
Co-simulation Setup for Online Model-assisted Control Design 

G.I. Giannakis#1, K.I. Katsigarakis#2, G.D. Kontes#3, D.V. Rovas#4 

# Department of Production Engineering and Management, 
Technical University of Crete, Chania, Greece 

1ggiannakis@isc.tuc.gr 
2kkatsigarakis@isc.tuc.gr 

3gkontes@isc.tuc.gr 
4rovas@dpem.tuc.gr

Abstract 

For reduction of energy intensity of the building sector, effective and parsimonious 
use of energy resources and climate control systems is a prerequisite. Intelligent 
Building Energy Management Systems (BEMS) can be key ingredients towards 
achieving this goal; the incorporation of forecast data into the decision process can 
help achieve improved performance compared to existing state-of-the-art 
approaches. In the present paper, the potential of model-based supervisory control 
design algorithms for automatically designing BEMS is evaluated by performing 
experiments in a real building. A co-simulation setup is implemented where the 

thermal simulation model of the building is warmed up using past sensed data and 
then, given weather and occupancy forecasts, a controller is designed by solving a 
constrained minimization problem. A stochastic optimization algorithm is used to 
intelligently search the controller parameter space and identify a controller that 
minimizes an energy-related cost function, subject to thermal comfort constraints. A 
middleware solution is deployed in the building to facilitate two-way communication 
between the building (sensing and actuation) layer and the algorithmic layer.  
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1. Introduction  

The building sector contributes significantly to global energy consumption. 
Building Energy Management Systems (BEMS) can be an effective way to 
improve energy performance by more effective utilization of actuating 
components. Towards providing effective building operation, significant 
effort has been consumed with the goal of defining “intelligent” BEMS. In 
current practice, it is quite common that BEMS comprise a set of rules, 
implemented in the buildings’ Programmable Logic Controllers (PLCs). 
These rules can range from the very simple to the extremely intricate, and 
given sensor – system state awareness – measurements, produce control 
decisions, that are in turn applied to the building. A significant research 
effort has been expanded towards designing such good rule-based control 
strategies – and, in many cases this is an effective approach. In modern 



buildings, the plethora of energy systems installed, often times make the 
design of a proper rule-based BEMS system a formidable challenge, while 
rule-based strategies offer no guaranties of performance. Recent research 
efforts focused on Model-Predictive Control (MPC) techniques [2], in which 
weather and occupancy predictions along with a linear state-space model 
capable of capturing thermal behavior of the building, are used to design 
elaborate control strategies [12], [14]. The simulation models can be 
developed using first principle approaches [11], [14], but for larger buildings 
their construction is impractical, due to the increased complexity [16]. Data-
driven models, produced by system identification methods [10], [17], can be 
viable alternatives, but still it is very often that the identification process fails 
when applied on real, occupied buildings, due to under-excitation of system 
dynamics [17]. In more recent approaches [16] a detailed thermal simulation 
model of the building is used for the identification phase, which remains a 
difficult process. Despite the fact that MPC approaches in BEMS design are 
intuitive, their dependence on purpose-built state-space models is a 
challenging task that can hinder their application. 

To avoid the above caveats, detailed zonal-type thermal simulation 
models developed during the design phase of the building, can be used as 
black-box models by model-assisted control design approaches. Within the 
FP7 PEBBLE project [15], a co-simulated controller fine-tuning procedure, 
using a stochastic optimization algorithm [7], [8], along with a detailed 
thermal simulation model of the building and weather and occupancy 
forecasts, is used to automatically generate effective control strategies, while 
preserving user thermal comfort levels. In the present work, a detailed 
description of the co-simulation setup, including all necessary sensing and 
actuating modalities is provided, along with the required components for 
application in a real building. In Section 2, the methodology is presented; in 
Section 3 the experimental setup is described; and, in Section 4 concluding 
remarks are presented.  

2. Methodology 

In the work presented here, the proposed approach is applied and evaluated 
on the Maintenance support building of the Technical University of Crete, 
located in Chania, Greece [5]. It is a two-floor building with a North-North-
West orientation and large openings, including a large horizontal 
semicircular opening on the rooftop (Fig. 1). 



 

Fig. 1 The demonstration building - Ground floor (left) and first floor (right) plan views 

The use of model-assisted control techniques for the BEMS design 
presupposes two processes running in parallel; one on the “simulation 
world”, designing a new controller in predefined intervals and one on the 
“real world”, applying the controllers to the real building, named Control 
Design and Control Application respectively (see Fig. 2). 

The Control Design process consists of a Warming-up and a Forecast 
Phase. During the Warming-up Phase, a detailed thermal simulation model 
of the building is used – combined with historical in-building sensor 
measurements and weather data – to estimate the actual thermal state of the 
building at the beginning of the Forecast Phase (Fig. 2). Subsequently, when 
the Warming-up Phase finishes, the Forecast Phase initiates. Here, a 
stochastic optimization algorithm is used to solve a constraint optimization 
problem that requires minimization of the energy consumption, while 
preserving user thermal comfort levels [8]. The optimization algorithm, 
starting from a provided initial controller constructs series of candidate 
controllers, which are evaluated using the “warmed-up” simulation model of 
the building along with weather and occupancy forecasts, to design a new 
controller. A closer look on the functionality of the algorithm makes obvious 
that application of the dynamical actuation schedules defined by the 
candidate controllers, as well as their performance evaluation through the 
model should be possible. The Control Design process is repeated every two 
hours. 

The outcome of the Control Design process (the Optimized Controller in 
Fig. 2) is forwarded to the Control Application process. Here, at regular time 
intervals (every 10 minutes in our case), a control application service 
implemented at the Middleware layer is invoked to calculate new control 
actions using real sensor measurements, which are then sent to the Real 
Building. Of course, the efficiency of the applied control strategy depends on 
the quality of the controller provided by the Control Design process. 

The thermal model of the building plays a central role in the Control 
Design process and is required to interact with the control design algorithm. 



This is achieved through the co-simulation setup, which: a) incorporates into 
the simulation historical weather and in-building sensor data; b) injects 
weather and occupancy forecasts in the simulation model; and c) facilitates 
simulation scenarios using dynamical actuating schedules, thus allowing the 
evaluation of the candidate controllers. Since performance evaluation of the 
candidate controllers is performed on the basis of energy consumption and 
user discomfort levels, the use of detailed building thermal simulation 
models through co-simulation, allows incorporating more elaborate thermal 
comfort indices, such as the Fanger index [9]. This way, the model can be 
used to evaluate user comfort levels using historical sensor measurements 
from the building and to predict future ones, using forecasts and the 
simulation model. 
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Fig. 2 The Methodological Approach 

A. Simulation Thermal Model 

Having in mind the functionality required by the simulation model, an 
accurate thermal model of the building is developed in EnergyPlus [4]. 
EnergyPlus is a thermal simulation engine released by the U.S. Department 
of Energy, which follows the zonal thermal models paradigm, where the 



building is divided into spaces (thermal zones), each with constant internal 
conditions. The energy and mass conservation differential equations on each 
zone are used to evaluate the evolution in time of the zonal thermal 
parameters. For more information on the simulated building, please refer to 
[6]. 

B. Co-Simulation  

With the simulation model of the building at hand, the dynamic 
interaction between the model and the control design algorithm has to be 
defined using co-simulation, which enables the use of different software for 
run-time coupling. In our case, the dynamic connection between EnergyPlus, 
where the model of the building has been developed, and Matlab, where the 
control logic has been implemented has to be effectively utilized. Such a 
connection can be achieved using EnergyPlus with External Interfaces and 
especially with the Building Controls Virtual Test Bed (BCVTB) [18]. The 
BCVTB is a software environment, developed by Lawrence Berkeley 
National Laboratory which enables the coupling of different software codes 
for distributed simulation, by allowing simulation of the building envelope 
and HVAC system in EnergyPlus and implementation of the control logic in 
Matlab (or other general purpose programming languages), facilitating 
dynamic data exchange between the two programs at each time step of the 
simulation.  
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Fig. 3 Architecture of the connection between EnergyPlus and the BCVTB and the connection 

between MATLAB and BCVTB during Control Design. 

 
Fig. 3 shows the system architecture and the data exchange paths that 

establish BCVTB as the central communication node in EnergyPlus-Matlab 
connection. During the Warming-up Phase, a Matlab script requests 
historical weather and in-building sensor data from the real building, which 
forwards them to the EnergyPlus simulation model through BCVTB, thus 
using the one-way data exchange path, shown in the upper part of Fig. 3. 
Consecutively, during the Forecast Phase a set of candidate controllers 



produced by the optimization algorithm are evaluated on the simulation 
model. Here, these controllers are implemented in Matlab and require 
information on specific building states, in order to produce control decisions 
in each simulation time-step. So, in every time-step of the simulation, a 
vector of building states (e.g. room temperature, outside humidity, etc.) is 
transmitted from the EnergyPlus model to the control logic in Matlab, 
through BCVTB. Subsequently, the new control decisions are communicated 
from Matlab back to EnergyPlus using the BCVTB (Fig. 2). When the 
simulation ends, the performance of the control strategy, in terms of energy 
consumption and user comfort levels, is acquired by the optimization 
algorithm, again using the BCVTB (Fig. 3). 

C. Middleware 

Once the Control Design process concludes to a control strategy for the 

building the Control Application process requests the updated controller to 

be applied to the building. Here, the available controller is used to produce 

control decisions in predefined time interval using sensor measurements 

from the real building (and not from the simulator, as in the Forecast 

Phase). Within this context, the Middleware is responsible for acquiring 

real-time sensor measurements from the building, executing the control 

logic and communicating the control decisions back to the building 

actuating components through the Building Management System (BMS). 

With respect to the BMS, five different communication protocols are 

available and used to supply sensor measurements to the PLCs or transmit 

control actions from the PLCs to the components of the building. So, 
EnOcean and WiseMAC wireless protocols are used to retrieve in-building 

sensor measurements, such as temperature, humidity and illumination 

levels, as well as information of window opening through contact sensors. 

RS-485 wired protocol is used to acquire weather station measurements, 

while KNX/EIB wired protocol is used to communicate the desired settings 

to the A/C systems. Once the real-time data are available on the PLCs, the 

OLE for Process Control (OPC) interface – which is the only real-time 

interface between the middleware and the BMS – is used to forward them to 

the middleware-residing services that have requested them, though the Data 

Access (DA) specification.  

The Control Application process requests the real-time values of 
specific sensors using a restful client. Here, the middleware service 

responsible for applying the controller to the building uses HTTP requests 

to retrieve the sensor data from the building PLCs through web services. 

Once the data are retrieved, the control application service communicates 

the new control actions back to the building with the same way. 

In addition, the middleware is not only responsible for applying the 

control strategies produced, but also supports with historical data and 



weather predictions the functionality of the Control Design process. Thus, 

first of all multithreading OPC clients called Data Loggers (DLs) are used 

to record and store sensor data by managing the data logging process for 

different data logging groups. DLs support customizable properties such as 

time delay between successive records, database location, authentications 

parameters etc. Weather Forecast on the other hand, is the only middleware 

service allowed to communicate to the Internet. This service provides 

access to an external cloud-based forecast system and in predefined 

intervals acquires the predicted data and stores them to a database, making 

them available for other services through the use of proper database 

software adapters. 

3. Experiment 

In this section, a series of experiments on the real building are presented, 

highlighting the necessity of the co-simulation setup within the model-

assisted control design context.  

The first experiment indicates the significance of the Warming-up Phase 

for the simulation model accuracy. Here, the simulation model is provided 

with historical weather and in-building sensor data for 13 days (from 

December 10th  to December 30th) and exploits them to assimilate the 

thermal state of the building at the beginning of the 14th day. After that, and 

for about 4 days, the real building is unoccupied and allowed to free-float 

(i.e. no actuating components are operated), while the simulated model is 
required to accurately predict the zone temperature values (model 

validation). Note here that during the warm-up the sensed air temperature of 

each office room is set as the thermostat temperature setpoint of the room. 

As Fig. 4 depicts for zone O11 (see Fig. 1), during the warming-up period 

simulated and measured temperature trends are (almost) identical, thus the 

historical sensor values provided to the simulation model through the 

middleware, using the co-simulation setup, enhance the accuracy of the 

model. As for the validation phase (days 14-17), the results on Fig. 4 show 

that the maximum temperature difference between the simulated and real 

temperature schedules is 0.61˚C, while the mean absolute error 0.25˚C, 

indicating high model accuracy. 
The second experiment presents the quality of the controllers produced 

by applying the overall methodology to the real building. Here, for a hot 

summer weekend where the outside temperature rises up to 27°C during the 

day and drops as low as 20°C during the night, a new controller is designed 

using the Control Design process every 2 hours, while the produced 

controllers are applied to the real building every 10 minutes. The final 

control strategy applied to zone O11 is shown in Fig. 5 along with the 

predicted room temperature values, while in Fig. 6 the actual room 



conditions are presented. A closer look on the results reveals the intelligent 

behavior of the control strategy generated by the proposed approach. To 

start, the use of occupancy information by the control application 

middleware service allows identifying unoccupied periods, thus shutting-

down the cooling system. Moreover, the algorithm identifies that during the 

morning less cooling power is required and follows a conservative cooling 

policy, while during noon lowers the setpoint to maintain acceptable 

comfort levels in more demanding conditions. This behavior stems from the 

enhanced model accuracy, due to the incorporation of historical and 

forecasted data through co-simulation. This enhances the evaluation 

accuracy of candidate controllers tested by the optimization algorithm, thus 
assisting towards better control design. In addition, utilization of feedback 

from the building at each control application cycle by the respective 

middleware service, allows recovering from unpredicted events, like user 

absence.  

 

 

Fig. 4 Warming up and validation period: comparison of simulated and measured room 

temperatures for zone 11 

 

Fig. 5 Control setpoints for zone O11 

 

Fig. 6 Actual zone O11 conditions 

 

4. Conclusions 
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In the present work, the significance of a co-simulation setup on the 

application of a model-assisted BEMS design technique is presented. The 

use of detailed thermal simulation models that act as surrogate to the real 

building require the definition of the Control Design and the Control 

Application processes. The first produces efficient control strategies 

supported by the incorporation of real data into the simulation model, thus 

enhancing its accuracy, while the second utilizes the middleware of the 

building in order to adapt the provided control strategies to any unpredicted 

events. The efficiency of the overall approach is supported by the results of 

two experiments conducted on a real demonstration office building, located 

in Chania, Greece. 

5. Acknowledgment 

The research leading to these results has been partially funded by the 
European Commission FP7-ICT-2007-9.6.3, Energy Efficiency under 
contract #248537 (PEBBLE) and European Commission FP7-ICT-2011-6, 
ICT Systems for Energy Efficiency under contract #288409 (BaaS).   

6. References 

[1] ASHRAE. ANSI/ASHRAE Standard 55-2004: thermal environmental conditions 

for human occupancy, 2004. 

[2]  E.F. Camacho and C. Bordons. Model Predictive Control. Springer Verlag, 2004. 

[3] J. Cigler, S. Prívara, Z. Váňa, E. Žáčeková and L. Ferkl. Optimization of predicted 

mean vote index within model predictive control framework: Computationally 

tractable solution. Energy and Buildings, 52: 39-49, 2012.  

[4] D.B. Crawley, L.K. Lawrie, F.C. Winkelmann, W.F. Buhl, Y.J. Huang, C.O. 

Pedersen, R.K. Strand, R.J. Liesen, D.E. Fisher, M.J. Witte, et al. EnergyPlus: 

creating a new-generation building energy simulation program. Energy and 

Buildings, 33(4):319–331, 2001. 

[5] A. Dröscher, H. Schranzhofer, J. Santiago, A. Constantin, R. Streblow, D. Müller, 

N. Exizidou, G. Giannakis, D. Rovas. Integrated Thermal Simulation Models for 

the Three Buildings. PEBBLE Deliverable 2.1, 2010. 

[6] A. Dröscher, M. Pichler, H. Schranzhofer, A. Constantin, N. Exizidou, G. 

Giannakis, and D. Rovas. Validation Results of the Models. PEBBLE Deliverable 

2.2, 2011.  

[7] G.I. Giannakis, G.D. Kontes, E.B Kosmatopoulos, and D.V Rovas. A model-

assisted adaptive controller fine-tunning methodology for efficient energy use in 

buildings. In Mediterranean Conference on Control & Automation, pages 49 –54, 

June 2011. 

[8] G.D. Kontes, G.I. Giannakis, E.B. Kosmatopoulos and D.V. Rovas.Adaptive Fine-

Tuning of Building Energy Management Systems Using Co-Simulation, 2012 IEEE 

Multi-Conference on Systems and Control, 2012 

[9] International Organization for Standardization. ISO7730:2005: Ergonomics of the 

thermal environment - Analytical determination and interpretation of thermal 

comfort using calculation of the PMV and PPD indices and local thermal comfort 

criteria, International Organization for Standardization, Geneva, Switzerland, 2005.  



[10] D. Kolokotsa, A. Pouliezos, G. Stavrakakis, and C. Lazos. Predictive control 

techniques for energy and indoor environmental quality management in buildings. 

Building and Environment, 44(9):1850–1863, 2009. 

[11] K. Lee and J.E. Braun. Model-based demand-limiting control of building thermal 

mass. Building and Environment, 43(10):1633–1646, 2008. 

[12] Y. Ma,; F. Borrelli; B. Hencey;B. Coffey; S. Bengea and P. Haves. Model 

predictive control for the operation of building cooling systems. American Control 

Conference (ACC). 2010. 5106-5111. 

[13] T.X. Nghiem and G.J. Pappas. Receding-horizon supervisory control of green 

buildings. In American Control Conference (ACC), 2011, pages 4416–4421, 2011. 

[14] F. Oldewurtel, A. Parisio, C.N. Jones, D. Gyalistras, M. Gwerder, V. Stauch, B. 

Lehmann and M. Morari. Use of model predictive control and weather forecasts for 

energy efficient building climate control. Energy and Buildings, 45: 15-27, 2012.  

[15] PEBBLE Project. Positive Energy Buildings thru Better controL dEcisions. 2010-

2013. 

[16] S. Privara, Z. Vana, D. Gyalistras, J. Cigler, C. Sagerschnig, M. Morari, and L. 

Ferkl. Modeling and identification of a large multi-zone office building. In 

Proceedings of the IEEE International Conference on Control Applications (CCA), 

pages 55–60, 2011. 

[17] Z. Vana, J. Kubecek, and L. Ferkl. Notes on finding black-box model of a large 

building. In Proceedings of the IEEE International Conference on Control 

Applications (CCA), pages 1017–1022, 2010.  

[18] M. Wetter. Building Controls Virtual Test Bed. Lawrence Berkeley National 

Laboratory, 2011. 


