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Abstract

Concurrent Kleene Algebra (CKA) is a formalism to study concurrent pro-
grams. Like previous Kleene Algebra extensions, developing a correspondence
between denotational and operational perspectives is important, for both
foundations and applications. This paper takes an important step towards
such a correspondence, by precisely relating bi-Kleene Algebra (BKA), a
fragment of CKA, to a novel type of automata, pomset automata (PAs).

We show that PAs can implement the BKA semantics of series-parallel
rational expressions, and that a class of PAs can be translated back to these
expressions. We also characterise the behavior of general PAs in terms of
context-free pomset grammars; consequently, universality, equivalence and
series-parallel rationality of general PAs are undecidable.
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1. Introduction

In their CONCUR’09 paper [2], Hoare, Möller, Struth, and Wehrman
introduced Concurrent Kleene Algebra (CKA) as a mathematical framework
suitable for the study of concurrent programs, in the hope of achieving the
same elegance that Kozen did when using Kleene Algebra (KA) and extensions
to provide a verification platform for sequential programs.
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CKA is a seemingly simple extension of KA: it adds parallel analogues to
the sequential composition and Kleene star operators, as well as the exchange
law, which axiomatises interleaving. Extending the KA toolkit, however, is
challenging; in particular, an operational perspective is missing. In contrast,
the correspondence between denotational and operational aspects of KA is
well-understood through Kleene’s theorem [3], which provided a pillar for
characterising the free model [4] and establishing a decision procedure [5].

With this in mind, we pursue a version of Kleene’s theorem for CKA.
Specifically, we study series-parallel rational expressions (spr-expressions),
with a denotational model in terms of pomset languages. Our main contribu-
tion is a theorem which faithfully relates these expressions to a newly defined
automaton model, called pomset automata (PAs). In a nutshell, PAs are
automata where traces from certain states may branch into parallel threads;
these threads contribute to the language when both reach an accepting state.

We are not the first to attempt such a characterisation. However, earlier
works [6, 7] fall short of giving a precise correspondence between the denota-
tional and operational models, due to the lack of a structural restriction on
automata ensuring that only valid behaviours are accepted. In contrast, we
propose such a restriction, which guarantees the soundness of a translation
from the operational to the denotational model. Furthermore, we propose a
generalisation of Brzozowski derivatives [8] in the translation from expressions
to automata, avoiding unnecessary ε-transitions and non-determinism that
would result from a construction in the style of Thompson [9].

Since our denotational model does not take interleaving into account
(and hence is not sound for the exchange law), our work is most accurately
described as an operational model for bi-Kleene Algebra (BKA) [10]. We
leave it to future work to incorporate the exchange law.

This work extends the conference paper [1] published at CONCUR’17
with previously omitted proofs and two new results. The first is the extension
of the main theorem to incorporate the parallel variant of the Kleene star
operator. The second is a characterisation of the behaviors of finite pomset
automata in terms of context-free grammars (CFGs) [11].

The paper is organised as follows. We recall preliminaries in Section 2,
and introduce PAs in Section 3. We translate a class of PAs to equivalent
spr-expressions in Section 4, and describe the reverse construction in Section 5.
We characterise finite PAs in terms of CFGs in Section 6. We discuss related
work in Section 7; directions for further work appear in Section 8.
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To preserve the flow of the narrative, some proofs appear in the appendices;
routine proofs are omitted altogether.

2. Preliminaries

Let S be a set; we write 2S for the set of all subsets of S. We refer to a
relation ≺ on S as well-founded if there are no infinite descending ≺-chains,
i.e., no {sn}n∈N ⊆ S such that for all n ∈ N it holds that sn+1 ≺ sn.

Throughout the paper we fix a finite set Σ called the alphabet, whose
elements are symbols usually denoted by a, b, etc. Lastly, if → ⊆ X × Y ×Z
is a ternary relation, we write x

y−→ z instead of 〈x, y, z〉 ∈ →.

2.1. Pomsets

Partially-ordered multisets, or pomsets [12, 13] for short, generalise words
to a setting where actions (elements from Σ) may take place not just sequen-
tially, but also in parallel. We recall a rigorous definition of pomsets, as well
as some useful fundamental notions from literature [12, 13, 6, 14, 10].

Definition 2.1. A labelled poset is a tuple 〈C,≤C , λC〉 consisting of a carrier
set C, a partial order ≤ on C and a labelling λ : C → Σ.

A labelled poset isomorphism is a bijection between carriers that bijectively
preserves labels and ordering. A pomset is an isomorphism class of labelled
posets; we use 〈|C,≤, λ|〉 to denote the pomset represented by 〈C,≤, λ〉.

For instance, suppose a recipe for caramel-glazed cookies tells us to
(i) prepare cookie dough, (ii) bake cookies in the oven, (iii) caramelise sugar,
(iv) glaze the finished cookies. Here, step (i) precedes steps (ii) and (iii).
Furthermore, step (iv) succeeds both steps (ii) and (iii). A pomset representing
this process could be U = 〈|CU ,≤U , λU |〉, where CU = {(i), (ii), (iii), (iv)} and
≤U is such that (i) ≤U (ii) ≤U (iv) and (i) ≤U (iii) ≤U (iv); λU associates
with the elements of CU the corresponding steps in the recipe.

We use Pom to denote the collection of all pomsets. Labelled posets and
pomsets with a countable carrier suffice for our purposes. For this reason,
we can (w.l.o.g.) adopt the convention that the carrier of a labelled poset
representing a pomset is a subset of N, which makes Pom a proper set.

Words over Σ are identified with totally ordered pomsets; multisets over
Σ are similarly identified with pomsets having a discrete (diagonal) order.
We write 1 for the empty pomset, and use a ∈ Σ to refer to the primitive
pomset with a single point labelled a (and the obvious order). Finally, we
use the symbols U, V, . . . to denote pomsets.
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Definition 2.2. Let U = 〈|CU ,≤U , λU |〉 and V = 〈|CV ,≤V , λV |〉 be pomsets.
Without loss of generality, we can assume that CU and CV are disjoint.

The sequential composition of U and V , denoted U · V , is the pomset

〈|CU ∪ CV , ≤U ∪ ≤V ∪ (CU × CV ), λU ∪ λV |〉

The parallel composition of U and V , denoted U ‖ V , is the pomset

〈|CU ∪ CV , ≤U ∪ ≤V , λU ∪ λV |〉

Here, λU ∪ λV : CU ∪ CV → Σ agrees with λU on CU , and with λV on CV .

As a convention, sequential composition takes precedence over parallel
composition, i.e., U · V ‖ W is read as (U · V ) ‖ W .

Sequential composition forces the events in the left pomset to be ordered
before those in the right pomset. We note that these operators are well-defined
modulo isomorphism of labelled posets, and that the empty pomset 1 is the
unit for both sequential and parallel composition.

Definition 2.3. The set of series-parallel pomsets [12, 13], Pomsp, is the
smallest subset of Pom that includes the empty and primitive pomsets and is
closed under sequential and parallel composition.

In this paper we concern ourselves with series-parallel pomsets. For
inductive reasoning, it is useful to recall part of [12, Theorem 3.1].

Lemma 2.4. Let U ∈ Pomsp. If U is non-empty, then exactly one of the
following is true: (i) U = a for some a ∈ Σ, or (ii) U = V ·W for non-empty
V,W ∈ Pomsp, strictly smaller than U , or (iii) U = V ‖ W for non-empty
V,W ∈ Pomsp, strictly smaller than U .

We can quantify the degree of nesting of parallel and sequential composition
of a series-parallel pomset as follows.

Definition 2.5. The depth of a series-parallel pomset U [14], denoted ∂(U),
is defined inductively, as follows. First, if U = 1, then ∂(U) = 0. Second,
if U = a for some a ∈ Σ, then ∂(U) = 1. Third, if U = U0 · · ·Un−1 or
U = U0 ‖ · · · ‖ Un−1 for non-empty pomsets U0, . . . , Un−1, and n > 1 is
maximal for such a decomposition, then

∂(U) = max(∂(U0), . . . , ∂(Un−1)) + 1

Note that depth is always well-defined, as a consequence of Lemma 2.4.
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2.2. Pomset languages

We can group the words that represent traces arising from a sequential
program into a set called a language. By analogy, we can group the pomsets
that represent the traces arising from a parallel program into a pomset
language. We use calligraphic symbols U ,V , . . . to denote pomset languages.

For instance, suppose that the recipe for glazed cookies has an optional
fifth step where chocolate sprinkles are spread over the cookies. In that case,
there are two pomsets that describe a trace arising from the recipe, U+ and
U−, either with or without the chocolate sprinkles. The pomset language
U = {U−, U+} contains the traces that arise from the new recipe.

The composition operators for pomsets can be lifted to pomset languages.
There also exist two types of Kleene closure operator, similar to the one
defined on languages of words, for both parallel and sequential composition.

Definition 2.6. Let U and V be pomset languages. We define:

U · V = {U · V : U ∈ U , V ∈ V} U∗ =
⋃
n∈N

Un

U ‖ V = {U ‖ V : U ∈ U , V ∈ V} U † =
⋃
n∈N

U (n)

in which U0 = U (0) = {1}, and for all n ∈ N we define

Un+1 = U · Un U (n+1) = U ‖ U (n)

Sequential Kleene closure models indefinite repetition. For instance, if our
cookie recipe has a final step “repeat as necessary”, the pomset language U∗
represents all possible traces of repetitions of the recipe; e.g., U+ ·U+ ·U− ∈ U∗
is the trace where first two batches of sprinkled cookies are made, followed by
one without sprinkles. In contrast, parallel Kleene closure models unbounded
parallelism; in this case, U † represents all possible traces of parallel executions
of the recipe; e.g., U+ ‖ U− ∈ U † is the trace where we make two batches of
cookies in parallel, one with and one without sprinkles.

2.3. Series-parallel rational expressions

Just as a rational expression can be used to describe a rational structure
of sequential events, so too can a series-parallel rational expression be used
to describe a rational structure of possibly parallel events. Series-parallel
rational expressions can be thought of as rational expressions with parallel
composition, as well as a parallel analogue to the Kleene star.
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Definition 2.7. We use T to denote the set of series-parallel rational expres-
sions (spr-expressions, for short) [6], formed by the grammar

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e ‖ f | e∗ | e†

For a closed propositional formula Φ, we write [Φ] as shorthand for 1 if Φ is
satisfied, and 0 otherwise. We use e, f , g and h to denote spr-expressions.

Series-rational expressions have a semantics in terms of pomset languages.

Definition 2.8. The function v−w : T → 2Pomsp
is defined [6] inductively:

v0w = ∅ vaw = {a} ve · fw = vew · vfw ve∗w = vew ∗

v1w = {1} ve+ fw = vew ∪ vfw ve ‖ fw = vew ‖ vfw ve†w = vew †

If U ⊆ Pomsp such that U = vew for some e ∈ T , then U is said to be a
series-parallel rational language, or spr-language for short.

To illustrate, recall the pomset language U∗ = {U+, U−}∗. We can describe
{U−} and {U+} with the series-parallel rational expressions

e− = prepare · (bake ‖ caramelise) · glaze e+ = e− · sprinkle

which yields the spr-expression e = e− + e+ for U ; hence, ve∗w = U∗.
Note that spr-expressions without ‖ and † are rational expressions, and

spr-expressions without · and ∗ are commutative rational expressions [15]. To
see that spr-expressions are a proper extension of rational and commutative
rational expressions, we observe the following.

Lemma 2.9. Let e ∈ T . The following are true. (i) If vew consists of words,
then vew is a rational language. (ii) If vew consists of multisets, then vew is a
commutative rational language.

We conclude our discussion of pomset languages by recalling the following
lemma, which is useful when analysing the series-parallel rationality of a
language. For details, refer to [6, 10].

Lemma 2.10. If U is an spr-language, then there exists an n ∈ N such that
for all U ∈ U it holds that ∂(U) ≤ n.

More specifically, the above lemma tells us that when we want to show
that a pomset language U is not series-parallel rational, it suffices to find a
sequence {Un}n∈N ⊆ U such that for n ∈ N we have ∂(Un) < ∂(Un+1).
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3. Pomset Automata

We now describe an automaton model to recognise pomset languages.

Definition 3.1. A pomset automaton (PA) is a tuple 〈Q, δ, γ, F 〉 where Q is
a set of states, with F ⊆ Q the accepting states ; δ : Q× Σ→ Q is a function
called the sequential transition function, and γ : Q×Q×Q→ Q is a function
called the parallel transition function.

We do not fix an initial state; thus, a PA does not define a single pomset
language but rather a mapping from states to pomset languages. This mapping
is defined in terms of a trace relation arising from δ and γ, as follows.

Definition 3.2. Let A = 〈Q, δ, γ, F 〉 be a PA. We define→A ⊆ Q×Pomsp×Q
as the smallest relation that satisfies the rules

q ∈ Q
q 1−→A q

q ∈ Q a ∈ Σ

q a−→A δ(q, a)

q U−→A q
′′

q′′ V−→A q
′

q U ·V−−→A q
′

r U−→A r
′ ∈ F

s V−→A s
′ ∈ F

q U‖V−−→A γ(q, r, s)

The language of A at q ∈ Q is LA(q) =
{
U ∈ Pomsp : ∃q′ ∈ F. q U−→A q

′}. We
say that A accepts the pomset language U if LA(q) = U for some q ∈ Q.

In the above, δ plays the same role as in classic finite automata: given a
state and a symbol, it returns the new state after reading that symbol. The
function γ deserves a bit more explanation: given states q, r, s ∈ Q, it tells us
the state that is reached from q after reading two pomsets in parallel starting
at states r and s, and having both reach an accepting state.

For the remainder of this section, we fix a PA A = 〈Q, δ, γ, F 〉. Individual
triplets in the trace relation are referred to as traces. It is useful to establish
some terminology when referring to traces. Specifically, for all q ∈ Q:

• We define q 1−→A q as a trivial trace.

• For all a ∈ Σ, we define q a−→A δ(q, a) as a δ-trace.

• For all traces r U−→A r
′ and s V−→A s

′ with r′, s′ ∈ F , we define q U‖V−−→A

γ(q, r, s) as a γ-trace.

The δ-traces and γ-traces are collectively known as unit traces.
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q0 q1

q3

q4

q2 >
prepare

bake

caramelise

glaze

Figure 1: Pomset automaton accepting U .

To simplify matters later on, we assume that every PA A has states
⊥ ∈ Q \ F and > ∈ F such that (i) for all a ∈ Σ, it holds that δ(⊥, a) =
δ(>, a) = ⊥, and (ii) for all r, s ∈ Q, it holds that γ(⊥, r, s) = γ(>, r, s) = ⊥.

The state ⊥ is useful when defining γ: for a fixed q ∈ Q, not all r, s ∈ Q
may give a value of γ(q, r, s) that contributes to LA(q); in such cases, we set
γ(q, r, s) = ⊥.1 The state > fulfills a similar role: it is used to signal that the
target of a parallel transition accepts, but allows no further continuation of
the trace; this will be important in Section 4, when we describe a class of
pomset automata that admit a translation back to spr-expressions.

Lemma 3.3. Let q U−→A q
′ be non-trivial. If q = ⊥ or q = >, then q′ = ⊥.

We draw a PA in a way similar to finite automata: each state (except ⊥)
is a vertex, and accepting states are marked by a double border. To represent
sequential transitions, we draw labelled edges; for instance, in Figure 1,
δ(q0, prepare) = q1. To represent parallel transitions, we draw hyper-edges;
for instance, in Figure 1, γ(q1, q3, q4) = q2. To avoid clutter, we do not draw
either of these edge types when the target state is ⊥. It is not hard to verify
that the pomset U of the earlier example is accepted by the PA in Figure 1.

3.1. Finite support

Deterministic automata with infinitely many states can accept non-rational
languages. Since spr-languages extend rational languages by Lemma 2.9, and
PAs obviously extend deterministic automata, it follows that allowing PAs
with infinitely many states would dash our hopes of a Kleene theorem.

1Alternatively, we could have allowed γ to be a partial function; including ⊥ as a state,
however, will simplify part of our construction in Section 5.
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On the other hand, it is useful to work with PAs that have infinitely many
states, as we shall see in Section 5. To strike a middle ground, we identify a
class of PAs with possibly infinitely many states that, for any state q, allow a
restriction to a PA with finitely many states accepting the language of q.

Definition 3.4. The trace dependency relation of A, denoted �A, is the
smallest preorder on Q that satisfies the rules

q, r, s ∈ Q γ(q, r, s) 6= ⊥
r, s �A q

a ∈ Σ q ∈ Q
δ(q, a) �A q

q, r, s ∈ Q
γ(q, r, s) �A q

It should be emphasised that, in general, �A is not a partial order — anti-
symmetry may fail because of loops in the transition structure.

We write ≺A for the strict trace dependency relation, which is the strict
order that arises by setting q ≺A q′ if and only if q �A q′ and q′ 6�A q.

Definition 3.5. We say that Q′ ⊆ Q is closed in A when Q′ is downward-
closed with respect to �A — that is, for all q ∈ Q′ and r ∈ Q such that
r �A q, it follows that r ∈ Q′. We write πA(q) for the support of q in A,
which is the smallest closed subset of Q that contains q. We say that A is
finitely supported if for all q ∈ Q it holds that πA(q) is finite.

With this definition, the following is not hard to see.

Lemma 3.6. If A is finitely supported, then for every q ∈ Q there exists a
finite pomset automaton Aq with a state q′, such that LA(q) = LAq(q

′).

Finite support is also useful in that it ensures well-foundedness of the
strict trace dependency relation.

Lemma 3.7. If A is finitely supported, then ≺A is well-founded.

3.2. Trace length

We conclude this section with the following technical lemma, which gives
us an alternative inductive handle for the lemmas to come.

Lemma 3.8. If q U−→A q′, then there exist q0, . . . , q` ∈ Q with q = q0 and
q` = q′, and U = U0 · · ·U`−1 such that for 0 ≤ i < ` it holds that qi Ui−→A qi+1.
Furthermore, each of these traces is a unit trace.

The minimal ` for a given trace as obtained from the above lemma is
known as the length of the trace. Note that a trace of zero length is necessarily
trivial, and a trace of unit length is necessarily a unit trace.
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q1

q2

>

a

b

(a) A0

q3

q4

>

q5

b

a

(b) A1

Figure 2: Finitely supported pomset automata that accept languages of unbounded depth.

4. Automata to expressions

Let us fix a finitely supported PA A = 〈Q, δ, γ, F 〉. We set out to find
for every q ∈ Q an eq ∈ T such that LA(q) = veqw. Before we get started,
however, it should be noted that not all finitely supported (or even finite)
pomset automata admit such a translation. This is because δ and γ can
conspire to create a state with a language of unbounded depth; Lemma 2.10
then tells us that the corresponding spr-expression cannot exist.

Example 4.1. Consider the PA A0 in Figure 2a. Here, we have that

q1
a−→A0

δ(q1, a) = q1 q2
b−→A0

δ(q2, b) = >

Since q1,> ∈ F , we find q1
a‖b−−→A0

γ(q1, q1, q2) = > and q1
a·(a‖b)−−−−→A0

>. Hence,

q1
a·(a‖b)‖b−−−−−→A0

γ(q1, q1, q2) = > q1
a·(a·(a‖b)‖b)−−−−−−−→A0

>

We can repeat this indefinitely, thereby showing that

{1, a, a ‖ b, a · (a ‖ b), a · (a ‖ b) ‖ b, . . .} ⊆ LA0(q1)

Consequently, there is no e ∈ T such that LA0(q1) = vew, by Lemma 2.10.

Example 4.2. Consider the PA A1 in Figure 2b. Here, we have that

q5
a−→A1

δ(q5, a) = > q4
b−→A1

δ(q4, b) = > q3
1−→A1

q3

Since q3 ∈ F , we find q3
1‖a−−→A1

γ(q3, q3, q5) = q4 and q3
a·b−→A1

>. Hence,

q3
a·b‖a−−−→A1

γ(q3, q3, q5) = q4 q3
(a·b‖a)·b−−−−→A1

>

We can repeat the above to show that {1, a · b, ((a · b) ‖ a) · b, . . .} ⊆ LA1(q3).
By Lemma 2.10, we then find that there is no e ∈ T with LA1(q3) = vew.
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q0

q1 q2 q3

q4 q5

U

X

W
V

Figure 3: A template for a state with a language of unbounded depth.

To get around the problem of unbounded languages, we structurally
restrict pomset automata in such a way that such behavior is excluded. To
do this, we need to get a handle on the constellation of states and transitions
common to the examples above that allows the depth of the pomset languages
accepted by A0 and A1 to run amok; this is done in the following lemma.

Lemma 4.3. Let q0, q2, q4 ∈ Q and q1, q3, q5 ∈ F . Let U, V,W,X ∈ Pomsp be
such that the following (c.f. Figure 3) hold:

q0
U−→A q1 q0

V−→A q0 q2
X−→A q3 q4

W−→A q5 γ(q0, q2, q0) = q4

If X 6= 1, and moreover W 6= 1 or V 6= 1, then LA(q0) has unbounded depth.

Proof. Suppose that Y ∈ LA(q0), i.e., q0
Y−→A q

′ for some q′ ∈ F . Given the
traces and the fork transition in the premises, we can then derive that

q0
(X‖(V ·Y ))·W−−−−−−−−→ q5 ∈ F

and hence (X ‖ (V · Y )) ·W ∈ LA(q0). Thus, LA(q0) is closed under

f : Pomsp → Pomsp given by f(−) = (X ‖ (V · −)) ·W

By the premise that X 6= 1 as well as W 6= 1 or V 6= 1, it follows that for
Y ∈ Pomsp we have ∂(Y ) < ∂(f(Y )). Because U ∈ LA(q0), we can point to
{U, f(U), f 2(U), . . .} as a set of unbounded depth contained in LA(q0), and
thus conclude that this pomset language has unbounded depth.

To counteract the pattern summarised above, we propose the following.
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Definition 4.4. We say that q ∈ Q is sequential if for all r, s ∈ Q with
γ(q, r, s) 6= ⊥, it holds that r, s ≺A q. We say that q ∈ F is recursive if
(i) it is not sequential, and (ii) for all a ∈ Σ we have δ(q, a) = ⊥, and (iii) if
r, s ∈ Q and γ(q, r, s) 6= ⊥, then s = q and r ≺A q, and γ(q, r, s) = >.

We write Qseq (resp. Qrec) for the set of states in Q that are sequential
(resp. recursive), and say that A is well-nested if Q = Qseq ∪Qrec.

One easily sees that A0 and A1 are not well-nested: neither q1 nor q3

is sequential, because of their self-forks, but q1 is not recursive because
δ(q1, a) = q1 6= ⊥, and q3 is not recursive because γ(q3, q5, q3) = q4 6∈ {>,⊥}.

As a matter of fact, Definition 4.4 is slightly overzealous — strictly
speaking, there are non-well-nested PAs which accept spr-languages exclusively.
We will show in Section 6 that checking for series-parallel rationality of a finite
PA is undecidable, and must therefore accept that any decidable restriction
that enforces series-parallel rationality will forbid certain valid automata.

In Section 5, we shall associate with every spr-expression e a finitely sup-
ported and well-nested PA that accepts vew. The bi-directional correspondence
between spr-expressions and pomset automata is therefore maintained.

To ease notation, we assume for the remainder of this section that A is
well-nested. We shall establish that for every state q of A there exists an
spr-expression eq such that LA(q) = veqw. Since ≺A is well-founded, we can
proceed by induction on ≺A, i.e., the induction hypothesis for q is that for all
r ∈ Q with r ≺A q we can construct an er ∈ T such that verw = LA(r).

The language of a recursive state is not very hard to characterise.

Lemma 4.5. If q ∈ Qrec, then

LA(q) =

(⋃
γ(q,r,q)=>

LA(r)

)†
The languages of sequential states for which our induction hypothesis

holds can also be characterised. To do this, we modify the procedure for
finding a rational expression for a state in a finite automaton [16].

Definition 4.6. Let S ⊆ Qseq, and suppose that for all s ∈ S, the induction
hypothesis for s holds. For q ∈ S and q′ ∈ Q, we define eSqq′ ∈ T , as follows.

If q′ = ⊥, we set eSqq′ = 0. For the remaining cases, we define eSqq′ inductively.
If S = ∅, then

eSqq′ = [q = q′] +
∑

δ(q,a)=q′

a+
∑

γ(q,r,s)=q′

er ‖ es
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Otherwise, let q′′ be some element of S, and let S ′ = S \ {q′′}; then

eSqq′ = eS
′

qq′ + eS
′

qq′′ ·
(
eS
′

q′′q′′

)∗
· eS′q′′q′

Note that e∅qq′ is well-defined, for if γ(q, r, s) = q′ 6= ⊥, then r, s ≺A q by
the fact that q is sequential, and thus er and es exist. Also, the second sum
is finite by the fact that A is finitely supported.

Lemma 4.7. Let S ⊆ Qseq, and suppose that for all s ∈ S, the induction
hypothesis holds. Let q ∈ S and q′ ∈ Q. Then U ∈ veSqq′w if and only if q′ 6= ⊥
and there exist q0, . . . , q`−1 ∈ S, and U = U0 · · ·U`−1 with

q = q0
U0−→A q1

U1−→A . . .
U`−2−−−→A q`−1

U`−1−−−→A q` = q′

and, furthermore, for 0 ≤ i < ` we have that qi Ui−→A qi+1 is a unit trace.

With all this in hand, we are finally ready to construct series-parallel
rational expressions from pomset automata.

Lemma 4.8. If the induction hypothesis for q holds, then we can construct
an eq ∈ T such that veqw = LA(q).

Proof. More generally, we show that for q′ ∈ Q with q �A q′ �A q, we can
find eq′ ∈ T such that LA(q′) = eq′ . We partition these states as follows

R = {q′ ∈ Qrec : q �A q′ �A q}
S = {q′ ∈ Qseq : q �A q′ �A q}

Note that the induction hypothesis holds for all states in R∪S: if r ≺A q′ �A q,
then r ≺A q; hence, for r we can find an expression er, such that verw = LA(r).
Furthermore, R and S are finite, for A is finitely supported.

We carry on to find expressions for the languages of states in R. To this
end, we define for q′ ∈ R that

eq′ =

(∑
γ(q′,r,q′)=>

er

)†
The above is well-defined, for if γ(q′, r, q′) = >, then r ≺A q′, and thus er ∈ T
exists. Since A is finitely supported, the sum is finite. By Lemma 4.5, we find

veq′w =

(⋃
γ(q′,r,q′)=>

verw

)†
=

(⋃
γ(q′,r,q′)=>

LA(r)

)†
= LA(q′)
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We now consider the states in S. For q′ ∈ S, we define

eq′ =
∑
r∈S∩F

eSq′r +
∑
r∈R

eSq′r · er +
∑
r≺Aq′

eSq′r · er

This expression is again well-defined, for all sums are finite, and er exists when
r ∈ R or r ≺A q′ by the above, and furthermore the induction hypothesis
holds for all r ∈ S by the observation above.

It remains to show that, for q′ ∈ S, it holds that veq′w = LA(q′). For the
inclusion from left to right, suppose that U ∈ veq′w. There are two cases.

• If U ∈ veSq′rw for r ∈ S ∩ F , then by Lemma 4.7 we find that q′ U−→A r.
Since r ∈ F , also U ∈ LA(q′).

• If U ∈ veSq′r · erw for some r ∈ R or r ∈ Q with r ≺A q′, then U = V ·W
such that V ∈ veSq′rw and W ∈ verw. By Lemma 4.7, we find that

q′ V−→A r; also, we find that r W−→A r
′ for some r′ ∈ F . Together, this

implies that q′ V ·W−−→A r, and since r ∈ F also U = V ·W ∈ LA(q′).

For the other inclusion, suppose that U ∈ LA(q′), i.e., q′ U−→ r for some
r ∈ F . By Lemma 3.8, there exist q0, . . . , qn ∈ Q with q′ = q0 and r = qn,
and U = U0 · · ·Un−1, such that for 1 ≤ i < n it holds that qi Ui−→A qi+1.
Furthermore, each of these traces is a unit trace. If q1, . . . , qn ∈ S, then
U ∈ veSq′rw ⊆ veq′w by Lemma 4.7.

Otherwise, i.e., if qi 6∈ S for some 0 < i ≤ n, let m be the smallest such
i, and note that Um · · ·Un−1 ∈ LA(qm). Furthermore, for 0 ≤ i < m we have
that qi ∈ S, and thus U0 · · ·Um−1 ∈ veSq′qmw, by Lemma 4.7. There are two
cases to consider.

• If qm ∈ R, then LA(qm) = veqmw by the above. We conclude that

U = U0 · · ·Um−1 · Um · · ·Un−1 ∈
0

eSq′qm · eqm
8

⊆ veq′w

• Otherwise, if qm 6∈ R, then since also qm 6∈ S, we know that q 6�A qm or
qm 6�A q. The latter case can be excluded, for qm �A q′ �A q. We thus
know that q 6�A qm, and since q �A q′, also q′ 6�A qm. Together with
qm �A q′, it follows that qm ≺A q′; an argument similar to the previous
case completes the proof.

The above establishes the main result of this section.

Theorem 4.9. Let A be a well-nested and finitely supported pomset automa-
ton. For all states q of A, we can find eq ∈ T such that veqw = LA(q).

14



5. Expressions to automata

We now turn our attention to the task of constructing a pomset automaton
A that accepts the semantics of a given expression e. Since our algorithm
for obtaining expressions from a pomset automaton is sound for finitely
supported and well-nested PAs only, A should also satisfy these constraints.
Our approach follows Brzozowski’s method for constructing a deterministic
finite automaton that accepts the semantics of a rational expression [8].
More precisely, we construct a finitely supported and well-nested automaton
AΣ, such that for every spr-expression e there exists a state qe such that
LA(qe) = vew. Intuitively, the transition structure of AΣ is set up such that
the automaton can transition from the state representing e to the state
representing e′ while reading a if and only if e′ is what “remains” of e after
consuming a — traditionally, this e′ is called the a-derivative of e.

The encoding of spr-expressions into states requires some care. Specifically,
if we choose to have a state for every spr-expression, it turns out that the
resulting automaton is not finitely supported. This is not surprising; indeed,
Brzozowski dealt with the same problem [8]. The solution is to encode spr-
expressions into states by representing them as the equivalence classes of a
congruence that is sound with respect to their semantics.

Definition 5.1. We define ' as the smallest congruence on T such that:

e+ 0 ' e e+ e ' e e+ f ' f + e

e+ (f + g) ' (e+ f) + g (e+ f) · g ' e · g + f · g

Thus, when e ' f , we know that e is equal to f , modulo associativity,
commutativity and idempotence of +, and left-distributivity of + over ·. This
congruence is decidable in polynomial time.

The set of equivalence classes of T modulo ' is written T'. To lighten
notation, we represent the equivalence class of e ∈ T up to ' by simply
writing e; it will always be clear from the context whether we intend e as an
element of T or T'. We elide lemmas showing that our definitions are sound
w.r.t. '; arguments of this nature appear in Appendix C.6.

In analogy to Brzozowski’s construction, where the accepting states are
the rational expressions accepting the empty word, we use spr-expressions
accepting the empty pomset as accepting states of our PA.
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Definition 5.2. We define the set F as the smallest subset of T satisfying

1 ∈ F
e ∈ F f ∈ T
e+ f, f + e ∈ F

e, f ∈ F
e · f ∈ F

e, f ∈ F
e ‖ f ∈ F

e ∈ T
e∗, e† ∈ F

Lemma 5.3. Let e ∈ T ; then e ∈ F if and only if 1 ∈ vew.

We write F' to denote the set of congruence classes in F w.r.t. '. Having
identified the accepting states, we move on to the transition functions.

Definition 5.4. Let e, f ∈ T'. We use e ? f to denote f when e ∈ F', and
0 otherwise; similarly, we write e # f for 0 when e ' 0, and e · f otherwise.

We define the function δΣ : T' × Σ→ T' as follows:

δΣ(0, a) = 0 δΣ(e · f, a) = δΣ(e, a) # f + e ? δΣ(f, a)

δΣ(1, a) = 0 δΣ(e ‖ f, a) = 0

δΣ(b, a) = [a = b] δΣ(e+ f, a) = δΣ(e, a) + δΣ(f, a)

δΣ(e∗, a) = δΣ(e, a) # e∗ δΣ(e†, a) = 0

Furthermore, the function γΣ : T' × T' × T' → T' is defined as follows:

γΣ(0, g, h) = 0 γΣ(e · f, g, h) = γΣ(e, g, h) # f + e ? γΣ(f, g, h)

γΣ(1, g, h) = 0 γΣ(e ‖ f, g, h) = [g ' e ∧ h ' f ]

γΣ(b, g, h) = 0 γΣ(e+ f, g, h) = γΣ(e, g, h) + γΣ(f, g, h)

γΣ(e∗, g, h) = γΣ(e, g, h) # e∗ γΣ(e†, g, h) = [g ' e ∧ h ' e†]

We write AΣ for the syntactic pomset automaton, which is 〈T', δΣ, γΣ,F'〉.
In this PA, the states 0 and 1 assume the roles of ⊥ and > respectively.

We refer to δΣ (respectively γΣ) as the sequential (respectively parallel)
derivative functions. The (strict) trace dependency relation of AΣ is denoted
�Σ (respectively ≺Σ). Similarly, the trace relation of AΣ is denoted by →Σ,
and we write LΣ(e) for the language of e ∈ T' in AΣ.

We now claim that, first, AΣ is finitely supported and well-nested, and
that, second, for e ∈ T it holds that LΣ(e) = vew. The following two sections
are devoted to showing that both of these hold, respectively.
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5.1. Structural properties

Let us start by arguing that the syntactic PA is finitely supported. To
this end, we should show that for every e ∈ T , the set πΣ(e) is finite; since
this set is the smallest closed set (w.r.t. �Σ) containing e, it suffices to find a
finite and closed set containing e. To shorten the proof, however, it is useful
to introduce the following, more general notion.

Definition 5.5. Let E ⊆ T and e ∈ T . If there exist e0, . . . , en−1 ∈ E such
that e ' e0 + · · ·+ en−1, we say that E covers e. Furthermore, we say that
E is cover-closed if, whenever f ∈ E and g �Σ f , it holds that E covers g.

Cover-closed sets then give us a way to show finite support, as follows.

Lemma 5.6. Let e ∈ T . If e is covered by a finite and cover-closed set, then
e is contained in a finite and closed set (and hence πΣ(e) is finite).

Showing finite support then comes down to finding a finite and cover-closed
set for every expression, which can be done by induction on the expression.

Lemma 5.7. The syntactic PA is finitely supported.

As part of the argument showing that the syntactic PA is well-nested, we
need to show that e ≺Σ f for some spr-expressions. To this end, it must be
shown that f 6�Σ e; since it is hard to prove this directly from the inductive
definition of �Σ, we introduce the following to argue f 6�Σ e indirectly.

Definition 5.8. We define d‖ : T → N inductively, as follows:

d‖(0) = 0 d‖(e0 · e1) = max(d‖(e0), d‖(e1))

d‖(1) = 0 d‖(e0 ‖ e1) = max(d‖(e0), d‖(e1)) + 1

d‖(a) = 0 d‖(e0 + e1) = max(d‖(e0), d‖(e1))

d‖(e
∗
0) = d‖(e0) d‖(e

†
0) = d‖(e0)

We also define d† : T → N inductively, as follows:

d†(0) = 0 d†(e0 · e1) = max(d†(e0), d†(e1))

d†(1) = 0 d†(e0 ‖ e1) = max(d†(e0), d†(e1))

d†(a) = 0 d†(e0 + e1) = max(d†(e0), d†(e1))

d†(e
∗
0) = d†(e0) d†(e

†
0) = d†(e0) + 1
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A straightforward series of inductive proofs on the structure of spr-
expressions then gives us the following:

Lemma 5.9. If e �Σ f , then d‖(e) ≤ d‖(f) and d†(e) ≤ d†(f).

Thus, if we want to show that e ≺Σ f , it suffices to show that e �Σ f and
d‖(e) < d‖(f) or d†(e) < d†(f). This enables us to prove that loops involving
a parallel star are trivial:

Lemma 5.10. If e �Σ f
† �Σ e, then e ' f †.

With this in hand, we can show the following:

Lemma 5.11. Let e, g, h ∈ T with γΣ(e, g, h) 6' 0. Then g ≺Σ e; furthermore,
either h ≺Σ e or there exists an f ∈ T such that e ' f †.

Hence, we argue that all states AΣ are sequential or recursive, as follows.

Lemma 5.12. The syntactic PA is well-nested.

Proof. Let e ∈ T ; by Lemma 5.11 we already know that for all g, h ∈ T such
that γΣ(e, g, h) 6' 0 it holds that g ≺Σ e. If furthermore for all g, h ∈ T with
γΣ(e, g, h) 6' 0 it holds that h ≺Σ e, then e is sequential.

Otherwise, it follows by Lemma 5.11 that e ' f † for some f ∈ T . We
now claim that, in this case, e is recursive. To see this, first note that for all
a ∈ Σ we have δΣ(e, a) ' δΣ(f †, a) = 0. Furthermore, if g, h ∈ T such that
γΣ(e, g, h) ' γΣ(f †, g, h) 6' 0, then γΣ(e, g, h) ' 1 and g ' f and h ' f † by
definition of γΣ; hence g ≺Σ e and h ' e by Lemma 5.9.

5.2. Language equivalence

We now set out to prove that, for e ∈ T , we have that LΣ(e) = vew; to
this end, we first need to discuss a number of auxiliary lemmas that help us
analyse and reason about the traces in AΣ.

For the inclusion of LΣ(e) in vew, it is useful to be able to take a trace
labelled with some pomset and turn it into one or more traces labelled with
(parts of) that pomset. We refer to such an action as a deconstruction of the
starting trace. The first deconstruction lemma that we will consider concerns
traces that originate in a state that represents a sum of spr-expressions.

Lemma 5.13. Let e0, e1 ∈ T , f ∈ F and U ∈ Pomsp, such that e0 +e1
U−→Σ f

of length `. There exists an f ′ ∈ F with e0
U−→Σ f

′ or e1
U−→Σ f

′ of length `.
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Proof. The proof proceeds by induction `. In the base, where ` = 0, we have
that e0 +e1

U−→Σ f is a trivial trace. In that case, f = e0 +e1, and so e0 ∈ F or
e1 ∈ F ; in the former case, choose f ′ = e0, in the latter case, choose f ′ = e1.
In either case, the claim is satisfied.

For the inductive step, let e0 + e1
U−→Σ f be of length `+ 1, and assume

that the claim holds for `. We find that U = V · U ′ and a g ∈ T such
that e0 + e1

V−→Σ g is a unit trace, and g U−→Σ f is of length `. If, on the
one hand, e0 + e1

V−→Σ g is a δ-trace, then V = a for some a ∈ Σ, and
g = δΣ(e0 + e1, a) = δΣ(e0, a) + δΣ(e1, a). By induction, we then find f ′ ∈ F
such that δΣ(e0, a) U−→Σ f ′ or δΣ(e1, a) U−→Σ f ′, of length `. Putting this
together, we have that e0

U−→Σ f
′ or e1

U−→Σ f
′, of length `+ 1.

The case where e0 + e1
V−→Σ g is a γ-trace is similar.

The proofs of the other deconstruction lemmas follow a similar pattern;
these appear in Appendix C.3.

Another deconstruction lemma arises when the starting state is a sequential
composition. In this case, we find multiple traces: one originating in the left
subterm, and another originating in the right subterm.

Lemma 5.14. Let e0, e1 ∈ T , f ∈ F and U ∈ Pomsp, such that e0 · e1
U−→Σ f

is of length `. There exist f0, f1 ∈ F such that U = U0 · U1, as well as
e0

U0−→Σ f0 of length `0 and e1
U1−→Σ f1 of length `1, such that `0 + `1 = `.

The last deconstruction lemma that we record concerns the Kleene star;
here, we find a number of traces, each of which originates from the subterm
under the Kleene star, and reaches an accepting state.

Lemma 5.15. Let e ∈ T and f ∈ F and U ∈ Pomsp be such that e∗ U−→Σ f .
There exist f0, . . . , fn−1 ∈ F such that U = U0 · · ·Un−1 and for 0 ≤ i < n it
holds that e Ui−→Σ fi.

To show the other inclusion, i.e., that vew ⊆ LΣ(e), we need construction
lemmas to compose traces of pomsets into a trace of a composition of those
pomsets. To keep the lemmas concise, the following notion is convenient

Definition 5.16. We write . for the smallest relation on T such that e . f
when e+ f ' f ; note that this makes . a preorder on T .

The first construction lemma that we encounter allows us to use + to add
additional terms to the starting trace, such that the target state of the new
trace contains the old target state.
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Lemma 5.17. Let e0, e1, f0 ∈ T and U ∈ Pomsp be such that e0
U−→Σ f0.

There exists an f ∈ T such that e0 + e1
U−→Σ f and f0 . f .

Proof. The proof proceeds by induction on the length ` of e0
U−→Σ f0. In the

base, where ` = 0, we have f0 = e0 and U = 1. We then choose f = e0 + e1.
For the inductive step, let e0

U−→Σ f0 be of length ` + 1, and assume
that the claim holds for `. We then find e′0 ∈ T and U = V · U ′ such that
e0

V−→Σ e
′
0 is a unit trace, and e′0

U ′−→Σ f0 is of length `. If e0
V−→Σ e

′
0 is a δ-trace,

then V = a for some a ∈ Σ, and e′0 = δΣ(e0, a). We choose e′1 = δΣ(e1, a);
by induction, we find f ∈ T such that f0 . f and e′0 + e′1

U ′−→Σ f . Since
δΣ(e0 +e1, a) = δΣ(e0, a)+δΣ(e1, a) = e′0 +e′1, we have that e0 +e1

V−→Σ e
′
0 +e′1.

Putting this together, we find that e0 + e1
U−→Σ f .

The case where e0
V−→Σ e

′
0 is a γ-trace is similar.

Like deconstruction lemmas, the proofs of construction lemmas follow a
similar pattern. Further proofs of lemmas like this appear in Appendix C.4.

The construction lemma for sequential composition consists of two parts.
First, we need to be able to append an expression, in such a way that the
appended expression is carried into the target state of the new trace.

Lemma 5.18. Let e0, e1 ∈ T and f0 ∈ F and U ∈ Pomsp be such that
e0

U−→Σ f0. Then there exists an f ∈ T such that f0 · e1 . f , and e0 · e1
U−→Σ f .

Second, we need to be able to prepend an expression in F to get a new
trace with a target state that contains the old target state. The intuition
here is that the constructed trace simply disregards the prepended expression
(which is possible because it is in F) and continues by imitating the old trace.

Lemma 5.19. Let e0 ∈ T and f0, f1 ∈ F and V ∈ Pomsp be such that
e1

V−→Σ f1. There exists an f ∈ F such that f0 · e1
V−→Σ f .

The construction lemma for sequential composition is then a simple
consequence of the preceding construction lemmas.

Lemma 5.20. Let e0, e1 ∈ T , f0, f1 ∈ F and U, V ∈ Pomsp such that
e0

U−→Σ f0 and e1
V−→Σ f1. There exists an f ∈ F with e0 · e1

U ·V−−→Σ f .

The final construction lemma shows how to construct a trace originating
in a state of the form e∗, given a number of traces that originate in e. The
intuition here is that the constructed trace mimics the traces that originate
in e, while carrying a factor e∗ to restart the next trace.
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Lemma 5.21. Let e ∈ T and f0, . . . , fn−1 ∈ F and U0, . . . , Un−1 ∈ Pomsp be
such that for 0 ≤ i < n it holds that e Ui−→Σ fi. There exists an f ∈ F such

that e∗ U0···Un−1−−−−−→Σ f .

With all of these facts about constructing and deconstructing traces in
the syntactic PA, we are finally able to show correctness of our translation
from expressions to automata, as witnessed by the following lemma.

Lemma 5.22. If e ∈ T , then LΣ(e) = vew.

The equality follows from using the deconstruction lemmas (for the inclu-
sion from left to right) and the construction lemmas (to show the inclusion
from right to left); as before, a full proof can be found in Appendix C.

This establishes the main result of this section.

Theorem 5.23. For e ∈ T , we can find a well-nested and finitely supported
PA A that accepts vew, i.e., A has a state qe such that LA(qe) = vew.

6. Context-free pomset languages

In this section, we characterise the class of languages accepted by finite
PA, with no restrictions. These turn out to be languages of pomsets generated
by finite context-free grammars [11] using series-parallel terms. A pomset
automaton whose language is not rational is displayed in Figure 4.

A context-free pomset grammar G (CFG) is given by a triple 〈Γ, S, R〉,
where Γ is a finite set of non-terminals, S ∈ Γ is a distinguished start symbol,
and R is a finite set of production rules, i.e., pairs of a non-terminal and a
term built out of sequential products, parallel products, and symbols chosen
from Γ ∪ Σ ∪ {ε}. Using the production rules as usual starting from the
symbol S, we define the pomset language vGw generated by a CFG G. A
pomset language is called context-free (CF ) if it is generated by some CFG.
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Theorem 6.1. A pomset language is accepted by a PA if and only if it is CF.

Proof. The automaton to grammar direction is straightforward. Given a
finite PA A = 〈Q, δ, γ, F 〉 and q0 ∈ Q, we will build a CFG GA,q0 with
non-terminals Q and start symbol q0. For every state q and letter a ∈ Σ
we produce a rule q → a · δ(q, a); we add for every triple of states (q, r, s) a
production q → (r ‖ s) · γ(q, r, s); finally for every accepting state q ∈ F we
add a rule q → ε. The fact that vGA,q0w = LA(q0) is straightforward from this
definition: clearly, there is a correspondence between the accepting runs of A
starting from q0 and the derivations in GA,q0 .

We now construct an automaton from a CFG G = 〈Γ, S, R〉 to recognise
vGw. Let T be the set of subterms of the right-hand sides of rules in R, s, t
will range over T in the following; this set is clearly finite. We define a PA
AG = 〈Γ ∪ T ∪ {>,⊥} , δ, γ, {>, ε}〉, such that LA(S) = vGw where:

δ(a, a) := >; γ(s ‖ t, s, t) := >;

γ(s · t, s,>) := t; γ(X, s,>) :=

{
> if X → s ∈ R
⊥ otherwise

We complete δ and γ into functions by assigning every undefined value to ⊥.
There is a straightforward correspondence between runs in AG and derivations
from G, therefore they are language equivalent.

As usual when in the presence of context-free languages [17, 18], we obtain
a host of undecidability results for PA with no restriction other than finiteness;
we call out two important ones below.

Corollary 6.2. Let A be a PA. The following are undecidable:

(i) Given states q and q′ of A, does LA(q) = LA(q′) hold?

(ii) Given a state q of A, is LA(q) an spr-language?

The second undecidability result justifies our “well-nestedness” condition
for the automata-to-expression direction of our Kleene theorem, since one
needs strict restrictions on PA to guarantee the rationality of its language.
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7. Related work

If a PA is fork-acyclic in the sense of [1], then it is well-nested; thus,
finitely supported and well-nested PAs are a superset of the PAs considered
in [1]. Relaxing fork-acyclicity to well-nestedness is necessary for finitely
supported pomset automata to capture spr-expressions that contain †.

Lodaya and Weil proposed another automaton formalism for pomsets,
called branching automata [6]. These define states where parallelism can
start (fork) or end (join) in two relations; pomset automata condense this
information in a single function. In op. cit., we also find a translation of
spr-expressions to branching automata, based on Thompson’s construction [9],
which relies on the fact that transitions of branching automata are encoded
as relations. Our Brzozowski-style [8] translation, in contrast, constructs
transition functions from the expressions. Lastly, translation of branching
automata to series-parallel expressions in [6] is sound only for a semantically
restricted class of automata, whereas our restriction is structural.

Jipsen and Moshier [7] provided an alternative formulation of the automata
proposed by Lodaya and Weil, also called branching automata. Their method
to encode parallelism is conceptually dual to pomset automata: branching
automata distinguish based on the target states of traces to determine the
join state, whereas pomset automata distinguish based on the origin states of
traces. The translations of series-parallel expressions to branching automata
and vice versa suffer from the same shortcomings as those by Lodaya and
Weil, i.e., transition relations rather than functions and a semantic restriction
on automata for the translation of automata to expressions.

Series-rational expressions are spr-expressions that do not use the connec-
tive †. Lodaya and Weil described [6] a fragment of their branching automata
whose languages match series-rational languages, and whose behaviour corre-
sponds to 1-safe Petri nets. This fragment can be matched with a fragment
of pomset automata (discussed in [1]).

We opted to treat semantics of spr-expressions in terms of automata
instead of Petri nets to find more opportunities to extend to a coalgebraic
treatment. The present paper does not reach this goal, but we believe that
our formulation in terms of states and transition functions offers some hope
of getting there. On the other hand, the Petri net perspective allows for
equivalence-checking algorithms. Brunet, Pous, and Struth [19] used 1-safe
Petri nets to provide an algorithm to compare sr-expressions. They also
provided an algorithm to compare such expressions with respect to another
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semantics, the downward-closed semantics. Both these algorithms run in
exponential space, and the second problem was shown in op. cit. to be
complete for this complexity class.

Petri automata [20] are yet another class of automata for series-rational
languages. These Petri net-based automata recognise the languages of series-
parallel graphs that can be denoted by series-rational expressions. The con-
nection between series-parallel pomsets and series-parallel graphs is achieved
through duality: a series-parallel pomset is the pomset of edges of some
series-parallel graph, and vice-versa. For CKA the pomset point of view is
convenient because the exchange law may be expressed much more naturally
on pomsets than on graphs. On the other hand, Petri automata were intro-
duced to investigate another class of algebras, namely Kleene allegories [21],
where the free semantics is expressed in terms of graph homomorphism,
making the graph view the natural choice.

Also related are parenthesising automata as proposed by Ésik and Németh
in [14], which recognise series-parallel n-posets, a generalisation of words
where events are partially ordered by n partial orders. Like sp-pomsets,
series-parallel 2-posets can be composed using two associative operators, but
unlike sp-pomsets, the “parallel” composition operator is not commutative.
This does not rule out a connection to programs with parallelism, but it
does require specialisation of the model. On the other hand, parenthesising
automata have an advantage over pomset automata in that they are pleasingly
symmetric in how composition operators are treated, which simplifies a lot
of proofs. The correspondence between automata and expressions described
in op. cit. also requires restricting the class of automata. Unlike our work,
however, this restriction tightly characterises the automata for which the
translation is possible, and is furthermore decidable. Since parenthesising
automata cannot, in general, recognise context-free languages, this does not
contradict our earlier remarks about decidability of such a property.

Prisacariu introduced Synchronous Kleene Algebra (SKA) [22], extending
Kleene Algebra with a synchronous composition operator. SKA differs from
our model in that it assumes that all basic actions are performed in unit time,
and that actors responsible for individual actions never idle. In contrast,
our (BKA-like) model makes no synchrony assumptions: expressions can
be composed in parallel, and the relative timing of basic actions within
those expressions is irrelevant for the semantics. Prisacariu axiomatised SKA
and extended it to Synchronous Kleene Algebra with Tests (SKAT); others
proposed Brzozowski-style derivatives of SKA- and SKAT-expressions [23].
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8. Further work

Language equivalence of rational expressions can be axiomatised using
Kleene’s original theorem [24].2 More precisely, the proof in op. cit. relies
on encoding a minimised finite automaton for a rational expression back
into a rational expression (using both directions of Kleene’s theorem) to
obtain an equivalent canonical representation. We hope to apply the work
put forward in the present paper to axiomatise spr-expressions in the same
fashion. In particular, the correspondence of expressions to states and the
structural nature of well-nestedness may prove useful in validating such a
canonicalisation. For this technique to work, one would need to devise a
canonical form for PAs, analogous to the minimal finite automaton.

A different result axiomatises equivalence of sr-expressions (i.e., spr-
expressions without the parallel star) with respect to the downward-closed
pomset semantics [25, 26]. The algorithm in [26] for constructing the down-
ward closure of an sr-expression is particularly relevant as it can be used to
extend the direction from expressions to automata of our Kleene theorem.
More precisely, it establishes pomset automata as an operational model for
weak CKA, that is, BKA without the parallel star † but with the exchange
law. Extending the result even further to spr-expressions is not possible with
the methodology used in [26] or [25], see the conclusions of [26].

Brzozowski derivatives for classic rational expressions induce a coalgebra
on rational expressions that corresponds to a finite automaton. We aim to
study spr-expressions coalgebraically. The first step would be to find the
coalgebraic analogue of pomset automata such that language acceptance
is characterised by the homomorphism into the final coalgebra. Ideally,
such a view of pomset automata would give rise to a decision procedure for
equivalence of spr-expressions based on coalgebraic bisimulation-up-to [27].

Rational expressions can be extended with tests to reason about imperative
programs equationally [4]. In the same vein, one can extend sr-expressions
with tests [28, 7] to reason about parallel imperative programs equationally.
We are particularly interested in employing such an extension to extend the
network specification language NetKAT [29] with primitives for concurrency
so as to model and reason about concurrency within networks.

2A similar result exists for spr-expressions [10], but this does not rely on Kleene’s
theorem for canonicalisation.
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Appendix A. Proofs about pomset automata

Lemma 3.3. Let q U−→A q
′ be non-trivial. If q = ⊥ or q = >, then q′ = ⊥.

Proof. The proof proceeds by induction on the construction of →A. In the
base, U = a for some a ∈ Σ, and q′ = δ(q, a). It follows that q′ = ⊥.

For the inductive step, there are two cases to consider.

• If q U−→A q′ because U = V ·W and there exists a q′′ ∈ Q such that
q V−→A q

′′ and q′′ W−→A q
′, then we can assume without loss of generality

that at least one of these traces is non-trivial — if this were not the
case, then q = q′′ = q and V = W = 1, meaning that q = q′ and U = 1,
and so q U−→A q

′ would be trivial as well.

If, on the one hand, q V−→A q
′′ is non-trivial, then q′′ = ⊥ by induction.

In that case, q′ = ⊥, regardless of whether q′′ W−→A q
′ is trivial. If, on

the other hand, q′′ W−→A q
′ is non-trivial, then q′ = ⊥, also by induction.

• If q U−→A q
′ is a γ-trace, i.e., U = V ‖ W and there exist r, s ∈ Q as well

as r′, s′ ∈ Q such that r V−→A r
′ and s W−→A s

′ and γ(q, r, s) = q′, then
q′ = ⊥ immediately.

Lemma 3.6. If A is finitely supported, then for every q ∈ Q there exists a
finite pomset automaton Aq with a state q′, such that LA(q) = LAq(q

′).

Proof. We define Aq as the automaton 〈πA(q), δ, γ, F ∩ πA(q)〉. Here, δ and
γ are well-defined as functions of type πA(q) × Σ → πA(q) and πA(q)3 →
πA(q) respectively, by definition of πA(q). Furthermore, since A is finitely
supported, we know that Aq has finitely many states. It remains to show that
LAq(q) = LA(q).

For the inclusion from left to right, we prove the more general claim that
if r U−→Aq

r′ with r′ 6= ⊥, then r U−→A r
′. The proof proceeds by induction on

the construction of →Aq . In the base, there are two cases to consider.

• If U = 1 and r = r′, then r U−→A r
′ immediately.

• If U = a for some a ∈ Σ and r′ = δ(r, a), then it follows that r U−→A r
′.

For the inductive step, there are two cases to consider.

• Suppose that r U−→Aq
r′ because U = V ·W and there exists an r′′ ∈ πA(q)

with r V−→Aq
r′′ and r′′ W−→Aq

r′. Since r′ 6= ⊥, also r′′ 6= ⊥ by Lemma 3.3.

By induction, we find that r V−→A r
′′ W−→A r

′, and thus r U−→A r
′.
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• Suppose that r U−→Aq
r′ because U = V ‖ W and there exist s, t ∈ πA(q)

and s′, t′ ∈ πA(q)∩F such that s V−→Aq
s′ and t W−→Aq

t′ and γ(r, s, t) = r′.
First, note that s′, t′ 6= ⊥, since s′, t′ ∈ F . By induction, we find that
s V−→A s

′ ∈ F and t W−→A t
′ ∈ F . We can then conclude that q U−→A q

′.

For the other inclusion, we prove the more general claim that if r ∈ πA(q) and
r U−→A r

′ with r′ 6= ⊥, then r′ ∈ πA(q) and r U−→Aq
r′. We proceed by induction

on the construction of →A. In the base, there are two cases to consider.

• If U = 1 and r = r′, then r′ ∈ πA(q) and r U−→Aq
r′ immediately.

• If U = a for some a ∈ Σ, and r′ = δ(r, a), then note that r′ ∈ πA(q) by
definition of πA(q). Furthermore, we find that r U−→Aq

r′.

For the inductive step, there are two cases to consider.

• Suppose r U−→A r
′ because U = V ·W , and there exists an r′′ ∈ Q such

that r V−→A r
′′ and r′′ W−→A r

′. By induction, we then find that r′′ ∈ πA(q)
and r V−→Aq

r′′. Again by induction, we also find that r′ ∈ πA(q) and

r′′ W−→Aq
r′. We then conclude that r U−→Aq

r′.

• Suppose r U−→A r′ because U = V ‖ W , and there exist s, t ∈ Q and
s′, t′ ∈ F such that s V−→A s′ and t W−→A t′ and γ(r, s, t) = r′. By the
premise that r′ 6= ⊥ we have that s, t �A q, and thus s, t ∈ πA(q). By
induction, we then find that s′, t′ ∈ πA(q), and s V−→Aq

s′ as well as

t W−→Aq
t′. We can then conclude that r U−→Aq

r′.

Lemma 3.7. If A is finitely supported, then ≺A is well-founded.

Proof. Suppose, towards a contradiction, that {qn}n∈N ⊆ Q is such that for
n ∈ N it holds that qn+1 ≺A qn. Since {qn}n∈N ⊆ πA(q0) and the latter is finite,
it follows that qn = qm for some n > m. But then we find that, qn ≺A qm,
which contradicts that ≺A is a strict order, and therefore irreflexive.

Lemma 3.8. If q U−→A q′, then there exist q0, . . . , q` ∈ Q with q = q0 and
q` = q′, and U = U0 · · ·U`−1 such that for 0 ≤ i < ` it holds that qi Ui−→A qi+1.
Furthermore, each of these traces is a unit trace.

Proof. The proof proceeds by induction on the construction of q U−→A q
′. In

the base, there are two cases to consider.
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• If q U−→A q
′ is a trivial trace, then the claim holds immediately; simply

choose ` = 0 and q0 = q = q′.

• If q U−→A q
′ is a δ-trace, i.e., U = a for some a ∈ Σ and q′ = δ(q, a), then

choose ` = 1 and U0 = U = a to satisfy the claim.

In the inductive step, there are again two cases to consider.

• Suppose that q U−→A q
′ because U = V ·W and there exists a q′′ ∈ Q

such that q V−→A q
′′ and q′′ W−→A q

′. By induction, we find q0, . . . , qn ∈ Q
with q0 = q and qn = q′′, and V = V0 · · ·Vn−1 such that for 0 ≤ i < `′

it holds that qi Vi−→A qi+1. Also by induction, we find q′0, . . . , q
′
m with

q′0 = q′′ and q′m = q′, and W = W0 · · ·Wm−1 such that for 0 ≤ i < `′′ it
holds that q′i

Wi−→A q
′
i+1. We then choose for 0 ≤ i < `′ that Ui = Vi, and

for `′ ≤ i < `′ + `′′ that qi+`′ = q′i and Ui+`′ = Wi to satisfy the claim.

• Suppose that q U−→A q′ is a γ-trace, i.e., U = V ‖ W and there exist
r, s ∈ Q and r′, s′ ∈ F such that r V−→A r

′ and s W−→A s
′ and γ(q, r, s) = q′.

In that case, we can choose n = 1 and U0 = U = V ‖ W to satisfy the
claim.

Appendix B. Automata to expressions

Lemma 4.5. If q ∈ Qrec, then

LA(q) =

(⋃
γ(q,r,q)=>

LA(r)

)†
Proof. For brevity, we write L′ for the right-hand side of the claimed equality.

For the inclusion from left to right, we prove the more general claim that
if q U−→A q

′ for some q′ ∈ F , then U ∈ L′ and furthermore q′ ∈ {>, q}. The
proof proceeds by induction on the construction of →A. In the base, there
are two cases to consider.

• If q U−→A q
′ because U = 1 and q = q′, then the claim follows immediately.

• If q U−→A q
′ because U = a for some a ∈ Σ and q′ = δ(q, a), then q′ = ⊥

by the premise that q is recursive. Therefore, we can disregard this case,
because it contradicts the premise that q′ ∈ F .

For the inductive step, there are again two cases to consider.
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• If q U−→A q
′ because U = V ·W and there exists a q′′ ∈ Q with q V−→A q

′′

and q′′ W−→A q
′, then there are two subcases to consider.

– If q V−→A q′′ is trivial, then the claim follows by applying the
induction hypothesis to q = q′′ W−→A q

′, noting that U = V ·W = W .

– If q V−→A q
′′ is non-trivial, then q′′ ∈ {⊥,>} by the premise that q is

recursive. Since q′ ∈ F , it then follows that q′′ = ⊥ and q′′ W−→A q
′

is trivial, by Lemma 3.3. The claim then follows by applying the
induction hypothesis to q V−→A q

′′, since U = V ·W = V .

• If q U−→A q
′ because U = V ‖ W and there exist r, s ∈ Q and r′, s′ ∈ F

such that r V−→A r
′ and s W−→A s

′ and γ(q, r, s) = q′, then, since q′ 6= ⊥,
it follows that q′ = > and s = q by the premise that q is recursive. By
induction, we then know that W ∈ L′. Furthermore, V ∈ LA(r) by
definition. Consequently, U = V ‖ W ∈ LA(r) ‖ L′ ⊆ L′.

For the inclusion from right to left, let U ∈ L′. Then U = U0 ‖ · · · ‖ Un−1 and
for 0 ≤ i < n there exists an ri ∈ Q such that γ(q, ri, q) = > and Ui ∈ LA(ri).
We need to prove that U ∈ LA(q), which we do by induction on n. In the
base, where n = 0, we have that U = 1, and thus U ∈ LA(q) immediately,
for q ∈ F . For the inductive step, assume that n > 0 and that the claim
holds for n − 1; then U ′ = U1 ‖ · · · ‖ Un−1 ∈ LA(q) by induction. We thus
find a q′ ∈ F such that q U ′−→A q

′. Furthermore, since U0 ∈ LA(r0), we find an

r′0 ∈ F such that r0
U0−→ r′0. We then know that q U0‖U ′−−−→ γ(q, r0, q) = >, and

hence U = U ′0 ‖ U ′ ∈ LA(q).

Lemma 4.7. Let S ⊆ Qseq, and suppose that for all s ∈ S, the induction
hypothesis holds. Let q ∈ S and q′ ∈ Q. Then U ∈ veSqq′w if and only if q′ 6= ⊥
and there exist q0, . . . , q`−1 ∈ S, and U = U0 · · ·U`−1 with

q = q0
U0−→A q1

U1−→A . . .
U`−2−−−→A q`−1

U`−1−−−→A q` = q′

and, furthermore, for 0 ≤ i < ` we have that qi Ui−→A qi+1 is a unit trace.

Proof. For the direction from left to right, first note that if q′ = ⊥, then
eSqq′ = 0, meaning veSqq′w = ∅; consequently, q′ 6= ⊥. For the remainder, we
proceed by induction on S. In the base, where S = ∅, we have three cases.

• If U = 1 and q = q′, then we can choose ` = 0 to satisfy the claim.

32



• If U = a for a ∈ Σ with δ(q, a) = q′, then we choose ` = 1 and U0 = a.

• If U = V ‖ W and V ∈ verw and W ∈ vesw with γ(q, r, s) = q′, then
r, s ≺A q. By induction, V ∈ LA(r) and W ∈ LA(s); therefore, there
exist r′, s′ ∈ F such that r V−→A r

′ and s W−→A s
′. We then again choose

` = 1 and U0 = U = V ‖ W to find that q U−→A q
′.

For the inductive step, let S = S ′ ∪ {q′′}, and assume the claim holds for S ′.
There are two cases to consider.

• If U ∈ veS
′

qq′w, then the claim follows by induction.

• If U ∈ veS
′

qq′′ ·
(
eS
′

q′′q′′

)∗ · eS′q′′q′w, then U = V ·W0 · · ·Wm−1 ·X with

V ∈ veS
′

qq′′w W0 ∈ veS
′

q′′q′′w · · · Wm−1 ∈ veS
′

q′′q′′w X ∈ veS
′

q′′q′w

It should be obvious how to construct the desired trace.

For the other direction, first note that since q′ 6= ⊥, we know by Lemma 3.3
that q0, . . . , q`−1 6= ⊥. The proof proceeds by induction on `. In the base,
where ` ≤ 1, there are three cases to consider.

• If q U−→ q′ is trivial, then U = 1 and q = q′; thus U ∈ ve∅qq′w ⊆ veSqq′w.

• If q U−→ q′ is a δ-trace, then U = a for some a ∈ Σ and δ(q, a) = q′. We
find that U = a ∈ ve∅qq′w ⊆ veSqq′w.

• If q U−→ q′ is a γ-trace, then U = V ‖ W with r, s ∈ Q and r′, s′ ∈ F
such that r V−→A r

′ and s W−→A s
′ and γ(q, r, s) = q′, then r, s ≺A q. By

induction we have V ∈ verw and W ∈ vesw. Therefore,

U = V ‖ W ∈ ver ‖ esw ⊆ ve∅qq′w ⊆ veSqq′w

For the inductive step, assume that ` > 1; in that case, it must be that
S 6= ∅. We write S = S ′ ∪ {q′′} and I = {0 ≤ i < ` : qi = q′′}. If I = ∅, then
U ∈ veS

′

qq′w by induction. Since veS
′

qq′w ⊆ veSqq′w, the claim follows. Otherwise,
if I 6= ∅, then write I = {i0, . . . , ik−1} with i0 < i1 < · · · < ik−1. Then, by
induction, we know that for 1 ≤ j < k it holds that

Uij · Uij+1 · · ·Uij+1−1 ∈ veS
′

q′′q′′w
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Moreover, also by induction, we know that

U0 · · ·Ui1−1 ∈ veS
′

qq′′w Uik−1
· Uik−1+1 · · ·U` ∈ veS

′

q′′q′w

Putting this together, we have

U ∈
1

eS
′

qq′′ ·
(
eS
′

q′′q′′

)∗
· eS′q′′q′

9

⊆ veSqq′w

Appendix C. Expressions to automata

Appendix C.1. Finite support

Lemma 5.6. Let e ∈ T . If e is covered by a finite and cover-closed set, then
e is contained in a finite and closed set (and hence πΣ(e) is finite).

Proof. We choose F = {e0 + · · · + en−1 : e0, . . . , en−1 ∈ E}; now F is finite.
Since E covers e, it also follows that F contains e. To see that F is closed,
let e′ ' e′0 + · · ·+ e′n−1 ∈ F for e′0, . . . , e

′
n−1 ∈ E, and suppose f �Σ e

′. To see
that f ∈ F , it suffices to validate the claim for the pairs generating �Σ:

• If f = δΣ(e′, a) for a ∈ Σ, then f ' f0 + · · ·+ fn−1 where for 0 ≤ i < n
we have fi = δΣ(e′i, a). Each of these fi is covered by E; hence, the sum
of terms covering these is in F , and congruent to f . The case where
f = γΣ(e′, g, h) for g, h ∈ T can be argued similarly.

• If f �Σ e′ because γΣ(e′, f, g) 6' 0 or γΣ(e′, g, f) 6' 0 for some g ∈ T ,
then (without loss of generality) assume the former. We then know
that γΣ(e′i, f, g) 6' 0 for some 0 ≤ i < n, and hence f �Σ e′i, meaning
that there exist f0, . . . , fm−1 ∈ E such that f ' f0 + · · · + fm−1, by
cover-closure of E. It then follows that f ∈ F .

Lemma 5.7. The syntactic PA is finitely supported.

Proof. By Lemma 5.6, it suffices to find for every e ∈ T' a finite and cover-
closed set E(e) covering e. We proceed inductively. In the base, there are
three cases to consider.

• If e = 0, then E(0) = ∅ suffices, since 0 is covered by the empty sum.

• If e = 1, then E(1) = {1} suffices.

• If e = a for some a ∈ Σ, then E(a) = {1, a} suffices.
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For the inductive step, there are five cases to consider.

• If e = f + g, we choose E(e) = E(f) + E(g). This set is cover-closed,
because E(f) and E(g) both are. Furthermore, this set covers e, because
we can get terms to cover f and g from E(f) and E(g) respectively.

• If e = f · g, we choose E(e) = E(f) ∪ E(g) ∪ {f ′ · g : f ′ ∈ E(f)}. To
see that this set covers f · g, let f0, . . . , fn−1 ∈ E(f) be such that
f ' f0 + · · · fn−1. We can then choose f0 · g, . . . , fn−1 · g ∈ E(e) to find
that e ' f0 · g + · · · fn−1 · g.

To see that E(e) is cover-closed, we need only consider f ′·g for f ′ ∈ E(f).

(i) If a ∈ Σ, let f ′0, . . . , f
′
n−1 ∈ E(f) with δΣ(f ′, a) ' f ′0 + · · ·+ f ′n−1.

Also, let g0, . . . , gm−1 ∈ E(g) with δΣ(g, a) ' g0 + · · ·+ gm−1. We
can then derive as follows:

δΣ(e, a) = δΣ(f ′, a) # g + f ′ ? δΣ(g, a)

' (f ′0 + · · ·+ fn−1) # g + f ′ ? (g0 + · · ·+ gm−1)

' f ′0 · g + · · ·+ f ′n−1 · g + f ′ ? g0 + · · · f ′ ? gm−1

All of the non-zero terms in the last form can be found in E(e),
and thus E(e) covers δΣ(e, a).

(ii) If h1, h2 ∈ T', then γΣ(f ′ · g, h1, h2) is covered by E(e) by an
argument similar to the above.

(iii) If h1, h2 ∈ T' such that γΣ(f ′ · g, h1, h2) 6' 0, then

γΣ(f ′, h1, h2) · g + f ′ ? γΣ(g, h1, h2) 6' 0

Hence, we know that either γΣ(f ′, h1, h2) 6' 0 or γΣ(g, h1, h2) 6' 0.
In the former case, h1 and h2 are covered by E(f), while in the
latter case h1 and h2 are covered by E(g).

• If e = f ‖ g, we choose E(g) = E(e) ∪ E(f) ∪ {1, f ‖ g}. Immediately,
E(e) covers e. For cover-closure of E(e), we need only consider f ‖ g.

(i) If a ∈ Σ, then δΣ(e, a) = 0, and so E(e) covers δΣ(e, a).

(ii) If h1, h2 ∈ T', then γΣ(e, h1, h2) ∈ {0, 1} by definition of γΣ.
Consequently, E(e) covers γΣ(e, h1, h2).
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(iii) If h1, h2 ∈ T' and γΣ(e, h1, h2) 6' 0, then f ' h1 and g ' h2.
Since E(f) covers f and E(g) covers g, E(e) covers both.

• If e = f ∗, we choose E(e) = E(f) ∪ {f ∗} ∪ {f ′ · f ∗ : f ′ ∈ E(f)}. Imme-
diately, E(e) covers e. For cover-closure of E(e), we need only consider
f ′ · f ∗ for f ′ ∈ E(f).

(i) If a ∈ Σ, let f ′0, . . . , f
′
n−1 ∈ E(f) be such that f ′ ' f ′0 + · · ·+ f ′n−1.

We can then derive that

δΣ(f ′ · f ∗, a) = δΣ(f ′, a) # f ∗ + f ′ ? f ∗

' (f ′0 + · · ·+ f ′n−1) # f ∗ + f ′ ? f ∗

' f ′0 # f ∗ + · · ·+ f ′n−1 # f ∗ + f ′ ? f ∗

All of the non-zero terms in the last form can be found in E(e),
and thus E(e) covers δΣ(f ′ · f ∗, a).

(ii) If h1, h2 ∈ T', then γΣ(f ′ · f ∗, h1, h2) is covered by E(e) by an
argument similar to the above.

(iii) If h1, h2 ∈ T' and γΣ(f ′ · f ∗, h1, h2) 6' 0, then γΣ(f ′, h1, h2) 6' 0.
Thus h1 and h2 are covered by E(f), and hence by E(e).

• If e = f †, we choose E(e) = E(f) ∪
{
e†, 1

}
. Once more, E(e) covers e

trivially. For cover-closure of E(e), we need only consider e†.

(i) If a ∈ Σ, then δΣ(e, a) = 0, and hence E(e) covers δΣ(e, a).

(ii) If h1, h2 ∈ T', then γΣ(e, h1, h2) ∈ {0, 1} by definition of γΣ, and
thus E(e) covers γΣ(e, h1, h2).

(iii) If h1, h2 ∈ T' and γΣ(e, h1, h2) 6' 0, then h1 ' f and h2 ' e.
Since E(f) covers f , we conclude that E(e) covers h1 and h2.

Appendix C.2. Well-nestedness

Lemma 5.9. If e �Σ f , then d‖(e) ≤ d‖(f) and d†(e) ≤ d†(f).

Proof. It suffices to verify the claim for the generating pairs of �Σ; in each
case, we proceed by induction on e.

• Suppose e �Σ f because f = δΣ(e, a) for some a ∈ Σ. In the base, where
e ∈ {0, 1} ∪ Σ, we have that δΣ(e, a) ∈ {0, 1}, and hence d‖(δΣ(e, a)) =
d†(δΣ(e, a)) = 0 — the claim then holds immediately.

For the inductive step, there are five cases to consider. Let ◦ ∈ {‖, †}.
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– If e = e0 + e1, then δΣ(e, a) = δΣ(e0, a) + δΣ(e1, a). By induction,
we know that d◦(δΣ(e0, a)) ≤ d◦(e0) and d◦(δΣ(e1, a)) ≤ d◦(e1).
We can then derive that

d◦(δΣ(e, a)) = max(d◦(δΣ(e0, a)), d◦(δΣ(e1, a)))

≤ max(d◦(e0), d◦(e1)) = d◦(e)

The cases where e = e0 · e1 or e = e∗0 can be argued similarly.

– If e = e0 ‖ e1 or e = e†0, then δΣ(e, a) = 0, thus d◦(δΣ(e, a)) = 0.
The claim then follows immediately.

• Suppose e �Σ f because f = γΣ(e, g, h) for some g, h ∈ T . In the
base, where e ∈ {0, 1} ∪ Σ, we have that γΣ(e, a) = 0, and hence
d‖(δΣ(e, g, h)) = d†(γΣ(e, g, h)) = 0 — the claim then holds immediately.

For the inductive step, there are two cases to consider. Let ◦ ∈ {‖, †}.

– If e ∈ {e0 + e1, e0 · e1, e
∗
0}, then the proof is similar to the corre-

sponding case above.

– If e ∈ e0 ‖ e1 or e = e†0, then γΣ(e, g, h) ∈ {0, 1}, and hence
d◦(δΣ(e, a)) = 0. The claim then follows.

• Suppose e �Σ f because γΣ(f, e, h) 6' 0 or γΣ(f, h, e) 6' 0 for a h ∈ T .
In the base, where e ∈ {0, 1} ∪ Σ, the claim holds vacuously.

For the inductive step, there are five cases to consider. Let ◦ ∈ {‖, †}.

– If e = e0 + e1, then γΣ(e, g, h) 6' 0 implies that γΣ(e0, g, h) 6' 0 or
γΣ(e1, g, h) 6' 0; w.l.o.g., we assume the former. By induction, we
have d◦(g), d◦(h) ≤ d◦(e0). Since d◦(e0) ≤ d◦(e), the claim follows.
The cases where e = e0 · e1 or e = e∗0 can be argued similarly.

– If e = e0 ‖ e1, then γΣ(e, g, h) 6' 0 implies that e0 ' g and e1 ' h.
We also have d‖(e0), d‖(e1) < d‖(e), as well as d†(e0), d†(e1) ≤ d†(e).
Since d◦(e0) = d◦(g) and d◦(e1) = d◦(h), the claim follows.

– If e = e†0, then γΣ(e, g, h) 6' 0 implies that g ' e0 and h ' e.
We also have d‖(e0) ≤ d‖(e), as well as d†(e0) < d†(e). Since
d◦(g) = d◦(e0) and d◦(h) = d◦(e), the claim then follows.

Lemma 5.10. If e �Σ f
† �Σ e, then e ' f †.
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Proof. We show by induction on �Σ the following stronger statement: if
e �Σ f , then the following holds:

d†(e) = d†(f) ∧
(
∃g : f ' g†

)
⇒ e ' f.

For the base cases, assume f ' g† and d†(e) = d†(f). This means that
d†(g) < d†(g

†) = d†(e).

• if e ∈
{
δΣ(g†, a), γΣ(g†, e1, e2)

}
, since δΣ(g†, a), γΣ(g†, e1, e2) ∈ {0, 1} it

means that e ∈ {0, 1} which in turn implies d†(e) = 0. This contradicts
d†(g) < d†(e), therefore the claim holds vacuously.

• if γΣ(g†, e, e′) 6' 0, then by definition of γΣ we know that e ' g which
contradicts d†(g) < d†(e), thus the claim holds vacuously.

• if γΣ(g†, e′, e) 6' 0, then by definition of γΣ we know that e ' g†, making
the claim hold immediately.

For the inductive case, assume e �Σ f1 �Σ f2, and assume that d†(e) = d†(f2)
and ∃g : f2 ' g†. By Lemma 5.9 we know that d†(e) 6 d†(f1) 6 d†(f2) = d†(e),
meaning that d†(e) = d†(f1) and d†(f1) = d†(f2). Applying the induction
hypothesis on the pair f1 �Σ f2 tells us that f1 ' f2. Since ∃g : f2 ' g†,
the same holds for f1, so we may apply the induction hypothesis on the pair
e �Σ f1 to get e ' f1. By transitivity we conclude that e ' f2.

Lemma 5.11. Let e, g, h ∈ T with γΣ(e, g, h) 6' 0. Then g ≺Σ e; furthermore,
either h ≺Σ e or there exists an f ∈ T such that e ' f †.

Proof. We start by establishing the following statements: (i) d‖(g) < d‖(e)
or d†(h) < d†(e), as well as (ii) d‖(h) < d‖(e) or d†(h) < d†(e), or h ' f † for
some f ∈ T . The proof for both claims proceeds by induction on e. In the
base, where e ∈ {0, 1}∪Σ, we have γΣ(e, g, h) = 0, and hence the claim holds
vacuously.

For the inductive step, there are three cases to consider.

• If e = e0 + e1, then γΣ(e0, g, h) 6' 0 or γΣ(e1, g, h) 6' 0; w.l.o.g. we
assume the former. We then have that d‖(g) < d‖(e0) or d†(g) < d†(e0)
by induction; the first claim then follows by definition of d‖ and d†. We
also know that d‖(h) < d‖(e) or d†(h) < d†(e) or h ' f † for some f ∈ T
by induction. In the latter case, the second claim follows immediately;
otherwise, the claim follows by definition of d‖ and d† again.

The cases where e = e0 · e1 or e = e∗0 can be argued similarly.
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• If e = e0 ‖ e1, then g ' e0 and h ' e1 by definition of γΣ. We then
have d‖(g) = d‖(e0) < d‖(e), and d‖(h) < d‖(e), satisfying both claims.

• If e = e†0, then g ' e0 and h ' e. The second claim holds immediately.
For the first claim, observe that d†(g) = d†(e0) < d†(e).

Let us now prove that the statement of the Lemma holds. Let e, g, h ∈ T
with γΣ(e, g, h) 6' 0.

• By definition of �Σ we know that g �Σ e. If e �Σ g, by Lemma 5.9 we
would have d†(e) 6 d†(g). However, by (i) we have d†(g) < d†(e), thus
ensuring that g ≺Σ e.

• We now need to show that either h ≺Σ e or e ' f † for some f . Since
we know that h �Σ e, this amounts to showing that if e �Σ h then
e ' f †. Since h �Σ e �Σ h we have d†(e) = d†(h) and d‖(e) = d‖(h).
But according to (ii) there are three cases: either d‖(h) < d‖(e), or
d†(h) < d†(e), or h ' f † for some f ∈ T . The first two cases are in
contradiction with what we know so we deduce that h ' f † for some
f ∈ T . Therefore by applying Lemma 5.10 to e �Σ f

† �Σ e we get that
e ' f †.

Appendix C.3. Deconstruction lemmas

Lemma 5.14. Let e0, e1 ∈ T , f ∈ F and U ∈ Pomsp, such that e0 · e1
U−→Σ f

is of length `. There exist f0, f1 ∈ F such that U = U0 · U1, as well as
e0

U0−→Σ f0 of length `0 and e1
U1−→Σ f1 of length `1, such that `0 + `1 = `.

Proof. The proof proceeds by induction on the length ` of e0 · e1
U−→Σ f . In

the base, where ` = 0, we have that f = e0 · e1 and U = 1. We can then
choose f0 = e0 and f1 = e1 as well as U0 = U1 = 1 to satisfy the claim.

For the inductive step, let e0 · e1
U−→Σ f be of length `+ 1. We find that

U = V · U ′, and a g ∈ T such that e0 · e1
V−→Σ g is a unit trace, and g U−→Σ f

is of length `. If e0 · e1
V−→Σ g is a δ-trace, then V = a for some a ∈ Σ, and

g = δΣ(e0 · e1, a) = δΣ(e0, a) # e1 + e0 ? δΣ(e1, a). By Lemma 5.13, we find
f ′ ∈ F such that δΣ(e0, a) # e1

U ′−→Σ f ′ or e0 ? δΣ(e1, a) U ′−→Σ f ′, of length `.
This gives us two cases.

• If δΣ(e0, a) # e1
U ′−→Σ f

′, then first note that δΣ(e0, a) 6' 0, by Lemma 3.3,

and hence δΣ(e0, a) · e1
U ′−→Σ f ′. By induction we find f0, f1 ∈ F and

U ′ = U ′0 · U ′1 such that δΣ(e0, a) U ′0−→Σ f0 and e1
U ′1−→Σ f1, and the total
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length of these traces is `. We can then choose U1 = V ·U ′0 and U1 = U ′1
to find that U = V ·U ′ = V ·U ′0 ·U ′1 = U0 ·U1, as well as e0

U0−→Σ f0 and
e1

U1−→Σ f1, of total length `+ 1.

• If e0 ? δΣ(e1, a) U ′−→Σ f ′, then first note that e0 ? δΣ(e1, a) 6' 0 by
Lemma 3.3, and so e0 ∈ F . We choose U0 = 1 and U1 = U as well as
f0 = e0 and f1 = f ′ to find that U = 1 ·U = U0 ·U1 as well as e0

U0−→Σ f0.

Furthermore, e1
V−→Σ δΣ(e1, a) = e0 ? δΣ(e1, a) U ′−→Σ f ′, meaning that

e1
U−→Σ f

′. The total length of these traces is again `+ 1.

The case where e0 · e1
V−→Σ g is a γ-trace can be treated similarly.

Lemma 5.15. Let e ∈ T and f ∈ F and U ∈ Pomsp be such that e∗ U−→Σ f .
There exist f0, . . . , fn−1 ∈ F such that U = U0 · · ·Un−1 and for 0 ≤ i < n it
holds that e Ui−→Σ fi.

Proof. The proof proceeds by induction on the length ` of e∗ U−→Σ f . In the
base, where ` = 0, we have that f = e∗ and U = 1; it suffices to choose n = 0.

For the inductive step, let e∗ U−→Σ f be of length `+ 1, and assume that
the claim holds for `. We then find g ∈ T and U = V · U ′ such that e∗ V−→Σ g

is a unit trace, and g U ′−→Σ f of length `. If e∗ V−→Σ g is a δ-trace, then
V = a for some a ∈ Σ, and g = δΣ(e∗, a) = δΣ(e, a) # e∗. By Lemma 3.3,
and the fact that g U ′−→Σ f ∈ F , we then know that δΣ(e, a) 6' 0, and hence

δΣ(e, a) · e∗ U ′−→Σ f . By Lemma 5.14, we find f ′′, f ′ ∈ F such that U ′ = W ·X
as well as δΣ(e, a) W−→Σ f

′′ and e∗ X−→Σ f
′ of total length `.

Then, by induction, we find f1, . . . , fn−1 ∈ T such that X = U1 · · ·Un−1,
and for 1 ≤ i < n it holds that e Xi−→Σ fi. We then choose f0 = f ′′ and
U0 = V ·W . For these choices, U = U0 · U ′ = V ·W ·X = U0 · · ·Un−1. Since
e V−→Σ δΣ(e, a) W−→Σ f

′′, we also find that e U0−→Σ f0; this completes the proof.
The case where e∗ V−→Σ g is a γ-trace is similar.

Appendix C.4. Construction lemmas

Lemma 5.18. Let e0, e1 ∈ T and f0 ∈ F and U ∈ Pomsp be such that
e0

U−→Σ f0. Then there exists an f ∈ T such that f0 · e1 . f , and e0 · e1
U−→Σ f .

Proof. The proof proceeds by induction on the length ` of e0
U−→Σ f0. In the

base, where ` = 0, we can choose f = e0 · e1 to satisfy the claim.
For the inductive step, let e0

U−→Σ f0 be of length `+ 1, and assume the
claim holds for traces of length `. We then find e′0 ∈ T and U = V · U ′ such
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that e0
V−→Σ e

′
0 is a unit trace, and e′0

U ′−→Σ f0 is of length `. By Lemma 3.3 and

the fact that e′0
U ′−→Σ f0 ∈ F , we know that e′0 6' 0, and thus e′0 # e1 = e′0 · e1.

By induction, we find f ′ ∈ T such that f0 · e1 . f ′, and e′0 · e1
U ′−→Σ f ′.

If e0
V−→Σ e′0 is a δ-trace, then V = a for some a ∈ Σ, and e′0 = δΣ(e0, a).

Then, by Lemma 5.17, we find f ∈ T such that f ′ . f and δΣ(e0 · e1, a) =
e′0 · e1 + e0 ? δΣ(e1, a) U ′−→Σ f . Putting these traces together, we find that
e0 · e1

U−→Σ f , as well as f0 · e1 . f ′ . f .
The case where e0

V−→Σ e
′
0 is a γ-trace is similar.

Lemma 5.19. Let e0 ∈ T and f0, f1 ∈ F and V ∈ Pomsp be such that
e1

V−→Σ f1. There exists an f ∈ F such that f0 · e1
V−→Σ f .

Proof. The proof proceeds by induction on the length ` of e1
V−→Σ f1. If ` = 0,

we know that f1 = e1 and V = 1. We can then choose f = f0 · e1.
For the inductive step, let e1

V−→Σ f1 be of length `+ 1, and assume the
claim holds for traces of length `. We then find e′1 ∈ T and V = W · V ′
such that e1

W−→Σ e′1 is a unit trace, and e1
V ′−→Σ f1 is of length `. If

e1
W−→Σ e′1 is a δ-trace, then W = a for some a ∈ Σ, and e′1 = δΣ(e1, a).

By Lemma 5.17, we find f ∈ F such that δΣ(f0, a) # e1 + e′1
V ′−→Σ f . Since

δΣ(f0 · e1, a) = δΣ(f0, a) # e1 + f0 ? δΣ(e1, a) = δΣ(f0, a) # e1 + e′1 we find that
f0 · e1

W−→Σ δΣ(f0, a) # e1 + e′1. We conclude that f0 · e1
V−→Σ f .

The case where e1
W−→Σ e

′
1 is a γ-trace is similar.

Lemma 5.20. Let e0, e1 ∈ T , f0, f1 ∈ F and U, V ∈ Pomsp such that
e0

U−→Σ f0 and e1
V−→Σ f1. There exists an f ∈ F with e0 · e1

U ·V−−→Σ f .

Proof. By Lemma 5.18, we find f ′ ∈ T such that f0 ·e1 . f ′ and e0 ·e1
U−→Σ f

′.
By Lemma 5.19, we find f ′′ ∈ F such that f0 · e1

V−→Σ f
′′. By Lemma 5.17, we

find f ∈ F such that f ′ ' f0·e1+f ′ V−→Σ f . In total, we have e0·e1
U ·V−−→Σ f .

Lemma 5.21. Let e ∈ T and f0, . . . , fn−1 ∈ F and U0, . . . , Un−1 ∈ Pomsp be
such that for 0 ≤ i < n it holds that e Ui−→Σ fi. There exists an f ∈ F such

that e∗ U0···Un−1−−−−−→Σ f .

Proof. Without loss of generality, we can assume that for 0 ≤ i < n it holds
that e Ui−→Σ fi is non-trivial. The proof proceeds by induction on n. In the
base, where n = 0, we can choose f = e∗ to satisfy the claim.

For the inductive step, assume that n > 0 and that the claim holds for
n − 1. By induction, we can find f ′ ∈ F such that e∗ U1···Un−1−−−−−→Σ f ′. Since
e U1−→Σ f1 is non-trivial, we find e′ ∈ T and U0 = V · U ′0 such that e V−→Σ e′
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is a unit trace, and e′ U ′0−→Σ f0. We note that by Lemma 3.3, this implies

that e′ 6' 0. By Lemma 5.20, we find f ∈ F such that e′ · e∗ U ′0·U1···Un−1−−−−−−−→Σ f .
If e V−→Σ e′ is a δ-trace, then V = a for some a ∈ Σ, and e′ = δΣ(e, a). In
that case, e∗ V−→Σ δΣ(e∗, a) = δΣ(e, a) # e∗ = e′ · e∗. Consequently, e∗ V−→Σ

e′ · e∗ U ′0·U1···Un−1−−−−−−−→Σ f and therefore e∗ U0···Un−1−−−−−→Σ f .
The case where e V−→Σ e

′ is a γ-trace is similar.

Appendix C.5. Soundness of the translation

Lemma 5.22. If e ∈ T , then LΣ(e) = vew.

Proof. We proceed by induction on e. In the base, there are two cases
to consider. On the one hand, if e ∈ {0, 1}, then the claim follows from
Lemma 3.3. On the other hand, if e = a for some a ∈ Σ, then the inclusion
from left to right is simple: a a−→Σ δΣ(a, a) = 1 ∈ F , and therefore we can
conclude that a ∈ LΣ(a). For the inclusion from right to left, suppose that
a U−→Σ f for some pomset U and f ∈ F . In that case, f 6= a (for a 6∈ F), and
thus e U−→Σ f must be non-trivial. We therefore find that U = U0 · U ′ and a

g ∈ T such that a U0−→Σ g is a unit trace, and g U ′−→Σ f holds as well. Whether
a U0−→Σ g is a γ-trace or δ-trace, we have that g ∈ {0, 1}. Furthermore, by

Lemma 3.3 and the fact that f ∈ F , we know that g U ′−→Σ f must be trivial
(for otherwise f = 0 6∈ F), meaning that g = f = 1. It then follows that
a U0−→Σ g was a δ-trace with U0 = a, and U = U0 · U ′ = a · 1 = a.

For the inductive step, suppose the claim holds for all strict subterms of
e. There are five cases to consider.

• If e = e0 + e1, then first suppose that U ∈ LΣ(e). By Lemma 5.13
we know that U ∈ LΣ(e0) or U ∈ LΣ(e0). By induction, we find that
U ∈ ve0w ∪ ve1w = ve0 + e1w.

For the other inclusion, let U ∈ ve0 + e1w. If U ∈ ve0w, then U ∈ LΣ(e0)
by induction; then U ∈ LΣ(e0 + e1) by Lemma 5.13. The case where
U ∈ ve1w is similar.

• If e = e0 · e1 (resp. e = e∗0), then the equality follows from Lemma 5.14
and Lemma 5.20 (resp. Lemma 5.15 and Lemma 5.21) by argument
analogous to the previous case.

• If e = e0 ‖ e1, then first suppose that U ∈ LΣ(e0 ‖ e1). A simple look at
the sequential and parallel derivatives for e0 ‖ e1 shows that U = V ‖ W

42



such that V ∈ LΣ(e0) and W ∈ LΣ(e1). By induction, V ∈ ve0w and
W ∈ ve1w, and thus U = V ‖ W ∈ ve0 ‖ e1w.

For the other inclusion, suppose that U ∈ ve0 ‖ e1w. Then U = V ‖ W
such that V ∈ ve0w andW ∈ ve1w. By induction, we find that V ∈ LΣ(e0)
and W ∈ ve1w. Another look at the parallel derivatives for e0 ‖ e1 then
tells us that U = V ‖ W ∈ LΣ(e0 ‖ e1).

• If e = f †, then first note that f † is a recursive state by Lemma 5.12. By
Lemma 4.5 and induction, we can then conclude that

LΣ(f †) = LΣ(f)† = vfw
† = vf †w

Appendix C.6. Soundness modulo congruence

For technical completeness, we justify our notation in Section 5 by arguing
that the constructs used are well-defined modulo '.

Lemma C.1. Let e, f ∈ T . The following hold:

(i) If e ' f , then vew = vfw, and

(ii) if e ' f , then e ∈ F if and only if f ∈ F , and

Proof. For the first part, it suffices to show that the claim holds for the pairs
generating '. This gives us four cases to consider.

• If e = f + 0, then vew = vfw ∪ v0w = vfw ∪ ∅ = vfw.

• If e = f + f , then vew = vfw ∪ vfw = vfw.

• If e = g0 +g1 and f = g1 +g0, then vew = vg0w∪ vg1w = vg1w∪ vg0w = vfw.

• If e = g0 + (g1 + g2) and f = (g0 + g1) + g2, then

vew = vg0w ∪ (vg1w ∪ vg2w) = (vg0w ∪ vg1w) ∪ vg2w = vfw

• If e = (g0 + g1) · g2 and f = g0 · g2 + g1 · g2, then

vew = (vg0w ∪ vg1w) · vg2w = vg0w · vg2w ∪ vg1w · vg2w = vfw

For the second part, it suffices to verify that the claim holds for the pairs
generating '. This gives us again four cases to consider.
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• Suppose e = f + 0. If e ∈ F , then either f ∈ F or 0 ∈ F . Since the
latter is false, f ∈ F . Also, if f ∈ F , then e = f + 0 ∈ F immediately.

• Suppose e = f + f . If f + f ∈ F , then f ∈ F ; if f ∈ F , then f + f ∈ F .

• Suppose e = g0 + g1 and f = g1 + g0. If g0 + g1 ∈ F , then g0 ∈ F or
g1 ∈ F ; in either case, g1 + g0 ∈ F . The other direction is analogous.

• Suppose e = g0 + (g1 + g2) and f = (g0 + g1) + g2. If e ∈ F , then g0 ∈ F
or g1 + g2 ∈ F , and thus one of g0, g1, g2 must be in F . But then g0 + g1

or g2 must be in F , and thus f = (g0 + g1) + g2 ∈ F . The proof in the
other direction is similar.

• Suppose e = (g0 + g1) · g2 and f = g0 · g2 + g1 · g2. If e ∈ F , then
g0 + g1 ∈ F and g2 ∈ F , meaning that g0 or g1 can be found in F , and
g2 too. In that case, either g0 and g2, or g1 and g2 can be found in F ,
and thus f ∈ F . The proof in the other direction is similar.

Lemma C.2. Let e, f ∈ T such that e ' f . The following hold:

(i) If a ∈ Σ, then δΣ(e, a) ' δΣ(f, a).

(ii) If g, h, g′, h′ ∈ T with g ' g′ and h ' h′, then γΣ(e, g, h) = γΣ(f, g′, h′).

Proof. For the first part, it suffices to verify the claim for the pairs generating
'. This gives us four cases to consider.

• If e = f + 0, then δΣ(e, a) = δΣ(f, a) + δΣ(0, a) = δΣ(f, a) + 0 ' δΣ(f, a).

• If e = f + f , then δΣ(e, a) = δΣ(f, a) + δΣ(f, a) ' δΣ(f, a).

• If e = g0 + g1 and f = g1 + g0, then

δΣ(e, a) = δΣ(g0, a) + δΣ(g1, a)

' δΣ(g1, a) + δΣ(g0, a) = δΣ(f, a)

• If e = g0 + (g1 + g2) and f = (g0 + g1) + g2, then

δΣ(e, a) = δΣ(g0, a) + (δΣ(g1, a) + δΣ(g2, a))

' (δΣ(g0, a) + δΣ(g1, a)) + δΣ(g2, a)

= δΣ(f, a)
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• If e = (g0 + g1) · g2 and f = g0 · g2 + g1 · g2, then

δΣ(e, a) = δΣ(g0 + g1, a) # g2 + (g0 + g1) ? δΣ(g2, a)

= (δΣ(g0, a) + δΣ(g1, a)) # g2 + (g0 + g1) ? δΣ(g2, a)

' δΣ(g0, a) # g2 + δΣ(g1, a) # g2 + g0 ? δΣ(g2, a) + g1 ? δΣ(g2, a)

' δΣ(g0 · g2 + g1 · g2, a) = δΣ(f, a)

in which we make use of the fact that e+ f ' 0 if and only if e ' 0 and
f ' 0. The implication from right to left follows from e+ f ' 0 + 0 ' 0,
and the other implication from the fact that e ' e+ 0 ' e+ e+ f '
e+ f ' 0, and similarly for f .

For the second part, note that γΣ(f, g, h) ' γΣ(f, g′, h′) by construction of
γΣ. It therefore suffices to verify that γΣ(e, g, h) ' γΣ(f, g, h) for the pairs
generating '. This gives us four cases to consider, all of which go through in
the same manner as above.

Lemma C.3. Let e ' f . Then d‖(e) = d‖(f) and d†(e) = d†(f).

Proof. Let ◦ ∈ {‖, †}. It suffices to verify the claim for the generating pairs.

• If e = f + 0, then d◦(e) = max(d◦(f), d◦(0)) = d◦(f).

• If e = f + f , then d◦(e) = max(d◦(f), d◦(f)) = d◦(f).

• If e = e0 + e1 and f = e1 + e0, then

d◦(e) = max(d◦(e0), d◦(e1))

= max(d◦(e1), d◦(e0)) = d◦(f)

• If e = e0 + (e1 + e2) and f = (e0 + e1) + e2, then

d◦(e) = max(d◦(e0),max(d◦(e1), d◦(e2)))

= max(max(d◦(e0), d◦(e1)), d◦(e2)) = d◦(f)

• If e = e0 · (e1 + e2) and f = e0 · e1 + e0 · e2, then

d◦(e) = max(d◦(e0),max(d◦(e1), d◦(e2)))

= max(max(d◦(e0), d◦(e1)),max(d◦(e0), d◦(e2))) = d◦(f)
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