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I. INTRODUCTION AND PROBLEM STATEMENT

Sparse reconstruction consists of finding a sparse vector x⋆ ∈ R
n

from linear measurements b = Ax⋆, where A ∈ R
m×n with m≪ n.

A popular approach to this problem is to solve basis pursuit (BP) [1]:

minimize
x

‖x‖1 subject to Ax = b , (1)

where ‖ · ‖1 is the ℓ1-norm of x. Because BP is a convex problem,

one can not only find its solutions in polynomial time, but also

characterize its sample complexity, i.e., the number of measurements

m that BP requires to reconstruct x⋆. For example, [2], [3] showed

that if A has i.i.d. Gaussian entries and x⋆ has sparsity s, then

m & 2s log(n/s) guarantees that, with high probability, x⋆ is the

unique solution of BP (1). They also showed that this bound is tight.

Another approach to sparse reconstruction is the iteratively

reweighted ℓ1-norm (IRL1) minimization [4] which, starting at an

arbitrary x0 ∈ R
n, solves a sequence of weighted BP problems:

xk+1 ∈ argmin
x

n∑

i=1

|xi|

|xk
i |+ ǫ

subject to Ax = b , (2)

where xk = (xk
1 , . . . , x

k
n) is the estimate of x⋆ at iteration k, and

ǫ > 0. Experiments show that IRL1 (2) reconstructs x⋆ using fewer

measurements than BP (1) and several justifications have been given:

one is that RIP constants associated to IRL1 are smaller than the

ones associated to BP [5]; another is that (2) is a heuristic to solve

minimize
x

n∑

i=1

log
(
|xi|+ ǫ

)
subject to Ax = b , (3)

a nonconvex problem whose objective approximates the cardinality

of a vector better than the ℓ1-norm does [4], [6]; see also [7]–[10].

Both BP and IRL1 require the number of measurements m to be

selected in advance. Whereas the minimal m for BP has been well

characterized and depends only on the sparsity s of x⋆ [2], [3], the

minimal m for IRL1 has never been fully characterized and it will

necessarily depend on the quality of the initialization x0, a quantity

that seems impossible to estimate without knowing x⋆.

Contributions. We design an algorithm based on IRL1 that,

independently of the initialization x0, provably reconstructs x⋆; in

addition, it automatically selects the number of measurements m,

via a feedback mechanism between the encoder and the decoder.

Experiments show that our algorithm adds no significant computation

with respect to IRL1, but the number of measurements that it selects

is often smaller than the number of measurements that IRL1 requires,

even when we know the exact phase transition of IRL1.

II. PROPOSED ALGORITHM

Motivated by medical and astronomical imaging [11]–[14], where

sensing is expensive or time-consuming, we propose to reduce the

number of measurements by acquiring them incrementally, in small

blocks. This departs from the standard paradigm where measurements

are taken all at once, but it enables us to select them automatically.

The method, detailed in Alg. 1, starts with a small number of

measurements m0, e.g., twice the estimated sparsity of x⋆ or a fixed

fraction of n. At each iteration t, Alg. 1 runs IRL1 (steps 5-9) until

the stopping criterion in step 9 is met. We show, using [15], that

this takes a finite number of iterations and that the stopping point

is a local minimizer of (3). Prior work showed that (2) has sparse

limit points [5], [6], not finite convergence to local minimizers. We

also establish conditions guaranteeing that a local minimizer of (3) is

equal to x⋆. These are specified in step 11 and require a grid search

in the interval (0, δ], where δ > 0. If Alg. 1 finds δ ∈ (0, δ] satisfying

those conditions, it halts; otherwise, it takes an additional block of γ
measurements, in steps 15-17. Rescaling the old entries of A and b in

step 17 is necessary to keep all entries of A with the same variance.

Proposition. Alg. 1 stops in a finite number of iterations T < ⌈(n−
m0)/γ⌉, with probability 1. Furthermore, if δ < |x⋆

i |, for all i such

that x⋆
i 6= 0, and x⋆ satisfies the equations in step 11 then, with high

probability, the algorithm finds x⋆, i.e., xT = x⋆.

This does not specify the number of measurements that Alg. 1

selects. But, in practice, it often selects less measurements than IRL1.

Experiments. We generated x⋆ with (n, s) = (1000, 70). Varying

m from 1 to 401, we then generated, for each m, 100 realizations

of A ∈ R
m×n with i.i.d. N (0, 1/m) entries, and set b = Ax⋆.

For each realization, we ran BP (1), and IRL1 (2) with ǫ = 0.2
and the stopping criterion of step 11; we also ran 100 independent

instances of Alg. 1 with (m0, γ, δ) = (100, 10, 10−2). Fig. 1(a)

plots the phase transitions, i.e., the success rate versus m. Fig. 1(b)

plots the number of times each algorithm solved a weighted BP. As

Alg. 1 computes m automatically, it has no phase transition. The

vertical lines in Fig. 1(a), which indicate the minimum, median, and

maximum number of measurements over the independent 100 runs,

show that the number of measurements selected by Alg. 1 coincides

with the phase transition of IRL1. Fig. 1(b) shows that this was

achieved without adding significant computation.

In conclusion, our algorithm automatically selects a number of

measurements smaller than the number of measurements that IRL1

requires, has comparable complexity, and provably reconstructs x⋆.



Algorithm 1 Incremental measurement IRL1

Parameters: Initial number of measurements m0, initialization vec-

tor x0 ∈ R
n, increment γ ∈ N, and parameters ǫ, δ > 0

Initialization:

1: Generate matrix A : m0 × n with entries
i.i.d.
∼ N (0, 1/m0), and

take measurements b = Ax⋆

2: Set m = m0 and t = 0
Algorithm:

3: for t = 1, 2, . . . do

4: k = 0; z0 = xt

5: repeat

6: k ← k + 1
7: Set wk

i = 1/(|zk−1

i |+ ǫ), for i = 1, . . . , n
8: Find a solution zk of

minimize
z

∑n

i=1
wk

i |zi|

subject to Az = b

9: until
∑n

i=1
wk

i |z
k+1

i | =
∑n

i=1
wk

i |z
k
i |

10: Set xt = zk

11: Defining Itδ :=
{
i : |xt

i| ≥ δ
}

and stδ :=
∣∣Itδ

∣∣, find 0 < δ ≤
δ such that 0 < stδ < n, and also

m ≥ 2

[
∑

i∈It

δ

(
ǫ

|xt
i|+ ǫ

)2−2p
]

log
n

stδ
+

7

5
stδ + 1

stδ ≤
10

3

[
∑

i∈It

δ

(
ǫ

|xt
i|+ ǫ

)2−2p
]

log
n

stδ

12: if such δ exists then

13: Terminate algorithm and return x̂, where

x̂i =

{
xt
i , i ∈ Itδ

0 , i 6∈ Itδ
.

14: else

15: Set m← m+ γ

16: Generate A
t
: γ × n with entries

i.i.d.
∼ N (0, 1/m)

17: Take measurements b
t
= A

t
x⋆ and update

A←

[√
m−γ

m
A

A
t

]

b←

[√
m−γ

m
b

b
t

]

18: end if

19: end for
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Figure 1. (a) Phase transitions, over 100 random trials, of BP and IRL1
with ǫ = 0.2. Alg. 1, also executed over 100 random trials, computes the
number of measurements automatically: the median was 200 (solid line), the
minimum and maximum 180 and 230 (dashed lines). (b) Average number of
iterations (on k) of (2). The horizontal lines indicate the minimum, median,
and maximum number of times Alg. 1 solved the weighted BP problem in
step 8, that is, the cumulative number of its inner iterations.
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