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Abstract—We address the problem of entry-wise low-rank
matrix completion in the noisy observation model. We propose a
new noise robust estimator where we characterize the bias and
variance of the estimator in a finite sample setting. Utilizing this
estimator, we provide a new robust local matrix completion algo-
rithm that outperforms other classic methods in reconstructing
large rectangular matrices arising in a wide range of applications
such as athletic performance prediction and recommender sys-
tems. The simulation results on synthetic and real data show that
our algorithm outperforms other state-of-the-art and baseline
algorithms in matrix completion in reconstructing rectangular
matrices.

I. INTRODUCTION

Matrix completion is a task that involves the reconstruction
of a matrix from a subset of its entries. This problem is
relevant in a wide range of applications, including recom-
mender systems and collaborative filtering [1]; performance
prediction [2]; dimensionality reduction [3]; network traffic
analysis [4]; multi-task learning [5] to name a few. Usually,
the matrix is to be completed in the supervised setting of
predicting an unseen entry given its row and column, and a set
of known entires; for instance predict a movie rating (entry) for
a user (row) - movie (column) pair in a stylized recommender
setting. However without any constraint on the number of
degrees of freedom, the general matrix completion problem is
under-determined. Therefore, it is necessary to impose a low-
dimensional structure on the matrix, one particularly popular
example being a low rank constraint [6], [7].

Our focus is on the matrix completion under the common
low-rank assumption in the presence of noise. In particular,
we study the reconstruction of large scale rectangular datasets
where one of the matrix dimensions is considerably larger than
the other - which is in fact by far the most common case
in practical data analytics where the set of feature (columns)
is fixed while the number of samples (rows) may grow, as
opposed to the common setting in matrix completion literature
where it is usually implicitly assumed that both number of
rows and columns grow asymptotically per some scaling law
- which is plausible and frequent in a recommender setting,
but in general unusual. As we outline in more detail in section
II, many common guarantees in literature rely crucially on
this latter asymptotic setting and fall apart - both theoretically
and empirically - in the usual rectangular setting. While some
of these guarantees are in fact tight, they are only under the
further implicit assumption that the task is to reconstruct all
missing entries; hence it is not implausible that an improve-
ment is possible for predicting a single or a small subset of
missing entries, while other entries may remain impossible to
reconstruct.

A. Contribution

Our approach to address this issue is based on the use of
single-entry algebraic estimator where one completes unknown
entries individually as a function of other known entries [8].
This class of estimators is the only one coming with guarantees
for single entries, hence guarantees useful in a supervised
or rectangular setting; however, the exact behaviour in the
presence of noise has so far been studied only in the limited
case of rank one [9]. Our contribution involves:
• Proposing a (noise-)robustified version of the single-entry

estimator where we provide the bias and variance of
estimation for each entry in a finite sample setting.

• Proposing a new robust local matrix completion algorithm
which is shown to outperform the “classical” matrix
completion algorithm in the common supervised setting
for a rectangular data matrix.

• Providing a set of simulation results using synthetic and
real data which proves the superiority of the proposed
algorithm in predicting missing entries in a rectangular
data matrix.

B. Notation

We adopt the following notation throughout the paper:
Matrices are denoted by upper-case bold characters (A), the
vectors are denoted by lower-case bold characters (u) and the
(i, j) element of a matrix is denoted by Aij . We denote the set
of integers {1, 2, ...n} by [n]. Sets are denoted by calligraphic
letter (C) and the cardinality of a set C is denoted by |C|. We
define A to be a matrix of dimensions m × n and rank r.
We define E := [m] × [n]. The sub-matrix of A specified
by row indices I ⊆ [m] and column indices J ⊆ [n] is
AIJ . Throughout this paper, with no loss of generality we
assume that m > n. The expectation, the standard deviation
and variance of a random variable are denoted by E()̇, sd()̇
and Var()̇, respectively. The operators det()̇ and adj()̇ give the
determinant and the adjugate of matrix argument.

II. THE MATRIX COMPLETION PROBLEM

We first introduce the matrix completion problem, review
the main existing algorithms and discuss their theoretical and
practical limitations.
Define the masking function Ω to be a map from matrix A
to a subset of its entries: Ω : A 7→ (Aij)(i,j)∈EΩ where EΩ ⊆
E . The matrix completion problem involves reconstruction of
the missing entries from the set of observed ones Ω(A). In
most practical settings, we only have access to a set of noisy
observations Ω(B), where Bij = Aij +Nij and Nij denotes
the observation noise.



The three main approaches to address the low-rank ma-
trix completion problem are: 1) convex optimization based
approaches that involve a convex relaxation of the rank con-
straint (e.g [6], [10]); 2) spectral methods (e.g. [7], [11]) and
more recently 3) algebraic combinatorial approach [8], [9],
[12]. These methods along with reconstruction guarantees are
described next.

Nuclear Norm Minimization: Convex optimization based
methods use nuclear norm as a proxy to enforce low-rank.
Reference [6] studied sufficient conditions for the unique
reconstruction of A given a subset of its entries. The results
were later refined by [10], [13]. In the absence of noise, it has
been proven in [13] that if the locations in EΩ are sampled
uniformly at random with

|EΩ| & µ0r(m+ n)log2(m), (1)

then A can be uniquely recovered with high probability.
Here µ0 quantifies the coherence measure. In the presence of
noise, the results of [14] state that under the same condition,
approximate recovery is guaranteed. In the case of square
matrices where m = n, the measurement bound in (1) leads to
considerable reduction in the required number of entries; but
we note that the sufficient number of observations for perfect
reconstruction with nuclear norm minimization is ineffective
for extremely rectangular matrices. In particular, in the case
where n � m the bound in (1) reduces to the requirement
that we observe nearly every entry. For example, in extremely
rectangular matrices, e.g. where n ' r logm, almost all of the
entries are required for unique reconstruction.

Spectral Methods: In a parallel line of work, [7], [15]
study a model based on thresholding the singular values of
the matrix in both noisy and noiseless observation models
under the uniform sampling condition. We will refer to their
algorithm as OptSpace. In addition to the incoherency con-
dition, [7] requires bounds on the matrix rank and also on
the maximum value of entries. It has been proven in [7] that
if α = m/n ≥ 1 for a bounded rank r, roughly, |EΩ| ≥
C(α)rnmax(log n, r) number of observations guarantees the
convergence of OptSpace to the true value of the matrix. For
the noiseless case, the provided reconstruction error bound
depends linearly on α3/2 and when the observed entries are
noisy the reconstruction error contains an additional term
which also depends linearly on α. In comparison to square
matrices, rectangular matrices with large α, require a larger
fraction of known entries to reconstruct the unknown ones in
order to attain a certain level of accuracy.

Algebraic Combinatorial Approach: More recently, [8]
presents a novel algebraic combinatorial view on matrix
completion which is based on studying the relation between
entries by using tools from algebraic geometry and matroid
theory. In contrast to convex based and spectral methods that
study the unique reconstruction of the whole matrix, algebraic
approach studies the necessary and sufficient condition for
the unique reconstruction of each entry in a low-rank setting.
The results in [8] apply to any fixed set of observations
and provide information about every missing entry. Since the

algebraic approach does not require any restrictive condition
on sampling distribution or sampling complexity in terms of
matrix dimension, the completion of extremely rectangular
matrices is potentially feasible by the algebraic approach.

In particular, for reconstruction, a single entry estimator
was proposed which accurately reconstructs the missing entry
from a few observed entries in the noiseless setting while
performing poorly in the presence of noise. The estimation
of single entry in the presence of noise has been addressed in
[9] only for rank 1.

III. ALGEBRAIC MATRIX COMPLETION

We now review some concepts in matroid theory and also
Local Matrix Completion method which form the basis of our
new single entry estimator.
In the algebraic framework the question of reconstructability
has been addressed separately from the reconstruction process.
It has been proven in [8] that whether or not the missing entry
at position (i, j) is uniquely completable from observed ones
or more generally, how many completions exist, depends only
on the positions of (i, j), the rank of true matrix and the obser-
vation mask. Algorithm 1 in [8] decides with probability one
whether the missing entry at positions (i, j) is reconstructable
or not. The set of finitely completable entries in rank r is called
the completable closure of the observed set in rank r and is
denoted by clr(EΩ). Furthermore, reference [8] provides an
algorithm which reconstructs the reconstructable entries from
known ones. The algorithm leverages the notion of a circuit
which corresponds to the minimally dependent set of entries
compatible with rank r. There is at least one circuit going
through each reconstructable entry to which we associate a
circuit polynomial that vanishes if and only if the circuit is
compatible with rank-r (See Theorem 29 in [8]). We denote
the circuit polynomial associated to circuit C by θC . Let C ⊆ E
be a circuit which is observed in all positions but in one, e.g
(k, `) ∈ C is not observed but C\(k, `) ∈ EΩ is observed; then
θC(Ak`) = 0 is linear in Ak` and leads to a unique solution for
Ak`. The simplest example of a circuit in a matrix of rank r is
an (r+ 1)× (r+ 1) sub-matrix whose associated polynomial
is its determinant which vanishes.
In general, finding the reconstructing circuits for the missing
entry (k, `) in a partially observed matrix of rank-r is not
feasible in practice; but for the special case where the circuit
is a r + 1-minor, algorithm 4 in [8] recovers all completable
entries based on finding (r + 1) × (r + 1) sub-matrices. We
recall a simple result on the form of circuit polynomials for
determinants:

Lemma III.1. Let C be the circuit consisting of all indices
forming a (r+ 1)× (r+ 1) sub-matrix S and let (k, `) be the
index to reconstruct. Then,

θC(A) = Ak` · (detS(1)− detS(0)) + detS(0)

where S(x) is the (r + 1) × (r + 1) matrix S which has the
entry Ak` replaced by the scalar x. In particular,

Ak` = detS(0)/(detS(0)− detS(1))



if the denominator is non-zero.

Proof. This follows from the Laplace expansion theorem, and
an elementary computation.

Definition III.2. Let (k, `) be an index to reconstruct, let I
and J be an ordered tuple of r row resp. column indices, such
that C = (k, I)× (`,J ) is the reconstruction circuit. Let S be
the corresponding sub-matrix of A. We define functions:

P [(k, `), I,J ](A) := detS(0) = AkJ adj(AIJ )AI` (2)
Q[(k, `), I,J ](A) := detS(1)− detS(0) = det(AIJ ) (3)

We would like to note that P and Q are functions in entries
of the true matrix with indices C \ (k, `), with parameters
in squared brackets and the argument in the round brackets,
into which we could also substitute a noisy version of A.
In the absence of noise, one reconstructing circuit accurately
reconstructs the missing entry. If the observation is noisy, a
new estimator which is robust to noise is required to predict
the missing entry.

IV. ALGEBRAIC MATRIX COMPLETION FROM NOISY
ENTRIES

We now propose a new single-entry estimator which is
robust to noise and applicable in the standard (rectangular) su-
pervised learning setting. The idea is to find different candidate
solutions for one missing entry and use them to reconstruct
the entry under consideration as accurately as possible.

A. OLS estimator
We suggest the ordinary least square (OLS) estimator as the

single entry estimator from noisy observations. In particular,
we adopt the following generative observation model to de-
scribe the (rectangular) supervised learning setting: We will as-
sume that all observed entries are entries of the noise-corrupted
matrix B = A+N, where N ∈ Rm×n is a real valued, centred
(= expectation zero) random matrix. We will further assume
that expectations exist. Our aim is to estimate an unknown
entry Ak` as accurately as possible, given n samples of
(P,Q)[(k, `), I,J ](B) denoted by (p1, q1), . . . (pn, qn) where
the ratio θi = pi

qi
, i ∈ {1, . . . , n} represents a noisy estimation

of Ak`. We denote the OLS estimation of Akl from n samples
of (P,Q)[(k, `), I,J ](B) by θ̂OLSn where

θ̂OLSn (B) = min
θ

n∑
i=1

(pi − θqi)2. (4)

Here θ is a dummy variable associated with (4) which repre-
sents the true value for Akl. The values (pi, qi) are the noisy
observations of (p∗i , q

∗
i ) with qi = q∗i + eqi , pi = p∗i + epi

where θ =
p∗i
q∗i

. The estimator in (4) estimates θ by minimizing
the sum of squared errors ei = epi − θeqi . This leads to the
following propositions.

Proposition IV.1. Consider the above data generating process
where we have access to samples (pi, qi), i ∈ 1, . . . n of
(P,Q)[(k, `), I,J ](B), then,

θ̂OLSn (B) =

∑n
i=1 qipi∑n
i=1 q

2
i

. (5)

Proof. This immediately follows from taking the derivative of
(4) with respect to θ and setting the derivative to zero.

Proposition IV.2. Consider the OLS estimator in Proposi-
tion IV.1. Then, the followings hold:

i Let q∗i , . . . , q
∗
n be the samples from Q[(k, `), I,J ](A),

then

Var(θ̂OLSn (B|A)) =
σ2
p

n ¯q∗2
, (6)

where ¯q∗2 =
∑n

i=1 q
∗
i

2

n and σ2
p = Var(pi).

ii The bias of the OLS estimator is given by:

E{θ̂OLSn (B)} − θ = E

(∑N
i=1 qiei∑N
i=1 q

2
i

)
(7)

Proof. • The proof of i follows immediately from reformu-
lating (4) and (5) in terms of q∗i and pi and taking the
variance of θ̂n(B|A) with respect to the variable pi|q∗i .

• The proof of ii follows by reformulating the estimator (5)
leading to:

θ̂OLSn (B) =

∑N
i=1 qi(θqi + ei)∑N

i=1 q
2
i

= θ +

∑N
i=1 qiei∑N
i=1 q

2
i

.

Taking the expectation concludes the claim.

As shown in Proposition IV.2, the proposed single entry
estimator has finite variance which decreases with O(n−1).
Note that all the previous works recover the matrix by min-
imizing the reconstruction error over the whole matrix and
provide a bound on the overall MSE [7], [14]. By contrast,
our approach reconstructs the missing entry by minimizing
the reconstruction error for the entry under consideration and
provides the reconstruction accuracy for the individual entries.
This is particularly important in applications such as recom-
mender systems, where the reconstruction of only a subset of
unknown entries is of interest (instead of reconstructing the
whole matrix).

B. Robust Local Matrix Completion

We now suggest to use the OLS estimator - which admits a
closed form expression for the bias and variance of the final
estimation of the missing entry from (pi, qi), i ∈ {1, ..., n}-
in conjunction with local matrix completion algorithms in
order to build a Robust Local Matrix Completion (RLMC)
algorithm. See Algorithm 1. In step 3, N possible recon-
structing minors for the missing entry (k, l) are obtained.
In step 4, (pi, qi) corresponding to each circuit is obtained
from equations (2) and (3). Finally, in step 5, the missing
entry is imputed by

∑n
i=1 qipi∑n
i=1 q

2
i

. The algorithm for finding
reconstructing minors is detailed in algorithm 4 in [8] whose
worst case complexity is O(|I|r|J|r) where I and J are the
dimensions of the sub-matrix of partially observed matrix; but
this can be done much more efficiently as some rows and
columns can be safely removed from the search space, e.g.
the rows and columns with less than r observed entries. For
extremely rectangular matrices finding multiple minors can be



Algorithm 1 Robust Local Matrix Completion
Input: The set of observed entries Ω(A), rank r
Output: Estimate for entries in clr(EΩ)\EΩ

1: Repeat
2: Find an unobserved entry (k, l) ∈ clr(EΩ)\EΩ
3: Find the set C = {C1, ...., CN} containing (k, l)
4: Compute (pi, qi), i ∈ {1, ..., N} corresponding the set
C form (2) and (3)

5: Âkl ←
∑n

i=1 qipi∑n
i=1 q

2
i

6: EΩ ← EΩ ∪ (k, l)
7: Until EΩ = clr(EΩ)

implemented very efficiently by simply sampling rows and
computing the degree of each column in the corresponding
bi-partite graph.

V. EXPERIMENTS

We finally evaluate the performance of various algorithms -
including the proposed one - on a number of matrix completion
problems.We run a set of experiments on real and synthetic
data of various dimensions.

Synthetic Data: To compare the performance of algorithms,
we run the experiment on both the square and rectangular
matrices. We generate rectangular random matrices of rank 2
and 3 and of dimensions 2000×20 by a product of two random
matrices A = CFT , where the entries of C and F are sampled
from a uniform distribution on the interval between 0 and 1.
We also generate rank-2 and rank-3 random square matrices
of dimension 200 × 200. We then observe 33% and 40% of
the entries in rank-2 and rank-3 matrices uniformly at random,
respectively, where the observed entries are contaminated by
a centered multiplicative noise as Bij = Aij(1+σNij) where
σ > 0 and Nij is sampled from a uniform distribution on
the interval between -1 and 1. In this set of experiments, σ is
varied from 0.05 to 0.5 in the step of 0.05.

Real Data:We present the performance of the matrix com-
pletion algorithms on Movielens 1 and athletic performance2

datasets. Movielens 100K contains 100k ratings (1-5) from
1682 on 943 movies. Movielens 1m is a larger matrix of
dimensions (approximately) 6000×4000 where rows represent
the users, columns represent the movies and 1m entries are
known. Athletic Performance Dataset contains records of
16466 individuals of male athletes, comprising a total of 52350
individual performances over 10 different distances. We note
that the Movielens dataset is rather a square matrix while the
athletes dataset is an extremely rectangular matrix.

Algorithms: We compare the performance of RLMC, other
state-of-the-art and baseline algorithms in matrix completion.
For nuclear norm minimization, we use the implementation
from softImpute 3 R package. SoftImpute requires λ and an
initial guess of the rank as inputs. For spectral methods we

1http://grouplens.org/datasets/movielens/100k/
2www.thepowerof10.info
3https://cran.r-project.org/web/packages/softImpute/index.html

implement the OptSpace algorithm in [7] which requires the
rank as input. To tune the free-parameters of the algorithms
a grid-tuning strategy which performs a nested re-sampling
algorithm is used. We set the search space for the rank
parameter to 1 − 20 and for the regularizer parameter, λ to
0− 10. For comparison, we implement the so called Double-
Mean and Two Factor Model algorithms as baselines. In
Double-Mean the missing entry Aij is imputed by a linear
combination of the mean of observed entries in row i, mean
of observed entries in column j and the mean of all observed
entries. Two Factor Model assumes that the matrix A can
be represented by a linear regression model, Aij = wi + zj
where wi and zi are elements of the vectors w ∈ Rm×1

and z ∈ Rn×1 that are the factors of the model. These are
estimated by minimizing the residual sum of squares over all
observed entries.

Validation Setup: We employ a cross-validation strategy to
obtain the performance of algorithms. For parameter tunning
we use the grid-tuning strategy which performs a nested
resampling algorithm. We use 5-folds cross-validation for
outer and 3-folds cross-validation for inner re-sampling loop.
At each level the folds are sampled uniformly at random from
the entries represented in data frame format.

A. Results and Discussion

As performance measure, we compute root mean squared
error (RMSE) and mean absolute error (MAE). The results in
Table I show that, interestingly, none of the advanced algo-
rithms in matrix completion can perform better than baselines
on Movielens dataset. While the results are consistent across
both error measures, MAE and RMSE, the best performance
on predicting the movie rating is provided by the two factor
model algorithm followed by OptSpace algorithm. RLMC
with rank 1 and softImpute perform equally on Movielens-
100k while RLMC with rank 1 performs slightly better on
Movielens-1m. As expected OptSpace and SoftImpute perform
poorly in predicting athletics performance. As shown in ta-
ble I, RLMC algorithm with r = 2, significantly outperforms
the other stat-of-the-art and baseline algorithms in terms of
prediction accuracy across both measures RMSE and MAE.
In this set of experiments we find the reconstructing minors
by randomly sampling rows and columns.
Figure 1 demonstrate the benchmarking results on the syn-
thetic data. We repeat each experiment on 20 random matrices
and report the average result. Although the fraction of ob-
served/missing entries in both square and rectangular matrices
are the same, there is a significant difference between the
performance of the algorithms. We note that the performance
of the algorithms remain consistent across both MAE and
RMSE measures. While OptSpace has the poorest performance
in reconstructing both square and rectangular matrices, its
performance remains stable by the change in noise level.
SoftImpute performs better in square matrices, whereas RLMC
works better in tall (rectangular) matrices. This implies that
RLMC is the superior algorithm for real scenario data analytics
such as recommender systems/athletic performance prediction



MovieLens-100k MovieLens-1m Athletic Performance
Algorithm RMSE MAE RMSE MAE RMSE MAE

DoubleMean 0.983±0.005 0.760±0.004 0.936±0.001 0.736±0.001 0.913± 0.004 0.7070±0.0043
TwofacMod 0.971±0.004 0.744±0.005 0.913±0.001 0.7238±0.0009 0.5045± 0.0042 0.383±0.003
SoftImpute 1.001± 0.006 0.775±0.004 1.007±0.001 0.770±0.001 0.752± 0.013 0.229±0.005
OptSpace 0.978± 0.005 0.747 ± 0.004 0.917±0.001 0.7224 ± 0.0009 1.292± 0.008 1.4606 ± 0.0079

RLMC -r = 1 1.004±0.005 0.745±0.004 0.999 ±0.001 0.735±0.001 0.3818 ± 0.0009 0.2044 ± 0.0004
RLMC -r = 2 1.028±0.005 0.807±0.004 1.014±0.001 0.803±.001 0.1798 ± 0.0003 0.0212 ± 0.0003
RLMC -r = 3 1.033±0.004 0.819±0.005 1.025±0.001 0.807±0.001 0.2409 ± 0.0009 0.04159± 0.0004

TABLE I: Table of performances for benchmarking on Real datasets.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: Noise level versus out of sample prediction error. Figures 1a-1d and Figures 1e-1h show out of sample RMSE and MAE
for random square and rectangular matrices, respectively. The results are depicted in comparison to the baseline algorithm,
DoubleMean (Red curve).

where the set of items/standard distances is fixed while the
number of users/runners may grow. Furthermore, our results
are consistent with our expectations (as inferred by the theory
of nuclear norm minimization) in section II.

VI. CONCLUSION

This paper proposes a new robust entry-wise matrix com-
pletion algorithm. Both analytic and simulation results with
synthetic and real data suggest that the proposed algorithm
outperforms classical ones in the reconstruction of noisy
rectangular matrices arising in wide range of practical appli-
cations.

REFERENCES

[1] J. D. M. Rennie and N. Srebro, “Fast maximum margin matrix fac-
torization for collaborative prediction,” in Proceedings of the 22Nd
International Conference on Machine Learning, ser. ICML ’05, 2005,
pp. 713–719.

[2] D. A. J. Blythe and F. J. Kiràly, “Prediction and quantification of
individual athletic performance of runners,” PLoS ONE, vol. 11, 06 2016.

[3] K. Q. Weinberger and L. K. Saul, “Unsupervised learning of image
manifolds by semidefinite programming,” Int. J. Comput. Vision, vol. 70,
no. 1, pp. 77–90, Oct. 2006.

[4] N. Ruchansky, M. Crovella, and E. Terzi, “Matrix completion with
queries,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’15.
New York, NY, USA: ACM, 2015, pp. 1025–1034. [Online]. Available:
http://doi.acm.org/10.1145/2783258.2783259

[5] A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying, “A spectral reg-
ularization framework for multi-task structure learning,” in Proceedings
of the 20th International Conference on Neural Information Processing
Systems, ser. NIPS’07, 2007, pp. 25–32.

[6] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational Mathematics, vol. 9, pp.
717–772, 2009.

[7] R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion from a
few entries,” IEEE Trans. Inf. Theor., vol. 56, no. 6, pp. 2980–2998,
Jun. 2010.

[8] F. Király, L. Theran, and R. Tomioka, “The algebraic combinatorial
approach for low-rank matrix completion,” Journal of Machine Learning
Research, vol. 16, pp. 1391–1436, 2015.

[9] F. Kiraly and L. Theran, “Error-minimizing estimates and universal
entry-wise error bounds for low-rank matrix completion,” pp. 2364–
2372, 2013.

[10] E. J. Candès and T. Tao, “The power of convex relaxation: Near-optimal
matrix completion,” IEEE Trans. Inf. Theor., vol. 56, no. 5, pp. 2053–
2080, May 2010.

[11] R. Meka, P. Jainand, and I. S. Dhillon, “Guaranteed rank minimization
via singular value projection,” in Advances in Neural Information
Processing Systems 23. Curran Associates, Inc., 2010, pp. 937–945.

[12] F. Király and R. Tomioka, “A combinatorial algebraic approach for the
identifiability of low-rank matrix completion,” in Advances in Neural
Information Processing Systems 23. Published in ICML Proceedings.,
2012.

[13] B. Recht, “A simpler approach to matrix completion,” J. Mach. Learn.
Res., vol. 12, pp. 3413–3430, Dec. 2011.

[14] E. J. Candes and Y. Plan, “Matrix completion with noise,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 925–936, June 2010.

[15] R. H. Keshavan, A. Montanari, and S. Oh, “Matrix completion from
noisy entries,” J. Mach. Learn. Res., vol. 11, pp. 2057–2078, Aug. 2010.


