identified easily from Fig. [6.4] by comparing the upper row with the lower row. The washout
ranges corresponding always to the dominant contribution (either long-range, or short-range)

are then depicted in the final comparisons of the washout regimes for all the given operators in

Figs. |6:f| and @
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Figure 6.4: As Fig.[6.1] but here we constrain separately the operators’ long-range
(top row) and short range contribution (bottom row). The results are shown both
for first generation internal Yukawa couplings (left column) and third generation

internal Yukawa couplings (right column).

decay diagram) are fixed to the first generation. This is, however, not the case
for the internal Yukawa couplings (i.e. those in vertices not attached to outer
legs) in the loops, which can be summed over all flavours, e.g. in a democratic
flavour structure. So far we have assumed in our calculations only first generation
Yukawa couplings. To get a rough idea of the flavour dependence and to asses
the potential range of the contributions we will now repeat the analysis with
third generation internal Yukawa couplings (while keeping the external Yukawas
fixed to the first generation). The results are presented in Fig. taking into
account all contributions, and in Fig. (right columns) considering short-range
and long-range contributions separately. These can be then compared with those
obtained for first generation Yukawas only.

Let us focus again specifically on operators O3, and Oi3,. Obviously, as
the short-range contribution does not contain any internal Yukawas, it stays
unchanged, when third generation values of internal Yukawa couplings are con-
sidered. The long-range contribution of Ojy,, however, gets enhanced and it
dominates over the short-range one already for scales A > 335 GeV, cf. Fig.

Hence, while for only first generation Yukawa couplings the short-range con-
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Figure 6.5: Same plot as in Fig. but for third generation Yukawa couplings
appearing at vertices not attached to the outer legs. The external Yukawa cou-

plings are fixed at their first generation values.

tribution of Oy, was the dominant one, for third generation internal Yukawas
the long-range contribution dominates. In case of Oy, the scale above which
the long-range contribution dominates is fairly low already for first generation
Yukawa couplings only and it is further lowered (to the limit A > 6 GeV) by
consideration of third generation internal Yukawas.

The described swap in the dominant contribution of Oy, is induced by a
change from an internal first to third generation down quark Yukawa coupling.
An even stronger effect can be observed if an internal up quark Yukawa coupling
is involved, which is the case e.g. for contributions of operator Oy,

Grey’ 1 Gped Yo U

S = 2
2m, A 2 16m2A3’ (6:27)

where €2° = 2¢5 and €20 = 26,14

Although it could be naively expected that the short-range contribution will
always dominate for the operators of dimension 9 and higher, the explicit exam-
ples described above demonstrate that it is not always the case. The non-trivial
interplay of scales can be for all the operators inspected in Fig. The final
results are then visualized in Fig. and Fig.
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6.2. Falsification of High-Scale Baryogenesis

Consequences for Washout and the Observation of LNV at Colliders
If we make the assumption that the new physics responsible for the AL = 2
SM effective operators couples to the first generation fermions only, then an
experimental evidence of Ov33 decay triggered by one of the operators Oy14, O11
and Oy would imply a strong lepton number washout rate from the operator
scale all the way down to the EW scale. Consequently, the scenarios of high-scale
baryogenesis would be highly disfavoured. Note that if third generation internal
Yukawas are used, the operator scales move upwards to higher temperatures,
which may result in a window of an ineffective washout between A and the EW
scale (although lepton number asymmetry is still being erased at higher energy).

Not only the assumed flavour of fermions in the loops but also the specific
dominant contributions (see Figs. and influence the theoretically predict-
ed scale of new LNV physics, and therefore also its potential accessibility at the
LHC. As follows from the previous paragraph, if only first generation Yukawa
couplings are considered, resonant particles associated with operators O, and
O11p may be detected at the LHC, whereas for third generation internal Yukawas

the corresponding scales are likely to be beyond the LHC reach.

6.2.3 Effect of Additional NMEs and QCD Running

All the above discussed results displayed in Figs. [6.1] and [6.5] are based
on the limits for low-energy effective couplings €] listed in Tab. [£.2] which were
derived in Ref. [115] using only the leading order NMEs. However, in Chap. 4| we
have calculated an improved set of bounds on the effective couplings correspond-
ing to the short-range operators presented in Tab. that take into account
additional NMEs and also QCD running. Therefore, we can now employ these
new limits to see how they affect the washout ranges in Figs. and [6.5]

The resulting new plots taking into account the new short-range limits are
shown in Figs. and [6.7. As one can see in Fig. [6.6] for the case of first
generation Yukawa couplings a number of washout ranges have been lifted to
higher temperatures compared to those in Fig. [6.1} Logically, for all of these
operators the short-range contribution now must be the dominant one (as we are
using new limits only for the short-range contributions), which did not have to be
the case with the old short-range limits. The enhancement of the corresponding
cut-off scales is driven especially by the more stringent bounds on €} and €2, which
is a result of both the extra NMEs and QCD running, as discussed in Chap.[dl On
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Figure 6.6: As Fig.[6.1], but using the improved bounds on the effective couplings
corresponding to the short-range operators listed in Tab. [.7] taking into account
additional NMEs as well as QCD running.

the other hand, when third generation internal Yukawa couplings are considered,
the new plot in Fig. does not differ much from Fig. as only a few washout
ranges have moved upwards. This is because the third generation internal Yukawa
couplings enhance significantly the long-range contributions, which then usually
win the competition even when the new, more stringent bounds on the effective
couplings of the short-range mechanisms are considered. Let us note that the
bounds on long-range effective couplings €i are expected to change if NMEs are
treated more accurately, but the effect of QCD running on these couplings is

expected to be negligible, as argued in Ref. [239).

6.2.4 Comparison with Standard Mass Mechanism

In the present analysis we study primarily the non-standard mechanisms of
OvpBp decay, i.e. those that originate from other lepton number violating new
physics contribution than the Majorana neutrino mass mechanism. If this is as-
sumed, then the Ov55 decay half life does not provide any direct information on
effective Majorana neutrino mass, unlike it is in the standard case. Nonetheless,
any interaction that violates lepton number will still induce an additional contri-

bution to the Majorana mass at certain loop level. When deriving the washout
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Figure 6.7: As Fig. [6.5] but employing the improved bounds on the effective
couplings corresponding to the short-range operators presented in Tab. [4.7], which

take into account additional NMEs as well as QCD running.

intervals, we always assumed a presence of only a single lepton number violating
effective operator of dimension 7, 9 or 11, neglecting its mass contribution for
calculation of the operator scale.

Besides our main focus we find it still interesting to investigate also the possi-
bility of neutrino mass generation by one of the higher-dimensional operators at
certain loop level. To this end, we reduce each operator also to the Weinberg op-
erator and assuming this contribution to be responsible for a hypothetical Ov53
decay signal we derive the corresponding operator scale. These scales are denoted
in Figs. and by an orange diamond, or an orange arrow pointing up or
down, when the corresponding loop-induced neutrino mass scale lies outside the

range of the plot.

First Generation Yukawa Couplings As can be seen in Fig. [6.1], the exotic
long-range or short-range contributions are mostly dominant, if only first gener-
ation Yukawa couplings are considered. The mass mechanism dominates just for
about a fifth of the operators.

Although it could be naively expected that the contribution to the mass mech-

anism will be dominant for operators of dimension 7 and operators of dimension
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Figure 6.8: Dominant mass contribution of Os, (left diagram) and Os;, (right
diagram) to Ov(S decay.

9 containing three Higgs fields, it is not always so. For instance, operator Os,
includes the SU(2),, contraction L;L;€;;, which requires a flip of one of the lepton
legs (as explained earlier) suppressing the resulting mass contribution by addi-
tional loop factors. Therefore, the long-range contribution is the dominant one
for Os,. In contrast, the SU(2), structure L;L;e;xe;; (or similar) present e.g. in
O3, does not lead to so significant suppression; hence, the corresponding mass
contribution dominates. Both these mass contributions are given in Tab. and
illustrated in Fig.

For operators of dimension 9 and higher the constraint given by the generated
neutrino mass is expected to be generally weaker due to higher loop suppression
and small Yukawa couplings. As indicated in Fig.[6.1], the corresponding scale of
the loop-induced Weinberg operator is for most of these operators far too low to
provide the desired light neutrino masses, and thus an additional mechanism of
their generation would be needed. Hence, a potential observation of Ov33 decay
would for most higher-dimensional operators hint at a dominant non-standard
contribution. Nevertheless, there are a few exceptions like operator Oy, whose
mass contribution is dominant, because it is proportional only to gauge couplings,
see Fig. Other operators with a similar behaviour are Oa7,, Oa7p, Oag9q, Oagy
and Ouo,.

Third Generation Yukawa Couplings The interplay between the standard
mass contribution and the non-standard ones becomes quite non-trivial, if third
generation internal Yukawa couplings are considered. The suppression given by
the loop factors can be in this case compensated or even outbalanced by the large
values of Yukawa couplings. The fact that only internal Yukawas are enhanced
further complicates the situation. As apparent from Fig. [6.5 approximately two

thirds of the operators in question contribute dominantly to the mass mechanism,
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Figure 6.9: The left and center diagrams depict the dominant mass contribu-
tions (o< v?/A and o< v*/A3, respectively) generated by O;. The dominant mass

contribution of Og is shown on the right.

while the rest prefers an exotic Ov33 decay.

As one would expect, the mass contribution is dominant for almost all the
operators of dimension 7 and dimension 9 with three Higgses. Only operators O
and Og contribute dominantly to a non-standard mechanism. The key difference
of Oy is that it is the only 7-dimensional operator containing a right-handed lep-
ton. This means that a Higgs insertion has to be used to flip the chirality and the
associated small external Yukawa coupling suppresses the resulting contribution.
For other operators of dimension 7 (e.g. Osq3p44) such a flip is not required and
an exchange of a gauge boson featuring much larger coupling can be employed.
For a graphical illustration compare Fig. with Fig. and the relevant en-
tries in Tab. [5.I] The reasoning is similar in case of operator Oz, for which a
more complicated loop structure including one small external Yukawa coupling
is needed to trigger the mass mechanism, see Fig. Again, this suppression is
not present in mass contributions of similar operators Osg, cf. Tab. .

In case of higher dimensional operators (dimension 9 and 11) the interplay is
rather complex. It depends mostly on the external Yukawa couplings appearing
in the mass contribution and on the specific properties of the non-standard con-
tributions we compare it with. As the first example we can pick the operators
010, O11, and Oyyp. Although all of them generate a similar long-range contri-
bution, only Oq1; contributes dominantly to the mass mechanism. The reason
is that the other mass contributions are suppressed either by a small external
Yukawa coupling (Oqg), or by an additional loop factor (O1,), neither of which
is the case for Oqyp, cf. Fig. |6.10

On the other hand, if we compare the operators Oq4, O17 and Oqg, we find

the opposite behaviour. All these three operators contribute in the same way
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Figure 6.10: Dominant mass contribution of Oy, (left diagram) and Oyy, (right
diagram) to OvGS decay.

to the mass mechanism. However, they feature different dominant long-range
contributions (cf. Fig. |6.11)) and only the one of Ojs dominates also over the
mass contribution. This is due to the fact that the long-range contribution of
O is not, unlike those of 0,715, additionally suppressed by a loop factor or a
small external Yukawa coupling.

The 9-dimensional operators Oy9, Oy, O7¢ and the 11-dimensional operators
Oa6a,6, O30ap and Osy_sg contribute dominantly in a non-standard way, which is
mostly caused by the fact that their mass contributions are suppressed by fixed
external first generation Yukawa couplings.

In Tabs. 5.1 5.2 and [5.3] we list the dominant contributions selected under the
assumption of first generation Yukawa couplings only. However, all the possible
ways of generation of the standard and the non-standard OvS33 decay contribu-
tions have been considered in our analysis summarized in Figs. [6.1§6.5] This
approach becomes important e.g. in case of operator Oy, discussed in Sec.[5.2.2]

Assuming first generation internal Yukawa couplings the dominant contribution

VL er VL €L d* ur,

Figure 6.11: The left diagram shows the dominant mass contribution of O
(similar for Oy7 and Oys), whereas the other two diagrams depict the dominant
long-range contributions of O (centre diagram) and Oy7 (right diagram) to Ov 53
decay.
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Figure 6.12: Long-range (left diagram) and short-range (right diagram) Ovgpg

decay contribution of Os;.

of Oag, is the one in Eq. , whereas contribution in Eq. dominates for
third generation internal Yukawa couplings, cf. Fig[5.6l It is interesting to com-
pare this behaviour with a similar operator Oag,, which, due to different SU(2),
structure, induces only the contribution in Eq. .

6.2.5 An s-channel Contribution Example

Based on an example of a few 11-dimensional operators we will now discuss
briefly the situations that require a heavy boson propagation to generate a Ov53
decay contribution. Specifically, we take operators Oz3 and Os4. Although they
have a structure similar to a number of other operators, there are slight differences
in their particle content, which impact the possible Ov55 decay contributions.

The main issue is that the operators Os3 and O34 contain more leptons than
quarks; namely, the former one includes 6 leptons and no quarks, while the latter
one consists of 4 leptons and 2 quarks. Hence, an exchange of at least two leptons
for quarks is necessary in case of operator Qs in order to trigger Ov3S decay (via a
long-range mechanism). This, however, supposes a propagation of a heavy boson
as depicted in the left diagram in Fig.|6.12l The resulting long-range contribution

is in consequence suppressed by a square of the heavy bosonic mass

ex 2
LR yggv 1
—_ 2
Oss” o (1672)3A m3, (6.28)

From the loop reduction shown in Fig. [6.12]it is apparent that this contribution
must be subleading with respect to the standard mass mechanism. The reason is
that the originally 11-dimensional operator is first reduced down to the Weinberg

operator, and subsequently a Yukawa vertex is attached to it. For this reason our
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analysis does not cover the operators of this type and e.g. operators Oy, Oy, Og9
or Oz are skipped.

If we want to induce a short-range Ovf3/ decay contribution from operator
Os3, it is necessary to include a pair of the s-channel-like transitions, see the
right diagram in Fig. [6.12] Clearly, this leads to even stronger suppression.

The situation is slightly better in case of operator O34 consisting of 4 leptons
and 2 quarks. The long-range Ov3 decay contribution can be generated at two-
loop level without any ‘s-channel’ rule and a single heavy boson propagation
providing two additional quarks is needed for the short-range mechanism.

For both operators O3z and O34 multiple long-range contributions exciting
different effective couplings € can be found. All of these contributions have the
same form and they differ only by the type of a single external Yukawa coupling.
Similarly, more distinct short-range contributions can be obtained, but they are

always sub-dominant, when compared to the long-range ones.

6.3 Washout in UV-Complete Models

For the sake of generality, we have employed the model-independent effec-
tive approach to describe new lepton number violating interactions with origin
at a certain high energy scale A. In order to test the applicability and inves-
tigate potential limits of our treatment, let us now compare the lepton number
washout rate of a particular effective operator with the analogous calculation
performed within an underlying UV theory. Specifically, we pick the operator
Os = L'e‘u®d°H’e;; as an example and we assume it arises from a left-right
symmetric model, see Sec. after the right-handed gauge boson Wpx and the
right-handed neutrino N are integrated out. To keep the calculation simple and
to emphasize the impact of the resonant enhancement from on-shell Wgx or N we
will consider only two of all possible permutations of the particles in the initial
and the final state. Namely, we will focus on washout processes u¢d® < Le‘H
and LH < e“u‘de, which are for the case of the LRSM illustrated in Fig. |6.13
After computing the relevant scattering amplitudes we make use of Eq. to
determine the corresponding thermal rate. At the same time, we calculate the
washout rate induced by these two processes assuming they are triggered by the
effective operator Og. We estimate the decay widths of Wx and N as

2 4 4
IrMwg My (o gr My
Iy, = =—/——"= d 'y =— + 6.29

R 8T an N8 (y” 2472 m4WR> ’ (6-29)
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dc L

Figure 6.13: Feynman graphs of the chosen washout processes within a left-

right symmetric model framework, which give rise to the effective operator
(98 = Lle_clzchHJEU

respectively. Here, gr denotes the right-handed gauge coupling and y, stands for
the neutrino Yukawa coupling. To ensure that the effective approach and the
underlying UV theory yield the same result in the limit, where the transferred
momentum is much smaller than myy,, and my, we set ggy,/(miy, my) = 1/A%.
The resulting interaction rates normalized with respect to the Hubble expan-
sion rate 'y /H are plotted in Fig. in dependence on temperature 7. While
the washout rate produced by the UV processes u¢d® <> Le‘H and LH <« e“ude
is indicated by the blue and red lines, respectively, the straight purple line shows
the rate of the effective operator matched to the sum of the two UV process-
es. Based on our previous calculation we take the value of the effective operator
scale to be A = 7 x 10 GeV (see Fig. and it is related to the couplings
and masses of the LRSM as stated earlier. In Fig. |6.14] we display two plots
corresponding to two different sets of couplings, namely (gg,vy,) = (1,1) (left
panel) and (ggr,v,) = (1,1073) (right panel). As for the heavy masses, we set
mw, = 1.5my in both cases. Given the fixed operator scale the larger are
the considered couplings, the larger become also the masses myy,, and my and
the corresponding resonance enhancement moves towards higher temperatures.
Comparing the washout rates we can see that for low temperatures the results
obtained from the effective operator are consistent with the UV theory. On the
other hand, at temperatures much larger than the masses myy, and my the ef-
fective approach breaks down and becomes unphysical, whereas the rate of UV
processes is proportional to 7. This means that the washout becomes inefficient
in the given temperature region, because the Hubble expansion rate grows with
T?. Clearly, the smaller are the values of couplings gr and y,, the lower is the
temperature at which the lepton number departures from thermal equilibrium.

Based on the above comparison, we can state that our conclusions regarding
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Figure 6.14: The temperature dependence of the lepton number washout rate
induced by the UV processes u¢d® <+ LeH (blue) and LH < e“u’de (red), and
the rate given by the sum of these two processes (purple) when triggered by the
effective operator Og with the corresponding scale fixed to A = 7 x 10* GeV. Two
plots for two different sets of values of the right-handed gauge coupling gr and
the neutrino Yukawa coupling y, are shown. In each case we also display the

chosen masses of the heavy particles.

the lepton number washout obtained using the effective operators are expected
to hold even in a UV-complete model, since both the approaches should yield the
same results at low energies. Therefore, unless the couplings in the UV theory
are so small that the corresponding new particles have masses near or below the
EW scale, a pre-existing lepton number asymmetry above the scale Ap will be
indeed erased, as concluded earlier. Moreover, within a UV-complete model the
washout remains, in principle, effective also in the region above the cut-off scale A.
In dependence on a particular model the resonance enhancement can in fact result
in even stronger washout than the one generated within the effective approach.
Note, however, that LNV can arise from spontaneous symmetry breaking - for
example, in case of LRSM the B — L symmetry is broken by the triplet Higgs
VEVs (Ap g). In such case the lepton number washout processes are expected to
cease to work for temperatures above the breaking scale, where the symmetry in

question is restored.

6.4 Caveats and Loopholes

To complete the discussion of our study we should also comment on several

limitations of the applied approach. The first of them relates to lepton flavour.
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As OvBp decay involves only electrons, our conclusions about the washout are re-
stricted to the first generation of leptons, while the pre-existing lepton asymmetry
can be stored also in the 1 and 7 sectors. Hence, to generalize our results to all
leptons we have to make sure that the other lepton flavour asymmetries are equi-
librated as well. This can be achieved e.g. by observing lepton flavour violation
(LFV) effective around the same temperatures [133], or by processes violating lep-
ton number directly in p and 7 sectors such as meson decays and direct searches
at the LHC [132]. At lowest order the rare lepton flavour violating interactions
are described by 6-dimensional operators of the form: O, = Ca,yigO'NVECH F.
and Oy = ngqq(l7 I1,4)(q15q) (I1; stands for possible Lorentz structures), with
¢ = e, u, 7. The corresponding operator scales can be probed by low energy LF'V
observables such as the following decay branching ratios (with current limits at
90% C.L.): Brye, < 5.7 x 1071 [249], Brrp, < 4.0 x 1078 (¢ = e, p) [182]

and the p — e conversion rate R2 < 7.0 x 10713 [182]. Employing these exper-

n—>e

imental limits, we can calculate the approximate bounds on the operator scales
as: Nyey = 3 x 10° GeV, Ay, &~ 3 x 10* GeV and A,y = 2 x 10° GeV, re-
spectively [133]. Using the same procedure as in the case of LNV we can then
determine the temperature intervals [\;, A;], within which the individual flavour
number asymmetries are equilibrated. If this interval overlaps with the temper-
ature range of effective electron number washout derived from limit on OvSp3
decay half life, then the asymmetries in muon and tauon numbers will be effi-
ciently wiped out, too. The temperature intervals for the LFV operators were
calculated in [133] and we reprint here the resulting plot, see Fig.[6.15] As can be
seen, there are significant overlaps between the lepton number washout intervals
corresponding to examples of higher-dimensional (dimension 7, 9 and 11) AL = 2

SM effective operators and the ranges of LF'V operators A, and A if observa-

1eqqs
tion of Ov53 decay and LF'V at near-future experimental sensitivities is assumed.
The temperature interval of the operator A, lies at higher temperatures (due
to more stringent lower limit on corresponding operator scale), and thus it does
not overlap with the washout ranges of most of the studied AL = 2 operators.
In Fig. the washout range for the Weinberg operator is also shown to man-
ifest that this standard Ov33 decay mechanism would not necessarily falsify the
high-scale baryogenesis, as the lower limit for strong washout is around 10'% GeV.

The next limitation of our analysis is the fact that in order to keep the cal-
culations model-independent we assume the baryon asymmetry to be generated

by a mechanism unrelated to the studied washout effects. The underlying UV
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Figure 6.15: Comparison of temperature intervals in which the LNV and LFV
operators are in equilibrium assuming observation of the corresponding observ-
able at current/future (left/right bars) sensitivity; taken from Ref. [133]. The
subscripts of the LNV operators denote their dimensions here. Hence, Oy is the
Weinberg operator, while the operators Oz g 11 are examples of higher dimensional

LNV operators.

theory, however, can be responsible not only for the lepton number washout but
also for generation of the lepton number asymmetry. In such a scenario the im-
plications for baryogenesis would have to be studied within the full UV-complete
model. Our approach can be employed only with asymmetries created above
temperatures, at which the washout becomes efficient.

Another possible loophole is a scenario pointed out in Refs. [250,[251], which
assumes the existence of a decoupled sector sharing the baryon asymmetry with
the visible sector. In such a case the lepton number asymmetry cannot be washed
out completely in the visible sector. The reason is that during very early times,
when the later decoupled sector still communicated with the visible one, it shared
also a hypercharge U(1)y asymmetry. Since the lepton number washout interac-
tions preserve the hypercharge, they cannot washout the part of lepton number

asymmetry proportional to U(1)y asymmetry. The asymmetry from the decou-
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pled sector can evade the washout effects, if it is transformed back into the visible
sector after the EW phase transition, when the sphaleron transitions become inef-
fective. To this end, the asymmetry can be carried by long-lived particles decaying
to SM particles only below the EW scale, or the efficiency of the conversion be-
tween the two sectors rises after the EW symmetry breaking as a consequence of
the expansion rate scaling like 72 /Ap.

Despite all the possible loopholes, if Ov33 decay is observed, it will open new
possibilities to test not only the neutrino mass generation mechanisms but also
various baryogenesis scenarios. Although the usual high-scale seesaw mechanism
with origin at energies 10? —10'* GeV is still the favoured scheme, other Majorana
neutrino mass mechanisms close above the EW scale are of great phenomenologi-
cal interest. These would clearly imply the presence of LNV at accessible energies
and they would generally lead to new contributions to Ov53 decay. To use the
argument regarding high-scale baryogenesis that we put forward in this work it
is crucial to be able to discriminate among different Ov3/3 decay mechanisms,
particularly, to distinguish between the standard mass mechanism and the exotic
contributions. As discussed in Subsec. [3.5.3] there are several ways to do so. For
instance, based on our results it is apparent that the scales as well as the washout
ranges for many of the AL = 2 operators are O(TeV) assuming an observation
of Ov3/3 decay in planned experiments with a sensitivity of T}/, ~ 10?7 y. Hence,
the underlying new physics in a number of cases lies within the reach of the LHC
or future collider experiments. As a result, a potential Ov35 decay signal and
non-observation of LNV at colliders could exclude some of the exotic Ov33 decay

mechanisms.
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7
Conclusion and Outlook

With no clear signal of new physics at the LH([| we are, slowly but surely,
entering a new era of particle physics that will be most likely dominated by
both experimental and theoretical efforts and potential discoveries in the fields of
astroparticle physics, particle cosmology and undoubtedly also neutrino physics.
One of the prime roles in the quest for a better understanding of neutrinos will
be played by OvfB[ decay searches. The consequences of its observation would
be profound, as it would not only represent the first evidence of lepton number
violation, but it could also help to unveil the origin of light neutrino masses and
possibly open a pathway towards new physics beyond the SM.

At the same time, Ov 33 decay could have interesting implications beyond light
neutrinos. The reason is that lepton number violation can be related to another
aspect of BSM physics; namely, to the baryon asymmetry of the Universe. As the
(B + L) symmetry is violated in the SM by sphaleron effects, generation of a pri-
mordial asymmetry in (B — L) number is necessary for explanation of the baryon
asymmetry that we observe today. However, an experimental evidence of OvS3p3
decay would imply some underlying AL = 2 processes to be in equilibrium at a
certain energy scale, where they would washout any net lepton number. More-
over, in combination with sphalerons these could washout also the preexisting
(B — L) asymmetry. This connection therefore allows to relate low-energy lepton
number violating phenomena with interactions non-conserving (B — L) number
at high scales.

In the present work we have focussed particularly on the non-standard mecha-
nisms of Ov 33 decay. At the nuclear physics scale ~ 100 MeV, these mechanisms
can be described in a model-independent way by a general low-energy Ovj33 de-
cay Lagrangian. Generally, there are two types of these mechanisms, long-range
and short-range, triggered by effective operators of dimension 6 and 9, respec-

100 GeV

3 5
tively, associated with effective couplings e g ~ ( e ) and egg ~ (%)

! Although recently, the observation of lepton flavour anomalies challenging the lepton uni-
versality predicted by the SM has attracted a lot of attention [76].
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with Axp denoting the new physics scale. After reviewing briefly the long-range
mechanisms, we concentrate in Chapter 4| primarily on the short-range operators
developing a general formalism of their microscopic description. We derive the
decay rate of these mechanisms and specify the involved nuclear matrix elements
and phase space factors. The numerical values of the phase space factors have
been computed and we also present the single electron energy distributions as well
as the angular correlation distributions of the two emitted electrons. Further, we
have provided a systematic derivation of short-range nuclear matrix elements
taking into account the effect of the enhanced pseudoscalar form factors in all
relevant nucleon current products. Employing the experimental limits on Ov53
decay half life we have estimated the numerical bounds on the effective couplings
characterizing the involved particle physics in case of each short-range operator.
We have also discussed the effect of QCD-running on these bounds assuming the
new physics to lie around scale Axp = 1 TeV.

The numerical limits on the effective new physics parameters €; corresponding
to individual short-range mechanisms range between e; ~ 1071 to 10~7. Since the
couplings relate to the typical scale of the 9-dimensional effective operators as ey o
1/A%p, these values correspond to probing new physics in the phenomenologically
highly interesting multi-TeV region. This is why a systematic treatment as above
is crucial. We have also found that the angular correlations differ for two groups
of short-range mechanisms, which would potentially allow to distinguish them
experimentally in certain Ov5/ decay searches, e.g. SuperNEMO [112]. Another
possibility to discriminate the Ov/( decay mechanism favoured by Nature is to
measure the single electron energy distribution (also possible by SuperNEMO)
and compare it with the obtained theoretical predictions, although this would
require a solid energy resolution of the experiment. All these aspects then could
lead to a better understanding of the mechanism of neutrino mass generation.

After describing the low-energy effective operators in Chapter [5| we study
lepton number violation at the SM level, where it can be described by the SM-
invariant AL = 2 effective operators containing SM fermions and Higgs boson.
Interestingly, operators violating lepton number appear only at odd dimensions
in Standard Model Effective Field Theory. We concentrate on operators of di-
mensions 7, 9 and a representative selection of 11-dimensional operators, which
are collected in Tabs. and [5.3] respectively. We have also used the Hilbert
Series method [78]215] to check the completeness of operators identifying small

discrepancies.
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Considering each of these operators individually we have performed a detailed
analysis of their contributions to Ov/3/ decay. Some of the operators that have
the right particle content trigger Ov53 decay directly at tree level, while others
induce it only at a certain loop level. As it would have been clearly overwhelming
to derive all the possible contributions manually, we have addressed the issue
algorithmically developing a code scanning through all possible loop contractions
and recognizing the radiative corrections that trigger Ov33 decay. For all the
studied operators we have determined dominant contributions to the mass, long-
range and short-range mechanisms, which are all displayed in Tabs. - As
we have discussed in detail for particular examples, the involved phenomenology
is very rich and there are a number of features influencing the dominance of
different contributions. The radiatively generated neutrino mass scales have been
compared with the results in Ref. [214] and a few differences have been pointed out
and explained. Employing the dominant long-range and short-range contributions
and assuming a hypothetical observation of Ov33 decay at the expected future
sensitivity Tf}% = 10?7 y we have calculated the cut-off scales associated with the
AL = 2 SM effective operators. These scales range from the electroweak scale
to 105 GeV and are generally lower for higher-dimensional operators (dimensions
9 and 11). The internal Yukawa couplings, i.e. those that are not attached to
any of the external legs, are free in flavour and should be summed over. In our
approach we estimate this possible enhancement by calculating the washout in
two cases: for first and third generation internal Yukawa couplings. While the
consideration of third generation internal Yukawa couplings does not affect the
scales of dimension-7 operators, it enhances the rather low scales of most of the
higher-dimensional operators. Nonetheless, the third generation internal Yukawas
increase importantly also the contributions to the standard mass mechanism,
which then in many cases become dominant.

Subsequently, using the operator scales we have computed in Chapter [6] the
washout rate of lepton number asymmetry in the early Universe for every oper-
ator by solving the corresponding Boltzmann equation. We assume O(1) lepton
number asymmetry to be injected at a certain scale, from which point on only the
washout from a single AL = 2 SM effective operator on top of the usual SM in-
teractions (including sphaleron transitions) is taken into account. Each operator
can trigger a variety of different lepton number violating interactions; therefore,
all permutations of particles in the initial and final states corresponding to physi-

cally distinctive processes have been accounted for in the washout calculation. As
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a result, we have determined the temperature intervals of efficient lepton number
asymmetry washout for each of the AL = 2 SM effective operators. While the
upper limit of these ranges is simply given by the operator scale A, two different
lower bounds were always determined: first, scale A was calculated by imposing
the cosmological condition that the washout rate overbalances the Hubble rate
and second, scale \ was obtained by solving the Boltzmann equation exactly
assuming the primordial lepton asymmetry to be of order one and requiring the
surviving asymmetry to match the observed value of baryon asymmetry. The lat-
ter lower limit is always slightly higher restricting the interval of strong washout.
Based on these results the scale above which any pre-existing lepton and baryon
asymmetry will be erased by the given operator can be inferred. Assuming the
observation of Ov33 decay at T}, = 10°" y, the strong washout for 7-dimensional
operators can be as high as [\, A] ~ [2x 103, 3x 10°] GeV, whereas the operators of
dimension 9 and 11 usually washout the asymmetry between 100 GeV and 1 TeV
provided that first generation Yukawas are considered. As we have discussed,
the 7-dimensional operators are therefore generally restricted more stringently
from the mass contribution and the requirement of tiny neutrino mass, which is
typically not the case for the higher-dimensional operators.

Based on the results summarized in Figs. [6.1] and [6.5] we have concluded that
a signal of non-standard Ov(( decay at upcoming experimental sensitivity would
imply a washout of primordial baryon and lepton asymmetry, and therefore falsify
mechanisms of high-scale (2 TeV) baryogenesis. On the other hand, if the mass
contribution to OvB3 decay is dominant, then the origin of neutrino mass lies most
likely at high energies favouring the standard leptogenesis mechanism of baryon
asymmetry generation. The crucial aspect of discriminating different Ov33 decay
mechanisms could be managed either by some of the Ov53 decay experiments, or
by probing lepton number violation in other observables (colliders). The former
possibility could, for instance, rely on the angular correlation of the emitted
electrons, which can differ for distinct exotic contributions, as we have shown
explicitly when analysing the short-range mechanisms in Chapter {4} In fact, for
our argument the important thing is to distinguish the standard mass mechanism
from any non-standard one. In this regard, observation of lepton number violation
at the LHC or in meson decays would be decisive, pointing to exotic Ov/35 decay.

Generally, our analysis clearly proves the importance of connecting effects
of BSM physics in laboratory experiments and in early universe cosmology. A

similar approach could be employed to study lepton flavour violating operators,
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which, as they have the potential to equilibrate flavours at a certain scale, could
affect the mechanisms of flavoured leptogenesis [252,253]. It is also possible
to develop similar connections in other contexts. An example is an analogous
interplay between Dark Matter thermalization and detection at the LHC [254].
The contribution of our study can be summarized by stating that not only would
the observation of Ovf3( decay teach us a lot about neutrinos, but it could also
help to explain the origin of matter in the Universe. Consequently, we do not
necessarily exaggerate if we conclude that Ov55 decay could play an important

role in unveiling the secrets of our existence.
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