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Abstract

Recently advances in biological science have been dependent in corresponding advances
in the field of DNA and protein separation. It therefore also requires the progress of the
related electro-mechanical devices, in terms accuracy and speed of analysis. Most of
these devices are composed of micro- and/or nano- channels which involve flow of
complex phenomena. Our focus is on these micro/nano channel devices, consisting of
many entropic traps, which were designed and fabricated for the separation of long DNA
molecules. The channel comprises narrow constriction and wider regions that cause size-
dependent trapping of DNA at the onset of a constriction. This process creates
electrophoretic mobility differences, thus enabling efficient separation without gel matrix
or pulsed electric fields [1-3]. Simulation and in particular numerical simulation is an
efficient way to investigate the complex flow in the related electro-mechanical devices.
Investigations for different simulation methods were carried out and we came into
conclusion that the Dissipative Particle Dynamics method, which groups a number of
atoms/molecules into particles, is most suitable for the above-mentioned applications.
Dissipative Particle Dynamics (DPD) is a mesoscopic fluid modeling method, which
facilitates the simulation of the statics and dynamics of complex fluid systems at
physically interesting length and time scales. Currently, there are various applications of
DPD, such as colloidal suspensions, multi-phase flow, rheology of polymer chains, DNA
macromolecular suspension, etc., which employ this technique for their numerical
simulation. The DPD technique is capable of modeling macroscopic properties of the
bulk flow very well, but difficulties arise if the flows are confined through wall-bounded
regions, or when different boundaries simultaneously exist in the simulation domain.

These boundaries cause negative effects on the macroscopic temperature, density and
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velocity profiles, as well as the shear stress and pressure distributions. In particular, the
interaction of DPD particles with solid boundaries causes large density fluctuations at the
near wall regions. This density distortion leads to pronounced fluctuations in the pressure

and shear stress, which are not actually present.

To overcome these serious deficiencies, we introduce a new method in this work, which
uses a combination of randomly distributed wall particles and a novel reflection
adaptation at the wall. This new methodology is simple to implement and incurs no
additional computational cost. More importantly, it does not cause any distortion in the
macroscopic properties. This novel reflection adaptation is a novel version of the bounce
back reflection, which we shall term the bounce-normal reflection. The most important
characteristic of this method is that it reduces density fluctuations near the boundaries
without affecting the velocity and temperature profiles. This new method is easily
applicable to any wall-bounded problem with stationary boundaries and it has a very
good consistency with macroscopic features. Following this numerical development
work, we moved on to investigate suspension flow through micro/nano channels of
fluidic NEMS/MEMS devices, with applications to DNA and protein separation. These
micro/nano channel devices, consisting of many entropic traps, are designed and
fabricated for the separation of proteins and long DNA molecules. The numerical results
obtained compared very well with available experimental data, where counterintuitive
behavior of longer DNA strands being able to escape through the traps in faster manner,

was earlier observed [1-3].
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Chapter 1

Introduction

This chapter provides an introduction to fluid simulation techniques and examines some
features of these methods especially for the complex systems. We also identify the
dissipative particle dynamics as a mesoscopic technique. Finally, we present the layout

of the current work.

1.1 Complex flow Simulation Techniques

A complex flow system is one in which the observable properties and behaviors have
significant dependency on the microscopic structure of the fluid. There exists a broad
application of such systems especially in the field of biological and biomedical sciences

(biochemical lab on chip systems, DNA separation devices, and drug delivery systems).

The rapid progress in the development of micro- and nano-electromechanical systems
(MEMS/NEMS) is leading to the need for continuous improvements in the modeling
approaches. Numerical simulation is a way to simulate these complex systems, which
usually involves simulation of coupled electrical, mechanical, thermal and fluid domains.
In addition there exists other features of geometrical complexity and suspension of
different particles or polymers (DNA chains) in the domain. As device dimensions

continue to decrease, conventional (macroscopic) theories are being challenged and often
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new computational models are required. Accurate and reliable computational approaches
are essential for the design of efficient and robust micro/nano-systems. In general there
are three methods for the simulation of such systems, namely: molecular dynamics
(MD), continuum methods (Navier-Stokes) and mesoscopic methods, and each of these

may have their own characteristics, advantages and disadvantages.

A simple fluid can be described by continuum Navier-Stokes equations and sophisticated
computational techniques have been developed over the years for the solution of these
differential equations on macroscopic scales. In order to reduce the computational
complexity, the employed numerical discretization should be both highly efficient as
well as robust. Usually, discretization methods are based on finite-differences, finite-
elements or finite volumes. There are also some other similar techniques like spectral
element (high order finite-element), meshfree methods and the force coupling method,
each of which are appropriate for different applications. However these methods can
only include the macroscopic details of the fluid in a phenomenological manner and are

thus not suited for many complex fluid applications.

On a microscopic scale, the MD method allows the simulation of very small volumes of
liquid flow by following the position and the momentum of every atom/molecule in the

fluid. On this level the order of dimensions in MD method are perhaps of 100nm or less,

and the simulated phenomenon time is of the order of several nanoseconds. MD can deal
effectively with nano-domains and is perhaps the only accurate approach in simulating
flows involving very high shear where the continuum or the Newtonian hypothesis may
not be valid. For dimensions less than approximately ten molecules the continuum
hypothesis breaks down for liquids and MD should be employed to simulate the

atomistic behavior of such a system [4]. Although MD approaches have become
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increasingly successful in the simulation of a small number of atoms/molecules, it is not
easy to apply these microscopic techniques to large complex fluid systems because of its
huge computational cost.

Mlcroj-\Scales Bridging the Gap Macro-Scales

Atomistic Methods

Continuum Methods

Molecular Dynamics Navier-Stokes

Discretization Methods

Meso-Scales

~

Mesoscopic Simulation
Lattice Boltzmann Method

Dissipative Particle Dynamics
Figure 1.1 Dissipative Particle Dynamics: Bridging the gap between Micro-scale and Macro-scale.

To bridge the gap between atomistic simulations and macroscopic network simulations,
we need an intermediary technique focused at a length scale larger than the atomistic
scale, but smaller than the macroscopic connection scale {5, 6], as shown in Figure 1.1,
Mesoscopic fluid simulations are methods which overcome the inherent difficulties faced
by conventional methods when applied to complex fluids. Its aim is to identify
characteristic physical lengths and times in the system in order to use them for

simplification of the complex models.

1.2 Dissipative Particle Dynamics: A Coarse-Grained

Technique

The dissipative particle dynamics (DPD) is a potentially very powerful and simple
mesoscopic approach, which facilitates the simulation of the statics and dynamics of
complex fluid systems at physically interesting length and time scales. Since 1990, when

the method was first developed in Europe, DPD has been applied in the study of the
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dynamical properties of a wide variety of systems and applications, including colloidal
suspensions [7, 8], dilute polymer solutions [9, 10], block-copolymer melts [10, 11],
surfactants [12, 13], biological membranes {5, 14] and DNA suspension [15]. We can
perceive this method as grouping a number of molecules into single particle and the
number of molecules per DPD particle is known as the coarse-graining parameter and is
denoted by N, . One of the most important issues is to find the upper limit for this
coarse-graining parameter by which we could model the physical properties in an
efficient manner. The vital role of N, become more obvious when we find that it has a

significant impact on the speed of simulation. According to [5] the DPD total speed up of

8/3
m

simulation with respect to MD method is 1000 N~ for a given system volume. Thus,

for N, =3 and 7 the speed-up factor is roughly about2x10* and 2x10°,

respectively.
1.3 Research Objectives

The three main objectives of this M.Eng research are:

1). Refinement of the DPD method so as to obtain the correct macroscopic flow
properties. To achieve this, we aim to improve on the simulation model, such as the wall

particle distribution and boundary reflection mechanism.

2). Optimizing the DPD coarse grained parameters (bead spring models) to achieve
an accurate and efficient model for the rheology of polymers under various conditions,

and to develop a proper DNA chain model to be coupled with the DPD method.

3). Following the development of a sufficiently refined DPD methodology, we will

then apply it to study the process of DNA separation through entropic traps.
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1.4 Thesis Outline

e In Chapter 2 the basics of the DPD algorithm is introduced and some of the
theoretical aspects of this algorithm, especially the derivation of the Fokker-
Planck equations are established. The objective of this chapter is to determine

the detailed balance condition for DPD modeling.

e In Chapter 3 we provide a comprehensive literature review for DPD boundary
models. In this chapter we also introduce and examine some of the main
difficulties in implementing boundary conditions and introduce the well-known
methods in applying the boundaries for the bulk flow and flow in confined

geometries.

¢ In Chapter 4 we return to the DPD algorithm and introduce the optimum serial
algorithms for implementation of DPD in computer programming. Then we
study some algorithms for time evolution schemes in DPD. Finally we examine

and determine suitable values for the DPD parameters.

¢ In Chapter 5 the techniques for data analysis, and the connection between microscopic
and macroscopic properties, are introduced. The new bounce normal boundary
condition is then proposed and it is subjected to various test cases. We examine
different boundary conditions numerically for two cases of Poiseuille and
Couette flow and study the effects of boundary models on macroscopic
properties. Finally we employ the bounce normal reflection to explore lid

driven cavity flow.

¢ In Chapter 6 we introduce the concept of an ideal chain and derive the basic relations

for radius of gyration and end-to-end distance. Subsequently, by deriving the



ATTENTION: The S y Library

Chapter 1: Introduction

entropic elasticity of the polymer chain, we find the Hookean spring definition
for an ideal chain. Next, real chains and the excluded volume effects are
explained briefly and the scaling laws for polymers are introduced. The worm-
like chain (WLC) is studied in detail. In the last part of this chapter we
introduce the coarse-grained DPD simulation for polymeric systems and finally

investigate DPD scaling laws for the WLC in dilute solution.

¢ In Chapter 7, the entropic trap which is a new method for separation of DNA
molecules is introduced and the process is simulated using the DPD method
with WLCs to mimic the DNAs. As a result, motilities of different chain sizes
are found and some of the main underlying physics that cause delay in

migration of small chains are discussed.

¢ In Chapter 8, concluding remarks are made, and the major contributions of this thesis

are highlighted. In addition, possible future works are proposed.
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Theoretical Aspects of DPD

The theoretical connection between Dissipative Particle Dynamics and continuum fluid
mechanics can be demonstrated by deriving the Fokker-Planck equation. It is the
essential formulism for derivation of kinetic and hydrodynamic equations [16]. The
Fokker-Planck equation governs the N -particle distribution function that gives the
probability density of the system position and momentum. It is related to DPD by the
corresponding Langevin equations, which are the stochastic differential equations for the
dynamics of particles subjected to conservative, dissipative, and random forces. Here we
present the Marsh [17] derivation of the Fokker-Planck equation that corresponds to the
stochastic differential for DPD, and proves an H-theorem for the DPD algorithm that

ensures the Gibbs distribution is the inevitable equilibrium distribution.

2.1 The DPD Algorithm

The Dissipative Particle Dynamics (DPD) is an alternative method for mesoscopic fluid
simulation, which was first introduced by Hoogerbrugge and Koelman [18], and was
modified by Espanol and Warren [19]. The DPD algorithm is a combination of
molecular dynamics, Brownian dynamics and lattice gas automata, and derives its static

and dynamic properties according to the theory in statistical mechanics [16].
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Similar to molecular dynamics, the time evolution of each DPD particle, which

represents a cluster of molecules/atoms, can be calculated by Newton’s second law

dr, dp,
—t =y, —= F., (2.1
at Yoodr Z Y )

Jj#i

where r,, v, and p, = mv, are respectively the position, velocity and momentum vectors

of particle, and F, is the total interparticle force exerting on particle i by particle j. In

this work we assume the mass of each particle m;,, to be unity. The interparticle force is
defined by three components that lie along their lines of centers and conserves linear and

angular momentum: a purely repulsive conservative force FU.C, a dissipative or frictional
force F,.f which represents the effects of viscosity and slows down the particles motion

with respect to each other, and the random (stochastic) force Ff which represents the

i

thermal or vibrational energy of system,

F, =F; +F +F], 2.2)
Fy =w (e, 23)

F) =-yw’(r)lv,.e,le,, 2.4)
Fj =ow'(5)6,¢,, 2.5)

where e, =r; /7, 1, =r -1

C D R
Iy =6-r,n=lr-r;land v, =(v,-v;). w", w” and w" are the

conservative dissipative and random r dependent weight functions. The 6, term is a

Gaussian white noise function with symmetry property 6, =6, to ensure the total

conservation of momentum and has the following stochastic properties

J

(6,(1))=0,(6,(8,(:")=(8,8,+8,5,)8(t~1") (2.6)
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All of the above forces are acting within a sphere of interaction or cutoff radius r, which
is the length scale parameter of the system. The ¥ and o are the coefficients of the

dissipative and random forces respectively. Similar to the fluctuation-dissipation theorem

[20], Espanol and Warren [19] obtained the detailed balanced condition for the DPD as

wl(ry=wr(NP , o® =2yk,TIm, (2.7)
where k, is the Boltzmann constant and T the equilibrium temperature. The

conservative force weight function is given by

r.
az‘(l_i) nsrc
wor)=<"" . / (2.8)

0 r,>r
where a; =.jaa; is the repulsion parameter. We can match the compressibility

condition and determine the repulsion parameter as a function of DPD number density p

and system temperature which is applicable for fluid-fluid interactions [5, 6]

a,=a, =75k, T/p 2.9)

The dissipative and random weight functions takes the general form [15]

c

wP(r) =W ()1’ = ’ (2.10)

0 K>,

s
1--2) r, s,
r

In the present work which involves conventional DPD systems, we set the exponent

Sy
\/é;e"’" where ¢,

parameter to s=2. The random force transforms to Ff =0'wR(r,.j)

represents an independent increment in a stochastic process, which is represented by a
uniform distribution of random numbers whose mean is zero with unit variance, and

chosen independently for different pairs of particles at each time step.
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2.2 Derivation of Fokker-Planck Equation

It can be demonstrated that every set of stochastic differential equations of the form of
(2.1) is equivalent to a Fokker-Planck equation [21]. This Fokker-Planck equation is the
analogue of the Liouville equation which would be relevant for a classical system. The
equations (2.1) show the evolution of the variables of particular system with time, and
therefore describe a particular path in phase space. In deriving the Fokker-Planck
equation we are interested in a differential equation governing a large ensemble of such
systems by the probability density function of the phase space o(I',#), where I’

represents all the variables of the system and here they are the positions and velocities.

We start with the Chapman-Kolmogorov equation written in phase space. It is the
fundamental equation of the Markov process [22],which states that the course of the
system at a time ¢ depends only upon the instantaneous state of the system at the time ¢
and is independent of its previous history. Consider At be a small time step, during

which p changes. We can derive p(r+Ar,p,t+ Ar) from p(r,p,t) and a knowledge of

the transition probability W (p; Ap). In mathematical order we can state this by writing
pr+Ar,p,t+At)= Ip(r, p—Ap, )W (r,p—~Ap;:Ap)d(Ap), (2.11)
Ap

where W(r,p —Ap;Ap) is a transition probability that gives the probability that a particle
at the position (r,p—Ap) in phase space jumps in momentum by Ap in the interval of

At . This equation means that the probability of finding a particle at position r+Ar at

time 7+ At with the momentum p is the same as the probability that it was at position r
with momentum p—Ap at time ¢ and jumped an amount Ap, summed over all possible

values of Ap.

10
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We now expand p(r+Ar,p,t+At), p(r,p—Ap,t) and ¥(r,p—Ap;Ap) in Taylor

series

p(r,p,t)+—aa—’[;At+Zg—'s.Ar‘ +O0(A1%)

p.op

i<y i J

op 1< 3°p ) d’p
= || pe,p.)=D == Ap +=> —L:Ap P+ Y] :ApAp, +... (2.12)
A{(i 7 dp, 2% apf ! 0

2

o 1 « O*¥ o0°Y
x| W(r,p;Ap)— > —.Ap, +=— Y —:Ap+ :Ap,Ap; +...|d(Ap)
T B

i<j [ad

Then we can define the below averages

(ap,) = [ Ap,W(r,p; Ap)d(4p)
(ap)= [ Ap} ¥(r.p:Ap)d(4p) (2.13)
(Ap.Ap;) = [ Ap,Ap, W(r,p; Ap)d(Ap)

We use jp(r,p,t)‘l‘(r,p;Ap)d(Ap)=p(r,p,t) which is true because the probability

density is independent of the momentum jump Ap, and Ar, =Pip , then equation (2.12)
m

becomes

P <9 P _ <9 1 9'p
o e X e vy

J pj J apj

(2.14)

cS ol (s)2 g 2o o0

RV IS R

11
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where the remaining terms involve quantities <Apj3>, <ApiApj2>, <ApiAijpk> and

higher-order terms. By neglecting all higher-order terms we obtain

{at Zap b jl _Zgg—.(p<Ap,->)+Za a; :(p<ApiApj>)

i 9P; i<j OP,OP;

which can be simplified to

2

[%’E’.-{.Zgis,%}m:—Z%,(p(Ap»)%—lz {(o(apap,)) (216)

7 0p,; 7 Op,op;

Now consider the average quantities (Ap,.),<Ap,Ap }.>. To obtain them, we can use the

time evolution differential equation Ap, = {Z F' +F’ +Ef:|At which was described in

J#i
previous section.
For conservative and dissipative forces there is no contribution to Ap,Ap; because it is

of second order O(Af?), so these two forces just appear in the first term of right hand

side of equation (2.16). The contribution from the random term for (Ap,.> is zero because
the mean<gi/> =0, but its contribution to <Ap‘.Ap_i> is non-zero because the

variance(¢. ¢, ) = 1. After gathering all terms, we can express equation (2.16) in the form
i oij g p q

dp(r,p,1)

3 = (Lo + Ly + L) p(r,p.1), (2.17)

where L is the evolution operator which is defined for conservative, dissipative and

random parts as

LC=—i p‘.i—irf.i , (2.18)



ATTENTION: The

sity Library

Chapter 2: Theoretical Aspects of DPD

S d
L,= zeq.a—(yw”(r,j)[p,_.,.e,.j]), (2.19)
i, j#i p,‘
N a 2.2 a a
L= Zetj"a?[ mzo- lee(r,/ )e,/'(é‘l‘)__a_p_) (2.20)
i, j# i i j

The equation (2.17) with the defined operator L is the Fokker-Planck equation for
N-particle distribution function. This equation is very similar to Kramer’s equation [23],

which describes the single particle evolution of mass m,

p 3 F» d 3 o
Liv—p=—— = — VP +———p.
a Var m WP TV P T P

2.21)

r=v
{p =F(r)-yv+o06.
It should be noted that by omitting the random noise and friction terms, the above
mentioned (2.17) Fokker-Planck equation transforms into the Liouville equation which is
the corresponding equation for the conservative system. The Fokker-Planck equation of
DPD not only conserves the particle number N and total momentum p of the system,
but also satisfies the H-theorem by the mentioned constraints, and detailed balance
condition (2.7) [24], which states that a free-energy-like functional always decreases in

time.

The steady state solution of equation (2.17), o,p(r,p,t)=(L.+L, +L,)p(r,p,t)=0,

gives the equilibrium distribution p*(r,p,f). In statistical mechanics of Hamiltonian
systems any function of the dynamical invariants (such as energy or momentum) can be
an equilibrium distribution to which the system evolves provided it is ergodic or mixing
[19]. The question of which equilibrium ensemble is selected is dependent on the initial
condition [25]. In contrast, the equilibrium distribution of equation (2.17) is unique, and

no ergodic hypothesis is required since any initial distributions will relax towards the

13
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steady state distribution [21]. The canonical ensemble is the equilibrium solution for the

conservative system, ie. L.p(r,p,t)=0. The corresponding solution for this

conservative system is the Gibbs canonical ensemble [22]:

1 HT)) 1
()= — LA S0 P -
F7 0 ZexP( kBTo) zexP[

N p2 1 N
[ZZ’ZTZW’)] , (2.22)

1
kT,
where H is the Hamiltonian of the system, ¢(r;) the potential function which constructs
the conservative force F =—09¢(r,)/dr,, T, the equilibrium temperature and Z the
normalizing partition function, which is defined to normalize the probability distribution
function, ie. Z™' = jp(l“,t)dl“. In order to satisfy the remaining parts of equation (2.17)
for the equilibrium state, (L, + L, )p(r,p,t) =0, it is necessary to have equation (2.7), as

a constraint. This is a modification to the original DPD algorithm of Hoogerbrugge [18]

and Koelman and is discussed in next section.

2.3 DPD H-Theorem

In the previous section we presented the Fokker-Planck equation for the DPD model.
Proof of an H-theorem is the fundamental result in statistical mechanics for a dynamical
system and shows that DPD particles tend to migrate towards the equilibrium state,
which yields the Gibbs distribution as the equilibrium solution [22]. The equilibrium
solution is not obtained by solving the Fokker-Planck equation directly, but by a natural
consequence of proving the H-theorem. The H-theorem guarantees that it is stable and

that all states in phase space lead to equilibrium.

14
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In this section we present the procedure of Marsh et al. [16], that combined the first kind

Lyapounov function [23] with Boltzmann H-theorem [26]. We define a functional F{p]

of N-particle distribution function p(I',t) by

F(p)= [dT p(T.){H(T)+6,In p(T.1)}, (223)
where 6, =mo?/2y=k,T, and H(T') is the Hamiltonian of the associated conservative

system, defined as

- Pi P19
HI)=) —+E, =Y ——+=> 4(1) (2.24)
—2m ~2m 2

i j#i
with E, being the total potential energy and ¢(r;) the pair conservative interaction. This
functional can be interpreted as a sort of free energy F =E—-8,S, where E = <H ) is the
average total energy and S =—<ln(p)> yields the total entropy. Of interest here is to

show that F is Lyapounov function with the property oF /0t <0, and to investigate the
implications of this on the equilibrium solution of the Fokker-Planck equation. By taking
the time derivative of both sides of equation (2.23) and combined with equation (2.17),

one obtains

86)_1: = [dD (H(D)+6,In p(T,0)+ 6, }(Lc + L, + L) p(T, 1) (2.25)

The last term inside the curly brackets is zero due to total probability conservation,

[T 6,(Le + Ly + L) p(T, 1) =00% farpr.n=0 (2.26)

Now we shall demonstrate that the whole contribution of conservative operator L. to

equation (2.25) vanishes to zero. Partial differentiation with respect to I' yields

[ar (H@)+6,In p}L.p= [dT L.(H(T)p+8,0)~ [dT (pL.H (D) +8,L.p} (2.27)

15
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The term IdF L.(H(T)p+6,p) can be converted to surface integrals by divergence
theorem in phase space, and so it vanishes to zero. It is apparent from classical
mechanics that L.H(I')=0 while the term deLCp consists of surface terms and also

vanishes,

Therefore there is no contribution of the L. operator and equation (2.23) becomes

%é—: [dT(H(T)+6,In (T} (L, + L) p(T,1) (2.28)

Substituting equations (2.19) and (2.20) to equation (2.28), and using the partial

integration within (L, +L,), yields

_=_J'dr2[ ,=—(H(T)+6,In p(T, t))}

ij#

(2.29)
X{Vwb(n,)[p,;,-e,,]+[ %’—W,i(r,, )e,;,-(-?———q—)J] p(T.1).

dp, Oop,

! I
The last result is obtained by symmetrizing the first bracket:

o P 13 3 2
Y . - — (- r , )
;M[eu 5 (H(T)+8,In p(T z))J 2;{90 (ap. 5 )(H(T)+6,1n p(T z))} (2.30)

i i i

and substituting (d/dp, —d/9dp;)H =p, —p, into equation (2.29) yields

Jd 0
dry ([, v, )+ 6, (5 —=5 )]
g R

- ’ (2.31)
X[wD(rI_j)[pij.e 1+ Lm&w (r;)e;. (a —;-)]:\p(r,t)
P;

If we now constrain the weighting functions to obey the detailed balance condition in
equation (2.7), it is possible to write the time derivative of the above functional in the

form

16
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BF:

2
my & d 9
3% a2 Idl’p > WD(G)[%'VU +6e, .(%-——)lnp <0.

i op

i J

(2.32)

As this form consists of a sum of negative definite terms, it is apparent that the functional
F[p] is monotonically decreasing in time. Therefore the functional will either move
towards the value associated with a zero of its time derivative or will decrease in an

unbounded fashion. The latter is disallowed on physical grounds [27] and so we
conclude that the system will evolve until it reaches some equilibrium state p = p*“. At

this equilibrium state dF /0r =0 so that

Pigl2 -2 ||p=0 (2.33)
m op, op,

Changing variables to relative momentum of the particles, it is straight forward to prove

that the equilibrium distribution of the system has the general from

L4 1 .
P = A(rl,...,rN)exp{— 2, lZ(pi —pO)Z}, (2.34)

where p, is a constant independent of r, and ¢. We will only consider macroscopic

systems which are not in uniform motion over long periods and consequently the limit

p, =0 is applicable.

The equilibrium probability density function p*(T') is also the stationary solution of the
Fokker-Planck equation (2.17) if A(r,,...,r,) satisfies L.A =0. This yields the Gibbsian
distribution function for the associated conservative system, i.e. equation (2.22). We
assumed that p*(I") is uniquely determined by the requirement that it satisfies equation

(2.7). What this means is that the DPD system will always reach the same equilibrium

state if left undriven, independent of the volume and number of particles. The

17
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temperature of this equilibrium state is §,=mo’/2y, which only depends on the

parameters of the model.

In the process that proves the H-theorem, the constraints that are imposed are:

wD(r)=§7—Z-w§(r)=w,§(r) (2.35)

0

This is called the Fluctuation-Dissipation theorem or Detailed Balance condition for the
DPD method, which has exactly the same condition as the one in conventional Brownian
motion. If the Langevin equation represents a Brownian particle randomly moving about
in thermal equilibrium, then the dissipative reaction is related to the fluctuations of the
random force [22]. In other words, a change or fluctuation in the system will be

dissipated as the system returns to equilibrium.

The vital consequence of deriving the H-theorem for DPD is that the Gibbs distribution
is the stationary solution of the Fokker-Planck equation. The result of this requirement in
deriving H-theorem is detailed balance, and if constraints are violated, no H-theorem can
be derived and the Gibbs distribution is not a stationary solution of the Fokker-Planck

equation for DPD.

18



ATTENTION: The niversity Library

Chapter 3

Boundary Models in DPD

3.1 Introduction

Dissipative particle dynamics (DPD) is an extremely effective mesoscopic simulation
technique, especially due to low computational cost, in studying the hydrodynamic
behavior of a complex field of fluid. Most studies, which use the DPD technique,
simulate part of an infinite region using a system confined by periodic boundaries. These
kinds of boundaries are capable of modeling macroscopic properties of the bulk flow
very well, but difficulties arise if the flows are confined through wall-bounded regions,
or when different boundaries simultaneously exist in the simulation domain. The desired
behavior of solid wall, and hence the boundary conditions, depends on the point of view
to the system and the scale at which a system is investigated. On an atomic level it is
likely that a wall induces structure in the field, as well as locking and slip, influencing
the properties in the order of nanometers from the boundary [28-31]. Nevertheless, when
DPD is employed as a particle-based flow solver at a mesoscopic level of micrometers,
the degree of coarse graining is too high to show such atomistic effects near the wall
[32]. So construction of the solid wall models in this higher level of coarse graining is

still a dilemma and no general mechanism is widely accepted for this mesoscopic level.

19
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In this chapter, we first study different methods used in the literature to handle boundary
conditions in confined geometries. Later in Chapter 5 we recognize some of their
diagnostics and subsequently introduce a new method utilizing a kind of bounce back
reflection which we call the “bounce-normal” reflection. The most important
characteristic of this method is that it reduces density fluctuations near the boundaries
without affecting the velocity and temperature profiles. This new method is easily
applicable to any wall bounded problem with stationary boundaries and it has a very
good consistency to macroscopic features. The simulation results of this bounce normal

reflection are presented in Chapter 5.
3.2 DPD Boundary Conditions

Defining the correct boundary conditions, especially at solid boundaries, is one of the
main issues for DPD simulation in wall-bounded geometries. For DPD, we can also
employ the general implementation of boundary conditions that have been used in the
lattice Boltzmann method (LBM) and molecular dynamics (MD) formulations. However,
unlike the MD method, the soft repulsion between the DPD particles can not prevent
fluid particles penetrating solid boundaries, and so we need appropriate mechanisms at
the walls to prevent this penetration. We call the boundary well defined if the following
main characteristics are observed, and these are the macroscopic properties which should

not be violated by imposition of boundaries:

no-slip; the wall should impose the correct velocity profile through the whole flow field

and also at the boundaries

impenetrability; no particles are allowed to enter the wall

20
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consistency to macroscopic system properties; the temperature and density profiles

should obey the thermal and continuum limits, specially near the boundaries

To maintain the above properties, we can generally classified the models of boundary

conditions in DPD methods, similar to [33], as follows:

The Periodic boundary conditions

The Lees-Edward boundary conditions

Freezing particles in boundary regions to create a rigid body or rigid wall.

Reflecting particles with different reflection mechanisms combined with different types

of particle layers.

3.3 The Periodic Boundary Conditions

In order to simulate the behavior of a bulk region, an infinite system, or to provide
complete boundaries to minimize the surface effects, the periodic boundary condition is
usually adopted [34, 35]. The central cubic box which contains N particles is replicated
throughout space to form an infinite lattice. As a particle moves in the central cell, its
periodic image in each of the neighboring boxes moves in exactly the same way. When a
particle enters or leaves through one face of a cell, one of its images will enter or leave
through the opposite face. Thus the total number of particles in the main cell, and hence
in the entire system, is conserved. The two-dimensional sketch of such a periodic system
is shown in Figure 3.1. In this figure the duplicated boxes are labeled A, B, C, etc., and

the schematic movement of particle 1 and its images1, ,1,, etc. are shown across their

corresponding boundaries.
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In order to handle the simulation it is not necessary to store the coordinates of all the
images. Let us assume all the coordinates in the central box (with the edge dimension
L), lie in the range (—L/2,L/2); i.e. the coordinate system is at the center of the main
cell. The following procedure is sufficient to adjust the periodic condition when the

particle crosses the boundary

r'=r*-L [+

t=r L]
r)/

v’ =r’ =L [*] 3.1
)/Ly

. rf

rP=r"-L[*

F= - L)

and after calculating a pair separation vector, the following statements should be applied

to produce a correct neighboring distance

R
K =¥ =L, Z]
r)
sn=r —Ly[ll,; 3.2)

Y

4

rz_rZ_L[';'fv
§j rL

Z

where L, is the j box dimension and [Y] returns the nearest integer to Y; thus

[-0.49]=0.0, whereas [-0.51]=~1.0.

22



ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library

Chapter 3: Boundary Models in DPD

Figure 3.1 A two-dimensional periodic system. Particles can enter and leave each box across each of the
four edges. In a three-dimensional case, particles would be free to cross any of the six cube faces [35].

Due to its geometrical simplicity, the most commonly used cells are cubic boxes, though
other different shapes have been employed in related applications [36, 37]. In general,
the use of periodic boundary condition restricts the simulation technique to studies of
short-range and short-lived phenomena [38]. For equilibrium properties particularly
thermodynamics and local structure, the effects of this boundary condition are negligible.
However, the use of periodic boundary conditions inhibits the occurrence of long
wavelength fluctuations. Another difficulty is the so-called quasi-ergodic problem [39]
for small sample, which means the system can possibly be trapped in a small region of

phase space.

3.4 The Lees-Edward Boundary Conditions

There are two versions of Lees-Edward boundary conditions. In the original method,

Lees and Edward [40] proposed the boundary conditions for non-equilibrium molecular
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dynamics simulation, which retain periodicity but alter the position and velocity of the
periodic images. Here we provide its description according to [35]. The infinite periodic

system is subjected to a uniform shear in the x-y plane. The simulation boxes and its
images centered at (x,y)=(xL,0),(£2L,0), etc. are taken to be stationary. The boxes in
the above layer are moving at a speed dv, =(dV,/dr,)L in the positive x direction,
while the below layer move with the same speed but in the opposite direction, here the
(dV, Idr,) is the imposed shear rate. A particle crossing the upper boundary of the box
at time ¢ is returned through the lower boundary with its x -coordinate shifted by dv 1
and the x-velocity decreased by v, . This is also applied for the particle crossing the

lower boundary but with the opposite signs. In Figure 3.2 the two-dimensional version of

such replacements is shown. We can describe the algorithm for a particle that crosses the

boundaries by defining A =[r"/L ],

=1 =0rA,
¥ _ ok r
r=n —Lx[z:]
I =r LA, (3.3)
ri‘=r.Z—Lz[2‘—j
v/ =v —0vA,

= -ona,
r’
if = ’;’j _Lx[L_l]
y ‘ 34
ijy = rij) - L)'A>
r
G = - L]
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where A =[r’/L]. In all of the above equations, the Jr, is the relative displacement

of the upper layer to the central box, i.e. dr, =dv, .

Figure 3.2 Homogeneous shear boundary conditions (Lees-Edward method) [35].

An important advantage of the original Lees-Edward method is the production of shear
flow with the constant shear rate, which enables one to measure the viscosity of
simulated flow due to the chosen technique. For example, the viscosity of a DPD model
of a colloidal suspension was studied using this approach {7, 41]. This could be done by
calculating and comparing the shear stress of the simulated fluid to the theoretical value.
Another similar method was introduced by Backer et al. [42], which is based on using
periodic boundary conditions to simulate counter-flowing Poiseuille flows without use of
explicit boundaries. In this method a rectangular domain is doubled in size in the cross-
flow x direction and the flow is sustained by applying the body force (in the y
direction) to each particle, with the direction of the force being opposite in the two

halves of the domains. This is schematically shown in Figure 3.3.
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Figure 3.3 Schematic sketch of periodic Poiseuille flow method (a new kind of Lees-Edwards boundary
conditions).

This periodic Poiseuille flow method is very useful to measure the viscosity of particle
simulations, since it does not have the density artifacts and produces a flow with uniform
density from wall-to-wall apart from the statistical fluctuations. Unlike the original Lees-
Edward method, shear stress measurements are not required in this Poiseuille flow
method and the system average of the velocity or the maximum in the flow direction

directly provides the viscosity of the fluid.
3.5 Freezing and Reflecting Boundary Conditions

In the classification which we made in section 3.2 the third and the fourth categories are
somehow broad and there are different published implementations of these methods. We
review in some more detail the most representative works published so far that fall under
categories (3) and (4). Freezing the particles inside the solid regions is one of the most

important and applicable cases which have been combined with other different
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reflections. Our new proposed method in Chapter 5 also employs frozen particle-layers

as well as reflections.

The DPD particles are frozen in different patterns according to the system geometry and
rheological complexity in order to create the solid or particulate boundaries. One way to
do this is to put particles in structured lattices with layers of FCC lattice or regular lattice
[43-47]. Another alternative is to distribute particles inside the boundary randomly {7,
41, 48-50]. The act of freezing in the latter case will be carried out after reaching the
equilibrium state or particles could spread out initially due to uniform random

distribution.

In [51] a layer of DPD particles is stuck on the boundary and by taking the continuum
limit of this layer, and dissipative and stochastic forces on the fluid DPD particles are
obtained analytically. However, reflections were found necessary to prevent wall
penetration since the effective computed forces are not sufficient and particles should be
reflected back to the fluid domain. A similar method to Revenga et al. [S51] (getting
effective forces for planar geometries), but for cylindrical and spherical geometries, was
used by Colmenares and Rousse [52] in order to obtain explicit expressions for the
effective random and dissipative forces for a point DPD particle. They found the

dissipative and stochastic forces of a particle i with velocity v, located at r, from a

given surface having a velocity V by defining the matrix M and the vector N as

F? =M(r).(v, - V),
{.R ().(v, = V) a5
F'=N()é
and
M(r[)=—7pwj.drw(|r—r[|)2RR,
’ (3.6)

N(r)=0p, [dew(ir-r,DR
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where p_ is the wall density, R=r-r,/Ir—r,| is a unity vector and r is the distance

from particle i to particles stuck on the surface.

In [33] the effect of different reflections (specular, Maxwellian and bounce back
reflections) was investigated. In specular reflections the velocity component tangential to
the wall does not change while the normal component is reversed. In bounce-back
reflection both components are reversed. In Maxwellian reflection particles are
introduced back to the flow with a velocity following a Maxwellian distribution which is
centered around the velocity of the boundary. In [33] a crucial dimensionless parameter

T (friction coefficient), was identified that affects the wall slip velocity,

T=—1, 3.7
a 3.7)

L
where y is the friction coefficient, 4 the average distance between particles (A= p ¢),
d the spatial dimension and V, =,/k,T/m the thermal velocity scale. Large values of

7 mean that the particles move very little in the time scale associated with the velocity
decaying due to thermal fluctuations. In [33] the Couette flow was examined to measure
the slip ratio due to different reflections and it was shown that for large values of 7 all
three reflection mechanisms result in an appropriate stick boundary condition. However
for small values of 7, the specular and Maxwellian reflections produce excessive slip
velocity at the wall while the bounce-back method still satisfies the no slip condition but
it (bounce-back) shows an anomalous temperature behavior. This behavior is due to the
fact that for small 7 the interaction between fluid particles is small. Furthermore when
7 =0, the DPD particles move in straight lines and the bounce-back boundary condition
accelerates the particles without bound in each collision with the wall. The dispersion of

the tangential component of the velocity therefore, increases without bound. At small but
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finite 7 the friction saturates this dispersion to a finite value. The main problem with the
approaches in [33, 51] is that the computation of the force is just carried out for
dissipative and random terms. However the more difficult case where the conservative
forces are present was not considered. The conservative force is an important term which

may result in large density fluctuations at the wall.

Kong et al. [53] studied the dynamics of a DPD polymer in a solution between two walls
(without shear). Wall particles were kept in a “frozen” state, so that they do not move
relative to each other. (This is an analogous procedure to that used to model dispersions).
The density of the wall had to be chosen to be four times larger than that of the solution
to achieve an impenetrable wall. This high density subsequently induces a depletion zone
in the solution adjacent to the wall. Although such a depletion layer and further ordering
phenomena are to be expected at the atomistic level, they must be seen as model artifacts
in a coarse-grained model. A similar non-desired effect of the model is seen in the
simulation of Jones et al. [54], who simulated the shearing of a liquid drop on a solid
surface. They used the same density for the solid and liquid but added a strong repulsive
interaction between both phases to keep them separated. Again, this leads to density
distortions in the liquid. These distortions will be examined and removed in our new
method that will be introduced later. Moreover, the flow profile shows the occurrence of
large slip. Jones et al. [54] attempted to solve this problem by imposing a certain velocity

on all particles within a close distance from the wall.

The problems mentioned above concerning density distortions and slip flow only play a
role near the surface. If one is solely interested in the behavior of the system far away
from any interfaces, these issues do not pose a problem. However, in many applications

one is dealing with systems where the effect of surfaces cannot be neglected, for
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example, in lubrication. In such confined geometries the conventional DPD method will

easily give rise to unwanted artifacts.

Willemsen et al. [55] proposed a scheme to obtain a no-slip boundary condition in DPD
without using high wall densities. Below we give a brief description of this algorithm.
More details can be found in [55]. An extra particle-layer is included outside of the
domain with the objective of constructing a correct velocity profile that continues
beyond the wall boundary. These walls are assumed to be made up of “virtual” particles.
The interactions between the real fluid particles (which can be either solvent particles or
polymer segments) and these wall particles are determined by the same equations that
describe the forces between two fluid particles. However, the positions and velocities of
the wall particles are not updated using the time integrating Verlet or a similar algorithm.
The positions and the velocities of particles inside the wall layer are determined from the
layer of DPD particles adjacent to the boundary and within a distance r, (the cutoff
radius). At the beginning of each time step they are determined in such a way as to
ensure a smooth distribution of fluid particles near the walls together with no-slip
conditions. For each fluid particle whose distance to the wall is smaller than ., a wall
particle is placed at the same distance from the boundary layer. The y and z
components of the wall particle are determined by adding a random shift taken from the
interval (—r.,r. ) to the position of the original fluid particle. The normal ( x) and the z
velocity components of the wall particle have the same magnitude as those of the
original fluid particle, but the sign of these components is opposite to that of the fluid
particle. The y-velocity component of the wall particle is taken as the average of the
y-velocity component of the fluid particle and the wall velocity. This procedure ensures

that there is a linear velocity profile across the wall boundary. The random and drag
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forces exerted by the wall on nearby fluid particles (those at a distance smaller than r,)

are calculated by summing over all pair interactions between fluid and wall particles.
This approach works very well in the absence of conservative forces but when
conservative forces are applied density oscillations occur. The conservative forces are
calculated from a different set of wall particle positions, as the interactions between the
fluid particles directly adjacent to the wall and their own mirror images lead to an
excessively large repulsion. Therefore, a second layer of DPD particles was created by

shifting all fluid particles at a distance between r. and 2r, into the wall layer. These wall

particles are then used to calculate the conservative force exerted by the wall on the
fluid. It seems that the method of [55] is quite effective but it may not be easily
implemented in complex-geometry flows, e.g. flow around a cube, as it is not clear how

such “ghost” particle-layers can be constructed in such situations [45].

In order to study the effects of the conservative force on the density fluctuations, we
calculated the effective force on a point particle. We assume the point particle is located
at the centre line normal to the flat plane on which the wall particles are laid out. We
assume continuum limit of wall particles and estimate the total repulsive force which is
exerted by the wall to the point fluid particle. In Figure 3.4 the total force with different
layer distance to the wall is shown. As we increase the layer distance the total effective
force is decreased, whereas the force near the wall is increased. Also, in Figure 3.5, we
assume two layers of particles where one of them is located exactly at the wall and the
other one is shifted by different distances. Note that all of the estimated repulsive forces

are normalized with respect to density and the repulsion parameter.
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Figure 3.4 Total force exerted by wall particles to a point that moves on the center line of the flat wall.
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Figure 3.5 Total force exerted by two-layer wall particles to a point that moves on the center line of the
flat wall.

These different profiles may lead to undesirable density oscillations near the wall
regions. We can reduce these density oscillations by controlling the repulsion parameter
and using different wall patterns with different densities. However it is not easy to obtain
both no slip condition and zero oscillation. Effects of some of these parameters are

examined more numerically and in real simulation in the Chapter 5.
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Darias et al. [56] reported the flow of a biphasic (suspension) fluid through a cylinder
under a pressure gradient. They found the expected Poiseuillian velocity profile as well
as packed structure density profiles near the wall as the result of the discrete nature of the
formulation. This edge effect is important for distances of the order of the effective

interaction range and is of no consequence to bulk properties.

More recently, Visser et al. [32] described a method to create impenetrable flat and
cylindrical solid walls with no effect on the fluid properties such as the density profile.
They introduced a new wall construction method that makes use of parallel twin systems
which set up the wall by a back-to-back placement. This automatically generates a
smooth particle and velocity distribution across the wall boundary as well as corrects
interparticle correlations. Hence, they simulated a wall that meets the no-slip boundary
condition without affecting the properties of the system. To make their new wall method
applicable to curved boundaries, they developed a folding and scaling procedure to
connect curved systems with their periodic image or the image of a paralle] system. This
allows one to model curved walls as well. A bounce-back reflection ensures the walls
impenetrability, but it may introduce side effects. If the tangential displacement to the
wall is left unaltered for particles that are reintroduced, the bounce-back method
transforms into a bounce-forward method that shows the same no-slip but lacks these
side effects. Both reflection methods leave the thermodynamics of the system intact
when the direction of the acceleration of a particle is changed after a reflection. The new
boundary method meets all requirements for solid walls at higher densities, but shows

some velocity slip at low densities for non-ideal systems [32].

One of the most applicable methods of reflection, similar to Maxwellian reflection, was

first introduced by Fan et al. [43] as a boundary condition ,and was used in several other
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publications for modeling flow in channels [47-50, 57, 58]. In this method frozen
particles are used to represent the wall and in addition there is a thin layer of DPD
particles near the wall where the no-slip boundary condition is obtainable. A random
velocity distribution is enforced in this layer with zero mean corresponding to a given
temperature and the velocity distribution induced by the movement of the boundary.

When the particle is injected to this layer, it will leave with the corresponding velocity

v=vR+n(‘n.VR|—n‘vR)+V (3.8)

wall
where v, is the random vector and n is the unit vector normal to the wall and pointing
towards the fluid and V_, is the wall velocity. The thickness of this layer and the
strength of the repulsion between wall and fluid particles in this method are chosen to
minimize the velocity and density distortion, and the authors of [43] recommended this
to be minimum between 0.5% of channel width and 0.5r, (half of cutoff radius). A thin
layer is necessary to prevent the frozen wall from cooling down the fluid. However,

significant density distortions and small levels of temperature drop near the wall

boundaries are present in this method, which are undesirable.
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DPD Simulation Methods and Parameters

In this chapter first we examine the standard methods for decreasing the computational
cost in DPD simulations for usual serial programming implementation. Then we study
the effective time integration methods for the DPD algorithm. Finally we take a brief
look at some of the important DPD parameters and also we introduce a simple uniform

random number generator.
4.1 Neighbor List Method and Linear Scaling

The major computational cost for DPD algorithm is calculating the total DPD
interactions in each time step. In DPD simulation, evaluation of inter particle distances

and their relative forces account for most of the CPU time. The direct calculation of
these interactions requires N2 steps, where N is total number of particles. If we note the
symmetry of pair interactions, i.e. F; = F,, the total calculation steps can be decreased to
N(N-1)/2. Obviously it is very expensive to carry out such intensive calculations

when the number of particles is large, and some methods to reduce the redundant
computation related to evaluation of separation distances are essential. As DPD particles

only interact with other particles less than a cutoff radius r away, the time for

calculating DPD interactions offers the potential for linear scaling with N.
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The general way to reduce the number of interactions is to use a cutoff distance r,,

where all forces beyond the cutoff distance are zero. This treatment reduces the
computing time significantly by neglecting all particles beyond the cutoff distance, since
interactions between these particles are minimal and need not be considered. Thus, if

each DPD particle interacts with N, other particles (i.e., the number of particles within
a distance r. of a typical DPD particle is N, ), then the computation time for calculating

DPD interactions scales as

NI‘
e = O(Nx—%). 4.1)

A straightforward way to determine which particles are within cutoff distance is to
evaluate all distances over all particles pairs, and this procedure would require
N(N —1)/2 steps. A reduction of redundant calculation of interparticle distances can be
accomplished by the conventional Verlet table algorithm and cell-linked list algorithm.
The basic idea of Verlet table method is to construct and maintain a list of neighboring
particles for every particle in the system. During the simulation, this neighbor list will be
updated periodically for a fixed interval or reconstruct itself automatically when some
particles move too much and the list becomes out-of-date. During the interval of
neighbor list updating, each atom is assumed to interact only with those in its neighbor
list. Of course constructing of the Verlet table requires N(N —1)/2 times of inter particle
distance evaluation. The Verlet table method has been proven to be efficient when a
system contains a relatively small number of particles and the particles move slowly (this
may be effective for less than thousand particles [35]). However, the main drawback is
that as the number of particles increases, the memory requirement for maintaining the

neighbor lists becomes excessive, and the time to construct a Verlet table increases as the
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order O(N?). Moreover, as the particles move more quickly, either the “skin” (largest
distance allowable of an atom that keeps it in the neighbor list) must be increased, or the
frequency of reconstructing Verlet table must be increased. Both of these requirements
make the CPU time required to maintain the Verlet table increase dramatically, and the

whole simulation becomes inefficient.

The resolution to this difficulty is to eliminate the need to calculate the distance between
every pair of particle at each time step. We accomplish this goal by dividing the periodic
cell of our DPD simulations into subdomains. The cell-linked list algorithm [35]
(neighbor-list method [59]) which is an effective method to reduce the calculation of pair
distances is employed. This approach partitions the simulation domain into small cells
and each particle is assigned to these cells by their coordinates. Since the neighborhood
cells of each cell is known and will not change during the simulation, and the lengths of
the three edges (for three-dimensional simulation domain) of the cells can be selected to
be equal to r,, then neighborhood particles of an atom can be listed by enumerating all
atoms in all neighborhood cells and the cell itself. The implementation of a cell-linked
list algorithm is usually to first construct a cell neighbor list table, and then assign each
particle to the cells before calculating DPD interactions. This process requires little CPU

time and needs to be carried out only once. If the number of subdomains is N, , then the

time ¢,, to calculate the required separation between particles is reduced from

N(N=1)/2 to

N2
2N

fae = O( ). (4.2)

sub

For large enough values of N, , the reduction in ¢, is sufficient to render ¢, the

dominant contributor to computation time, t. 11 t, , and linear scaling with the total

dist
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number of particles is achieved. This is somewhat similar to the fast multipole method of
Greengard and Rokhlin [60], which greatly accelerates the calculation of multipole

interactions between particles.

Let us consider the three-dimensional periodic box, whose dimension is LxXLXL. The

number of subdomains with the defined r, is

N, =—=——, 4.3)

where p is the average number density of the whole particles. By substitution of

equation (4.3) into equation (4.2) we obtain

3
N
tdx.rl = O( prC

). 4.4)

This equation shows the linear dependency of time with respect to the total number of
particles. Another important consequence of equation (4.4) is the cubic dependence of
time to the cutoff radius, for instance if we increase the cutoff radius by 25% the
computational cost will double. This shows the efficiency of link-list neighbor algorithm

for short range interactions.

We assigned to each of these subdomains an identification number (ID) from O to
N_,—1.Up to 26 neighboring subdomains are attached to each subdomain, only if the
IDs of the neighboring subdomains are smaller than the ID of the subdomain. This is to
avoid calculating the same interaction twice. Every subdomain may have 0 to 26

neighboring subdomains.

In order to examine the computational cost we choose the fixed number of 40,000 time

steps, and measure the CPU time for different number of particles, similar to the work of

Kim [61]. The tests are run on a PC Intel Pentium /V 3,000 MHz CPU with SUSE
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Linux 10.0 operating system. The comparison of results for two algorithms are shown in
Figure 4.1, where linear scaling and computational cost improvement of the neighbor-list

method is significantly better compared to the Verlet-table algorithm.

T
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3
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O(NV 07)
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Figure 4.1 Plot of computational cost (time in minutes), comparison between the neighbor-list and Verlet-
list methods.

It is obvious from the Figure 4.1 that for small number of particles it is not efficient to
use the neighbor-list method. This is because of the tradeoff between overheads for
maintaining the neighbor-list table and reduction of calculation of unnecessary inter-
particle distance. The current scheme of saving computational time can be compared to
the work of Boryczko et al. [61, 62], who devised an algorithm that divides the
simulation domain into several subdomains in order to use it for parallel algorithm
capable of using multipie processes. This kind of subdomain approach is also helpful in

limiting communication requirements in our future parallel implementation of the DPD.

4.2 Numerical Time Integration Schemes

Unlike MD (molecular dynamics), the DPD equations are stochastic, and this represents

an extra degree of difficulty. In addition, the dissipative force depends on the velocity,
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which in turn depends on the force, so there is nonlinear coupling. In this section we
introduce the simple Euler and velocity-Verlet algorithms that have been typically used
to integrate the DPD equations. Various other finite time-step implementations of DPD
have been suggested, which will follow the phase space path of the particles more
accurately and therefore better represent the stochastic differential equations. Such
algorithms are often based on analogies to higher-order solvers for conservative systems,
such as the Verlet or leap-frog algorithms and would be expected to follow the evolution
up to the second-order in the time-step. However, care must be taken in the
implementation to take account of the stochastic nature of the underlying equations, and
an analysis of these methods for DPD can be found in [63]. Recently there are also other
complex integration schemes such as the Shardlow’s splitting Method [64], Lowe’s
approach [65], self consistent Verlet [66], etc., which a detailed comparison of the

performance of these integrators is given in [67].

The simple explicit Euler-type integrator is used not frequently but it helps to set the
notation for the more complicated algorithms and also as starter for multistep integrators
of higher-order. It is assumed that we know the solution at time ¢ and wish to obtain the
solution at time ¢+dt. Both the velocities and the positions of all particles are updated in

a straightforward manner as

rir+dt =l',-' +dt V:
Vi = v+ dif] 4.5)
fH-dl — f (r/+dr v r+d1)

i TR\ Y

i

For the DPD system we do not expect the system to blow-up because of the

thermostating nature of the dissipative and random forces. However we should note the

-1/2

random force F = w"(r,)¢,dr""* e, and the appearance of dr™'* as discussed in more

detail in [6].
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The velocity-Verlet algorithm is based on the classical MD velocity-Verlet method [35,
38], but we use a modified version of this method for calculating the evolution of DPD

particles

i

1
r = +dtv + 5 dr’ !

v =V 4 Adef!
(4.6)

~ t+dt

£ =f. v )
Vi =+ 1 de (£ +£7).
2

If the forces were independent of velocity (like in MD), the actual velocity-Verlet
algorithm would be recovered for 4 =1/2. As the force does depend on velocity, we
make a prediction for the new velocity, which we denote by v, and correct for this
afterwards in the last step. In this more sophisticated algorithm, the force is updated once
per iteration (after the second step) and is thus unlike the self-consistence method of
Pagonabarraga et al. [66]. Also, there is virtually no increase in computational cost. If
there were no random or dissipative force, this algorithm would scale exactly to O(dt*)
with 4 =1/2. Due to the stochastic nature of process, the order of the algorithm
becomes unclear [6]. The variable factor A, introduced empirically, appears to account

for some of the additional effects of the stochastic interactions.

In this section we employ the simple Euler and velocity-Verlet algorithms, and we
compare these methods and determine appropriate values of the parameter A for future
applications. The simulation is conducted in a 3D fully periodic box of size 10x10x10,
where the length scale is defined by r, =1. The particle number density is chosen p=3
(i.e. total number of particles is N =3,000). The random force strength is set to =3,

and the dissipative force amplitude becomes y=4.5 if we choose the unit of energy as
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k,T =1. Also the repulsion parameter set to a =25. The measured physical quantity in

these simulations is the average kinetic temperature defined by assuming unit mass for
all particles as

1 N
= z 2. 4,
<kBT> 3N"1< vl > ( 7)

i=]
We run the simulations for the total time of 1 =400 and obtain the average temperature
after equilibrium or after time passes around ¢ =40. Initially the particles are distributed
randomly at rest. Figure 4.2 shows the effect of timestep size on temperature for the three
methods. It is observed that by increasing the timestep size the amount of artificial rise in
temperature correspondingly increases. The optimum A parameter for the Verlet method
is obtained after several runs. We see negligible temperature rises for the Verlet
algorithm with timestep sizes smaller than dr < 0.04, where for the simple Verlet method
(A=0.5) the error is less than 3%, and for the optimum Verlet (A =0.65) method the
rise is less than 0.8 %. However in the Euler algorithm with stepsize of dr = 0.01 there is
more than 40% of artificial temperature increase. Thus for all subsequent simulations, we

select the optimum Verlet algorithm with arbitrary time-step sizes of dr < 0.04.
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Figure 4.2 Temperature deviations versus size of time step for Euler method, simple Verlet method and
Verlet method with optimum A parameter.

4.3 The Noise Amplitude and Maxwellian Distribution

First we investigate the effects of finite time step on the equilibrium distribution function
as the other criterion for the accuracy of numerical results. The DPD parameters are set
similar to the previous section. For time integration we use the optimum Verlet algorithm
with three different time-step sizes. The distribution is calculated after reaching the full
equilibrium state. The theoretical DPD equilibrium distribution which is similar to the

Maxwell-Boltzmann distribution is given by

_ 2
Fv)=( 2”’" )2 exp(omes ), (4.8)

k, T 2k, T

In Figure 4.3 the comparison between theoretical values of the probability distribution
against numerical results is shown. The results show that even up to time-step size of
dt =0.06 the equilibrium distribution function does not vary significantly from the
Maxwell-Boltzmann distribution. Therefore the use of optimum Verlet algorithm with
time step sizes of dt <0.04 is again acceptable, and we see that it has very comparable

numerical outcomes with optimum computational cost.
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Another important parameter in DPD simulation is the noise amplitude which also
determines the friction coefficient according to the detailed balance condition. These two
factors are chosen to yield an efficient and numerically stable DPD simulation. Here we
demonstrate the effects of this random coefficient and adjust the appropriate value for it.
When the noise amplitude is increased , the time-step range over which the system is
stable does not change by much, but the speed at which the system reacts due to
temperature variations is increased [6]. This leads to efficient temperature equilibration.
However the upper limit is determined by the time integration scheme, time-step and the
equilibrium temperature. Some of these effects are shown in Figure 4.4 where the
simulations are run using the Verlet algorithm with dt =0.04 for the unit equilibrium
temperature. After several investigations for different values of equilibrium temperature,

kyT, we came into conclusion that in order to obtain a fast and stable simulation the

appropriate random coefficient should be a number below 4.5 for the minimum

temperature of 0.1.
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Figure 4.3 Results of momentum distribution for different timestep sizes.
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Figure 4.4 Plot of temperature variation against the time for different values of noise amplitude.

4.4 Random Generator and Choice of Random Numbers

Initialization of the positions of DPD particles and DPD interactions require the use of

random numbers. In all simulations in this work, uniformly distributed random numbers

ue U(0,1) are used such that ¢, =x/§(2u—-1), where ¢,

[}

represents an independent

increment in a stochastic process as discussed in implementing DPD interactions in
Chapter 2. This approach is highly efficient since uniform random numbers take less
CPU time to generate than Gaussian random numbers, and the results from uniform
random numbers are also indistinguishable from those generated by Gaussian random
numbers [6]. The seed method is a typical method to generate random numbers, and if

we define u, as a random number, then the form of the equation to generate random

numbers that employed is (a multiplicative congruential generator [68])

u, =au,_ mod m, (4.9)
where u, is the § " member of the sequence of pseudorandom numbers, g a multiplier,

m the nonzero modulus and the mod operator means that au,_, mod m is the least
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nonnegative remainder from dividing au,_, by m. Careful observation revealed that
only certain combination of values of multiplier and m would give good uniformly

distributed random numbers. Regardless of how long or short their periods are,
congruential generators are deterministic difference equations and phase diagrams can be
used to examine their behavior. The points produced by a congruential generator in two
or more dimensions lie on hyperplanes. The distance between these hyperplanes varies
with the multiplier, which means that some multipliers are better than others [68]. It is

more convenient to choose m close to the maximum value that an integer can have in a
C program (2°' —1), and the multiplier is chosen such that u, can cover all the numbers
between O and u, . If the multiplier and m are not set up correctly, the integer random

numbers would go through only a limited cycle and result in a bad set of random
numbers. The selection of these parameters can be obtained from several references, and

we chose the same parameters as the work of [61].
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Simulation Results

In this chapter we study some of the natural difficulties encountered in the
implementation of the DPD algorithm for confined fields. Also, we explain the formulas
which relate the measured data in the simulations to the macroscopic transport
properties. We examine the association between controlling density fluctuations and no
slip condition in the cases of Poiseuille and Couette flows. In this chapter we apply our
new boundary condition and compare the results with other methods and theoretical

Navier-Stokes solutions for the cases of Poiseuille and Couette flows.
5.1 Macroscopic Transport Properties (Data Analysis)

DPD simulation is similar to MD simulation which generates the trajectories of all the
particles in the system. To obtain a deeper insight into the system being studied, we need
to analyze the trajectories obtained during DPD simulation. In this section, we
summarize in the same manner as [4], some of the most commonly performed data

analysis in the simulation of fluid transport.
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5.1.1 Density Profiles and Diffusion Coefficient

To investigate nanoflows in channels and pores, where the fluid density is
inhomogeneous, and also to explore the level of density distortion near boundaries, it is
useful to compute the spatial distribution of fluid density, e.g., density profiles along the
channel width in Poiseuille flow. This is usually performed using the “binning method”
[35]. In this scheme the relevant spatial domain (i.e., the domain where the density
distribution of the species needs to be computed) is partitioned into a number of cells,
which are identified as the “bins”. The number of particles in each bin is computed from
the knowledge of the positions of the particles. In order to obtain a better statistical
analysis of the number density in a bin, we add the number of particles in the bin for a
number of steps and divide the total number of particles in the bin by the number of steps

and the volume of the bin. Thus, the number density, p,, of the i *® bin, averaged over s

steps , is given by

;

where n, is the total number of particles in the " bin during each step and VOL, is the

volume of the ;™ bin. Diffusion transport is typically important in most of especially
nanofluidic systems. This can be understood by calculating the Peclet number,

P =UL/D, which measures the ratio of bulk transport (convection) to the diffusion
transport, or the Schmidt, S =v/D, which approximates the ratio of momentum

diffusivity (viscosity) and mass diffusivity. The diffusion coefficient must be generalized
in order to describe transport phenomena. For homogenous and equilibrium systems, the

diffusion coefficient can be calculated using either the Green-Kubo [69, 70]
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1
D=3 [ (vi@-v.))at, (5.2)

where v, is the velocity of single particle, or by the Einstein equation [71]

1 2
uD =§<|r,. (t)=1,(0) > (5.3)

where r,(t) is the particle position, which is obtainable from the trajectories generated by

the DPD simulation. It should be emphasized here that equations (5.2) and (5.3) are

strictly valid only for homogeneous and equilibrium systems.
5.1.2 Velocity and Temperature Profiles

The velocity profile is one of the most important measurables for fluid transport, and can
be computed in a similar manner as the density profile. Usually, the simulation system is
partioned into n bins, and the statistics of the fluid velocity are gathered separately in

each bin [72]. Assuming that during a s-step simulation, at each step k, there are n,
particles in the i bin, and the velocity of each of each of these particles (denoted by j)

is given by v, then the average fluid velocity u, in the i " bin can be computed by

w =Xt (5.4)

Equation (5.4) is used to compute the steady-state velocity profile. If one is interested in
the transient behavior of the velocity profile, an ensemble of simulations will need to be
performed. In this case, the velocity profile can still be analyzed using equation (5.4),
and the only difference is that the parameter s now denotes the different simulation
rather than different time steps. Also, after calculation of streaming velocity in each bin,

u,, we can compute the temperature of particles in the i" bin by
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3,7, =( (— i v, )-u?, (5.5)

i
m =
Jjebin

where n, is the total number of particles in the i "™ bin during each step.

5.1.3 Stress Tensor

The stress or pressure tensor of an atomic fluid, denoted by e, is often defined as the
infinitesimal force dF felt across an infinitesimal area dA , which moves with the local

streaming velocity u(r,t) of the fluid {73]

dF=dA-¢. (5.6)
The pressure tensor can be written as a linear sum of kinetic, 6, and potential, ¢,

components.

In equation (5.6), at an arbitrary time ¢, if a particle moves through (or across) the

surface, then the kinetic component is deemed to be across the surface dA . The potential

component ¢“, due to inter molecular forces is however, not as easily defined [73]. An
interatomic (interparticle) force between two atoms is often said to be “across” the
surface if the line between the centers of mass of the two atoms cuts through (or across)
the surface defined by dA. This is so-called Irving-Kirkwood convention [74].
However, there is no unambiguous definition of “across” for either the kinetic or the
potential contributions to the pressure tensor. For example, there are obvious difficulties
that arise in handling many-body force contributions to the potential part of the pressure
tensor. Even for pair forces there is no unique way to determine exactly which molecular
pairs contribute to dF [74-76]. Several different techniques have been developed to
calculate the potential component of the pressure tensor, and here we present the Irving-

Kirkwood expression for the stress tensor at time ¢ [74, 77]
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6(r,1) = “;é‘i'iZml[v,.(t)—u(l‘,,t)][Vi(l‘) —u(r.)]
+*2—Zl',j (I)O,j (t)f,j @) |r,(l)=r ’

where v, is the total particle velocity, u the streaming velocity of the fluid, VOL the
volume of the system, f, the force on particle i due to particle j, and O,(?) the

differential operator
n-l

O‘jzl—%qj--aa?+---+%[—ru-—a%} o (5.8)
Thus, from the knowledge of the positions of the particles, velocities of particles, and
forces acting on the atoms obtained from a typical DPD run, the stress (or pressure)
tensor in the fluid medium can be computed. By assuming only the first term and
neglecting the higher-order terms in the above differential operator, we can simplify the
Irving-Kirkwood expression for estimating the stress tensor in each bin (for the steady
flow field)

Cpin =~ VOlme Z (v, =u(r))(v, —u(r)) + % ; rijfij . (5.9)

i€ bin iebin

Also, the constitutive pressure, p, and the first and second normal stress differences can

be rCSpeCtiVely defined as
— 1 —
p——;tro——(O’ +O-yy+0- )

N, =0, -0, (5.10)

N,=0,-0,.
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5.1.4 Shear Viscosity

Each molecular-dynamics (MD) method similar to the DPD method for calculating the
shear viscosity of fluids will fall into one of two main categories: equilibrium molecular
dynamics (EMD) or nonequilibrium molecular dynamics (NEMD) techniques [4]. The
EMD techniques involve either the calculation of time correlation functions by
measuring the decay of near-equilibrium fluctuations in properties of fluid (Green-Kubo
methods) or by accumulating displacements in properties over time (Einstein methods).

For example, the Green-Kubo relation for shear viscosity, 77, is given by [78]

_VOL
k,T

n [(o.0,0). (5.11)

where o, is the xz component of the stress tensor ¢ given by equation (5.7) at

equilibrium. As the system is in equilibrium, simple periodic boundary conditions are
adequate. An alternative EMD method, proposed by Palmer [79], is based on the
transverse current autocorrelation function. Hess [80] has compared these two

equilibrium methods to nonequilibrium methods in MD simulation.

The NEMD techniques usually involve measuring the macroscopic steady-state response
of the system to a perturbing field that may be constant or temporarily varying, and
relating the linear response to a transport coefficient. The properties of nonequilibrium
steady-state or the decay to the equilibrated state are then related to the viscosity. One of
the earliest NEMD techniques, which maintained conventional periodic boundary
conditions, involved imposing a spatially periodic external force on the particles to
generate an oscillatory velocity profile [78)]. The amplitude of this velocity profile at
steady state is inversely related to the shear viscosity, and hence the viscosity can be

calculated. The more successful NEMD techniques involve imposing the planar Couette
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flow velocity profile. One of the most efficient NEMD algorithms for shear viscosity is
the Sllod algorithm [77, 81]. The SHod algorithm has been shown to be exact for
arbitrary large shear rates , and therefore appropriate for studying non-Newtonian
regimes. The strain-rate dependent shear viscosity is obtained from the constitutive

equation

) =——<";>. (5.12)

There exists another technique which we have described it in section 3.4 and which we
will use them later in our simulations. Both EMD and NEMD methods give similar
values for the Newtonian shear viscosities. However, an advantage of the NEMD method
is that the shear rate dependence of the viscosity is obtained directly from the NEMD,
while EMD provides the zero shear rate value only. Although the NEMD runs can be
parallelized for different shear rates, the computation time required to obtain the
viscosity is limited by those long simulation runs at low shear rates. Refinements to the
traditional NEMD methods been developed that reduce the computational costs by

improving the signal-to—noise ratio at small fields [78, 80].

5.2 Bounce Normal Reflection

We have classified and investigated different kinds of boundary conditions in the
Chapter 3. In this section we introduce a new reflecting mechanism similar to the other
known reflections (bounce-back and specular). In specular reflections the normal
component of the momentum of the particles is reversed while the parallel component is

conserved

new old

Vit =i, 2V en (5.13)

new id
Vi * (I _nwallnwnll ) = vl{) ¢ (I —nwallnwall)
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In the bounce-back reflections both components are reversed

new old

vV, =-V

, w4y (5.14)

wall >

where n_, is the boundary normal unit vector pointed outwards of the boundary, v

wall
the velocity of the wall and I identity dyadic tensor. According to [32, 82] the above
reflections have similar temperature and density effects, that we will see later, but the

bounce-back may results in better no slip results in low density conditions.

We now define our new bounce-normal reflection as

-
El =l vi 'nvel lnvel’

-
EZ _'I vi El lnwall’

vi"=E,-E, +2v

(5.15)

wall®

where n , is the unit vector parallel to the boundary velocity. The aim of this reflection

vel
form is to prevent accumulation of particles near the wall and push the particles away
from the boundary so that it reduces density fluctuation especially in the case of
stationary walls. The density distortion near the wall influences the whole domain. It
should be noted that these distortions are not an effect of time step size and occur also at
other equilibrium temperatures. Although the distortions decrease for higher particle

densities in the system, they are still not negligible up to a depth of 0.5r. from the wall

for even 3 times the density of the wall particles. To reach a level at which the wall
effects can be neglected, either the system must be enlarged to impractical dimensions,
or restricted to very high densities. Both these options are computationally costly and
undesirable [32]. We will examine some of these effects in subsequent simulation
results. In all mentioned cases we may also have different reflections in displacements.
For instance the bounce-forward is the same as bounce-back in velocity components but

different in the position (See Figure 5.1 ).
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In Figure 5.1, the schematic diagram of different reflections is shown. The particle which
has an initial velocity of V, is at r/ before it hits the boundary at the time . If there is
no wall boundary and the total effective force from all the surrounding particles (wall
and fluid particles) is not sufficient to prevent the impact, the particle will penetrate into
the wall region and be positioned at r/** within the boundary. It has been illustrated [32]

that the specular and bounce-back reflections for the position (as shown in Figure 5.1)

have virtually the same slip effects and there is thus not much difference in using either.

1+dt

The velocity of particle at position r'* can be derived using any of the mentioned

reflection mechanisms.

-
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Figure 5.1 Schematic diagram of bounce-back (bb), bounce-forward (bf), specular (Spec) and bounce-
normal (bn) for particle that penetrates into the stationary wall region.

5.3 Diagnostic DPD Simulations

5.3.1 Poiseuille Flow

In order to appreciate the degree of difficulty when imposing no-slip boundary
conditions with the DPD method and to identify the most influential parameters
especially on density fluctuations, we first perform some diagnostic DPD simulations for

Poiseuille flow in a channel, similar in some extent to the work of Pivkin-Karniadakis
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[45]. 13500 fluid particles are randomly distributed into the channel box of size
x:15xy:15xz:15 which results in an average number density of p, =4.0. The
periodic boundary conditions are imposed along y and z directions. The frozen particles

which are distributed randomly from the beginning were used to represent two channel
walls in the y-z plane (see Figure 5.2). The randomly scattered wall particles could

somewhat represent the local effect of roughness of surfaces in micro/nano applications
and it shows smaller slips comparing to other combinations. The values of

0=3.0,y=45,k,7=10 and a, =18.75 are assigned to the coefficients of the DPD
equations. In order to sustain the flow an external body force of F, =0.02 is imposed in
the y direction. To investigate the effect of wall density, we will use different values for
the number density of the walls, p,_ . In addition, we will vary the conservative force
parameter for the fluid-wall particles, a,. The simulation domain is partitioned into 300

bins along the y direction and statistics of the fluid parameters (density, velocity,

temperature, stress tensor...) are computed separately in each bin. A large number of
bins is selected in order to examine the fluctuations correctly. The time step is set to
At =0.02 and simulations were run for 1 =5000 (250,000 time steps) and all the steady
profiles are averaged after 1 =4000 (the last 50,000 time steps). The stress tensor e,

constitutive pressure p and other parameters can be estimated in each bin with the

expressions given earlier in section 5.1.
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Figure 5.2 The 3D and 2D position of the wall (blue balls) and the fluid (green small balls) DPD
particles distribution in the simulation box.

First, we examine the model with the simple random distribution of particles inside the
wall regions. 900 particles are located randomly inside each wall domain with the

thickness of r =1, and this leads to the same density of wall and fluid particles,
p,=p; =4.0. We also set the same conservative parameter for the wall-fluid and the

fluid-fluid interactions, a,, =a, =18.75. The simulation results are shown in Figure 5.3,

and it is obvious from this figure that the soft repulsion between particles pushes the
fluid particles into the wall regions. As discussed before one way to avoid this
penetration is by increasing the wall density or by strengthening the conservative
repulsion parameter. Thus we increase the wall density to two times larger than fluid
particles density p, =2p, =8. The results of this simulation are shown in Figure 5.4,
and it is seen that the penetration is reduced; however, there exist large density
fluctuations which are propagated across the channel. Next we increase the repulsion
parameter between fluid and wall particles and keep the wall density equal to that of the
fluid, a,, =2a, =37.5. Figure 5.5 shows the result of this increase and it is observed
that there is a slightly smaller slip; however there exists penetration of fluid particles to

the walls. Unlike the method of Pivkin-Karniadakis [45], which simulated the wall

particles the structured patterns and there existed large amounts of slip for these cases,
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using the current random combinations results in smaller slip compared to the structured
models. According to these results we can also conclude that increasing the density or
repulsion parameter are not appropriate ways to prevent particle-penetration into the
boundary regions. Also it is important that in the case of random distribution of particles
inside the walls, changing the conservative parameter does not significantly affect the

slip factor.
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Figure 5.3 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are
shown with solid lines. Model with walls of random frozen particles

(p.=p;ia,=a,)
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Figure 5.4 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are
shown with solid lines. Model with walls of random frozen particles
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Figure 5.5 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are
shown with solid lines. Model with walls of random frozen particles

(p,=p;sa, =2a;)
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Now in order to prevent penetration of fluid particle into the walls, we employ reflecting
boundary conditions. To test the effects of the different reflections we first apply the
bounce-back reflection. Figure 5.6 shows the results for the same density of wall and
fluid particles, and the wall particles are scattered inside the wall randomly. Also in order
to have a scale to compare our new boundary condition with ,we employ the method of
Pivkin-Karniadakis [45], i.e. using the structured boundary condition and estimating the
repulsion parameter with the following formula. The results are shown in Figure 5.7.

0.39(p kT +0.1a, p?7)

a, = / (5.16)
77 0.0303p2 +0.5617p, —0.8536

According to Figure 5.6 and Figure 5.7 we find that by applying these methods we may
satisfy the no slip condition but there are large fluctuations in the density profiles. This
density distortion leads to significant fluctuations in pressure and shear stress. In Figure
5.8 the total constitutive pressure and first and second normal stress differences are
shown. In this figure we observe large amount of fluctuation which is originated from the

density distortion.

Pivkin and Karniadakis introduced a general adaptive method in order to make density
profile flat [83]. Their method is not easily applicable to complex geometries, incurs
additional computational cost, and there also exists some temperature rise close to the

wall.

Next we apply our new method which uses the combination of randomly distributed wall
particles and the new bounce-normal reflection. This combination is easy to implement
without additional computational cost and without causing much distortions in
macroscopic properties. The results of this method are shown in Figure 5.9 and Figure

5.10. As can be observed from the figures, in the case of bounce-normal reflection there
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exists a very small amount of slip near to the wall (less than 3%). In addition, the density
fluctuations are negligible compared to the other methods and as such this method
demonstrates its clear advantages. We can also decrease the amount of slip by decreasing
the wall repulsion parameter. However, by doing so, the fluctuations in the other flow

parameters would be increased significantly.

Another important effect of wall is the distortion in the temperature profiles very close to
the wall, which is not avoidable in all simulated cases(this is also clearly apparent in
other publications). However this distortion is negligible because it is very small and
near the wall, and it also does not have significant effects in simulations which do not

involve thermal phenomena.
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Figure 5.6 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are
shown with solid lines. Model with walls of random frozen particles
combined with bounce-back reflection ( p, = p, 1 a,, =a, ).
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Figure 5.7 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are
shown with solid lines. Model with walls of two layer structured
particles combined with bounce-back reflection
(p,=p,a,=03766a,).
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Figure 5.8 Top: Pressure profile, Bottom: First and second normal
stress differences profiles. Model with walls of random frozen
particles combined with bounce-back reflection ( p, = p,;a,, =a,).
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Figure 5.9 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are
shown with solid lines. Model with walls of random frozen particles

combined with bounce-normal reflection ( p, = Pria, =ag).
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Figure 5.10 Top: Pressure profile. Bottom: First and second normal
stress differences profiles. Model with walls of random frozen
particles combined with bounce-normal reflection

(p,=p;:a, =a;).
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Also in order to verify our new method for the case of Poiseuille flow we implement the

method for higher density of particles, p, =p, =9.0 and a,, =a, =8.33. As shown in

Figure 5.11, for higher densities the results are similar (the small difference in the
velocity profile is due to small number of time steps and the profile would be similar if

we run simulation with more time steps).

We can also estimate the viscosity of the simulation by comparing the results with the
Navier-Stokes solution. By simplifying the Navier-Stokes equations with the appropriate

boundary condition related to Poiseuille flow, one obtains

F.h*
u, (=22 (1=,
; 1 (5.17)
O_Xy =77 uy(x) =—pFex,

where x is the distance from the middle of the channel, A=7.5 is half the channel

width, 7 is the apparent viscosity and F, =0.02 is the external field force in the y
direction applied to the fluid. Also &, is the shear stress along the channel width. There
are two ways to estimate the apparent viscosity of the simulation. One is to compare the
maximum velocity with the related Navier-stokes maximum velocity and determine the
viscosity as

_ pER
7= 2u

max

(5.18)

The other involves the calculation of the average simulated velocity, i, and compare it

with the theoretical value. If we use this method

Fh?
p<PER.

3 (5.19)
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We applied both these two methods and calculated the apparent viscosity for each, the

results are 77 =1.055 and 7 =1.0352 from the first and second methods respectively.
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Figure 5.11 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are
shown with solid lines. Model with walls of random frozen particles
combined with bounce-normal reflection (p, = p, =9;a,, =a,).
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5.3.2 Couette Flow

In order to further validate the new boundary bounce-normal reflection, we now apply it
to pure shear flow. For simulating the shear flow, we remove all the external body
forces. In order to impose arbitrary shear rate we move the right wall with the velocity of
v

and the left wall with the opposite velocity of —v__, both in the y direction, The

wall wall

relative velocity profile is obtained by dividing the velocity by v 1t should be noted

wall *
that as the temperature sets the energy scale, the imposed shear rate should be applied

such that its maximum velocity is at most of the order of the thermal velocity [66].

We use the same parameters of the Poiseuille flow except for the wall density and
repulsion parameter between the wall and the fluid DPD particles. It was observed that if
we use the same repulsion parameter, we would incur large amount of slip near the wall

regions. Thus we decrease the repulsion parameter of wall particles to a,, =0.7a, . As it

is demonstrated in Figure 5.12, the amount of slip is now in acceptable order, but again
there exist density distortion. In order to obtain smaller slip we may further lower the
wall repulsion. Here we suggest using equation (5.16) for estimating and decreasing the
repulsion parameter. The results of this are shown in Figure 5.13. From this figure we
observe that the no slip condition is achieved however there exists large fluctuation in

the other parameters.

To overcome this problem, we not only have to decrease the repulsion parameter, but
also increase the wall density. The reduction in repulsion parameter causes the
accumulation of fluid particles near the walls and resulting in the density fluctuation. By
increasing the wall density and using the bounce-normal reflection mechanism we

effectively push the particles towards the fluid domain. After several trial simulations we
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set the repulsion parameter to a,, =7.06 and increase the wall density to p, =10.0. The

results are shown in Figure 5.14. Now we observe that the fluctuation and the slip are
both more appropriate and matching the macroscopic properties. Also we find that the
advantage of using randomly distributed particles over structured ones for the boundary
regions, is that as we increase the wall density the no-slip condition is satisfied to some

extent.

In addition we can estimate the apparent viscosity also for the shear flow by comparing
the shear stress with the theoretical value. The Navier-Stokes solution for the Couette

flow is

_ X
U= U -};

ou, (x) n (5.20)

- umax
ox h

o.=n

Here u_, =1 and by using the above equation we find the apparent viscosity

17 =1.0312, which is close to the estimated values of Poiseuille simulations. Also the

results of the normal stress differences and pressure are shown in Figure 5.15.
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Figure 5.12 Couette flow. Top: Density and Temperature profiles.
Middle: Velocity profile. Bottom: Shear Stress Profile. The Navier-
Stokes solutions are shown with solid lines. Model with walls of
random frozen particles combined with bounce-normal reflection

(p,=p, =4:a,=07a,)
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Figure 5.13 Couette flow. Top: Density and Temperature profiles.
Middle: Velocity profile. Bottom: Shear Stress Profile. The Navier-
Stokes solutions are shown with solid lines. Model with walls of
random frozen particles combined with bounce-normal reflection
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Figure 5.14 Couette flow. Top: Density and Temperature profiles.
Middle: Velocity profile. Bottom: Shear Stress Profile. The Navier-
Stokes solutions are shown with solid lines. Model with walls of
random frozen particles combined with bounce-normal reflection
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5.4 Lid-Driven Cavity with Low Reynolds Number

Finally, we simulate Lid-driven Cavity flow as it has been regularly used to test or
validate new codes or new solution methods. The particles are distributed in the box size

of x:10xy:10xz:10 and the density of the both DPD fluid and wall particles are set at
p;=p,=10.0. We have selected the values of k,7=1/3, =43, y=4.5 for the
temperature, random and dissipative force coefficients respectively. The four
surrounding walls are again modeled with the random distribution of particles in
combination with bounce-normal reflection and we assume the periodic condition in the

z -direction. The conservative parameter is set to a, =a, =3.0 for the interaction

between particles. The left wall is a moving lid with constant velocity and other three
walls are at rest. We calculated the conservative force coefficient from equation (5.16) as
a, =1.67, for the interaction of fluid particles with the moving wall. In order to
calculate the Reynolds number, we estimate the dynamic viscosity of the fluid from
Poiseuille flow simulation and the results are 77 =2.069 and 7 =2.03 from the average
and maximum methods respectively. To estimate the Reynolds number, we assume the

apparent viscosity to be 77 =2.05. We run the simulation for 250,000 time steps and the
final velocity profiles are averaged over the last 50,000 steps in 200 bins. The left lid is

moving with the constant velocity of V =0.41 which leads to a Reynolds number of

Re=££=20.0, (5.21)
n

In order to validate our results, we compare with corresponding results obtained by the
FLUENT CFD package, which is based on discretization of Navier-Stokes equation. We

selected the 2D grid size of 160x160 which provided mesh independent results, and
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chose other parameters to achieve a Reynolds number of 20. In FLUENT we fix the
10x10 box size and select the density and viscosity as p=1 and 77=1 respectively.
Thus, for a Reynolds number of 20.0, we require V =2 for the lid velocity. Also for
both DPD and Navier-Stokes, we normalized the coordinates and the velocity profiles by

the domain size of 1x1 and the lid velocity of V =1.

We compare results of DPD and Navier-Stokes calculations in Figure 5.16 to Figure
5.18. In these figures, we present the contour fields of different velocity components.
These figures show overall excellent agreement of DPD results with bounce-normal

reflection, when compared to the Navier-Stokes simulations.

Additionally and in order to investigate and compare the DPD results more precisely, the
velocity profiles along the horizontal and vertical cut lines in different positions of
domain ( x=0.25,0.5,0.75 and y=0.25,0.5,0.75) are depicted in Figure 5.19 to Figure
5.21. We observe an excellent agreement between the two methods. We only see some
inconsistency of velocity contours at the corner point which is due to different treatment
of boundary condition at these points and is unavoidable. In addition for the DPD density
profiles, we obtained almost flat profiles except for some small fluctuation near the left

moving wall.
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Figure 5.16 Contour plot of lid-driven cavity flow. Left: Total velocity of DPD simulation. Right: Total velocity of Navier-Stokes
simulation.
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Figure 5.17 Contour plot of lid-driven cavity flow. Left: V-component velocity of DPD simulation. Right: V-component velocity
of Navier-Stokes simulation.
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Figure 5.18 Contour plot of lid-driven cavity flow. Left:
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U-component velocity of DPD simulation. Right: U~component velocity

of Navier-Stokes simulation.
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Figure 5.20 DPD and Navier-Stokes comparison of velocity profiles. Left: U and V profiles along the horizontal line at y=0.5.
Right: U and V profiles along the vertical line at x=0.5. (DPD Results are shown with dotted lines)
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Figure 5.21 DPD and Navier-Stokes comparison of velocity profiles. Left: U and V profiles along the horizontal line at y=0.75.
Right: U and V profiles along the vertical line at x=0.75. (DPD Results are shown with dotted lines)
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5.5 Conclusions

In terms of DPD refinement, we have managed to attain significant reduction in
fluctuations in important parameters such as the density and shear stress distributions

which affect the macroscopic flow properties. This was achieved by the following:

e Establishing a new bounce-normal reflection mechanism.

e Deploying a random wall particle distribution and enforcing non-penetration.

The density and shear stress fluctuations are thus controlled by the general mechanism of
this new reflection, which adds to the thermal fluctuations and pushes the particles due to
this thermal energy normally toward the bulk flow. This effectively prevents

accumulation of particles near the walls and flattens the density profile.

At this juncture, we are ready to progress to model the entropic trap geometries, and also
investigate the various particle chain models to simulate the DNA chains as they traverse

through the trap atrays.
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Polymer Physics Theory, Basic Concepts and DPD

6.1 Ideal Chains

We can define an ideal chain as the simplest chain without any interactions between
monomers. The polymer chain is constructed from many internal atomistic links with
each of bond length / that can be assumed as an almost constant parameter. For each
X —X atomic bound, there exists rotational freedom which is the main source of
flexibility in polymers. This flexibility is due to the variation of torsion angles and causes
the polymer to be thought of as a long piece of string (see Figure 6.1). If there is no
variation in torsion angle of all bonds in the chain, and the torsion angle has the trans
state, then the chain attains its longest end-to-end distance or contour length of

R, =nlcos(6/2), where n is the number of bonds and & is the angle between bonds.

Figure 6.1 The atomic and overall structure of sample polymer chain.
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First we assume an ideal or freely-jointed chain where there is no correlation between the
directions that different bonds take. In this case there are no net interactions between the
atoms associated with each bond, and all directions have the same probability and we are
thus able to map every possible conformation of an ideal chain onto a random walk and
apply all statistical properties of random walk theory to our model of a freely-jointed
chain. In this very simple approach where no interactions between monomers are
considered, the energy of the polymer is taken to be independent of its shape, which
means that at thermodynamic equilibrium, all of its possible shape configurations are
equally likely to occur as the polymer fluctuates in time, according to the Maxwell-

Boltzmann distribution. As it is shown in Figure 6.2, the end-to-end vector is the sum of

n
all n bond vectors in the chain, R, = z?: . The ensemble average of this vector is zero

i=1
<§n>= 0, since there is an equal probability to walk in every direction. To estimate the

length of the chain, we shall calculate the average mean-square end-to-end distance:

(R))=(R.R )= (7.F) =0 (cos6,)

i=l j=1 i=l j=I (6.1)

=nl’.

The main assumption for the derivation of equation (6.1) is the freely jointed chain

model, i.e. a constant bond length, / =|7,| and no correlations between the directions of

different bond vectors, <cos 0‘.j> =0 for i# j. We can define the Flory’s characteristic

ratio, C, in order to include short range interactions. This ratio depends on distances and

limits which polymer segments can interact with each other

(R?)=C, ni* = Nb*, (6.2)
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Generally the main properties of an ideal chain are described by equation (6.2). Thus a

description of all ideal polymers can be provided by an equivalent freely jointed chain
which has the same mean-square end-to-end distance <§2> and the same maximum end-

to-end distance R__= Nb as the actual polymer, with N freely-jointed effective bonds

of length b, which is called the Kuhn length.

N2\
g - \\/)\’/ \
id s \ /
v ! N
" d M,

Figure 6.2 Schematic of end-to-end distance of one conformation of a flexible polymer. The vector lines
represent sample actual links in the chain and the rest of the contour of the chain is represented by curved
dotted line.

6.1.1 Radius of Gyration

Usually it is more convenient, especially for branched or ring polymers, to express the

size of polymer by the radius of gyration R, rather than the end-to-end distance. The

R gz is the average square distance between monomers

1 - =
R*==3% (R -R.,)’ (6.3)
N i=1
where the polymer’s centre of mass is
- 1 &
R, =N2Ri' (6.4)

We can average the square radius of gyration over the ensemble of different allowed

conformations and calculate the mean-square radius of gyration as
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<Rg2>=.£/—i<(ﬁi_RCM)2>:%ii<(ﬁi_R.j)2>' (6.5)

i=] i=l j=1

Converting the summations into integration and using equation (6.5) for an ideal-linear
chain, <(R(u)—§(v))2> =(v—u)b®, one obtains the mean-square end-to-end distance of

an ideal linear chain as

<R32>=#LN LN<(1§(u)—R(v))2>dvdu=§—2zf LN(v—u)dvdu
_ (6.6)
"6 6

6.1.2 Freely Rotating and Worm-Like Chain Models

A freely rotating chain model assumes that all bond lengths and bond angles are fixed

and all torsion angles are equally likely and independent of each other. The correlations

of bond vector 7, at bond vector F are reduced by the factor (cose)l""" due to
independent free rotations of | j-—i| torsion angles between these two vectors such that

<F .Fj>=12(c059)”"1. We are able to estimate the fast decay of (cos@)"™ with the

i

exponential function

(cos 6)"—[‘ = exp(|j —i| In(cos 8)) = exp[—'lls;i‘] 6.7)

where § =-1/In(cos @), is the number of main chain bonds in a persistence segment,

which is the scale at which local correlations between bonds vectors decay [84]. Due to
steric hindrance to bond rotation, polymer chains are never as flexible as a freely rotating
chain model. Assuming a described rapid decay, one can obtain the mean square end-to-

end distance of freely rotating chain as

(R})=C np2 = 14080 o (6.8)
1—cos8
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The worm-like chain model is a special case of a freely rotating chain model for very
small values of the bond angle. This is an appropriate model for very stiff polymers like
double stranded DNA for which the flexibility is dependent on the fluctuations of the
contour of the chain from a straight line rather than the rotation of bond angles.
Estimating cos@ for small values of bond angle (8 << 1) with the first two terms of the
Taylor series, one could find the persistence length or the length of the persistence

segment

1 =8,101=. 69)

4 02
We can also calculate the corresponding Flory characteristic ratio and Kuhn length for

worm-like chain:

1+cosd _ 4
Cn= -
ll—Ccosé’ Z (6.10)
=t ] —=2]

T cosf/2 6 a

For instance the persistence length of double-helical DNA can be / [ 50nm and its
Kuhn length is 60J100#m [85, 86]. The worm-like chain is defined as the limits [ — 0
and & — 0 at constant persistence length /, ( constant // %) and constant chain contour
length R =nlcos(8/2)U nl. Using the exponential decay of correlations of bond
angles, we can estimate the mean square end-to-end distance of worm-like chain
(R2)=21,R,, —2lp2[1—exp(—£l"ﬂ)} (6.11)

P
Two limits for equation (6.11) can be characterized, namely the ideal chain and rod-like

limits.
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(R2YD 2Ry =bR,y Ry >,

P ‘max max max

(6.12)

<1§"2> ORZ R <<l
The important difference between freely jointed chains and worm-like chains is the

rigidity of the chains in scales smaller than the Kuhn length b, i.e. the worm-like chain

is not completely rigid and can fluctuate and bend at length scales shorter than b .

6.1.3 Probability Distribution of End-to-End Distance of an Ideal

Chain

Every possible conformation of an ideal chain can be mapped onto a random walk. A
particle making random steps defines a random walk. If the length of each step is
constant and the direction of each step is independent of all previous steps, the trajectory
of this random walk is one conformation of a freely jointed chain. Hence, random walk
statistics and ideal chain statistics are similar [84]. Knowing this similarity, we can easily
obtain the one-dimensional probability distribution function for the components of a

random walk along each of the three axes in space

L 1 R’
P,(N,R)= ——exXp| ——7=
” \[2” Rx2> { 2<R"2>J (6.13)

The above equation is obtained by assuming <I§z> = <I§x2>+<1_éyz>+<1§zz> = Nb’ and the

equivalence of the three Cartesian axes, <sz>=<1§,2>=<ﬁz2>=Nb2/3. Also, it is

Y
important to note that in extracting equation (6.13), some approximations are used, and
we shall term this equation a Gaussian approximation. Since the three components of a

three-dimensional random walk along the three Cartesian coordinates are independent of
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each other, the three-dimensional probability distribution function is the product of the

three one-dimensional distribution functions

3n =

. 3 3R
Py(N,R)=| —— - : 6.14
o (V) (2EA%2) exP( ZA%zj ©19

The above equation shows the possibility of finding polymer of N segment to achieve
the conformation with end-to-end vector of R (also see Figure 6.3). It is obvious that the

probability distribution of R is Gaussian which is natural result of random walk theory.

We can also derive the equation (6.14) using the central limit theorem that defines the

normal distribution (Gaussian distribution) of end-to-end vector.

No}mdiiad md—)'omnd detance
Figure 6.3 Normalized distribution function of end-to-end distances of an ideal chain with different
number of segments.

6.1.4 Free Energy and Entropic Elasticity of an Ideal Chain

The entropy of a freely jointed chain of N monomers with end-to-end vector R is

S(N,R)=k, InQ(N,R) (6.15)
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where k is the Boltzmann constant and Q(N, R) is the number of configurations of the

chain with N monomers which has the end-to-end vector of R. Using the definition of

the probability distribution function

QN,R) = B, (N, R) [QN,R) dR (6.16)

and substituting equation (6.14) to equations (6.15) and (6.16), one can obtain the

entropy of an ideal chain

" 3. R
S(N,R) =—5kBF+5(N,0),

6.17
3 (6.17)

S(N, 0)-—k 1n(2” = )+k 1n(jQ(N R) dR)

We can find the Helmholtz free energy of the chain which s
F(N,I?)=U(N,R’)—TS(N,1§), where T is the absolute temperature and U is the

energy of an ideal chain which is independent of the end-to-end vector because the

monomers have no interaction energy. The free energy can be simplified to

3 R?
F(N,R)= —kT T ——+F(N,0) (6.18)

where F(N,0)=U(N,0)—-TS(N,0) is the free energy of the chain when both ends are at
the same point. It is crucial to note that the largest number of chain configurations
corresponds to zero end-to-end vector. The number of conformations decreases with
increasing end-to-end vector, leading to the decrease of polymer entropy and increase of
its free energy [84]. The quadratic dependence of free energy with end-to-end vector

implies that the entropic elasticity of an ideal chain satisfies Hooke’s law. This means

that if we want to hold a chain at a fixed end-to-end vector R we would need a force of

= OF(N,R) _3k,T i

f= Y: Nb? (6.19)
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The above equation is the Hooke’s law for an ideal chain and the term 3kT/Nb® is
called the entropic spring constant coefficient of linear dependence of entropic force with
respect to end-to-end vector. It becomes harder to elongate polymers when they are
stretched because there are fewer possible conformations for larger end-to-end distances.
Although other materials like metals and ceramics become softer as temperature is raised
(their deformations are due to atomic displacement, i.e. energetic elasticity), polymers

become stiffer with increase of temperature due to the entropic nature of their elasticity.

It should be noted that in the derivation of equation (6.19) we use the Gaussian

approximation of probability density function which 1is only wvalid for

<ﬁ> << (R, =bN). Additionally we can adjust the limit of force to be of order of

k,T /b so that Hooke’s law is applicable. Considering the effects of non-linearties will

result in more complex formulations. For instance, in a freely jointed chain, the average

end-to-end distance corresponding to a given force is [84]

<R>=bN{coth(—f—b—- ! } (6.20)
k,T' folk,T

It should be noted that the existence of random process in chain models leads to there
being no simple analytical solution for the worm-like chain model at all extensions, and
finding an accurate solution usually requires computer simulations. The best and earliest
model was introduced by Marko and Siggia [87]

fo =<R>+ ! L (6.21)
2k, R, 4(1—<1$>/Rmx)2 4

The Marko-Siggia expression shows convergence to a good solution as

<1€’> -0 or <ﬁ> — R,,, . However, Bouchiat et al. [88] subtracted the Marko-Siggia

interpolation formula from the exact numerical solution of the worm-like chain model
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and expressed the residual as a seventh-order polynomial leading to an accuracy better

than 0.01%

o )

o (R) 1 —i+i§;: = (6.22)

+ =
2kT R 40-(R)/R,,)? i
where the coefficients @, are a,=-0.5164228, «, =-2.737418, «,=16.07497,
o, =-38.87607, o, =39.49944, and «, =-14.17718 . In Figure 6.4 we have plotted the

normalized stretching force ( fb/(k,T)) versus the normalized average end-to-end
distance <E>/ R for a Gaussian chain [equation (6.19)], freely jointed chain [equation

(6.20)], and three models of worm-like chain. Also, for a worm-like chain, the exact
numerical solution is shown in Figure 6.4 which is obtained from [88]. From this figure
we find that for very small extensions, all the models predict the linear elastic
characteristics of the Gaussian chain model (Hookean spring). For larger extensions
there is significant divergence between the different models. Another criterion which can

be observed from Figure 6.4 is that the largest divergence of Marko-Siggia expression

from exact solution occurs when <1§>/Rmax =~0.5 and it is around 10% .
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Figure 6.4 Plot of normalized stretching force versus normalized average end-to-end distance for a
Gaussian chain equation (6.19), freely jointed chain equation (6.20), and three models of worm-like chain.
The data for exact worm-like chain (A) are from [88].

6.2 Non-Ideal Chains (More Realistic Polymers)

In the ideal chain model we assume that the chain is able to fold over itself so that the
segments which are far away can occupy the same volume and this is due to the
assumption of random walk (flight) motion of monomers without any limitations. This
mode! of ideal chain is not completely true and physically impossible since each
monomer occupies only its own position in the space. If we impose the limitation such
that each monomer can move randomly but cannot visit the same position more than
once, we attain the real chain’s conformation. The restraint that real chains cannot cross
each other is called self-avoiding walk and the polymer thus represented is often called
the excluded volume chain. Assuming no overlapping restriction we would expect the

end-to-end distance distribution to be shifted to larger values. The excluded volume
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effects and correspondingly the type of liquid in which the polymer is dissolved cause
the ends of a polymer chain in a solution to be further apart (on average) or less away

(shrunken) than they would be were there no excluded volume effects.

The formulation for the size of the real chains can be derived with some corrections in
probability distribution function as in [89] for simple cases, or using more complicated
mean-field calculations of Flory [90]. The derivation of these distributions is beyond the
scope of current work and here we just summarize the most important final results for
different cases from [84]. Following we consider five cases for different conditions of

solvents which directly affect the chain conformation.

Athermal solvents = R =bN""?

2v—i
Good solvents = R=b(ﬂ) NY

b]
f-solvents = R=bN"

Poor solvents = R= |EV|_“3 bEN'?

Non-solvents = R=5bN'""?

We can have the exact same situation as the ideal chain conformation when the attraction
between monomers exactly balances the whole effects of hard core repulsion. Thus the
net excluded volume effect is zero, EV =0, and the coil size behaves like its ideal
conformation and this corresponds to cases involving &-solvents. The temperature at
which the solvent adjusts the polymer to its ideal size is called the &-temperature. The

chain size is defined as in equation (6.2), i.e. R =bN"?*.
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In the situation where the attraction between the monomers is unable to overcome the
hard core repulsion, we will have the positive excluded effects and the chain will tend to
expand more than its ideal conformation. This usually occurs when the temperature is

higher than the @-temperature, where the chain is at its ideal adjustment

2v-1
R=b(—El) N'. (6.23)

b
In an athermal solvent the interactions between monomers of the chain are identical to
their interactions with the surrounding solvent and as a consequence the net interactions
between the monomers are zero but there remains hard core repulsion between the

monomers. In this situation the excluded volume is independent of temperature and is

constant, EV =b’, and the chain only has the condition of self-avoiding walk of the

monomers. The size of the chain can be thus estimated by

R=bN". (6.24)
In the case of poor solvent and below the &-temperature, the attraction between the
monomers is so strong compared to hard-core repulsion, and the excluded volume is

negative such that the chain collapses into a small globule of size

173

R=|EV| BN (6.25)
If the temperature goes far below the @-temperature, we will have the pure attraction the
between monomers and the excluded volume is in its higher negative value EV =-b’.

This lowest limiting case is termed non-solvent and the chain takes its fully collapsed

conformation in this condition

R=bN". (6.26)
We note from the results that the good and poor solvents are better suited for very long

chains, while for the short chains it is the ideal chain condition that is better suited.
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If we look at all the above formulations for different solvent conditions we see the
contribution of the exponent parameter v which is usually termed the characteristic
critical exponent. The scaling theory for polymer solutions states that all physical
properties and especially the polymer size can be expressed by the simple power law
R=N". For the case of good solvent, Flory [91] found the exponent value using

statistical scaling arguments, and obtained

V=— (6.27)

where d is the spatial dimension. Equation (6.27) shows a good agreement with other
simulation and experimental techniques. In Table 6-1 we summarize the most important
exponent values for two and three dimensional chain conformation under two solvent

conditions. Also, for #-solvents we can use the same exponent as the good solvent.

Table 6-1 Two and three dimensional critical exponent for different solvent conditions.

Athermal Good solvents Good solvents
Solvent condition
solvents (Flory’s Formula) (Simulation [92])
Exponent value V 2D 0.5 0.75 0.77
Exponent value vV 3D 0.5 0.6 0.588

6.3 Coarse-Grained DPD Simulation of Polymer Chain

When investigating more into polymeric systems and especially biological ones like
DNA strands, we find that both micro and macro dimensions are involved in the
evolution of these systems. For instance the contour length of A-phage DNA is

L=21um while its diameter is only few nanometers (around 2nm).There are thus

different length and time scales involved. This complexity requires a coarse-grained
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approach which ignores details of the polymer’s conformation under a certain length (for
example the Kuhn length), to efficiently simulate the conformational changes. There are
two methods for modeling chains in the coarse level; one is the bead-rod chain which
models each segment of polymer with rigid links of fixed length (Kuhn length) and the
other is the bead-spring chain. In the following section we introduce the bead-spring
chain model which is a coarser model for polymer chains and has more flexibility than

the bead-rod model.

6.3.1 DPD Polymeric Models

An attractive method for the simulation of polymers is the DPD. Though this
methodology has a good consistency with available experimental data, there still exists
certain difficulties when simulating the polymer’s rheology with DPD. In {9] the DPD
was applied for studying the polymer’s static exponent where the polymer was modeled
as a stiff and Hookean linear spring and the exponent value was found to be v=0.52.
Later in [93], effects of solvent quality on the scaling of the polymer radius of gyration
and its dynamical relaxation time were investigated and for a three dimensional situation,
the static exponent was found to be v =0.6. Groot and Warren [6] mapped the DPD
parameters to real water using the velocity Verlet algorithm with Ar=0.04 and in
addition they obtained the Flory-Huggins parameter for different polymer sizes using the
Hookean spring model. Employing the same time integrating scheme of [6], Groot et al.
[11] simulated block co-polymer separation using DPD. In [94], the Hookean spring
force was used to find the diffusion coefficient and the scaling exponent for two

conditions of polymers in dilute solution and polymers in melt.
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Figure 6.5 Lennard-Jones potential and the soft-repulsive potential after averaging. Figure extracted from
[951.

As we have mentioned in Chapter 4, the DPD equations are stochastic and nonlinear
because of the velocity dependence of the dissipative force. In addition to the difficulties
of finding appropriate time integrating scheme for this stochastic nature of the DPD
algorithm, we may face other problems when simulating complex fluids. In particular,
the use of the Lennard-Jones potential for each bead pair requires smaller time step
compared to soft repulsion of typical DPD particles (see Figure 6.5). Due to the presence
of both soft and hard potentials, Symeonidis et al. [95] proposed the use of time-
staggered algorithms to study the polymeric physical quantities (such as end-to-end

distance or radius of gyration) efficiently.

In addition to the conservative, dissipative and random standard DPD interactions for
every particle in the flow, the polymer chains are subjected to intra-polymer forces (for

each bead pair). The literature [96] suggests that we can model these forces using
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combinations of the following potential types U, and accordingly find the pairwise

forces by F,,,(r,)=-VU(r,).

Lennard-Jones

12 6 . 6
Uy _J(Lin) =(Lin) +1/41 :for (Lin)*<2 6.28)
4T o :otherwise.
Hookean spring
Uoore = ’5(|r,.+I —rf  for i=12,.,N-1. (6.29)
Fraenkel stiff spring
K 2 :
U grr =5(|r,‘+1 -r|-r)  for i=12,.,N-1 (6.30)
Finitely extensible nonlinear elastic (FENE) spring
2
L) |ri+l —ri! .
UFENE=—Erm n(l-——=—) for i=12,.,N-1. (6.31)
rm
Worm-like chain (WLC)
k C o4
r, r;
Fe ST N | B e,. (6.32)
’ 447 L, L, !

The Lennard-Jones potential cannot be used solely for interbead interactions since it
creates pure repulsive force which causes the chain to break, so we need to combine it
with other attractive potentials. It is interesting to note that when using the combined
Lennard-Jones potential with some other spring forces, we may capture the excluded
volume effects solely through the pairwise chain interactions without direct interference

of the solution. In all of the above equations, k is the spring constant which has the unit

of k,T/r?, taking different proportionality factors of this unit for different problems.

100



ATTENTION: Th his document. Namn

rsity Library

Chapter 6: Polymer Physics Theory, Basic Concepts and DPD

The Fraenkel spring has a finite equilibrium length r, below which the spring will exert

a repulsive force, and above which the spring exerts an attractive force. This is in
contrast to the Hookean spring potential which always produces a pure attractive

interbead force. The r, in the FENE spring potential, see equation (6.31), is the

maximum extension length of the chain beyond which the attraction becomes infinite.

Equation (6.32) describes the worm-like chain pairwise interaction as it was described

earlier in more detail in section 6.1.2. Here similar to lp, /I;If is the effective persistence
length which is the measure of chain’s stiffness and L, is the maximum length of each

chain segment. It is interesting to note to the similarity in form of equation (6.22) for a
comprehensive polymer stretching model and equation (6.32) for the bead-spring model.
The analogy of these two equations comes from replacing the long chain to smaller

chains extracted by the relation of each of the beads with the entire contour length, i.e.

L
L.rp Rmax

We can implement any of the above mentioned potentials at simple equilibrium state and
investigate the scaling laws. Selecting the appropriate model which matches well with
the experimental data of our application is essential. Figure 6.6 shows the freely

suspended chain in a typical solvent using the DPD simulation with the WLC bead

spring forces.
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Figure 6.6 A 40 bead 3D polymer chain at equilibrium state in a periodic box of solution.

6.3.2 DPD Simulation of Worm-Like Chain in a Dilute Solution and

Scaling Laws

In this section we investigate the dynamics of single polymer chains of different sizes in
a dilute solution. We used the DPD to simulate two dimensional cases and different
parameters are explored to determine the scaling exponent as a measure of excluded
volume effects. Also, different solvent conditions are examined in order to achieve real
chains behaviors. Since our application in the next chapter is related to DNA migration
we are more interested in the simulation of WLC which is one of the best models that

can capture DNA physical conformations.

Since all the simulations we carried out involve the WLC and no LJ potential is
involved, there is no need to use any time staggered scheme. For time integration and
especially choice of time step, we may face difficulties if it is not properly selected
mainly during the initialization of the chain and also for fast changing field phenomenon,
which may arise in our DNA application in the next chapter. As we are using the WLC

force of equation (6.32) and when each segment length approaches near maximum spring
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length L, the spring force may become too large such that the net exerted force by the

surrounding particles is unable to compensate in kind. In this situation if the time step is
not decreased the distance between the beads of the chain would drastically increase and
the chain may break. In order to overcome this, we select a main time step of

(A1) . =0.02 and dynamically refine it according to the current chain segment length

main

r,;» in the following manner:

If L <0.85L, then Ar=(At)

main’

If 0.85<r, <0.9L, then Ar=(Ar),,, /2.

main

If 0.9<r, S0.95L, then Ar=(A1),,, /4.

C
If 0.95L , <r, then At=(At),,, /8 and F"=F" N\, oos,) -

main

We track the length of every segment of the chain and we use the time step associated

with the longest segment for calculating the evolution of all particles in the system.

Another issue is proper application of the periodic conditions for the chain beads and
how these beads interact with each other and other solvent particles. This issue can be
handled by storing the position of the chain beads in two different coordinates. The first
is the unmapped or real chain coordinate which allows us to calculate the interbead
forces. The second is the coordinate similar to the coordinate of all other particles which
the polymer beads can freely move in and can have the periodic conditions similar to the
solvent particles. The latter is helpful for estimating the interactions of polymer beads
with solvent particles and we shall term these beads as ghost particles. It should be noted

that both mentioned coordinates are identical when the chain beads are in dimensions
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less than the box sizes. In Figure 6.7 the schematic representation of both real and ghost

chain particles is shown.

Figure 6.7 The 2D representation of a 128 bead chain (blue balls) in a 20X 20 simulation box. The
yellow crossed circles show the positions of the ghost chain beads. The small green dots represent the
solvent particles.

To explore the effects of different parameters on the scaling of the chain, we shall
examine two dimensional cases since it takes significantly less computational time than
3D simulations. The dilute solution condition is mimicked by immersing the single
chains in ocean of DPD particles within a periodic box of size 10 in each direction.
Using the described periodic chain methodology, the effect of box size is negligible. We
choose the WLC of equation (6.32) in all of the cases and the corresponding static
exponent values v for both radius of gyration and end-to-end distance, are computed for
each case, using 5,10, 20,50 and 100 bead chains. The main DPD simulation
parameters (the 2D run parameters) are listed in Table 6-2. We run simulations for
250,000 time steps and average all quantities over the last 10,000 steps. This large
integration time is not necessary for short chains but it is essential for longer chains (100

beads or longer) where the relaxation times are much longer. The scaling exponent is
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estimated by fitting a line to first four or five points in log-log plot. We eventually used a
4 point fitting (for 5, 10, 20 and 50 bead chains) since larger simulation time is required

for complete relaxation of a 100 bead chain. In addition, the chain temperature absolute
error, the ratio <R2>/ <R82> and the chain average contour length per bead L  are

computed. In the following, the 5 point line fitting of radius of gyration is discussed

unless otherwise stated.

In order to verify our DPD source code we simulate one 3D case with parameters similar
to [96] and the results are shown in Figure 6.8. We obtained the exponent value of

v =0.5521 which is in a very good agreement to the value v =0.5516 in [96].

First we increase the persistence length from Z;ff =0.05 to ﬂ;ff =0.15 to obtain better
scaling exponent values as represented in Figure 6.9 and Figure 6.10. Increasing the
persistence length causes a rise in chain temperature so we correspondingly increased the
maximum segment length to L =15 (see Figure 6.11 and Figure 6.12). We analyzed
Figure 6.9 to Figure 6.12 and found a very logical trend that increasing maximum
segment length L  or persistence length /1;’7’ caused the chain beads to have more space

to interact with solvent particles and this results in better excluded volume effects as the

exponent values rise from v =0.6994 to v =0.7304.

Next we examined the solvent quality by altering the polymer fluid repulsion parameter

from a, =0.5a, to a, =125a,. From the results in Figure 6.13 to Figure 6.15 we

observe that the scaling of radius of gyration decreases from v =0.7425 to v =0.4720

for 4 points line fittings. This is due to the fact that as we increase a , the solvent

of

particles are repulsed from the chain and the chain tends to fold over itself and collapse.
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On the other hand, decreasing a,, leads to more attraction of the chain segments toward

the solvent and thus better expansion of the polymer segments into the fluid and this

enhances the excluded volume effects.

Table 6-2 DPD simulation parameters for 2D simulation.

kyT . ag r o dr

1 4 18.75 1 3 0.02

Finally we define S as the minimum number of neighboring polymer beads that could
sense the original conservative bead-bead force, i.e. when ’i—j|pp 2§ , we set different
values for the polymer-polymer repulsion parameter a,,. This allows us to alter the

bead-bead interaction for different distances along the chain segments and as a result the
neighboring segments may able to fold softly while remote beads expel each other

strongly. For instance, in the case of Figure 6.16, setting $ =2 and a,, =2a, result in

better scaling laws v =0.7685 for 4 point radius gyration fitting.

One remarkable observation from all above results is the ratio <R2>/ <Rg2> which

apparently can be used as another measure of chain discrepancy from the ideal chain

condition where <R2>/<R82>=6 according to equation (6.6). From the results we

observe that when the scaling laws exponent values are improved, the values of this ratio

are greater than 6.

106



ATTENTION: The S

applies to the use of this do

ical University Library

Chapter 6: Polymer Physics Theory, Basic Concepts and DPD

Madlisim of Oywetien or Gnd-vo-Esd DL es0

5 points (i) base 4 points () base

S points (#) base

4 points {#') base

0.5521 0.5439 0.5759 0.5707

e e ;

- - E‘"
- ] t T ] ¥ - I=-I L] # 0 T

R2
Figure 6.8 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio ( (red) and the chain

(&)

temperature absolute error (blue). 3D Simulation parameters: L =2, AT =117, a,=a,, k,T=02, L =0.695.

Figure 6.9 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio

Fudie of Gpratien mr Eed-fe-Esd Distesoes

4 points (7 ) base

5 points (% ') base

5 points (z ) base

4 points {% ) base

0.6994 0.7325 0.6313 0.6827
;
= | 4 T
A |
e ] S T |

167

(7)
(&)

(red) and the chain

temperature absolute error (blue). Simulation parameters: L, =0.5, A7 =0.05, a, =a,, L, =0.253.



DRD
Stamp

DRD
Stamp

DRD
Rectangle


sity Library

ATTENTION: The Singapore Copyright Act applies to the use of this

Chapter 6: Polymer Physics Theory, Basic Concepts and DPD

5 points (i') base 4 points (%'} base 5 points (%') base 4 points (7') base

0.7299 0.7300 0.7229 0.7098
i '
i £l
i s . =
E 3 |
L il &4 B
8 s 1 81 ...
E. J - 1 - T .
i . |

u-1 " ) h Bl i - - b

R2
Figure 6.10 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio <<R 2>> (red) and the chain
R

temperature absolute error (blue). Simulation parameters: L‘p =0.5, A;” =0.15, a, =dag, L =0.304.

3

5 points (i) base 4 points (') base 5 points (i) base 4 points (') base

0.7343 0.7310 0.7659 0.7657
i . -
i . L
.I' w E_
; - |
: ' ¢l
P Hl o )l
i = "
. 2o " owa ) : ' B 5 T e T N h B

RZ
Figure 6.11 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio <<R 2>> (red) and the chain
R

temperature absolute error (blue). Simulation parameters: L =1, A9 =0.15, a4, =a_, L =0.434.
P sp (4 pf i

c

108


DRD
Stamp

DRD
Rectangle

DRD
Stamp


ATTENTION: The Singapore Copyright Act applies to the use of this

sity Library

Chapter 6: Polymer Physics Theory, Basic Concepts and DPD

5 points (') base 4 points (') base 5 points (#') base 4 points (%) base

0.7304 0.7196 0.7673 0.772

Radios of Byreklon or Mod-to-Bnd Dl s
x
BB ox LT}
t

RZ
Figure 6.12 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio <<R 2>> (red) and the chain
&

I, =0525.

temperature absolute error (blue). Simulation parameters: L , = 1.5, /1;‘7 =0.15, a,=ag,

5 points (') base 4 points (7') base 5 points (#') base 4 points (z') base

0.7312 0.7257 0.7357 0.7423

: ' _

!-:' P = ;':.

: | ¢

i : T - !

E | ___,-"'- i BY

: | e . g1

B |

1| - -

(%)
()

temperature absolute error (blue). Simulation parameters: Ls,, =15, ﬂ.;” =0.15, a, = 0.75a

Figure 6.13 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio (red) and the chain

L =0613.

109


DRD
Stamp

DRD
Stamp


ATTENTION: The Singapore Copyright Act ap

plies to the use of this

sity Library

Chapter 6: Polymer Physics Theory, Basic Concepts and DPD

5 points (%) base

4 points (%') base

5 points (') base

4 points (&) base

0.7301 0.7425 0.7364 0.7657
£
i : 4 E
] E [y
-l - - 1)
L | 5 o 2
1 : 4
i : :
| ] !
1| P i
e _— : _' - L
o -1 5 -3

Figure 6.14 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio

temperature absolute error (blue). Simulation parameters: L,-p =15, /l;” =0.15, a, = 0.5a

(%)
(&)

§R

(red) and the chain

L =0.667.

5 points (7 ) base

4 points (i) base

5 points (#') base

4 points (7') base

0.4664 0.4720 0.3726 0.3863
E | ]
3.t - il
1} ¢ ) ]
il =
] L 8
8 e e ¥
i i e !
R — = _ )
if T ' = i
L - o s SRSCRS UREMEL JeRLe ppeoam = & A

Figure 6.15 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio

(")
(&)

(red) and the chain

temperature absolute error (blue). Simulation parameters: L,=15, /1;” =0.15, a, =125a,, L, =0.485.

110


DRD
Stamp

DRD
Stamp


ATTENTION: The Singapore Copyright Ac ocument. Nanyang Technological University Library

Chapter 6: Polymer Physics Theory, Basic Concepts and DPD

5 points (% ) base 4 points (7') base 5 points (7'} base 4 points (') base

0.7178 0.7685 0.6807 0.7929

| 2Lt , . |
E. oo ; .
s F = g |
E .“ ] = -
s o [ 1 t.-
! | 4 -
8 2 &
& ] |
Eep - T

' I i - ' =5 "R > -

()

Figure 6.16 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio <R 2> (red) and the chain
&

temperature absolute error (blue). Simulation parameters: L,=15, /1;17 =0.15, a,=dag, L =0.566, S$=2, a, = 2a,.

111


DRD
Stamp


ATTENTION: The -ument. Na

ity Library

Chapter 7
Dissipative Particle Dynamics Simulation of DNA

Separation in Entropic Trap

7.1 Motivation

Microfluidics and more recently Nanofluidics are advancing fields traversing over vast
areas of engineering, physics, chemistry and biotechnology. More importantly,
micro/nano devices are fabricated in order to carry out highly efficient as well as
simultaneous analysis of particles, molecules or cells such as in genomic, proteomic, and
metabolic applications in biotechnology. In addition to the natural complexity of these
devices (in terms of time and length scales) there may involve geometrical complexity as
well as suspension of different particles or macro molecules. Achieving appropriate and
optimized design for specific application requires advancements of the related electro-
mechanical devices, in terms accuracy and speed of analysis. This development of
micro- and nano-electromechanical systems (MEMS/NEMS) is leading to the need for
continuous improvements in the modeling approaches. Numerical simulation is a way to
model these complex systems, which usually involves simulation of coupled electrical,

mechanical, thermal and fluid domains.
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Here our focus is on these micro/nano channel devices, consisting of many entropic
traps, which are designed and fabricated for the separation of long DNA molecules. The
channel comprises narrow constrictions and wider regions that cause size-dependent
trapping of DNA strands at the onset of a constriction. This process creates
electrophoretic mobility differences, thus enabling efficient separation without the need
for gel matrices or pulsed electric fields [1-3]. Simulation and in particular numerical
simulation is an efficient way to investigate the complex flow in the related electro-
mechanical devices and to understand the underlying physics and chemistry of the flow
characteristics. For the purpose of simulation we choose the Dissipative Particle
Dynamics (DPD) method, which is an appropriate mesoscale simulation approach due
not only to its relatively larger time and length scales (compared to molecular dynamics)
but also its ability to model rheology of complex systems with relative ease compared

other mesoscale techniques.

7.2 Entropic Trapping — Theory and Experiment

7.2.1 Experimental background

DNA separation is important for various biological analyses, such as DNA fingerprinting
and genome sequencing. Gel electrophoresis is the standard method for separation of
DNA by length. However, it is efficient only for DNA molecules up to about 40kbp (kilo
base pairs), where beyond this limit mobility difference is diminished. Slab gel pulsed-
field gel electrophoresis (PFGE) can be used to separate longer (a few mbp) double-
stranded DNA (dsDNA), but in addition to the length limits the process usually takes

several days if not weeks. Advances in the field of micro-total analysis systems ( u-

TAS) and especially the lab-on-a-chip devices provide many researchers with the
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capability to propose novel separation mechanisms using these micro- and/or nano-
fluidic devices. Turner [97] presented a device capable of separating DNA molecules
according to their length. This device consists of pillar-free and pillared regions. A dense
matrix of nano-pillars each with a diameter of 35nm, and spacing of 160nm is fabricated
in the pillared region. When the driving electric field is applied, DNA molecules are
forced into the pillared region where they are stretched to fit nano-channels inside the
pillar matrix. When an entire small molecule enters the pillar matrix and only part of a
large molecule enters, the electric field is turned off. The large molecule will recoil back
in the pillar-free region because of the tendency to maximize its conformational entropy
while the small molecule remains inside the matrix due to uniform entropy. In this
manner, molecules of different lengths can be separated. Bakajin [98] devised a micro-
chamber with hexagonal array of pillars 2um wide where transverse pulsed electrical
fields are applied alternatively along two axes of the array, separated by 120 degrees.
Shorter molecules move faster in the array because they spend less time to reorient
themselves along the axis of the field and longer molecules use most of the pulse period
to align entirely to the axis of the field. Huang [99] applied a similar concept and
fabricated a DNA prism where DNAs of different sizes are forced to follow different
routes inside the micro-structured sieving matrix under an asymmetric pulsed electric

field.

For efficient separation without the use of gel matrices or pulsed electric fields, Han et
al. [1-3] designed and fabricated an entropic trapping array, which consists of alternative
deep and shallow channels, to separate long DNA molecules (>2 kbp). These silicon
based periodic constriction channels are fabricated using standard etching techniques and
are enclosed with a Pyrex cover plate as shown in Figure 7.1. The DNA molecules are

suspended in the cathode side of the device which is filled with buffer solution before the
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start of the separation process. The DNA molecules start traveling from the cathode
towards the anode when a dc electric field is applied. The shallow section is much
smaller than the moving molecules’ radius of gyration such that the molecules must
change their conformations and uncoiled in order to pass through the channel. Size-
dependent trapping is produced because entropic free energies for DNA molecules of
different sizes are different. Thus, the separation is enabled using micro-fabricated
entropic trapping array. More recently and following Han’s work, Fu [100] introduced an
anisotropic nano-filter array (ANA) for continuous-flow bio-molecule separation, where
both small (short) and long molecules can be separated through Ogston sieving and
entropic trapping mechanism respectively. He similarly demonstrated the separation of

proteins with different charges with ANA [101].

7.2.2 Theoretical aspects

In the trapping array device of Han et al. [1-3], the authors observed counterintuitive
phenomenon in that “longer DNA molecules found to escape faster than shorter one”.
They proposed a simple kinetic theory (hernia nucleation in [102] or beachhead scenario
in [103]) to obtain more insight into the separation mechanism which we shall review
here briefly. Crossing over the thin region of channel requires the overcoming of the
entropic barrier. The existence of this barrier is due to the conformational change and
uncoiling of the DNA in the gap which reduces the entropic elasticity of the chain. The
electric field drives the DNA towards the gap and the high intensity field region of the

gap sucks the chain hernias at the entrance of the gap. Entering nucleated hernias with

longitudinal length of x inside the gap causes decrease of the total energy by x*E, while

the conformational free energy penalty cost is proportional to x7T, where E_ is the

electric field strength in shallow region and T is the temperature. Therefore the total free
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energy difference during the escape process is AF =xT —x’E,. In intermediate electric
field strengths, the escape of the DNA chain from the shallow region begins when a
certain amount of DNA length x_ (critical hernia size [102]) is pushed into the gap
longitudinally and at this time the free energy difference reaches its maximum which
scales as AF_ O a/E , where ¢ is a constant that depends solely on experimental
setup conditions and is not a function of the length of the chains [2]. Assuming the
electric field dependence of energy barrier, the probability of escape would be

proportional to exp(AF,, /k,T)=exp(a/E k,T) where k, is the Boltzmann constant.
In the condition of intermediate fields and at low E, the entropic penalty dominates and
the DNA chains retard into well while at high E  the chains pass the energy barrier

easily and escape from the trap. The long chains have higher probability of the
monomers to contacting the gap region so the rate of escape for long DNA is higher than
shorter ones. The authors [2] proposed the following simple expression for the trapping

time of the chain:

z,., =7, exp(a/ Ek,T) (7.1)

trap

where 7, is dependent on the strength of electric field and chain length. 7, decreases as

the DNA size increases and this implies the size-selective separation of the designed
microfluidic device. Based on equation (7.1), the authors [2] predicted that the trapping
time and more specifically the selectivity depend on structural parameters like the depth
of well and shallow region and the length of channels as well as the strength of applied

electric field and they proved this experimentally.
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Figure 7.1 schematic diagram of nanofluidic separation device (adapted from Han et al. [1-3])

A: cross-section of two period of the device. B: experimental setup.

7.2.3 Numerical Simulation

Besides some of the mentioned experimental studies, numerical simulation provides an
alternative route to study DNA separation processes which involve different time and
length scales. The micro-channels used in the DNA separation have characteristic size
from dozens of nanometers to several micrometers. In addition traveling and
conformation of DNA in each trap is in the micro-second time scale regime, while the
total experimental time has the scale of order of several minutes. Due to the molecular
scales involved, direct simulation techniques, such as molecular dynamics (MD), are
very expensive, if not completely infeasible. Furthermore, the mechanical properties of
DNA are actually physically relevant at mesoscopic scale (0.1um) level and can thus be
used for understanding the separation process. Apart from DPD, the Monte Carlo (MC)
method and the more widely used Brownian Dynamics (BD) simulation are examples of

mesoscopic numerical techniques that have been applied in this area.
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Using the Monte Carlo Technique, Tessier et al. [102] simulated the flow of DNA
through entropic trap arrays where the polymer is modeled by a lattice model with bond
fluctuation. Their results mostly confirmed the qualitative observation of Han et al.[1-3]
that longer molecules were trapped for a shorter time due to high probably of hernia
nucleation and the deformation of molecules at the gap entrance. However, the trapping
time was unexpectedly long in their simulation and it may be due to the discrete lattice
chain model. In the Monte Carlo simulation of Chen and Escobedo [104], the free energy

barrier for escape AF, as a function of chain length was examined in different electric
field regimes and in the intermediated fields (AF,_, U k,T') they confirmed that trapping

lifetime decreases as the chain length increases. In addition they showed that in weak
electric fields the main controlling factor in the escape process is

exp(AF_, /k,T)=exp(e/E k,T) term while at moderate to strong fields 7, is dominant

prefactor.

Streek et al. [105] performed BD simulations to mode] the same process using the chain
model with Hookean linear spring force to represent the DNA. They found two key
mechanisms which contribute to longer trapping lifetimes for smaller molecules, namely
the probabilistic delayed entry of the short chains at the entrance of constriction and the
diffusion of small molecules to the corner of the well. The latter may be explained by the
shorter chains having higher diffusivity, such that the small molecules have more inertia

to escape from the electric field lines and trapped in the deep regions.

To our knowledge, Panwar and Kumar [106] have done the most comprehensive work in
characterizing time scales involving electrophoresis of polymer chains through
constrictions. They modeled the polymer as a freely jointed linear bead-rod (Kramers)

chain and used BD simulations in order to identify three time scales, ie. 7,,, 7, and

act
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3

cross *

Their results are characterized in different conditions of varying electric filed
strength, size of narrow channel and problem dimensionality (2D and 3D). They found

that the approach time ¢

. » Which is related to the motion of the polymer in the deep

region towards the entrance of constriction, and activation time 7, , which defines the

ot ?

time scale for overcoming entropic barrier, are both decreased as the sizes of the

molecules become larger. However the traveling time through the shallow region 7,

ross

increased upon increase of the length of the chains. Furthermore, they dentified crossing
mechanisms involved in polymer electrophoresis through confined geometries and

nanopores.

More recently and in similar manner, Lee and Joo [107] used the worm like chain
(WLC) models and performed BD numerical experiments for the electrophoretic motions
of both linear and branched polyelectrolyte molecules traversing entropic traps. In
addition, they applied the coarse grained bead spring model to investigate the effects of
polymer topology and found the radius of gyration to be the dominant factor influencing

time scales during escape of polymer through the entropic array.

In most of the above simulations, several important physical phenomena were not

considered, these include:

e According to [108] , the surface of channel walls may be negatively charged during
the experiment generating electroosmotic flow which slows down DNA molecules
from their migration towards the anode. Since in most experimental conditions the
induced forces from electroosmotic flow on chains segments were found to be weak,

this effect was neglected. However electroosmotic flow is strengthened in intense
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electric fields and high buffer concentrations which lead to converging or diverging

flow patterns as well as circulation.

* Debye screening length of DNA in usual buffer solutions is of the order of a few
nanometers. However the persistence length of DNA is about 50nm, thus

electrostatic interactions between monomers were omitted.

¢ DNA and solvent hydrodynamic interactions were neglected. The assumption was
made by the argument that the induced friction by motion of counter ions cancels the
hydrodynamic flow generated by the migration of chain segments in the cases of free
solution electrophoresis. However, according to Viovy [109], hydrodynamic
interaction is not negligible for DNA undergoing electrophoresis. Jendrejack et al.
[110] also claimed that a hydrodynamic interaction model will generate results
which are in qualitative agreement with experimental data. Moreover, the
cancellation argument is not valid if the chain blocked by an obstacle [111, 112] and

this is the case especially near the entrance of the constriction.

¢ Both hydrodynamic and electrostatic interactions between chains and the walls are
disregarded. This could be unnatural, since the walls are being charged during the
process and have some electrostatic effects especially during the migration of
polymer through the shallow region and when the chain contacts the walls or are very
close to the wall boundaries. In addition, walls always induce hydrodynamic effects

thus affecting flow patterns as well as chain trajectories.

* Some authors have not taken into account the excluded volume interactions.
However, it is obvious that the chain segments do not overlap each other and cannot

occupy the same position.
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Bearing in mind the above restrictions, we investigate an alternative approach in order to
simulate the migration of DNA through constriction. We find dissipative particle
dynamics (DPD), which is a mesoscopic method that can bridge the gap between
atomistic simulations and continuum network simulations, as an appropriate tool to
explore the process. Using the DPD technique with appropriate parameters, we can
naturally capture some of the dynamical and rheological properties, such as the
hydrodynamic interactions, the DNA-wall interactions and excluded volume effects. In
particular, the DPD is becoming noted as a promising method for the simulation of
complex fluids such as suspensions of DNA, polymers and colloids, and thus it is more

easier to simulate electroosmotic effects with DPD than other techniques.

7.3 Description of Simulation Model and Parameters

7.3.1 DPD Algorithm and Chain Model

DPD algorithm was explained in detail in detail in Chapter 2 and the time evolution of
the system is adopted using the velocity Verlet algorithm equation (4.6) with the same

parameters described earlier Table 7-1 lists the parameters used in the present DPD

simulations.
Table 7-1 DPD simulation parameters.
kT Py p. T, o dt
0.2 4 6 1 3 0.02

We employ the WLC model that was described earlier in Chapter 6 and the chain

parameters are shown in Table 7-2, where a, is the repulsive force coefficient between

fluid-fluid particles, a,, that between polymer-polymer, a,, that between polymer-fluid,
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a,, that between wall-fluid and 4, that between polymer-wall. The choices of these

wf
coefficients are based on the results obtained in the previous chapter, the quality of the
solvent and the excluded volume effects. In addition to all the inter-particle forces, the
electrical force (see next section) is applied on each bead according to the chain position

in the channel.

Table 7-2 Simulation parameter sets for WLC model.

eff — —
ﬂ,p L ayz=a, =a

P PP 2 a

wf a pw

0.106 2or4 3.75 5.6 7.5

7.3.2 Microchannel Geometry and Wall Boundary Conditions

The electrophoretic motion of DNA is mimicked by distributing uniform charges ¢
among each of the beads in the chain. In order to find the driving force, the 2D electric
potential ¢@(x,y) in the channel was determined by solving the Laplace equation
V?¢=0. The equation was solved numerically, using a second-order finite difference
scheme on a very refined mesh of size Ax=Ay =0.04. The channel walls are insulated

implying zero electric flux or von Neumann boundary conditions at surface boundaries

(n.V¢=0, where n is the wall normal vector). We enforced the periodic voltage drop
condition at the two sides of the slits ¢(L, y)~@(0,y)=E L, where L is the length of
each period and E_ is the average electric field applied to the microchannel
Subsequently the nonuniform local electric field is obtained from the gradient of the
electric potential E=-V¢ and the electric force exerted on each bead is thus F’ =gE.

In solving the Laplace equation for this case it is sufficient to solve the equation for unit

voltage drop (AV =E_L=1). To obtain solutions for different potential differences we

only need to multiply the unity solution to the required voltage drop. Figure 7.2 and
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Figure 7.3 depict the field contour plots of ¢, E, and E  with the channel dimensions

shown in Table 7-3. In Figure 7.2 the x-component of the electric field along the

channel is plotted and it shows good agreement with the following approximation

E =g lug 72)

h av

t,+t, t

where ¢, and ¢, are the depths of thick and shallow regions and E, is the electric field

strength at the well (see Figure 7.1).

Table 7-3 The dimensions of the microchannel.

L, L t, t

5

40 40 20 2

In DPD simulations we impose periodic boundary conditions on both the fluid and chain
particles in the x (along two sides of the constriction) and z directions. As described in
Chapter 6, we use the method of ghost particles to impose periodic boundary condition to
the chain beads. The walls are simulated using the earlier proposed random distribution
of fixed particles and in order to prevent the chain and fluid particles penetrating to
walls, we applied the earlier developed bounce normal reflection as described in Chapter

5.
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Figure 7.2 Top: The electric potential @ contour plot and representation of several electric field vectors
near the slit. Bottom: The x-component of the electric field inside the channel E_, as a function of length of
channel, measured along the plane in middle of the shallow region.
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Figure 7.3 Top: The electric field x-component E_ contour plot. Bottom: The electric field y-component

E, contour plot.
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7.4 Results and Discussions

In this section the migration of DNA chains in microchannels is examined as we present
the results of the present simulations. First the electric field was set to £, =0.5 and we
found the x-component of the center of mass trajectories for DNA chains of length
N =5,10,20,40,80, as shown in Figure 7.4. This allows us to define the dimensionless
mobility 4. We estimated g as the slope of the line fitted through the x-component
trajectory of the chain which has passed at least 20 periods. From Figure 7.4, we
observed that when the chain length increased, we found that in addition to higher slope
of the trajectories, they also became smoother. More specifically, for the longest chain of
length N =80, the steps in the trajectory appear smaller and gentler than the shortest

chain of length N =5.

In order to study the effects of the electric field strength and the chain length on mobility,

we conducted several simulation runs, We performed runs for different chain lengths of
N =10,20,40,80,160,320 in average field values of E, =0.0625,0.125,0.25,0.5. The
estimated mobility # as a function of N or E_ are plotted in Figure 7.5. For all field

values we find that the longer chains travel faster. In this figure we observe that the
mobility of the chain increased significantly when the chain length increased from
N=40 to N=80 or 160, and this is in a good qualitative agreement to the
experimental observations of Han et al. [1-3]. Furthermore, as the electric field is

intensified, the mobility variation also becomes larger.

In this work, our main interest is the overall motion of the chains and our results

generally show that the longer the chains, the greater the mobility. Three regions are
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identified where chains with different sizes translate with different conformation and
speed. Following we describe the mechanisms of chain migration in each region

qualitatively.

First is the migration of the chain through the deep region. In this region the electric field
lines are nonuniform and due to higher Brownian mobility smaller chains are more
probable to diffuse out of the field lines. This causes small molecules to reach the deeper
areas or the corner of the well and be trapped there for longer times. The x-y trajectories
of chains with N =5,20,80 are illustrated in Figure 7.6. The effect of random Brownian
diffusion from the field lines is more visible in high electric fields and for smaller
molecules. Here the random motion depends on two dominant parameters, namely the
length of the chain and the conformation of the molecule. When the chain is longer, it
has more segments which come under influence of the electric field lines and so there is
very low probability of a sudden crossing of the molecule occurring. In addition the
relaxation time of a small chain is very low and as a result when the molecule gets
pushed out of the slit, it would quickly recoil. The coiled chains have little surface
contact with the solvent molecules and electric field lines so they would have higher
random motion while long chains remain stretched and move in a smoother manner (see

Figure 7.6 and Figure 7.4).

The opening of the slit is the second region where several migration mechanisms were
discussed in earlier sections. From our results, we found two main conformations by
which the chains approach and pass through the opening of the gap; the hairpin and two
ends escapes. The formation of each state near the slit depends mainly on the size of the
chain and the conformation of the chain as it approaches the gap from the well. Sebastian

and Paul [113] argued that the free energy barrier for the hairpin escape is twice that of
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the two ends escape because each hairpin can be considered as two chains crossing from
the ends. Similar to Han et al. [1-3], they found that in the case of hernia formation and
chain migration in the hairpin shape, the speed of escape is decreased as the chain length
increased. However when the chain approaches slit through its end they claimed that the
speed of process is not dependent on molecule size since all linear chains have two ends.
In our present simulations, we observed both mechanisms. However when the chain
becomes longer, we found that hairpin formation is the dominant mode of escape (see
Figure 7.7 to Figure 7.10 for two ends and hairpin migration of DNA chains). We note

that for very small chains (R, <<t,), none of the above mechanisms were present and

the chain passes through the slit rapidly and without significant deformation.

Finally the speed of migration of molecules crossing through the shallow region is size
dependant and we expect it to increase with N as discussed in [113]. We observed that
due to high electric field strength, the DNAs generally travel very fast in this region.
Also, we note that when the DNA enters the slit from one of its ends, it would have the
chance to stretch out and uncoil completely. In Figure 7.7 and Figure 7.8, the
conformation evolution snapshots of a DNA chain with N =80 approaching and passing
the gap are shown. In these figures, the DNA is approaching with one end having a small
hairpin formed. The DNA is completely uncoiled as it travels through the slit but recoils
soon after exiting from the gap. In Figure 7.9 and Figure 7.10, the DNA approaches the
slit while forming two hairpins in the middle of the chain. As the chain length increases,
the probability of the number of hairpins which would be formed also increases, and this
assists in faster travel of the DNA from the entrance of the slit. The extension of the
chain in z direction in order to form higher contact surface with the gap is the other

physical trend which was generally observed for longer chains.
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Figure 7.4 The x-component of the center of mass trajectories of DNA chains of N =5,10,20,40,80
beads for the case of £, =05 and L, =4.

7.5 Concluding Remarks

We have presented DPD simulations studies of migration of DNA chains through
entropic traps and our results generally show a good qualitative agreement with existing
experimental data. The mesoscopic features of the DPD technique enabled us to capture
the hydrodynamic interactions automatically. Three distinct regions where the chains
migrate with different mechanisms were distinguished. Each region has different effects
on the speed of the total process. Moreover, we observed several conformational
phenomena which depend on chain length, the geometry of the microchannel and the
strength of the electric field. The chains formed hernias and were sucked into the gap
while approaching the shallow region. The geometrical and field (electrical) conditions

in the gap force the DNA chains to uncoil and travel smoothly through the slit. The chain
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then escapes from the gap and recoils in the deep region. According to the speed and
form of relaxation and evolution of the chain in the well, it becomes ready to approach

the next constriction.

Two mechanisms are identified that cause the size-dependent trapping of DNA chains
and thus mobility differences. Firstly, small molecules are found to be trapped in the
deep region due to higher Brownian mobility and crossing of electric field lines.
Secondly, longer chains have higher probability to form hernias at the entrance of the
gap and can pass the entropic barrier more easily. Consequently longer DNA molecules

have higher mobility and travel faster than shorter chains.
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Figure 7.5 Top: Dimensionless mobility z# of DNA chains for £, =0.0625,0.125,0.25,0.5 as a
function of N . Bottom: Dimensionless mobility ¢ of DNA chains for N =5,10,20,40,80,160 as a
function of E_ .
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Figure 7.6 Traverse (or xy ) view of the center of mass trajectories (blue lines) of migrating DNA chains
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Figure 7.7 Conformation evolution snapshots of DNA chain with N =80 beads passing through trap for case of E_,
and L, =4. Traverse (or xy) view of translations from (a) time ¢ = 3600 to (f) time ¢ = 4000.
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Figure 7.8 Conformation evolution snapshots of DNA chain with N =80 beads passing through trap for case of E, =0.5
and L:p =4. Top (or xz) view of translations from (a) time ¢ = 3600 to (f) time 1 =4000.
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Figure 7.9 Conformation evolution snapshots of DNA chain with N =80 beads passing through trap for case of £, =0.5
and pr =4, Traverse (or xy ) view of translations from (a) time ¢ =5520 to (j) time ¢ =5820.
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Continue Figure 7.9.
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Figure 7.10 Conformation evolution snapshots of DNA chain with N =80 beads passing through trap for case of
E, =05 and L, =4 Top (or xz) view of translations from (a) time ¢ =5520 to (j) time ¢ =5820.

137



ATTENTION: The

y Library

Chapter 7: DPD Simulation of DNA Separation in Entropic Trap

() )

- T - r r
o » L e
+ : g 0 : -

(h) 0

Continue Figure 7.10.
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Concluding Remarks and Future Perspective

8.1 Concluding Remarks and Major Contribution

This thesis can be divided into two parts. The first part started with the introduction of
the DPD method followed by in depth review and derivation of the theoretical features of
DPD. Next we have a very comprehensive review of boundary models for the DPD.
Following the definition of required DPD simulation models and parameters, we propose
in Chapter 5 a new boundary condition for the significant reduction of density
fluctuations. In the second part of this work which begins in Chapter 6, we formulate a
coarse grained DPD WLC model to simulate and determine the static properties of
polymer chains in dilute solutions. Eventually we study the motion of DNA molecules

traveling trough entropic channels.
The major contributions of this work can be summarized as follow:

1. We derived the DPD algorithm and identified the appropriate DPD simulation
parameters. Subsequently we comprehensively studied different boundary models

applicable in DPD simulations and identified their characteristics.

2. We proposed the new bounce normal reflection in combination with random wall

distribution in order to capture the density fluctuations near the wall boundaries. To
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validate our new boundary condition, we applied it to three flow regimes and we

obtained very good results which were consistent with macroscopic features.

3. We indentified the DPD bead spring models for polymer chains. Following this,
we optimized the WLC bead spring DPD model to obtain the correct exponent value of

polymer scaling laws.

4. We applied the DPD in simulation of WLC bead-spring models to explore the
electrophoresis migration of DNA molecules traveling through narrow constrictions and
our results generally show excellent qualitative agreement with existing experimental

data.

8.2 Possible Future Work

The DPD method, a relatively new mesoscopic simulation technique for the simulation
of complex systems, addresses certain features such as geometry complexity that other
methods like BD fail to point out. However there are several open issues associated with
the DPD that may require new development work or future refinements. These include

possible new directions in theoretical aspects as well as applications.

8.2.1 Theoretical Aspects

¢ Heat Transfer: To formulate appropriate DPD theories and algorithms that can
handle heat transfer problems would be one of the most desired theoretical

features for DPD in the future.

e Time Integration Techniques: Fast time evolution algorithms to speed up the

simulations are still in high demand.
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¢ Computer Algorithms: Depending on the application, huge computational cost
may be required. There are vast opportunities for particle methods to decrease
this cost by improving cell algorithms (such as the Neighbor List method) as well

as efficient parallel implementation.

o Inter Particle Forces: The particle based nature of DPD offers promising
potential in modeling not only different types of interaction within the same type
of particles in single phase but also for various other multi phase interactions.
This requires enhancements in defining particle forces, such as conservative

forces for example.

¢ Boundary Conditions: Although we introduced the bounce normal boundary
reflection at the walls, further refinements for implementation of boundary

conditions for other geometries and problems may still be necessary.

o Multiscale Modeling: It would a major achievement if we can concurrently
couple DPD with other particle based methods like MD in order to handle
multiscale problems. In the nano scale regions or close to boundaries where DPD
can not capture the details of microscale or even nanoscale interactions, more
refined techniques can be used while DPD is being used to simulate the bulk

region.

8.2.2 Applications

e Variety of single phase, two phase or multiphase problems.

e Complex flow in nano/micro systems and porous media.
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e Simulation of biological macromolecules subject to different flows and

geometries.

¢ Rheology and suspension of polymers in various applications.
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in DPD Calculations for the Reduction of Density Fluctuations. Proceedings of the
ASME Micro/Nanoscale Heat Transfer International Conference, Tainan, Taiwan,

January 6-9, 2008

E. Moeendarbary, T.Y. Ng and K.Y. Lam, Boundary Condition Diagnostics In
Dissipative Particle Dynamics And A New "Bounce-Normal" Boundary For The
Accurate Simulation Of Density Fluctuations (Submitted to Computational Science &

Discovery).

E. Moeendarbary, T.Y. Ng and K.Y. Lam, Migration of DNA Molecules Through

Entropic Trap Arrays: A Dissipative Particle Dynamics Study (To be submitted).
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