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Abstract

Recently advances in biological science have been dependent in corresponding advances

in the field of DNA and protein separation. It therefore also requires the progress of the

related electro-mechanical devices, in terms accuracy and speed of analysis. Most of

these devices are composed of micro- and/or nano- channels which involve flow of

complex phenomena. Our focus is on these micro/nano channel devices, consisting of

many entropic traps, which were designed and fabricated for the separation of long DNA

molecules. The channel comprises narrow constriction and wider regions that cause size­

dependent trapping of DNA at the onset of a constriction. This process creates

electrophoretic mobility differences, thus enabling efficient separation without gel matrix

or pulsed electric fields [1-3]. Simulation and in particular numerical simulation is an

efficient way to investigate the complex flow in the related electro-mechanical devices.

Investigations for different simulation methods were carried out and we came into

conclusion that the Dissipative Particle Dynamics method, which groups a number of

atoms/molecules into particles, is most suitable for the above-mentioned applications.

Dissipative Particle Dynamics (DPD) is a mesoscopic fluid modeling method, which

facilitates the simulation of the statics and dynamics of complex fluid systems at

physically interesting length and time scales. Currently, there are various applications of

DPD, such as colloidal suspensions, multi-phase flow, rheology of polymer chains, DNA

macromolecular suspension, etc., which employ this technique for their numerical

simulation. The DPD technique is capable of modeling macroscopic properties of the

bulk flow very well, but difficulties arise if the flows are confined through wall-bounded

regions, or when different boundaries simultaneously exist in the simulation domain.

These boundaries cause negative effects on the macroscopic temperature, density and
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velocity profiles, as well as the shear stress and pressure distributions. In particular, the

interaction of DPD particles with solid boundaries causes large density fluctuations at the

near wall regions. This density distortion leads to pronounced fluctuations in the pressure

and shear stress, which are not actually present.

To overcome these serious deficiencies, we introduce a new method in this work, which

uses a combination of randomly distributed wall particles and a novel reflection

adaptation at the wall. This new methodology is simple to implement and incurs no

additional computational cost. More importantly, it does not cause any distortion in the

macroscopic properties. This novel reflection adaptation is a novel version of the bounce

back reflection, which we shall term the bounce-normal reflection. The most important

characteristic of this method is that it reduces density fluctuations near the boundaries

without affecting the velocity and temperature profiles. This new method is easily

applicable to any wall-bounded problem with stationary boundaries and it has a very

good consistency with macroscopic features. Following this numerical development

work, we moved on to investigate suspension flow through micro/nano channels of

fluidic NEMS/MEMS devices, with applications to DNA and protein separation. These

micro/nano channel devices, consisting of many entropic traps, are designed and

fabricated for the separation of proteins and long DNA molecules. The numerical results

obtained compared very well with available experimental data, where counterintuitive

behavior of longer DNA strands being able to escape through the traps in faster manner,

was earlier observed [1-3].
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Chapter 1

Introduction

This chapter provides an introduction to fluid simulation techniques and examines some

features of these methods especially for the complex systems. We also identify the

dissipative particle dynamics as a mesoscopic technique. Finally, we present the layout

of the current work.

1.1 Complex flow Simulation Techniques

A complex flow system is one in which the observable properties and behaviors have

significant dependency on the microscopic structure of the fluid. There exists a broad

application of such systems especially in the field of biological and biomedical sciences

(biochemical lab on chip systems, DNA separation devices, and drug delivery systems).

The rapid progress in the development of micro- and nano-electromechanical systems

(MEMSINEMS) is leading to the need for continuous improvements in the modeling

approaches. Numerical simulation is a way to simulate these complex systems, which

usually involves simulation of coupled electrical, mechanical, thermal and fluid domains.

In addition there exists other features of geometrical complexity and suspension of

different particles or polymers (DNA chains) in the domain. As device dimensions

continue to decrease, conventional (macroscopic) theories are being challenged and often

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 1: Introduction

new computational models are required. Accurate and reliable computational approaches

are essential for the design of efficient and robust micro/nano-systems. In general there

are three methods for the simulation of such systems, namely: molecular dynamics

(MD), continuum methods (Navier-Stokes) and mesoscopic methods, and each of these

may have their own characteristics, advantages and disadvantages.

A simple fluid can be described by continuum Navier-Stokes equations and sophisticated

computational techniques have been developed over the years for the solution of these

differential equations on macroscopic scales. In order to reduce the computational

complexity, the employed numerical discretization should be both highly efficient as

well as robust. Usually, discretization methods are based on finite-differences, finite­

elements or finite volumes. There are also some other similar techniques like spectral

element (high order finite-element), meshfree methods and the force coupling method,

each of which are appropriate for different applications. However these methods can

only include the macroscopic details of the fluid in a phenomenological manner and are

thus not suited for many complex fluid applications.

On a microscopic scale, the MD method allows the simulation of very small volumes of

liquid flow by following the position and the momentum of every atom/molecule in the

fluid. On this level the order of dimensions in MD method are perhaps of IOOnm or less,

and the simulated phenomenon time is of the order of several nanoseconds. MD can deal

effectively with nano-domains and is perhaps the only accurate approach in simulating

flows involving very high shear where the continuum or the Newtonian hypothesis may

not be valid. For dimensions less than approximately ten molecules the continuum

hypothesis breaks down for liquids and MD should be employed to simulate the

atomistic behavior of such a system [4]. Although MD approaches have become

2
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Chapter I : Introduction

increasingly successful in the simulation of a small number of atoms/molecules, it is not

easy to apply these microscopic techniques to large complex fluid systems because of its

huge computational cost.

Micro-Scales
1\

Atomistic Methods

Molecular Dynamics

Bridging tbe Gap

Meso- Scales
A

Mesoscopic Simulation

Lattice BoltzmannMethod

DissipativeParticleDynamics

Macro-Scales
A

Continuum Methods

Navier-Stokes

Discretization Methods

Figure 1.1 Dissipative Particle Dynamics: Bridging the gap between Micro-scale and Macro-scale.

To bridge the gap between atomistic simulations and macroscopic network simulations,

we need an intermediary technique focused at a length scale larger than the atomistic

scale, but smaller than the macroscopic connection scale [5, 6], as shown in Figure 1.1.

Mesoscopic fluid simulations are methods which overcome the inherent difficulties faced

by conventional methods when applied to complex fluids. Its aim is to identify

characteristic physical lengths and times in the system in order to use them for

simplification of the complex models.

1.2 Dissipative Particle Dynamics: A Coarse-Grained

Technique

The dissipative particle dynamics (OPO) is a potentially very powerful and simple

mesoscopic approach, which facilitates the simulation of the statics and dynamics of

complex fluid systems at physically interesting length and time scales. Since 1990, when

the method was first developed in Europe, OPO has been applied in the study of the

3
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Chapter 1: Introduction

dynamical properties of a wide variety of systems and applications, including colloidal

suspensions [7, 8], dilute polymer solutions [9, 10], block-copolymer melts [10, 11],

surfactants [12, 13], biological membranes [5, 14] and DNA suspension [15]. We can

perceive this method as grouping a number of molecules into single particle and the

number of molecules per DPD particle is known as the coarse-graining parameter and is

denoted by Nm' One of the most important issues is to find the upper limit for this

coarse-graining parameter by which we could model the physical properties in an

efficient manner. The vital role of Nm become more obvious when we find that it has a

significant impact on the speed of simulation. According to [5] the DPD total speed up of

simulation with respect to MD method is 1000N~/3 for a given system volume. Thus,

for Nm =3 and 7 the speed-up factor is roughly about 2 X 104
and 2 xl05

,

respectively.

1.3 Research Objectives

The three main objectives of this M.Eng research are:

I). Refinement of the DPD method so as to obtain the correct macroscopic flow

properties. To achieve this, we aim to improve on the simulation model, such as the wall

particle distribution and boundary reflection mechanism.

2). Optimizing the DPD coarse grained parameters (bead spring models) to achieve

an accurate and efficient model for the rheology of polymers under various conditions,

and to develop a proper DNA chain model to be coupled with the DPD method.

3). Following the development of a sufficiently refined DPD methodology, we will

then apply it to study the process of DNA separation through entropic traps.

4
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Chapter 1: Introduction

1.4 Thesis Outline

• In Chapter 2 the basics of the DPO algorithm is introduced and some of the

theoretical aspects of this algorithm, especially the derivation of the Fokker­

Planck equations are established. The objective of this chapter is to determine

the detailed balance condition for OPO modeling.

• In Chapter 3 we provide a comprehensive literature review for OPO boundary

models. In this chapter we also introduce and examine some of the main

difficulties in implementing boundary conditions and introduce the well-known

methods in applying the boundaries for the bulk flow and flow in confined

geometries.

• In Chapter 4 we return to the OPD algorithm and introduce the optimum serial

algorithms for implementation of OPO in computer programming. Then we

study some algorithms for time evolution schemes in OPO. Finally we examine

and determine suitable values for the OPO parameters.

• In Chapter 5 the techniques for data analysis, and the connection between microscopic

and macroscopic properties, are introduced. The new bounce normal boundary

condition is then proposed and it is subjected to various test cases. We examine

different boundary conditions numerically for two cases of Poiseuille and

Couette flow and study the effects of boundary models on macroscopic

properties. Finally we employ the bounce normal reflection to explore lid

driven cavity flow.

• In Chapter 6 we introduce the concept of an ideal chain and derive the basic relations

for radius of gyration and end-to-end distance. Subsequently, by deriving the

5
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Chapter 1: Introduction

entropic elasticity of the polymer chain, we find the Hookean spring definition

for an ideal chain. Next, real chains and the excluded volume effects are

explained briefly and the scaling laws for polymers are introduced. The worm­

like chain (WLC) is studied in detail. In the last part of this chapter we

introduce the coarse-grained DPD simulation for polymeric systems and finally

investigate DPD scaling laws for the WLC in dilute solution.

• In Chapter 7, the entropic trap which is a new method for separation of DNA

molecules is introduced and the process is simulated using the DPD method

with WLCs to mimic the DNAs. As a result, motilities of different chain sizes

are found and some of the main underlying physics that cause delay in

migration of small chains are discussed.

• In Chapter 8, concluding remarks are made, and the major contributions of this thesis

are highlighted. In addition, possible future works are proposed.

6
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Chapter 2

Theoretical Aspects of DPD

The theoretical connection between Dissipative Particle Dynamics and continuum fluid

mechanics can be demonstrated by deriving the Fokker-Planck equation. It is the

essential formulism for derivation of kinetic and hydrodynamic equations [16]. The

Fokker-Planck equation governs the N -particle distribution function that gives the

probability density of the system position and momentum. It is related to DPD by the

corresponding Langevin equations, which are the stochastic differential equations for the

dynamics of particles subjected to conservative, dissipative, and random forces. Here we

present the Marsh [17] derivation of the Fokker-Planck equation that corresponds to the

stochastic differential for DPD, and proves an H-theorem for the DPD algorithm that

ensures the Gibbs distribution is the inevitable equilibrium distribution.

2.1 The DPD Algorithm

The Dissipative Particle Dynamics CDPD) is an alternative method for mesoscopic fluid

simulation, which was first introduced by Hoogerbrugge and Koelman [18], and was

modified by Espanol and Warren [19]. The DPD algorithm is a combination of

molecular dynamics, Brownian dynamics and lattice gas automata, and derives its static

and dynamic properties according to the theory in statistical mechanics [16].

7
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Chapter 2: Theoretical Aspects of DPD

Similar to molecular dynamics, the time evolution of each DPD particle, which

represents a cluster of molecules/atoms, can be calculated by Newton's second law

dr; = dp; ="Fv; , L..J ;j'
dt dt j"#i

(2.1 )

where r;, V; and p; =mv; are respectively the position, velocity and momentum vectors

of particle i , and Fij is the total interparticle force exerting on particle i by particle j. In

this work we assume the mass of each particle m;, to be unity. The interparticle force is

defined by three components that lie along their lines of centers and conserves linear and

angular momentum: a purely repulsive conservative force F;f ' a dissipative or frictional

force F(r which represents the effects of viscosity and slows down the particles motion

with respect to each other, and the random (stochastic) force F;: which represents the

thermal or vibrational energy of system,

(2.2)

(2.3)

(2.4)

(2.5)

conservative dissipative and random r dependent weight functions. The 8;j term is a

Gaussian white noise function with symmetry property B;j = OJ; to ensure the total

conservation of momentum and has the following stochastic properties

(2.6)

8
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Chapter 2: Theoretical Aspects of DPD

All of the above forces are acting within a sphere of interaction or cutoff radius r c which

is the length scale parameter of the system. The y and (J are the coefficients of the

dissipative and random forces respectively. Similar to the fluctuation-dissipation theorem

[20], Espanol and Warren [19] obtained the detailed balanced condition for the DPD as

where kB is the Boltzmann constant and T the equilibrium temperature. The

(2.8)

(2.7)

1
r.

c aoO(1-...!.Lw (r .) = IJ ) 'ii ~ rIJ r ~ cc

o 'ij > rc

wD(r) = [wR(r)]2 , (J2 =2ykBT / m,

conservative force weight function is given by

where aij =Jaia j is the repulsion parameter. We can match the compressibility

condition and determine the repulsion parameter as a function of DPD number density p

and system temperature which is applicable for fluid-fluid interactions [5, 6]

af = aff = 75 kBT / P (2.9)

The dissipative and random weight functions takes the general form [15]

1
roO

(1-~Y

wD(r,j) = [wR(r,j)]2 = 0 r,
'ij ~ rc

roo > r
IJ c

(2.10)

In the present work which involves conventional DPD systems, we set the exponent

;oO
parameter to s = 2. The random force transforms to F: = (j wR (rij) hi e ij , where ;i)

represents an independent increment in a stochastic process, which is represented by a

uniform distribution of random numbers whose mean is zero with unit variance, and

chosen independently for different pairs of particles at each time step.

9
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Chapter 2: Theoretical Aspects of DPD

2.2 Derivation of Fokker-Planck Equation

It can be demonstrated that every set of stochastic differential equations of the form of

(2.1) is equivalent to a Fokker-Planck equation [21]. This Fokker-Planck equation is the

analogue of the Liouville equation which would be relevant for a classical system. The

equations (2.1) show the evolution of the variables of particular system with time, and

therefore describe a particular path in phase space. In deriving the Fokker-Planck

equation we are interested in a differential equation governing a large ensemble of such

systems by the probability density function of the phase space p(r,t), where r

represents all the variables of the system and here they are the positions and velocities.

We start with the Chapman-Kolmogorov equation written in phase space. It is the

fundamental equation of the Markov process [22],which states that the course of the

system at a time t depends only upon the instantaneous state of the system at the time t

and is independent of its previous history. Consider ~t be a small time step, during

which p changes. We can derive p(r+~r,p,t+~t) from p(r,p,t) and a knowledge of

the transition probability \}l (p; ~p). In mathematical order we can state this by writing

p(r+~r,p,t+~t)= fp(r,p-~p,t)\}l(r,p-~p;~p)d(~p),
lip

(2.11 )

where \}l (r, p - ~p; ~p) is a transition probability that gives the probability that a particle

at the position (r,p-~p) in phase space jumps in momentum by ~p in the interval of

~t . This equation means that the probability of finding a particle at position r + ~r at

time t + ~t with the momentum p is the same as the probability that it was at position r

with momentum p - ~p at time t and jumped an amount ~p, summed over all possible

values of ~p.

10
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Chapter 2: Theoretical Aspects of DPD

We now expand p(r+M,p,t+&), p(r,p-Ap,t) and 'P(r,p-Ap;Ap) in Taylor

series

Then we can define the below averages

(2.12)

(Ap,) = [Ap,'P(r,p; Ap)d(Ap)

(Ap/) = [Ap/ 'P(r,p;Ap)d(Ap)

(Ap;Apj) = [Ap;Ap j \¥(r,p;Ap)d(Ap)

(2.13)

We use fp(r,p,t)\¥(r,p;Ap)d(AP) = p(r,p,t) which is true because the probability

density is independent of the momentum jump Ap , and Ar; = E.L At, then equation (2.12)
m

becomes

(2.14)

11
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Chapter 2: Theoretical Aspects of DPD

where the remaining terms involve quantities (~p/), (~Pi~P/), (~Pi~Pj~Pk) and

higher-order terms. By neglecting all higher-order terms we obtain

(2.15)

which can be simplified to

(2.16)

Now consider the average quantities (~pi) ,(~Pi~Pj ). To obtain them, we can use the

time evolution differential equation ~p. =[~. F.e + F.D + F.R]~t which was described in
I L..J I) I) I)

j'l'l

previous section.

For conservative and dissipative forces there is no contribution to ~Pi~P j because it is

of second order O(~t2), so these two forces just appear in the first term of right hand

side of equation (2.16). The contribution from the random term for (~Pi) is zero because

the mean (;ij) = 0, but its contribution to (~Pi~P.i) is non-zero because the

variance (;ij;ij) = 1. After gathering all terms, we can express equation (2.16) in the form

ap(r,p,t) (L L L) (
-:.-_~- = C+ D+ R P r,p,t),

at
(2.17)

where L is the evolution operator which is defined for conservative, dissipative and

random parts as

N p. a N c a
Lc =-2:-.!..·--2: Fij·- ,

i=1 m ari iJti api

12
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(2.19)

(2.20)

The equation (2.17) with the defined operator L is the Fokker-Planck equation for

N -particle distribution function. This equation is very similar to Kramer's equation [23],

which describes the single particle evolution of mass m,

ap a F(r) a a a' a2

-+v.-p=---.-p+y-.vp+---p.
at ar m av av 2 av 2

(2.21 )

{
r=v

p=F(r)-yv+crB.

It should be noted that by omitting the random noise and friction terms, the above

mentioned (2.17) Fokker-Planck equation transforms into the Liouville equation which is

the corresponding equation for the conservative system. The Fokker-Planck equation of

OPO not only conserves the particle number N and total momentum p of the system,

but also satisfies the H-theorem by the mentioned constraints, and detailed balance

condition (2.7) [24], which states that a free-energy-like functional always decreases in

time.

The steady state solution of equation (2.17), a,p(r,p,t)=(Lc+Lo+LR)p(r,p,t)=O,

gives the equilibrium distribution peq(r,p,t). In statistical mechanics of Hamiltonian

systems any function of the dynamical invariants (such as energy or momentum) can be

an equilibrium distribution to which the system evolves provided it is ergodic or mixing

[19]. The question of which equilibrium ensemble is selected is dependent on the initial

condition [25]. In contrast, the equilibrium distribution of equation (2.17) is unique, and

no ergodic hypothesis is required since any initial distributions will relax towards the

13
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Chapter 2: Theoretical Aspects of DPD

steady state distribution [21]. The canonical ensemble is the equilibrium solution for the

conservative system, i.e. Lcp(r,p,t) = O. The corresponding solution for this

conservative system is the Gibbs canonical ensemble [22]:

(2.22)

where H is the Hamiltonian of the system, ¢(1jJ) the potential function which constructs

the conservative force F~ = -a¢(1jJ) / arj , To the equilibrium temperature and Z the

normalizing partition function, which is defined to normalize the probability distribution

function, i.e. Z-l = Jp(r,t)dr . In order to satisfy the remaining parts of equation (2.17)

for the equilibrium state, (LD + LR )p(r, p, t) = 0, it is necessary to have equation (2.7), as

a constraint. This is a modification to the original DPD algorithm of Hoogerbrugge [18]

and Koelman and is discussed in next section.

2.3 DPD H-Theorem

In the previous section we presented the Fokker-Planck equation for the DPD model.

Proof of an H-theorem is the fundamental result in statistical mechanics for a dynamical

system and shows that DPD particles tend to migrate towards the equilibrium state,

which yields the Gibbs distribution as the equilibrium solution [22]. The equilibrium

solution is not obtained by solving the Fokker-Planck equation directly, but by a natural

consequence of proving the H-theorem. The H-theorem guarantees that it is stable and

that all states in phase space lead to equilibrium.

14
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In this section we present the procedure of Marsh et al. [16], that combined the first kind

Lyapounov function [23] with Boltzmann H-theorem [26]. We define a functional F[p]

of N -particle distribution function p(r, t) by

..

F[p] =Jdr p(r,t){H(r)+Oo Inp(r,t)}, (2.23)

where 00 = ma2 /2y= kBTo and H(r) is the Hamiltonian of the associated conservative

system, defined as

N 2 N 2 1 N

H(r) = LRL+ Ep = L RL+_ L f/J(1jj)
i 2m i 2m 2 iJti

(2.24)

with E p being the total potential energy and f/J(1j;) the pair conservati ve interaction. This

functional can be interpreted as a sort of free energy F =E - 00S , where E =(H) is the

average total energy and S =-(In(p)) Yields the total entropy. Of interest here is to

show that F is Lyapounov function with the property aF / at ~ 0, and to investigate the

implications of this on the equilibrium solution of the Fokker-Planck equation. By taking

the time derivative of both sides of equation (2.23) and combined with equation (2.17),

one obtains

aF J- = dr {H(r)+ BoInp(r,t)+ 0o}(Le+ LD + LR)p(r,t)
at

The last term inside the curly brackets is zero due to total probability conservation,

JdrOo(Lc + LD + LR)P(r,t) = 00~ fdrp(r,t) =0
at

(2.25)

(2.26)

Now we shall demonstrate that the whole contribution of conservative operator Le to

equation (2.25) vanishes to zero. Partial differentiation with respect to r yields

Jdr {H(r) +00 In p}LeP = Jdr Le(H(r)p+Oop)- Jdr {pLeH(r) +OoLeP} (2.27)

15
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Chapter 2: Theoretical Aspects of DPD

The term fdrLc(H(r)p+(Jop) can be converted to surface integrals by divergence

theorem in phase space, and so it vanishes to zero. It is apparent from classical

mechanics that LcH(r) =0 while the term fdrLcp consists of surface terms and also

vanishes.

Therefore there is no contribution of the Lc operator and equation (2.23) becomes

(2.28)

Substituting equations (2.19) and (2.20) to equation (2.28), and using the partial

integration within (LD +LR ) , yields

aF N [ a ]-=- fdr2: eij.-(H(r)+(Jolnp(r,t))
at i,j=I'i dPi

(2.29)

The last result is obtained by symmetrizing the first bracket:

(2.30)

and substituting (a / api - a / ap j)H = Pi - Pj into equation (2.29) yields

(2.31 )

If we now constrain the weighting functions to obey the detailed balance condition in

equation (2.7), it is possible to write the time derivative of the above functional in the

form

16
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~

[ ]

2

aF __ my N D ~_~ <at - 2 fdr P LW (r,) e;j'vu+Ooeu'(a a )lnp -0.
I,J*1 Pi P j

(2.32)

As this form consists of a sum of negative definite terms, it is apparent that the functional

F[p] is monotonically decreasing in time. Therefore the functional will either move

towards the value associated with a zero of its time derivative or will decrease in an

unbounded fashion. The latter is disallowed on physical grounds [27] and so we

conclude that the system will evolve until it reaches some equilibrium state p = peq
• At

this equilibrium state aF /at = 0 so that

Changing variables to relative momentum of the particles, it is straight forward to prove

[
Pi) +Bo(~-~J]peq =0
m api ap j

that the equilibrium distribution of the system has the general from

peq(r) = A(rl' ... ,rN )exp[-_I_f(Pi -PO)2],
2mBo i

(2.33)

(2.34)

ill

where Po is a constant independent of ri and t. We will only consider macroscopic

systems which are not in uniform motion over long periods and consequently the limit

Po = 0 is applicable.

The equilibrium probability density function peq (r) is also the stationary solution of the

Fokker-Planck equation (2.17) if A(r
1

, ••• , rN ) satisfies LeA = O. This yields the Gibbsian

distribution function for the associated conservative system, i.e. equation (2.22). We

assumed that peq (r) is uniquely determined by the requirement that it satisfies equation

(2.7). What this means is that the DPD system will always reach the same equilibrium

state if left undriven, independent of the volume and number of particles. The

17

J

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 2: Theoretical Aspects of DPD

temperature of this equilibrium state is 80 = ma2
/ 2r, which only depends on the

parameters of the model.

In the process that proves the H-theorem, the constraints that are imposed are:

(2.35)

This is called the Fluctuation-Dissipation theorem or Detailed Balance condition for the

DPD method, which has exactly the same condition as the one in conventional Brownian

motion. If the Langevin equation represents a Brownian particle randomly moving about

in thermal equilibrium, then the dissipative reaction is related to the fluctuations of the

random force [22]. In other words, a change or fluctuation in the system will be

dissipated as the system returns to equilibrium.

The vital consequence of deriving the H-theorem for DPD is that the Gibbs distribution

is the stationary solution of the Fokker-Planck equation. The result of this requirement in

deriving H-theorem is detailed balance, and if constraints are violated, no H-theorem can

be derived and the Gibbs distribution is not a stationary solution of the Fokker-Planck

equation for DPD.

18
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Chapter 3

Boundary Models in DPD

3.1 Introduction

Dissipative particle dynamics (DPD) is an extremely effective mesoscopic simulation

technique, especially due to low computational cost, in studying the hydrodynamic

behavior of a complex field of fluid. Most studies, which use the DPD technique,

simulate part of an infinite region using a system confined by periodic boundaries. These

kinds of boundaries are capable of modeling macroscopic properties of the bulk flow

very well, but difficulties arise if the flows are confined through wall-bounded regions,

or when different boundaries simultaneously exist in the simulation domain. The desired

behavior of solid wall, and hence the boundary conditions, depends on the point of view

to the system and the scale at which a system is investigated. On an atomic level it is

likely that a wall induces structure in the field, as well as locking and slip, influencing

the properties in the order of nanometers from the boundary [28-31]. Nevertheless, when

DPD is employed as a particle-based flow solver at a mesoscopic level of micrometers,

the degree of coarse graining is too high to show such atomistic effects near the wall

[32]. So construction of the solid wall models in this higher level of coarse graining is

still a dilemma and no general mechanism is widely accepted for this mesoscopic level.

19
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Chapter 3: Boundary Models in DPD

In this chapter, we first study different methods used in the literature to handle boundary

conditions in confined geometries. Later in Chapter 5 we recognize some of their

diagnostics and subsequently introduce a new method utilizing a kind of bounce back

reflection which we call the "bounce-normal" reflection. The most important

characteristic of this method is that it reduces density fluctuations near the boundaries

without affecting the velocity and temperature profiles. This new method is easily

applicable to any wall bounded problem with stationary boundaries and it has a very

good consistency to macroscopic features. The simulation results of this bounce normal

reflection are presented in Chapter 5.

3.2 DPD Boundary Conditions

Defining the correct boundary conditions, especially at solid boundaries, is one of the

main issues for DPD simulation in wall-bounded geometries. For DPD, we can also

employ the general implementation of boundary conditions that have been used in the

lattice Boltzmann method (LBM) and molecular dynamics (MD) formulations. However,

unlike the MD method, the soft repulsion between the DPD particles can not prevent

fluid particles penetrating solid boundaries, and so we need appropriate mechanisms at

the walls to prevent this penetration. We call the boundary well defined if the following

main characteristics are observed, and these are the macroscopic properties which should

not be violated by imposition of boundaries:

no-slip; the wall should impose the correct velocity profile through the whole flow field

and also at the boundaries

impenetrability; no particles are allowed to enter the wall

20
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consistency to macroscopic system properties; the temperature and density profiles

should obey the thermal and continuum limits, specially near the boundaries

To maintain the above properties, we can generally classified the models of boundary

conditions in DPD methods, similar to [33], as follows:

The Periodic boundary conditions

The Lees-Edward boundary conditions

Freezing particles in boundary regions to create a rigid body or rigid wall.

Reflecting particles with different reflection mechanisms combined with different types

of particle layers.

3.3 The Periodic Boundary Conditions

In order to simulate the behavior of a bulk region, an infinite system, or to provide

complete boundaries to minimize the surface effects, the periodic boundary condition is

usually adopted [34, 35]. The central cubic box which contains N particles is replicated

throughout space to form an infinite lattice. As a particle moves in the central cell, its

periodic image in each of the neighboring boxes moves in exactly the same way. When a

particle enters or leaves through one face of a cell, one of its images will enter or leave

through the opposite face. Thus the total number of particles in the main cell, and hence

in the entire system, is conserved. The two-dimensional sketch of such a periodic system

is shown in Figure 3.1. In this figure the duplicated boxes are labeled A, B, C, etc., and

the schematic movement of particle 1 and its images 1A ,1 B ' etc. are shown across their

corresponding boundaries.

21
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Chapter 3: Boundary Models in DPD

In order to handle the simulation it is not necessary to store the coordinates of all the

images. Let us assume all the coordinates in the central box (with the edge dimension

L), lie in the range (-L/ 2, L/ 2); i.e. the coordinate system is at the center of the main

cell. The following procedure is sufficient to adjust the periodic condition when the

particle crosses the boundary

(3.1 )

and after calculating a pair separation vector, the following statements should be applied

to produce a correct neighboring distance

r~
x x L [ I) ]

rij = 'ij - x Lx

r~
r.~ =r.~ - L [..!L]

I) I) Y L
y

(3.2)

where L j is the j box dimension and [Y] returns the nearest integer to Y; thus

[-0.49] = 0.0, whereas [-0.51] = -1.0 .
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Chapter 3: Boundary Models in OPO

Figure 3.1 A two-dimensional periodic system. Particles can enter and leave each box across each of the
four edges. In a three-dimensional case, particles would be free to cross any of the six cube faces [35].

Due to its geometrical simplicity, the most commonly used cells are cubic boxes, though

other different shapes have been employed in related applications [36, 37]. In general,

the use of periodic boundary condition restricts the simulation technique to studies of

short-range and short-lived phenomena [38]. For equilibrium properties particularly

thermodynamics and local structure, the effects of this boundary condition are negligible.

However, the use of periodic boundary conditions inhibits the occurrence of long

wavelength fluctuations. Another difficulty is the so-called quasi-ergodic problem [39]

for small sample, which means the system can possibly be trapped in a small region of

phase space.

3.4 The Lees-Edward Boundary Conditions

There are two versions of Lees-Edward boundary conditions. In the original method,

Lees and Edward [40] proposed the boundary conditions for non-equilibrium molecular
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Chapter 3: Boundary Models in DPD

dynamics simulation, which retain periodicity but alter the position and velocity of the

periodic images. Here we provide its description according to [35]. The infinite periodic

system is subjected to a uniform shear in the x-y plane. The simulation boxes and its

images centered at (x, y) =(±L, 0), (±2L, 0) , etc. are taken to be stationary. The boxes in

the above layer are moving at a speed gvx = (dVx / dry) L in the positive x direction,

while the below layer move with the same speed but in the opposite direction, here the

(dVx / dry) is the imposed shear rate. A particle crossing the upper boundary of the box

at time t is returned through the lower boundary with its x -coordinate shifted by gVi

and the x -velocity decreased by gvx ' This is also applied for the particle crossing the

lower boundary but with the opposite signs. In Figure 3.2 the two-dimensional version of

such replacements is shown. We can describe the algorithm for a particle that crosses the

boundaries by defining ~y = [I;>' / Ly ]'

and we should update the calculated pair separations by

r.~
x x L [ I} ]

rij ='ij - x L
x
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where ~y = ['if / Ly]. In all of the above equations, the 8rx is the relative displacement

of the upper layer to the central box, i.e. 8rx =8vx t.

Figure 3.2 Homogeneous shear boundary conditions (Lees-Edward method) [35].

An important advantage of the original Lees-Edward method is the production of shear

flow with the constant shear rate, which enables one to measure the viscosity of

simulated flow due to the chosen technique. For example, the viscosity of a DPD model

of a colloidal suspension was studied using this approach [7,41]. This could be done by

calculating and comparing the shear stress of the simulated fluid to the theoretical value.

Another similar method was introduced by Backer et al. [42], which is based on using

periodic boundary conditions to simulate counter-flowing Poiseuille flows without use of

explicit boundaries. In this method a rectangular domain is doubled in size in the cross-

flow x direction and the flow is sustained by applying the body force (in the y

direction) to each particle, with the direction of the force being opposite in the two

halves of the domains. This is schematically shown in Figure 3.3.
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Figure 3.3 Schematic sketch of periodic Poiseuille flow method (a new kind of Lees-Edwards boundary
conditions).

This periodic Poiseuille flow method is very useful to measure the viscosity of particle

simulations, since it does not have the density artifacts and produces a flow with uniform

density from wall-to-wall apart from the statistical fluctuations. Unlike the original Lees-

Edward method, shear stress measurements are not required in this Poiseuille flow

method and the system average of the velocity or the maximum in the flow direction

directly provides the viscosity of the fluid.

3.5 Freezing and Reflecting Boundary Conditions

In the classification which we made in section 3.2 the third and the fourth categories are

somehow broad and there are different published implementations of these methods. We

review in some more detail the most representative works published so far that fall under

categories (3) and (4). Freezing the particles inside the solid regions is one of the most

important and applicable cases which have been combined with other different

26

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 3: Boundary Models in DPD

reflections. Our new proposed method in Chapter 5 also employs frozen particle-layers

as well as reflections.

The DPD particles are frozen in different patterns according to the system geometry and

rheological complexity in order to create the solid or particulate boundaries. One way to

do this is to put particles in structured lattices with layers of FCC lattice or regular lattice

[43-47]. Another alternative is to distribute particles inside the boundary randomly [7,

41, 48-50]. The act 0 f freezing in the latter case will be carried out after reaching the

equilibrium state or particles could spread out initially due to uniform random

distribution.

In [51] a layer of DPD particles is stuck on the boundary and by taking the continuum

limit of this layer, and dissipative and stochastic forces on the fluid DPD particles are

obtained analytically. However, reflections were found necessary to prevent wall

penetration since the effective computed forces are not sufficient and particles should be

reflected back to the fluid domain. A similar method to Revenga et al. [51] (getting

effective forces for planar geometries), but for cylindrical and spherical geometries, was

used by Colmenares and Rousse [52] in order to obtain explicit expressions for the

effective random and dissipative forces for a point DPD particle. They found the

dissipative and stochastic forces of a particle i with velocity v; located at r; from a

given surface having a velocity V by defining the matrix M and the vector N as

~

{
F,: = M(r,).(v, - V),

F; =N(lj)B

and

!M(r,) =-YPw idrw(lr-r, 1)2RR.

IN(r,)=O'pw idrw('r-r, I)R
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Chapter 3: Boundary Models in DPD

where Pw is the wall density, R =r - ri / I r - ri I is a unity vector and r is the distance

from particle i to particles stuck on the surface.

In [33] the effect of different reflections (specular, Maxwellian and bounce back

reflections) was investigated. In specular reflections the velocity component tangential to

the wall does not change while the normal component is reversed. In bounce-back

reflection both components are reversed. In Maxwellian reflection particles are

introduced back to the flow with a velocity following a Maxwellian distribution which is

centered around the velocity of the boundary. In [33] a crucial dimensionless parameter

'Z" (friction coefficient), was identified that affects the wall slip velocity,

rA'Z"=--
Vd'T

(3.7)

1

where r is the friction coefficient, A the average distance between particles (A = p-d),

d the spatial dimension and VT =~kBT / m the thermal velocity scale. Large values of

'Z" mean that the particles move very little in the time scale associated with the velocity

decaying due to thermal fluctuations. In [33] the Couette flow was examined to measure

the slip ratio due to different reflections and it was shown that for large values of 'Z" all

three reflection mechanisms result in an appropriate stick boundary condition. However

for small values of 'Z", the specular and Maxwellian reflections produce excessive slip

velocity at the wall while the bounce-back method still satisfies the no slip condition but

it (bounce-back) shows an anomalous temperature behavior. This behavior is due to the

fact that for small 'Z" the interaction between fluid particles is small. Furthermore when

'Z" =0, the DPD particles move in straight lines and the bounce-back boundary condition

accelerates the particles without bound in each collision with the wall. The dispersion of

the tangential component of the velocity therefore, increases without bound. At small but
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finite t' the friction saturates this dispersion to a finite value. The main problem with the

approaches in [33, 51] is that the computation of the force is just carried out for

dissipative and random terms. However the more difficult case where the conservative

forces are present was not considered. The conservative force is an important term which

may result in large density fluctuations at the wall.

Kong et al. [53] studied the dynamics of a DPD polymer in a solution between two walls

(without shear). Wall particles were kept in a "frozen" state, so that they do not move

relative to each other. (This is an analogous procedure to that used to model dispersions).

The density of the wall had to be chosen to be four times larger than that of the solution

to achieve an impenetrable wall. This high density subsequently induces a depletion zone

in the solution adjacent to the wall. Although such a depletion layer and further ordering

phenomena are to be expected at the atomistic level, they must be seen as model artifacts

in a coarse-grained model. A similar non-desired effect of the model is seen in the

simulation of Jones et al. [54], who simulated the shearing of a liquid drop on a solid

surface. They used the same density for the solid and liquid but added a strong repulsive

interaction between both phases to keep them separated. Again, this leads to density

distortions in the liquid. These distortions will be examined and removed in our new

method that will be introduced later. Moreover, the flow profile shows the occurrence of

large slip. Jones et al. [54] attempted to solve this problem by imposing a certain velocity

on all particles within a close distance from the wall.

The problems mentioned above concerning density distortions and slip flow only playa

role near the surface. If one is solely interested in the behavior of the system far away

from any interfaces, these issues do not pose a problem. However, in many applications

one is dealing with systems where the effect of surfaces cannot be neglected, for
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example, in lubrication. In such confined geometries the conventional DPD method will

easily give rise to unwanted artifacts.

Willemsen et al. [55] proposed a scheme to obtain a no-slip boundary condition in DPD

without using high wall densities. Below we give a brief description of this algorithm.

More details can be found in [55]. An extra particle-layer is included outside of the

domain with the objective of constructing a correct velocity profile that continues

beyond the wall boundary. These walls are assumed to be made up of "virtual" particles.

The interactions between the real fluid particles (which can be either solvent particles or

polymer segments) and these wall particles are determined by the same equations that

describe the forces between two fluid particles. However, the positions and velocities of

the wall particles are not updated using the time integrating Verlet or a similar algorithm.

The positions and the velocities of particles inside the wall layer are determined from the

layer of DPD particles adjacent to the boundary and within a distance rc (the cutoff

radius). At the beginning of each time step they are determined in such a way as to

ensure a smooth distribution of fluid particles near the walls together with no-slip

conditions. For each fluid particle whose distance to the wall is smaller than rc , a wall

particle is placed at the same distance from the boundary layer. The y and z

components of the wall particle are determined by adding a random shift taken from the

interval ( -T;; , rc ) to the position of the original fluid particle. The normal ( x) and the z

velocity components of the wall particle have the same magnitude as those of the

original fluid particle, but the sign of these components is opposite to that of the fluid

particle. The y-velocity component of the wall particle is taken as the average of the

y-velocity component of the fluid particle and the wall velocity. This procedure ensures

that there is a linear velocity profile across the wall boundary. The random and drag
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forces exerted by the wall on nearby fluid particles (those at a distance smaller than '"c.)

are calculated by summing over all pair interactions between fluid and wall particles.

This approach works very well in the absence of conservative forces but when

conservative forces are applied density oscillations occur. The conservative forces are

calculated from a different set of wall particle positions, as the interactions between the

fluid particles directly adjacent to the wall and their own mirror images lead to an

excessively large repulsion. Therefore, a second layer of DPD particles was created by

shifting all fluid particles at a distance between rc and 2"c into the wall layer. These wall

particles are then used to calculate the conservative force exerted by the wall on the

fluid. It seems that the method of [55] is quite effective but it may not be easily

implemented in complex-geometry flows, e.g. flow around a cube, as it is not clear how

such "ghost" particle-layers can be constructed in such situations [45].

In order to study the effects of the conservative force on the density fluctuations, we

calculated the effective force on a point particle. We assume the point particle is located

at the centre line normal to the flat plane on which the wall particles are laid out. We

assume continuum limit of wall particles and estimate the total repulsive force which is

exerted by the wall to the point fluid particle. In Figure 3.4 the total force with different

layer distance to the wall is shown. As we increase the layer distance the total effective

force is decreased, whereas the force near the wall is increased. Also, in Figure 3.5, we

assume two layers of particles where one of them is located exactly at the wall and the

other one is shifted by different distances. Note that all of the estimated repulsive forces

are normalized with respect to density and the repulsion parameter.
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Figure 3.5 Total force exerted by two-layer wall particles to a point that moves on the center line of the
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These different profiles may lead to undesirable density oscillations near the wall

regions. We can reduce these density oscillations by controlling the repulsion parameter

and using different wall patterns with different densities. However it is not easy to obtain

both no slip condition and zero oscillation. Effects of some of these parameters are

examined more numerically and in real simulation in the Chapter 5.

32

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 3: Boundary Models in DPD

Darias et al. [56] reported the flow of a biphasic (suspension) fluid through a cylinder

under a pressure gradient. They found the expected Poiseuillian velocity profile as well

as packed structure density profiles near the wall as the result of the discrete nature of the

formulation. This edge effect is important for distances of the order of the effective

interaction range and is of no consequence to bulk properties.

More recently, Visser et al. [32] described a method to create impenetrable flat and

cylindrical solid walls with no effect on the fluid properties such as the density profile.

They introduced a new wall construction method that makes use of parallel twin systems

which set up the wall by a back-to-back placement. This automatically generates a

smooth particle and velocity distribution across the wall boundary as well as corrects

interparticle correlations. Hence, they simulated a wall that meets the no-slip boundary

condition without affecting the properties of the system. To make their new wall method

applicable to curved boundaries, they developed a folding and scaling procedure to

connect curved systems with their periodic image or the image of a parallel system. This

allows one to model curved walls as well. A bounce-back reflection ensures the walls

impenetrability, but it may introduce side effects. If the tangential displacement to the

wall is left unaltered for particles that are reintroduced, the bounce-back method

transforms into a bounce-forward method that shows the same no-slip but lacks these

side effects. Both reflection methods leave the thermodYnamics of the system intact

when the direction of the acceleration of a particle is changed after a reflection. The new

boundary method meets all requirements for solid walls at higher densities, but shows

some velocity slip at low densities for non-ideal systems [32].

One of the most applicable methods of reflection, similar to Maxwellian reflection, was

first introduced by Fan et al. [43] as a boundary condition ,and was used in several other
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publications for modeling flow in channels [47-50, 57, 58]. In this method frozen

particles are used to represent the wall and in addition there is a thin layer of DPD

particles near the wall where the no-slip boundary condition is obtainable. A random

velocity distribution is enforced in this layer with zero mean corresponding to a given

temperature and the velocity distribution induced by the movement of the boundary.

When the particle is injected to this layer, it will leave with the corresponding velocity

v = V R +n(ln.vRI-n.v R) +V wall ' (3.8)

where v R is the random vector and n is the unit vector normal to the wall and pointing

towards the fluid and Vwall is the wall velocity. The thickness of this layer and the

strength of the repulsion between wall and fluid particles in this method are chosen to

minimize the velocity and density distortion, and the authors of [43] recommended this

to be minimum between 0.50/0 of channel width and 0.5 rc (half of cutoff radius). A thin

layer is necessary to prevent the frozen wall from cooling down the fluid. However,

significant density distortions and small levels of temperature drop near the wall

boundaries are present in this method, which are undesirable.

34

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 4

DPD Sintulation Methods and Paranteters

In this chapter fust we examine the standard methods for decreasing the computational

cost in DPD simulations for usual serial programming implementation. Then we study

the effective time integration methods for the DPD algorithm. Finally we take a brief

look at some of the important DPD parameters and also we introduce a simple uniform

random number generator.

4.1 Neighbor List Method and Linear Scaling

The major computational cost for DPD algorithm is calculating the total DPD

interactions in each time step. In DPD simulation, evaluation of inter particle distances

and their relative forces account for most of the CPU time. The direct calculation of

these interactions requires N 2 steps, where N is total number of particles. If we note the

symmetry of pair interactions, i.e. F;j = Fji , the total calculation steps can be decreased to

N (N -1) / 2. Obviously it is very expensive to carry out such intensive calculations

when the number of particles is large, and some methods to reduce the redundant

computation related to evaluation of separation distances are essential. As DPD particles

only interact with other particles less than a cutoff radius rc away, the time for

calculating DPD interactions offers the potential for linear scaling with N.
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The general way to reduce the number of interactions is to use a cutoff distance rc '

where all forces beyond the cutoff distance are zero. This treatment reduces the

computing time significantly by neglecting all particles beyond the cutoff distance, since

interactions between these particles are minimal and need not be considered. Thus, if

each DPD particle interacts with Nrc other particles (i.e., the number of particles within

a distance rc of a typical DPD particle is Nrc)' then the computation time for calculating

DPD interactions scales as

(4.1 )

A straightforward way to determine which particles are within cutoff distance is to

evaluate all distances over all particles pairs, and this procedure would require

N (N -1) /2 steps. A reduction of redundant calculation of interparticle distances can be

accomplished by the conventional Verlet table algorithm and cell-linked list algorithm.

The basic idea of Verlet table method is to construct and maintain a list of neighboring

particles for every particle in the system. During the simulation, this neighbor list will be

updated periodically for a fixed interval or reconstruct itself automatically when some

particles move too much and the list becomes out-of-date. During the interval of

neighbor list updating, each atom is assumed to interact only with those in its neighbor

list. Of course constructing of the Verlet table requires N(N -1)/ 2 times of inter particle

distance evaluation. The Verlet table method has been proven to be efficient when a

system contains a relatively small number of particles and the particles move slowly (this

may be effective for less than thousand particles [35]). However, the main drawback is

that as the number of particles increases, the memory requirement for maintaining the

neighbor lists becomes excessive, and the time to construct a Verlet table increases as the
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order O(N 2
) . Moreover, as the particles move more quickly, either the "skin" (largest

distance allowable of an atom that keeps it in the neighbor list) must be increased, or the

frequency of reconstructing Verlet table must be increased. Both of these requirements

make the CPU time required to maintain the Verlet table increase dramatically, and the

whole simulation becomes inefficient.

The resolution to this difficulty is to eliminate the need to calculate the distance between

every pair of particle at each time step. We accomplish this goal by dividing the periodic

cell of our DPD simulations into subdomains. The cell-linked list algorithm [35]

(neighbor-list method [59]) which is an effective method to reduce the calculation of pair

distances is employed. This approach partitions the simulation domain into small cells

and each particle is assigned to these cells by their coordinates. Since the neighborhood

cells of each cell is known and will not change during the simulation, and the lengths of

the three edges (for three-dimensional simulation domain) of the cells can be selected to

be equal to rc ' then neighborhood particles of an atom can be listed by enumerating all

atoms in all neighborhood cells and the cell itself. The implementation of a cell-linked

list algorithm is usually to first construct a cell neighbor list table, and then assign each

particle to the cells before calculating DPD interactions. This process requires little CPU

time and needs to be carried out only once. If the number of subdomains is N,ub' then the

time tdlst to calculate the required separation between particles is reduced from

N(N -1)/2 to

(4.2)

For large enough values of N w b ' the reduction in tdist is sufficient to render t
F

the

dominant contributor to computation time, t F [J tdL<t' and linear scaling with the total
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number of particles is achieved. This is somewhat similar to the fast multipole method of

Greengard and Rokhlin [60], which greatly accelerates the calculation of multipole

interactions between particles.

Let us consider the three-dimensional periodic box, whose dimension is Lx Lx L. The

number of subdomains with the defined re is

z: N
N SUb =-3 =--3'

'c pre
(4.3)

where p is the average number density of the whole particles. By substitution of

equation (4.3) into equation (4.2) we obtain

(4.4)

This equation shows the linear dependency of time with respect to the total number of

particles. Another important consequence of equation (4.4) is the cubic dependence of

time to the cutoff radius, for instance if we increase the cutoff radius by 25% the

computational cost will double. This shows the efficiency of link-list neighbor algorithm

for short range interactions.

We assigned to each of these subdomains an identification number (ID) from 0 to

Nsub -1. Up to 26 neighboring subdomains are attached to each subdomain, only if the

IDs of the neighboring subdomains are smaller than the ID of the subdomain. This is to

avoid calculating the same interaction twice. Every subdomain may have 0 to 26

neighboring subdomains.

In order to examine the computational cost we choose the fixed number of 40,000 time

steps, and measure the CPU time for different number of particles, similar to the work of

Kim [61]. The tests are run on a PC Intel Pentium IV 3,000 MHz CPU with SUSE
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Linux 10.0 operating system. The comparison of results for two algorithms are shown in

Figure 4.1, where linear scaling and computational cost improvement of the neighbor-list

method is significantly better compared to the Verlet-table algorithm.
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Figure 4.1 Plot of computational cost (time in minutes), comparison between the neighbor-list and Verlet­
list methods,

It is obvious from the Figure 4.1 that for small number of particles it is not efficient to

use the neighbor-list method. This is because of the tradeoff between overheads for

maintaining the neighbor-list table and reduction of calculation of unnecessary inter-

particle distance. The current scheme of saving computational time can be compared to

the work of Boryczko et al. [61, 62], who devised an algorithm that divides the

simulation domain into several subdomains in order to use it for parallel algorithm

capable of using multiple processes. This kind of subdomain approach is also helpful in

limiting communication requirements in our future parallel implementation of the OPO.

4.2 Numerical Time Integration Schemes

Unlike MO (molecular dynamics), the OPO equations are stochastic, and this represents

an extra degree of difficulty. In addition, the dissipative force depends on the velocity,
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which in turn depends on the force, so there is nonlinear coupling. In this section we

introduce the simple Euler and velocity-Verlet algorithms that have been typically used

to integrate the DPD equations. Various other finite time-step implementations of DPD

have been suggested, which will follow the phase space path of the particles more

accurately and therefore better represent the stochastic differential equations. Such

algorithms are often based on analogies to higher-order solvers for conservative systems,

such as the VerIet or leap-frog algorithms and would be expected to follow the evolution

up to the second-order in the time-step. However, care must be taken in the

implementation to take account of the stochastic nature of the underlyjng equations, and

an analysis of these methods for DPD can be found in [63]. Recently there are also other

complex integration schemes such as the Shardlow's splitting Method [64], Lowe's

approach [65], self consistent Verlet [66], etc., which a detailed comparison of the

performance of these integrators is given in [67].

The simple explicit Euler-type integrator is used not frequently but it helps to set the

notation for the more complicated algorithms and also as starter for multistep integrators

of higher-order. It is assumed that we know the solution at time t and wish to obtain the

solution at time t +dt . Both the velocities and the positions of all particles are updated in

a straightforward manner as

r.'+d' = r.' +dt v~
I I I

V~+d1 = v~ + dt f.'
I I I

f.'+d' =f. (r.'+d' , v t+d1)
I I I I

(4.5)

For the DPD system we do not expect the system to blOW-Up because of the

thermostating nature of the dissipative and random forces. However we should note the

random force F; = a wR (fij) ;ijdt-1/2 eij and the appearance of dr l/2 as discussed in more

detail in [6].
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The velocity-Verlet algorithm is based on the classical MD velocity-Verlet method [35,

38], but we use a modified version of this method for calculating the evolution of DPD

particles

r'+dl =r' + dt VI +..!..dt2 f"
I I I 2 I

- t+drv. = v: + Adtf,'

d - t sd:f'+' =f(r'+dl v. )
1 I I ,I

V,+dl = V' +..!.. dt (f" + f.'+dl).
I I 2 I t

(4.6)

If the forces were independent of velocity (like in MD), the actual velocity-Verlet

algorithm would be recovered for A= 1/2. As the force does depend on velocity, we

make a prediction for the new velocity, which we denote by ;, and correct for this

afterwards in the last step. In this more sophisticated algorithm, the force is updated once

per iteration (after the second step) and is thus unlike the self-consistence method of

Pagonabarraga et al. [66]. Also, there is virtually no increase in computational cost. If

there were no random or dissipative force, this algorithm would scale exactly to O(dt 2
)

with A=1/2. Due to the stochastic nature of process, the order of the algorithm

becomes unclear [6]. The variable factor A, introduced empirically, appears to account

for some of the additional effects of the stochastic interactions.

In this section we employ the simple Euler and velocity-Verlet algorithms, and we

compare these methods and determine appropriate values of the parameter A for future

applications. The simulation is conducted in a 3D fully periodic box of size l Ox l Ox lt) ,

where the length scale is defined by r
c
=1. The particle number density is chosen p = 3

(i.e. total number of particles is N =3,000). The random force strength is set to a =3,

and the dissipative force amplitude becomes r=4.5 if we choose the unit of energy as
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kBT =1. Also the repulsion parameter set to a =25. The measured physical quantity in

these simulations is the average kinetic temperature defined by assuming unit mass for

all particles as

(4.7)

We run the simulations for the total time of t = 400 and obtain the average temperature

after equilibrium or after time passes around t =40. Initially the particles are distributed

randomly at rest. Figure 4.2 shows the effect of timestep size on temperature for the three

methods. It is observed that by increasing the timestep size the amount of artificial rise in

temperature correspondingly increases. The optimum A parameter for the Verlet method

is obtained after several runs. We see negligible temperature rises for the Verlet

algorithm with timestep sizes smaller than dt < 0.04, where for the simple Verlet method

(A =0.5) the error is less than 3%, and for the optimum Verlet (A =0.65) method the

rise is less than 0.8 %. However in the Euler algorithm with stepsize of dt ~ 0.01 there is

more than 400/0 of artificial temperature increase. Thus for all subsequent simulations, we

select the optimum Verlet algorithm with arbitrary time-step sizes of dt < 0.04.
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Figure 4.2 Temperature deviations versus size of time step for Euler method, simple Verlet method and

Verlet method with optimum A parameter.

4.3 The Noise Amplitude and Maxwellian Distribution

First we investigate the effects of finite time step on the equilibrium distribution function

as the other criterion for the accuracy of numerical results. The DPD parameters are set

similar to the previous section. For time integration we use the optimum Verlet algorithm

with three different time-step sizes. The distribution is calculated after reaching the full

equilibrium state. The theoretical DPD equilibrium distribution which is similar to the

Maxwell-Boltzmann distribution is given by

m -mv 2

!(v
x

) = (__)112 exp(-_X_).
2trkBT 2kBT

(4.8)

In Figure 4.3 the comparison between theoretical values of the probability distribution

against numerical results is shown. The results show that even up to time-step size of

dt = 0.06 the equilibrium distribution function does not vary significantly from the

Maxwell-Boltzmann distribution. Therefore the use of optimum Verlet algorithm with

time step sizes of dt < 0.04 is again acceptable, and we see that it has very comparable

numerical outcomes with optimum computational cost.
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Another important parameter in DPD simulation is the noise amplitude which also

determines the friction coefficient according to the detailed balance condition. These two

factors are chosen to yield an efficient and numerically stable DPD simulation. Here we

demonstrate the effects of this random coefficient and adjust the appropriate value for it.

When the noise amplitude is increased , the time-step range over which the system is

stable does not change by much, but the speed at which the system reacts due to

temperature variations is increased [6]. This leads to efficient temperature equilibration.

However the upper limit is determined by the time integration scheme, time-step and the

equilibrium temperature. Some of these effects are shown in Figure 4.4 where the

simulations are run using the Verlet algorithm with dt = 0.04 for the unit equilibrium

temperature. After several investigations for different values of equilibrium temperature,

kBT, we came into conclusion that in order to obtain a fast and stable simulation the

appropriate random coefficient should be a number below 4.5 for the minimum

temperature of 0.1.
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Figure 4.3 Results of momentum distribution for different timestep sizes.
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Figure 4.4 Plot of temperature variation against the time for different values of noise amplitude.

4.4 Random Generator and Choice of Random Numbers

Initialization of the positions of DPD particles and DPD interactions require the use of

random numbers. In all simulations in this work, uniformly distributed random numbers

U E U (0,1) are used such that qij =Jj(2u -1), where qij represents an independent

increment in a stochastic process as discussed in implementing DPD interactions in

Chapter 2. This approach is highly efficient since uniform random numbers take less

CPU time to generate than Gaussian random numbers, and the results from uniform

random numbers are also indistinguishable from those generated by Gaussian random

numbers [6]. The seed method is a typical method to generate random numbers, and if

we define ui as a random number, then the form of the equation to generate random

numbers that employed is (a multiplicative congruential generator [68])

Ui = a U,_I mod m, (4.9)

where ui is the i th member of the sequence of pseudorandom numbers, a a multiplier,

m the nonzero modulus and the mod operator means that a Ui_1mod m is the least
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nonnegative remainder from dividing a uj _
1

by m. Careful observation revealed that

only certain combination of values of multiplier and m would give good uniformly

distributed random numbers. Regardless of how long or short their periods are,

congruential generators are deterministic difference equations and phase diagrams can be

used to examine their behavior. The points produced by a congruential generator in two

or more dimensions lie on hyperplanes. The distance between these hyperplanes varies

with the multiplier, which means that some multipliers are better than others [68]. It is

more convenient to choose m close to the maximum value that an integer can have in a

C program (231 -1 ), and the multiplier is chosen such that uj can cover all the numbers

between 0 and U j ' If the multiplier and m are not set up correctly, the integer random

numbers would go through only a limited cycle and result in a bad set of random

numbers. The selection of these parameters can be obtained from several references, and

we chose the same parameters as the work of [61].
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Chapter 5

Simulation Results

In this chapter we study some of the natural difficulties encountered in the

implementation of the DPD algorithm for confined fields. Also, we explain the formulas

which relate the measured data in the simulations to the macroscopic transport

properties. We examine the association between controlling density fluctuations and no

slip condition in the cases of Poiseuille and Couette flows. In this chapter we apply our

new boundary condition and compare the results with other methods and theoretical

Navier-Stokes solutions for the cases of Poiseuille and Couette flows.

5.1 Macroscopic Transport Properties (Data Analysis)

DPD simulation is similar to MD simulation which generates the trajectories of all the

particles in the system. To obtain a deeper insight into the system being studied, we need

to analyze the trajectories obtained during DPD simulation. In this section, we

summarize in the same manner as [4], some of the most commonly performed data

analysis in the simulation of fluid transport.
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5.1.1 Density Profiles and Diffusion Coefficient

To investigate nanoflows in channels and pores, where the fluid density is

inhomogeneous, and also to explore the level of density distortion near boundaries, it is

useful to compute the spatial distribution of fluid density, e.g., density profiles along the

channel width in Poiseuille flow. This is usually performed using the "binning method"

[35]. In this scheme the relevant spatial domain (i.e., the domain where the density

distribution of the species needs to be computed) is partitioned into a number of cells,

which are identified as the "bins". The number of particles in each bin is computed from

the knowledge of the positions of the particles. In order to obtain a better statistical

analysis of the number density in a bin, we add the number of particles in the bin for a

number of steps and divide the total number of particles in the bin by the number of steps

and the volume of the bin. Thus, the number density, Pi' of the i th bin, averaged over s

steps, is given by

(5.1 )

where ni is the total number of particles in the i th bin during each step and VOLi is the

volume of the i th bin. Diffusion transport is typically important in most of especially

nanofluidic systems. This can be understood by calculating the Peclet number,

~ = UL / D, which measures the ratio of bulk transport (convection) to the diffusion

transport, or the Schmidt, Sc = v / D, which approximates the ratio of momentum

diffusivity (viscosity) and mass diffusivity. The diffusion coefficient must be generalized

in order to describe transport phenomena. For homogenous and equilibrium systems, the

diffusion coefficient can be calculated using either the Green-Kubo [69, 70]
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(5.2)

where Vi is the velocity of single particle, or by the Einstein equation [71]

2tD = Hri(t) -ri(O)n, (5.3)

where r/t) is the particle position, which is obtainable from the trajectories generated by

the DPD simulation. It should be emphasized here that equations (5.2) and (5.3) are

strictly valid only for homogeneous and equilibrium systems.

5.1.2 Velocity and Temperature Profiles

The velocity profile is one of the most important measurables for fluid transport, and can

be computed in a similar manner as the density profile. Usually, the simulation system is

partioned into n bins, and the statistics of the fluid velocity are gathered separately in

each bin [72]. Assuming that during a s-step simulation, at each step k, there are nk,i

particles in the i th bin, and the velocity of each of each of these particles (denoted by j)

is given by V~,i' then the average fluid velocity "j in the i th bin can be computed by

"j

s nk.i

LLvk,j
k=1 j=1

tnk,j
k=1

(5.4)

Equation (5.4) is used to compute the steady-state velocity profile. If one is interested in

the transient behavior of the velocity profile, an ensemble of simulations will need to be

performed. In this case, the velocity profile can still be analyzed using equation (5.4),

and the only difference is that the parameter s now denotes the different simulation

rather than different time steps. Also, after calculation of streaming velocity in each bin,

"j ,we can compute the temperature of particles in the i th bin by
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infinitesimal force dF felt across an infinitesimal area dA , which moves with the local

5.1.3 Stress Tensor

The stress or pressure tensor of an atomic fluid, denoted by 0', is often defined as the

(5.5)

Chapter 5: Simulation Results

(
1 ~ 2) 23kBT; = (- LJ V j ) -Uj '

nj j=l
jebin

where nj is the total number of particles in the i th bin during each step.

streaming velocity u(r, t) of the fluid [73]

dF=dA·O'. (5.6)

The pressure tensor can be written as a linear sum of kinetic, O'k, and potential, O'u,

components.

In equation (5.6), at an arbitrary time t, if a particle moves through (or across) the

surface, then the kinetic component is deemed to be across the surface dA . The potential

component O'u, due to inter molecular forces is however, not as easily defined [73]. An

interatomic (interparticle) force between two atoms is often said to be "across" the

surface if the line between the centers of mass of the two atoms cuts through (or across)

the surface defined by dA. This is so-called Irving-Kirkwood convention [74].

However, there is no unambiguous definition of "across" for either the kinetic or the

potential contributions to the pressure tensor. For example, there are obvious difficulties

that arise in handling many-body force contributions to the potential part of the pressure

tensor. Even for pair forces there is no unique way to determine exactly which molecular

pairs contribute to dF [74-76]. Several different techniques have been developed to

calculate the potential component of the pressure tensor, and here we present the Irving-

Kirkwood expression for the stress tensor at time t [74, 77]
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(f(r, t) = - v~J~m,[vi(t) -u(ri , t))[ Vi (t) -u(r;>t))

+i :2: rij(t)Oij (t)fij (t) 1,,(1)=']'
IJ

(5.7)

where Vi is the total particle velocity, u the streaming velocity of the fluid, VOL the

volume of the system, f ij the force on particle i due to particle j, and 0ij(t) the

differential operator

0.. =l-l-r... i-+ ... +l-[-r.. .i-]n-, +....
IJ 2! IJ ar n ! LJ ar (5.8)

Thus, from the knowledge of the positions of the particles, velocities of particles, and

forces acting on the atoms obtained from a typical DPD run, the stress (or pressure)

tensor in the fluid medium can be computed. By assuming only the rust term and

neglecting the higher-order terms in the above differential operator, we can simplify the

Irving-Kirkwood expression for estimating the stress tensor in each bin (for the steady

flow field)

(fbi. = - VO~. (:2: (Vi -u(ri))(vi -u(r,))+~ ~ rijfij),
bin I IJ

iebin iebin

(5.9)

Also, the constitutive pressure, p, and the first and second normal stress differences can

be respectively defined as

1
P =- - tr (f =-(0' + 0' + 0' )3 xx)Y zz

N, =O')y - 0'xx

N 2 =O'xx-O'zz·
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steady-state or the decay to the equilibrated state are then related to the viscosity. One of

relating the linear response to a transport coefficient. The properties of nonequilibrium

(5.11 )VOLr17 =kT (<7xz (O)<7xz (t»),
B

transverse current autocorrelation function. Hess [80] has compared these two

methods) or by accumulating displacements in properties over time (Einstein methods).

the earliest NEMD techniques, which maintained conventional periodic boundary

where <7xz is the xz component of the stress tensor (J given by equation (5.7) at

measuring the decay of near-equilibrium fluctuations in properties of fluid (Green-Kubo

of the system to a perturbing field that may be constant or temporarily varying, and

EMD techniques involve either the calculation of time correlation functions by

shear viscosity of fluids will fall into one of two main categories: equilibrium molecular

For example, the Green-Kubo relation for shear viscosity, 17, is given by [78]

Each molecular-dynamics (MD) method similar to the DPD method for calculating the

conditions, involved imposing a spatially periodic external force on the particles to

adequate. An alternative EMD method, proposed by Palmer [79], is based on the

equilibrium methods to nonequilibrium methods in MD simulation.

5.1.4 Shear Viscosity

generate an oscillatory velocity profile [78]. The amplitude of this velocity profile at

dynamics (EMD) or nonequilibrium molecular dynamics (NEMD) techniques [4]. The

equilibrium. As the system is in equilibrium, simple periodic boundary conditions are

The NEMD techniques usually involve measuring the macroscopic steady-state response

steady state is inversely related to the shear viscosity, and hence the viscosity can be

calculated. The more successful NEMD techniques involve imposing the planar Couette
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flow velocity profile. One of the most efficient NEMD algorithms for shear viscosity is

the SHod algorithm [77, 81]. The SHod algorithm has been shown to be exact for

arbitrary large shear rates 1', and therefore appropriate for studying non-Newtonian

regimes. The strain-rate dependent shear viscosity is obtained from the constitutive

equation

1](1')= (a:J .
r

(5.12)

There exists another technique which we have described it in section 3.4 and which we

will use them later in our simulations. Both EMD and NEMD methods give similar

values for the Newtonian shear viscosities. However, an advantage of the NEMD method

is that the shear rate dependence of the viscosity is obtained directly from the NEMD,

while EMD provides the zero shear rate value only. Although the NEMD runs can be

parallelized for different shear rates, the computation time required to obtain the

viscosity is limited by those long simulation runs at low shear rates. Refinements to the

traditional NEMD methods been developed that reduce the computational costs by

improving the signal-to-noise ratio at small fields [78, 80].

5.2 Bounce Normal Reflection

We have classified and investigated different kinds of boundary conditions in the

Chapter 3. In this section we introduce a new reflecting mechanism similar to the other

known reflections (bounce-back and specular). In specular reflections the normal

component of the momentum of the particles is reversed while the parallel component is

conserved

(5.13)
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reflections have similar temperature and density effects, that we will see later, but the

the velocity of the wall and I identity dyadic tensor. According to [32, 82] the above

Chapter 5: Simulation Results

(5.14)new old 2
V j = - V j + Vwall '

where "wall is the boundary normal unit vector pointed outwards of the boundary, v wall

In the bounce-back reflections both components are reversed

bounce-back may results in better no slip results in low density conditions.

We now define our new bounce-normal reflection as

E] =1 V~ld •"vel 1"vel'

EZ =I V~ld - E} 1"wall'

V;U-w = EZ - E} + 2v wall '

(5.15)

where "vel is the unit vector parallel to the boundary velocity. The aim of this reflection

form is to prevent accumulation of particles near the wall and push the particles away

from the boundary so that it reduces density fluctuation especially in the case of

stationary walls. The density distortion near the wall influences the whole domain. It

should be noted that these distortions are not an effect of time step size and occur also at

other equilibrium temperatures. Although the distortions decrease for higher particle

densities in the system, they are still not negligible up to a depth of O.5rc from the wall

for even 3 times the density of the wall particles. To reach a level at which the wall

effects can be neglected, either the system must be enlarged to impractical dimensions,

or restricted to very high densities. Both these options are computationally costly and

undesirable [32]. We will examine some of these effects in subsequent simulation

results. In all mentioned cases we may also have different reflections in displacements.

For instance the bounce-forward is the same as bounce-back in velocity components but

different in the position (See Figure 5.1 ).
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In Figure 5.1, the schematic diagram of different reflections is shown. The particle which

has an initial velocity of Vi is at r/ before it hits the boundary at the time t. If there is

no wall boundary and the total effective force from all the surrounding particles (wall

and fluid particles) is not sufficient to prevent the impact, the particle will penetrate into

the wall region and be positioned at r/+dt within the boundary. It has been illustrated [32]

that the specular and bounce-back reflections for the position (as shown in Figure 5.1)

have virtually the same slip effects and there is thus not much difference in using either.

The velocity of particle at position r/+dt can be derived using any of the mentioned

reflection mechanisms.

J.~', hiv·'

" S'vee, \: .
\ t

\

./

rt

I

nll'all

V
I

Figure 5.1 Schematic diagram of bounce-back (bb), bounce-forward (bt), specular (Spec) and bounce­
normal (bn) for particle that penetrates into the stationary wall region.

5.3 Diagnostic DPD Simulations

5.3.1 Poiseuille Flow

In order to appreciate the degree of difficulty when imposing no-slip boundary

conditions with the DPD method and to identify the most influential parameters

especially on density fluctuations, we first perform some diagnostic DPD simulations for

Poiseuille flow in a channel, similar in some extent to the work of Pivkin-Karniadakis
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[45]. 13500 fluid particles are randomly distributed into the channel box of size

x: 15x y: 15x z: 15 which results in an average number density of PI =4.0. The

periodic boundary conditions are imposed along y and z directions. The frozen particles

which are distributed randomly from the beginning were used to represent two channel

walls in the y-z plane (see Figure 5.2). The randomly scattered wall particles could

somewhat represent the local effect of roughness of surfaces in micro/nano applications

and it shows smaller slips comparing to other combinations. The values of

0"=3.0, r=4.5, kBT=l.O and aff =18.75 are assigned to the coefficients of the DPD

equations. In order to sustain the flow an external body force of Fe =0.02 is imposed in

the y direction. To investigate the effect of wall density, we will use different values for

the number density of the walls, Pw' In addition, we will vary the conservative force

parameter for the fluid-wall particles, afw' The simulation domain is partitioned into 300

bins along the y direction and statistics of the fluid parameters (density, velocity,

temperature, stress tensor ... ) are computed separately in each bin. A large number of

bins is selected in order to examine the fluctuations correctly. The time step is set to

I1t =0.02 and simulations were run for t =5000 (250,000 time steps) and all the steady

profiles are averaged after t = 4000 (the last 50,000 time steps). The stress tensor 0',

constitutive pressure p and other parameters can be estimated in each bin with the

expressions given earlier in section 5.1 .
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Figure 5.2 The 30 and 20 position of the wall (blue balls) and the fluid (green small balls) OPO
particles distribution in the simulation box.

First, we examine the model with the simple random distribution of particles inside the

wall regions. 900 particles are located randomly inside each wall domain with the

thickness of r
c

= 1, and this leads to the same density of wall and fluid particles,

Pw =Pj =4.0. We also set the same conservative parameter for the wall-fluid and the

fluid-fluid interactions, awj =aff =18.75. The simulation results are shown in Figure 5.3,

and it is obvious from this figure that the soft repulsion between particles pushes the

fluid particles into the wall regions. As discussed before one way to avoid this

penetration is by increasing the wall density or by strengthening the conservative

repulsion parameter. Thus we increase the wall density to two times larger than fluid

particles density Pw =2pf =8. The results of this simulation are shown in Figure 5.4,

and it is seen that the penetration is reduced; however, there exist large density

fluctuations which are propagated across the channel. Next we increase the repulsion

parameter between fluid and wall particles and keep the wall density equal to that of the

fluid, awj = 2aff = 37.5. Figure 5.5 shows the result of this increase and it is observed

that there is a slightly smaller slip; however there exists penetration of fluid particles to

the walls. Unlike the method of Pivkin-Karniadakis [45], which simulated the wall

particles the structured patterns and there existed large amounts of slip for these cases,
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using the current random combinations results in smaller slip compared to the structured

models. According to these results we can also conclude that increasing the density or

repulsion parameter are not appropriate ways to prevent particle-penetration into the

boundary regions. Also it is important that in the case of random distribution of particles

inside the walls, changing the conservative parameter does not significantly affect the

slip factor.
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Figure 5.3 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are

shown with solid lines. Model with walls of random frozen particles

( pw =PJ ; awl =a ff ).
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Figure 5.4 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are

shown with solid lines. Model with walls of random frozen particles
(PI'>' = 2PI ; awl = a jJ ).
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Figure 5.5 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are

shown with solid lines. Model with walls of random frozen particles

(Pw= PI; awl = 2aff )·
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Now in order to prevent penetration of fluid particle into the walls, we employ reflecting

boundary conditions. To test the effects of the different reflections we first apply the

bounce-back reflection. Figure 5.6 shows the results for the same density of wall and

fluid particles, and the wall particles are scattered inside the wall randomly. Also in order

to have a scale to compare our new boundary condition with,we employ the method of

Pivkin-Karniadakis [45], i.e. using the structured boundary condition and estimating the

repulsion parameter with the following formula. The results are shown in Figure 5.7.

5.8 the total constitutive pressure and first and second normal stress differences are

density distortion.

density distortion leads to significant fluctuations in pressure and shear stress. In Figure

(5.16)
0.39(pf kBT +O.laffP~)

aw.f = 2
0.0303pw +0.5617Pw -0.8536

According to Figure 5.6 and Figure 5.7 we find that by applying these methods we may

Pivkin and Kamiadakis introduced a general adaptive method in order to make density

shown. In this figure we observe large amount of fluctuation which is originated from the

satisfy the no slip condition but there are large fluctuations in the density profiles. This

profile flat [83]. Their method is not easily applicable to complex geometries, incurs

additional computational cost, and there also exists some temperature rise close to the

wall.

Next we apply our new method which uses the combination of randomly distributed wall

particles and the new bounce-normal reflection. This combination is easy to implement

without additional computational cost and without causing much distortions in

macroscopic properties. The results of this method are shown in Figure 5.9 and Figure

5.10. As can be observed from the figures, in the case of bounce-normal reflection there
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exists a very small amount of slip near to the wall (less than 3%). In addition, the density

fluctuations are negligible compared to the other methods and as such this method

demonstrates its clear advantages. We can also decrease the amount of slip by decreasing

the wall repulsion parameter. However, by doing so, the fluctuations in the other flow

parameters would be increased significantly.

Another important effect of wall is the distortion in the temperature profiles very close to

the wall, which is not avoidable in all simulated cases(this is also clearly apparent in

other publications). However this distortion is negligible because it is very small and

near the wall, and it also does not have significant effects in simulations which do not

involve thermal phenomena.
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Figure 5.6 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are

shown with solid lines. Model with walls of random frozen particles
combined with bounce-back reflection (Pw =PI ; awl =a iT ).
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Figure 5.7 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are

shown with solid lines. Model with walls of two layer structured
particles combined with bounce-back reflection

(Pw=PI; awl =O.3766a if ).
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Figure 5.8 Top: Pressure profile. Bottom: First and second normal
stress differences profiles. Model with walls of random frozen

particles combined with bounce-back reflection (Pw =PI ;awl =a ff ).
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Figure 5.9 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are

shown with solid lines. Model with walls of random frozen particles
combined with bounce-normal reflection ( pw =Pj ; awj =a II ).
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Figure 5.10 Top: Pressure profile. Bottom: First and second normal
stress differences profiles. Model with walls of random frozen

particles combined with bounce-normal reflection

( p w = PI; awl = a ff ).
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Also in order to verify our new method for the case of Poiseuille flow we imp lement the

method for higher density of particles, Pw = PI = 9.0 and awl' = a1I = 8.33 . As shown in

Figure 5.11, for higher densities the results are similar (the small difference in the

velocity profile is due to small number of time steps and the profile would be similar if

we run simulation with more time steps).

We can also estimate the viscosity of the simulation by comparing the results with the

Navier-Stokes solution. By simplifying the Navier-Stokes equations with the appropriate

boundary condition related to Poiseuille flow, one obtains

u/x) = P~{ (1- (~)2),

au (x)
(J' = n _Y- = -pF x

xy '/ ax e '

(5.17)

where x is the distance from the middle of the channel, h =7.5 is half the channel

width, 17 is the apparent viscosity and Fe = 0.02 is the external field force in the y

direction applied to the fluid. Also (J'xy is the shear stress along the channel width. There

are two ways to estimate the apparent viscosity of the simulation. One is to compare the

maximum velocity with the related Navier-stokes maximum velocity and determine the

viscosity as

17 = pFeh
2

2umax

(5.18)

The other involves the calculation of the average simulated velocity, Ii, and compare it

with the theoretical value. If we use this method

17 = pFeh
2

3i7 .
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We applied both these two methods and calculated the apparent viscosity for each, the

results are 17 =1.055 and 17 =1.0352 from the frrst and second methods respectively.
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Figure 5.11 Top: Density profile. Middle: Temperature and Velocity
profiles. Bottom: Shear Stress Profile. The Navier-Stokes solutions are

shown with solid lines. Model with walls of random frozen particles
combined with bounce-normal reflection (Pw =PI =9; awl =a ff ).
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5.3.2 COllette Flow

In order to further validate the new boundary bounce-normal reflection, we now apply it

to pure shear flow. For simulating the shear flow, we remove all the external body

forces. In order to impose arbitrary shear rate we move the right wall with the velocity of

y wall and the left wall with the opposite velocity of -Ywall both in the y direction. The

relative velocity profile is obtained by dividing the velocity by Ywall' It should be noted

that as the temperature sets the energy scale, the imposed shear rate should be applied

such that its maximum velocity is at most of the order of the thermal velocity [66].

We use the same parameters of the Poiseuille flow except for the wall density and

repulsion parameter between the wall and the fluid DPD particles. It was observed that if

we use the same repulsion parameter, we would incur large amount of slip near the wall

regions. Thus we decrease the repulsion parameter of wall particles to awl = 0.7 au . As it

is demonstrated in Figure 5.12, the amount of slip is now in acceptable order, but again

there exist density distortion. In order to obtain smaller slip we may further lower the

wall repulsion. Here we suggest using equation (5.16) for estimating and decreasing the

repulsion parameter. The results of this are shown in Figure 5.13. From this figure we

observe that the no slip condition is achieved however there exists large fluctuation in

the other parameters.

To overcome this problem, we not only have to decrease the repulsion parameter, but

also increase the wall density. The reduction in repulsion parameter causes the

accumulation of fluid particles near the walls and resulting in the density fluctuation. By

increasing the wall density and using the bounce-normal reflection mechanism we

effectively push the particles towards the fluid domain. After several trial simulations we
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set the repulsion parameter to a fw =7.06 and increase the wall density to Pw =10.0. The

results are shown in Figure 5.14. Now we observe that the fluctuation and the slip are

both more appropriate and matching the macroscopic properties. Also we find that the

advantage of using randomly distributed particles over structured ones for the boundary

regions, is that as we increase the wall density the no-slip condition is satisfied to some

extent.

In addition we can estimate the apparent viscosity also for the shear flow by comparing

the shear stress with the theoretical value. The Navier-Stokes solution for the Couette

flow is

x
U =umax h

au/x) = !lu
m
.,

(jxy = TJ ax h

(5.20)

Here umax = 1 and by using the above equation we find the apparent viscosity

17 = 1.0312, which is close to the estimated values of Poiseuille simulations. Also the

results of the normal stress differences and pressure are shown in Figure 5.15.
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Figure 5.12 Couette flow. Top: Density and Temperature profiles.
Middle: Velocity profile. Bottom: Shear Stress Profile. The Navier­

Stokes solutions are shown with solid lines. Model with walls of
random frozen particles combined with bounce-normal reflection
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Figure 5.13 Couette flow. Top: Density and Temperature profiles.
Middle: Velocity profile. Bottom: Shear Stress Profile. The Navier­

Stokes solutions are shown with solid lines. Model with walls of
random frozen particles combined with bounce-normal reflection

(Pw = PI = 4; awl = O.3766ajf ).
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Figure 5.14 Couette flow. Top: Density and Temperature profiles.
Middle: Velocity profile. Bottom: Shear Stress Profile. The Navier­

Stokes solutions are shown with solid lines. Model with walls of
random frozen particles combined with bounce-normal reflection

(Pw= 10; awf = 0.3766aff ).
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Figure 5.15 Couette flow. Top: Pressure profile. Bottom: First and
second normal stress differences profiles. Model with walls of random

frozen particles combined with bounce-normal reflection
(Pw= 10; awf = 0.3766aff ).
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5.4 Lid-Driven Cavity with Low Reynolds Number

Finally, we simulate Lid-driven Cavity flow as it has been regularly used to test or

validate new codes or new solution methods. The particles are distributed in the box size

of x: lOx y: lOx z: 10 and the density of the both DPD fluid and wall particles are set at

PI =Pw =10.0. We have selected the values of kBT=1/3, a=.J3, r=4.5 for the

temperature, random and dissipative force coefficients respectively. The four

surrounding walls are again modeled with the random distribution of particles in

combination with bounce-normal reflection and we assume the periodic condition in the

z -direction. The conservative parameter is set to awl = a.lf = 3.0 for the interaction

between particles. The left wall is a moving lid with constant velocity and other three

walls are at rest. We calculated the conservative force coefficient from equation (5.16) as

awl = 1.67, for the interaction of fluid particles with the moving wall. In order to

calculate the Reynolds number, we estimate the dynamic viscosity of the fluid from

Poiseuille flow simulation and the results are 17 = 2.069 and 17 = 2.03 from the average

and maximum methods respectively. To estimate the Reynolds number, we assume the

apparent viscosity to be 17 = 2.05. We run the simulation for 250,000 time steps and the

final velocity profiles are averaged over the last 50,000 steps in 200 bins. The left lid is

moving with the constant velocity of V = 0.41 which leads to a ReYnolds number of

Re = pVL = 20.0.
'I

(5.21)

In order to validate our results, we compare with corresponding results obtained by the

FLUENT CFD package, which is based on discretization of Navier-Stokes equation. We

selected the 2D grid size of 160x160 which provided mesh independent results, and
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chose other parameters to achieve a Reynolds number of 20. In FLUENT we fix the

10x10 box size and select the density and viscosity as p =1 and 1] =1 respectively.

Thus, for a Reynolds number of 20.0, we require V = 2 for the lid velocity. Also for

both DPD and Navier-Stokes, we normalized the coordinates and the velocity profiles by

the domain size of 1x1 and the lid velocity of V = 1 .

We compare results of DPD and Navier-Stokes calculations in Figure 5.16 to Figure

5.18. In these figures, we present the contour fields of different velocity components.

These figures show overall excellent agreement of DPD results with bounce-normal

reflection, when compared to the Navier-Stokes simulations.

Additionally and in order to investigate and compare the DPD results more precisely, the

velocity profiles along the horizontal and vertical cut lines in different positions of

domain (x =0.25,0.5,0.75 and y =0.25,0.5,0.75) are depicted in Figure 5.19 to Figure

5.21. We observe an excellent agreement between the two methods. We only see some

inconsistency of velocity contours at the comer point which is due to different treatment

of boundary condition at these points and is unavoidable. In addition for the DPD density

profiles, we obtained almost flat profiles except for some small fluctuation near the left

moving wall.
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Figure 5.16 Contour plot of lid-driven cavity flow. Left: Total velocity of OPO simulation. Right: Total velocity of Navier-Stokes
simulation.
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Figure 5.17 Contour plot of lid-driven cavity flow. Left: V-component velocity of OPO simulation. Right: V-component velocity
of Navier-Stokes simulation.
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Figure 5.18 Contour plot of lid-driven cavity flow. Left: U-component velocity of OPO simulation. Right: U-component velocity
of Navier-Stokes simulation.
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Figure 5.19 OPO and Navier-Stokes comparison of velocity profiles. Left: U and V profiles along the horizontal line at y=O.25.
Right: U and V profiles along the vertical line at x=O.25. (OPO Results are shown with dotted lines)
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Figure 5.20 OPO and Navier-Stokes comparison of velocity profiles. Left: U and V profiles along the horizontal line at y=O.5.
Right: U and V profiles along the vertical line at x=O.5. (OPO Results are shown with dotted lines)
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Figure 5.21 OPO and Navier-Stokes comparison of velocity profiles. Left: U and V profiles along the horizontal line at y=O.75.
Right: U and V profiles along the vertical line at x=O.75. (OPO Results are shown with dotted lines)
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5.5 Conclusions

In terms of DPD refinement, we have managed to attain significant reduction in

fluctuations in important parameters such as the density and shear stress distributions

which affect the macroscopic flow properties. This was achieved by the following:

• Establishing a new bounce-normal reflection mechanism.

• Deploying a random wall particle distribution and enforcing non-penetration.

The density and shear stress fluctuations are thus controlled by the general mechanism of

this new reflection, which adds to the thermal fluctuations and pushes the particles due to

this thermal energy normally toward the bulk flow. This effectively prevents

accumulation of particles near the walls and flattens the density profile.

At this juncture, we are ready to progress to model the entropic trap geometries, and also

investigate the various particle chain models to simulate the DNA chains as they traverse

through the trap arrays.
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Chapter 6

Polynter Physics Theory, Basic Concepts and DPD

6.1 Ideal Chains

We can define an ideal chain as the simplest chain without any interactions between

monomers. The polymer chain is constructed from many internal atomistic links with

each of bond length I that can be assumed as an almost constant parameter. For each

x - X atomic bound, there exists rotational freedom which is the main source of

flexibility in polymers. This flexibility is due to the variation of torsion angles and causes

the polymer to be thought of as a long piece of string (see Figure 6.1). If there is no

variation in torsion angle of all bonds in the chain, and the torsion angle has the trans

state, then the chain attains its longest end-to-end distance or contour length of

Rmax =nl cos«(J / 2), where n is the number of bonds and (J is the angle between bonds.

Figure 6.1 The atomic and overall structure of sample polymer chain.
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First we assume an ideal or freely-jointed chain where there is no correlation between the

directions that different bonds take. In this case there are no net interactions between the

atoms associated with each bond, and all directions have the same probability and we are

thus able to map every possible conformation of an ideal chain onto a random walk and

apply all statistical properties of random walk theory to our model of a freely-jointed

chain. In this very simple approach where no interactions between monomers are

considered, the energy of the polymer is taken to be independent of its shape, which

means that at thermodynamic equilibrium, all of its possible shape configurations are

equally likely to occur as the polymer fluctuates in time, according to the Maxwell-

Boltzmann distribution. As it is shown in Figure 6.2, the end-to-end vector is the sum of

all n bond vectors in the chain, Rn = t ~ .The ensemble average of this vector is zero
;=1

(R
n

) = 0, since there is an equal probability to walk in every direction. To estimate the

length of the chain, we shall calculate the average mean-square end-to-end distance:

(Rn2 )= (Rn.Rn)= tt (r,.-Pj ) =t2tt (cos Bij)
i=l j=l i=l j=l

= n1 2
•

(6.1 )

The main assumption for the derivation of equation (6.1) is the freely jointed chain

model, Le. a constant bond length, I = I~I and no correlations between the directions of

different bond vectors, (cos (};j) = 0 for i *" j. We can define the Flory's characteristic

ratio, Cn in order to include short range interactions. This ratio depends on distances and

limits which polymer segments can interact with each other

(Rn
2

) =Cn nl 2 = Nb 2
•
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Generally the main properties of an ideal chain are described by equation (6.2). Thus a

description of all ideal polymers can be provided by an equivalent freely jointed chain

which has the same mean-square end-to-end distance (l?2) and the same maximum end-

to-end distance Rmax = N b as the actual polymer, with N freely-jointed effective bonds

of length b, which is called the Kuhn length.
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Figure 6.2 Schematic of end-to-end distance of one conformation of a flexible polymer. The vector lines
represent sample actual links in the chain and the rest of the contour of the chain is represented by curved

dotted line.

6.1.1 Radius of Gyration

Usually it is more convenient, especially for branched or ring polymers, to express the

size of polymer by the radius of gYration Rg rather than the end-to-end distance. The

R
g

2 is the average square distance between monomers

where the polymer's centre of mass is

-+ 1 ~-+
ReM =-L...JR;.

N ;=1

(6.3)

(6.4)

We can average the square radius of gyration over the ensemble of different allowed

conformations and calculate the mean-square radius of gyration as
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1 N 1 N N

(R/) = N f;(CRi-RCM )2)= N2 f;~(CRi -Ry). (6.5)

Converting the summations into integration and using equation (6.5) for an ideal-linear

chain, (R(u) - R(V»2) = (v - U)b2, one obtains the mean-square end-to-end distance of

an ideal linear chain as

(
2) 1 rN rN / -+ -+ 2) b

2 rN rNRg =N2 .b 1 \(R(u)-R(v» dvdu = N2 .b 1 (v-u)dvdu

= Nb2 =(R2
)

6 6

6.1.2 Freely Rotating and Worm-Like Chain Models

(6.6)

A freely rotating chain model assumes that all bond lengths and bond angles are fixed

and all torsion angles are equally likely and independent of each other. The correlations

of bond vector fJ at bond vector ~ are reduced by the factor (cos O)IJ-il due to

independent free rotations of Ij - il torsion angles between these two vectors such that

(~.0)=[2(COSO)IJ-il. We are able to estimate the fast decay of (coSO)IJ-i! with the

exponential function

Ccos O)li-il = expCI) - ijlnCcos 0» = exp ( J)s~ ilJ (6.7)

where Sp = -l/ln(cosO), is the number of main chain bonds in a persistence segment,

which is the scale at which local correlations between bonds vectors decay [84]. Due to

steric hindrance to bond rotation, polymer chains are never as flexible as a freely rotating

chain model. Assuming a described rapid decay, one can obtain the mean square end-to-

end distance of freely rotating chain as

(Rn2) = en n[2
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The worm-like chain model is a special case of a freely rotating chain model for very

small values of the bond angle. This is an appropriate model for very stiff polymers like

double stranded DNA for which the flexibility is dependent on the fluctuations of the

contour of the chain from a straight line rather than the rotation of bond angles.

Estimating cos 0 for small values of bond angle (0« 1) with the first two terms of the

Taylor series, one could find the persistence length or the length of the persistence

segment

(6.9)

We can also calculate the corresponding Flory characteristic ratio and Kuhn length for

worm-like chain:

c = l+cosO D~
n I-cosO 0 2

b = I Cn [J I~ =21 .
cosO /2 0 2

P

(6.10)

For instance the persistence length of double-helical DNA can be lp C 50 nm and its

Kuhn length is b 0 100nm [85, 86]. The worm-like chain is defined as the limits I ~ 0

and 0~ 0 at constant persistence length Ip ( constant 1/02
) and constant chain contour

length Rmax = nl cos(O /2) Dnl. Using the exponential decay of correlations of bond

angles, we can estimate the mean square end-to-end distance of worm-like chain

(6.11 )

Two limits for equation (6.11) can be characterized, namely the ideal chain and rod-like

limits.
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!(Rn
2

) 0 2lp Rmax = bRmax

(

--0 2 ) 2Rn 0 Rmax

Rmax »lp

Rmax «lp'
(6.12)

The important difference between freely jointed chains and worm-like chains is the

rigidity of the chains in scales smaller than the Kuhn length b, i.e. the worm-like chain

is not completely rigid and can fluctuate and bend at length scales shorter than b.

6.1.3 Probability Distribution of End-to-End Distance of an Ideal

Chain

Every possible conformation of an ideal chain can be mapped onto a random walk. A

particle making random steps defines a random walk. If the length of each step is

constant and the direction of each step is independent of all previous steps, the trajectory

of this random walk is one conformation of a freely jointed chain. Hence, random walk

statistics and ideal chain statistics are similar [84]. Knowing this similarity, we can easily

obtain the one-dimensional probability distribution function for the components of a

random walk along each of the three axes in space

~D(N,Rx) 1 (R 2 ]

J2tr(R
x

2 ) exp - 2(~/)

/3 (3R 2

J=~~exp - 2N~2 .

(6.13 )

The above equation is obtained by assuming (R 2
) = (Rx2

) +(R/) + (Rz2 ) = Nb 2 and the

equivalence of the three Cartesian axes, (Rx2
) = (R/) = (Rz2

) = Nb 2 /3. Also, it is

important to note that in extracting equation (6.13), some approximations are used, and

we shall term this equation a Gaussian approximation. Since the three components of a

three-dimensional random walk along the three Cartesian coordinates are independent of
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each other, the three-dimensional probability distribution function is the product of the

three one-dimensional distribution functions

-- ( 3 )3/2 (3R2 J
~D(N,R)= 2 exp ---2 .

21CNb 2Nb
(6.14)

The above equation shows the possibility of finding polymer of N segment to achieve

the conformation with end-to-end vector of R (also see Figure 6.3). It is obvious that the

probability distribution of R is Gaussian which is natural result of random walk theory.

We can also derive the equation (6.14) using the central limit theorem that defines the

normal distribution (Gaussian distribution) of end-to-end vector.

Normlllizedend-Io-enddit1an<:e

Figure 6.3 Normalized distribution function of end-to-end distances of an ideal chain with different
number of segments.

6.1.4 Free Energy and Entropic Elasticity of an Ideal Chain

The entropy of a freely jointed chain of N monomers with end-to-end vector R is

S(N,R) = kB InQ(N,R)
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where k is the Boltzmann constant and n(N, ib is the number of configurations of the

chain with N monomers which has the end-to-end vector of R. Using the definition of

the probability distribution function

(6.16)

and substituting equation (6.14) to equations (6.15) and (6.16), one can obtain the

entropy of an ideal chain

_ 3 RZ

S(N,R) =--kB-Z +S(N,O),
2 Nb

S(N,O) =~kB In(_3-z)+kBIn( fn(N,R) dR).
2 2Jrnb

(6.17)

We can find the Helmholtz free energy of the chain which is

F(N,R)=U(N,R)-TS(N,R), where T is the absolute temperature and U is the

energy of an ideal chain which is independent of the end-to-end vector because the

monomers have no interaction energy. The free energy can be simplified to

- 3 RZ

F(N,R) = -kBT-z + F(N,O)
2 Nb

(6.18)

where F(N, 0) = U (N, 0) - TS(N,O) is the free energy of the chain when both ends are at

the same point. It is crucial to note that the largest number of chain configurations

corresponds to zero end-to-end vector. The number of conformations decreases with

increasing end-to-end vector, leading to the decrease of polymer entropy and increase of

its free energy [84]. The quadratic dependence of free energy with end-to-end vector

implies that the entropic elasticity of an ideal chain satisfies Hooke's law. This means

that if we want to hold a chain at a fixed end-to-end vector R we would need a force of

(6.19)
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The above equation is the Hooke's law for an ideal chain and the term 3kT / Nb 2 is

called the entropic spring constant coefficient of linear dependence of entropic force with

respect to end-to-end vector. It becomes harder to elongate polymers when they are

stretched because there are fewer possible conformations for larger end-to-end distances.

Although other materials like metals and ceramics become softer as temperature is raised

(their deformations are due to atomic displacement, i.e. energetic elasticity), polymers

become stiffer with increase of temperature due to the entropic nature of their elasticity.

It should be noted that in the derivation of equation (6.19) we use the Gaussian

approximation of probability density function which is only valid for

(R) « (Rmax = bN). Additionally we can adjust the limit of force to be of order of

kBT / b so that Hooke's law is applicable. Considering the effects of non-linearties will

result in more complex formulations. For instance, in a freely jointed chain, the average

end-to-end distance corresponding to a given force is [84]

(6.20)

It should be noted that the existence of random process in chain models leads to there

being no simple analytical solution for the worm-like chain model at all extensions, and

finding an accurate solution usually requires computer simulations. The best and earliest

model was introduced by Marko and Siggia [87]

(6.21 )

The Marko-Siggia expression shows convergence to a good solution as

(R) ~ 0 or (R) ~ Rmax • However, Bouchiat et al. [88] subtracted the Marko-Siggia

interpolation formula from the exact numerical solution of the worm-like chain model
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and expressed the residual as a seventh-order polynomial leading to an accuracy better

than 0.01 %

fb (i?) 1
--+-~--

2kBT - Rmax 4(1- (i?) /R
max

)2

1 7 /-)

4+ IaiL
;=2 Rmax

(6.22)

where the coefficients a; are a2 = -0.5164228, a
3

= -2.737418, a4 = 16.07497 ,

as = -38.87607, a6 = 39.49944, and a7 = -14.17718. In Figure 6.4 we have plotted the

normalized stretching force (jb /(kBT)) versus the normalized average end-to-end

distance (i?)/ Rmax for a Gaussian chain [equation (6.19)], freely jointed chain [equation

(6.20)], and three models of worm-like chain. Also, for a worm-like chain, the exact

numerical solution is shown in Figure 6.4 which is obtained from [88]. From this figure

we find that for very small extensions, all the models predict the linear elastic

characteristics of the Gaussian chain model (Hookean spring). For larger extensions

there is significant divergence between the different models. Another criterion which can

be observed from Figure 6.4 is that the largest divergence of Marko-Siggia expression

from exact solution occurs when (i?)/ Rmax Z 0.5 and it is around 10%.
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Figure 6.4 Plot of normalized stretching force versus normalized average end-to-end distance for a
Gaussian chain equation (6.19), freely jointed chain equation (6.20), and three models of worm-like chain.

The data for exact worm-like chain (A) are from [88].

6.2 Non-Ideal Chains (More Realistic Polymers)

In the ideal chain model we assume that the chain is able to fold over itself so that the

segments which are far away can occupy the same volume and this is due to the

assumption of random walk (flight) motion of monomers without any limitations. This

model of ideal chain is not completely true and physically impossible since each

monomer occupies only its own position in the space. If we impose the limitation such

that each monomer can move randomly but cannot visit the same position more than

once, we attain the real chain's conformation. The restraint that real chains cannot cross

each other is called self-avoiding walk and the polymer thus represented is often called

the excluded volume chain. Assuming no overlapping restriction we would expect the

end-to-end distance distribution to be shifted to larger values. The excluded volume
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effects and correspondingly the type of liquid in which the polymer is dissolved cause

the ends of a polymer chain in a solution to be further apart (on average) or less away

(shrunken) than they would be were there no excluded volume effects.

The formulation for the size of the real chains can be derived with some corrections in

probability distribution function as in [89] for simple cases, or using more complicated

mean-field calculations of Flory [90]. The derivation of these distributions is beyond the

scope of current work and here we just summarize the most important final results for

different cases from [84]. Following we consider five cases for different conditions of

solvents which directly affect the chain conformation.

Athermal solvents ~ R = bN I/2

( )

2V-I

Good solvents => R = b ~; N V

B-solvents ~ R = bNv

Poor solvents => R = IEVI-
1/3

b2N I/3

Non-solvents => R = bNI/3

We can have the exact same situation as the ideal chain conformation when the attraction

between monomers exactly balances the whole effects of hard core repulsion. Thus the

net excluded volume effect is zero, EV =0, and the coil size behaves like its ideal

conformation and this corresponds to cases involving B-solvents. The temperature at

which the solvent adjusts the polymer to its ideal size is called the B-temperature. The

chain size is defined as in equation (6.2), i.e. R = bN1I2
•
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In the situation where the attraction between the monomers is unable to overcome the

hard core repulsion, we will have the positive excluded effects and the chain will tend to

expand more than its ideal conformation. This usually occurs when the temperature is

higher than the () -temperature, where the chain is at its ideal adjustment

(6.23)

In the case of poor solvent and below the () -temperature, the attraction between the

monomers is so strong compared to hard-core repulsion, and the excluded volume is

negative such that the chain collapses into a small globule of size

If the temperature goes far below the () -temperature, we will have the pure attraction the

between monomers and the excluded volume is in its higher negative value EV = _b3
•

This lowest limiting case is termed non-solvent and the chain takes its fully collapsed

conformation in this condition

(6.25)

(6.24)

In an athermal solvent the interactions between monomers of the chain are identical to

their interactions with the surrounding solvent and as a consequence the net interactions

between the monomers are zero but there remains hard core repulsion between the

monomers. In this situation the excluded volume is independent of temperature and is

constant, EV = b3
, and the chain only has the condition of self-avoiding walk of the

monomers. The size of the chain can be thus estimated by

(6.26)

We note from the results that the good and poor solvents are better suited for very long

chains, while for the short chains it is the ideal chain condition that is better suited.
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If we look at all the above formulations for different solvent conditions we see the

contribution of the exponent parameter v which is usually termed the characteristic

critical exponent. The scaling theory for polymer solutions states that all physical

properties and especially the polymer size can be expressed by the simple power law

R = N V
• For the case of good solvent, Flory [91] found the exponent value using

statistical scaling arguments, and obtained

3
V=--

d+2
(6.27)

where d is the spatial dimension. Equation (6.27) shows a good agreement with other

simulation and experimental techniques. In Table 6-1 we summarize the most important

exponent values for two and three dimensional chain conformation under two solvent

conditions. Also, for B-solvents we can use the same exponent as the good solvent.

Table 6-1 Two and three dimensional critical exponent for different solvent conditions.

Solvent condition

Exponent value V 2D

Exponent value V 3D

Athermal

solvents

0.5

0.5

Good solvents

(Flory's Formula)

0.75

0.6

Good solvents

(Simulation [92])

0.77

0.588

6.3 Coarse-Grained DPD Simulation of Polymer Chain

When investigating more into polymeric systems and especially biological ones like

DNA strands, we find that both micro and macro dimensions are involved in the

evolution of these systems. For instance the contour length of A-phage DNA is

L = 21 pm while its diameter is only few nanometers (around 2 nm ).There are thus

different length and time scales involved. This complexity requires a coarse-grained
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approach which ignores details of the polymer's conformation under a certain length (for

example the Kuhn length), to efficiently simulate the conformational changes. There are

two methods for modeling chains in the coarse level; one is the bead-rod chain which

models each segment of polymer with rigid links of fixed length (Kuhn length) and the

other is the bead-spring chain. In the following section we introduce the bead-spring

chain model which is a coarser model for polymer chains and has more flexibility than

the bead-rod model.

6.3.1 DPD Polymeric Models

An attractive method for the simulation of polymers is the DPD. Though this

methodology has a good consistency with available experimental data, there still exists

certain difficulties when simulating the polymer's rheology with DPD. In [9] the DPD

was applied for studYing the polymer's static exponent where the polymer was modeled

as a stiff and Hookean linear spring and the exponent value was found to be v = 0.52 .

Later in [93], effects of solvent quality on the scaling of the polymer radius of gyration

and its dynamical relaxation time were investigated and for a three dimensional situation,

the static exponent was found to be v = 0.6. Groot and Warren [6] mapped the DPD

parameters to real water using the velocity Verlet algorithm with /)"t = 0.04 and in

addition they obtained the Flory-Huggins parameter for different polymer sizes using the

Hookean spring model. Employjng the same time integrating scheme of [6], Groot et al.

[11] simulated block co-polymer separation using DPD. In [94], the Hookean spring

force was used to find the diffusion coefficient and the scaling exponent for two

conditions of polymers in dilute solution and polymers in melt.
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Figure 6.5 Lennard-Jones potential and the soft-repulsive potential after averaging. Figure extracted from
[95].

As we have mentioned in Chapter 4, the DPD equations are stochastic and nonlinear

because of the velocity dependence of the dissipative force. In addition to the difficulties

of finding appropriate time integrating scheme for this stochastic nature of the DPD

algorithm, we may face other problems when simulating complex fluids. In particular,

the use of the Lennard-Jones potential for each bead pair requires smaller time step

compared to soft repulsion of typical DPD particles (see Figure 6.5). Due to the presence

of both soft and hard potentials, Symeonidis et aI. [95] proposed the use of time-

staggered algorithms to study the polymeric physical quantities (such as end-to-end

distance or radius of gyration) efficiently.

In addition to the conservative, dissipative and random standard DPD interactions for

every particle in the flow, the polymer chains are subjected to intra-polymer forces (for

each bead pair). The literature [96] suggests that we can model these forces using
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combinations of the following potential types U, and accordingly find the pairwise

Lennard-Jones

:for (LlliY<2

:otherwise.
(6.28)

Hookean spring

U HOOKE = ~lri+J -rJ for i = 1,2,...,N-1.

Fraenkel stiff spring

Finitely extensible nonlinear elastic (FENE) spring

(6.29)

(6.30)

K 2
U FENE = -"2 r: In(l

Worm-like chain (WLC)

for i = 1,2, ..., N -1. (6.31)

FWLC = _.l5.L[(1_.-l)-2 + 4lij -l]e.
I) 4..tejf L L I)

P sp sp

(6.32)

The Lennard-Jones potential cannot be used solely for interbead interactions since it

creates pure repulsive force which causes the chain to break, so we need to combine it

with other attractive potentials. It is interesting to note that when using the combined

Lennard-Jones potential with some other spring forces, we may capture the excluded

volume effects solely through the pairwise chain interactions without direct interference

of the solution. In all of the above equations, K is the spring constant which has the unit

of kBT/ ,",,2, taking different proportionality factors of this unit for different problems.
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The Fraenkel spring has a finite equilibrium length req below which the spring will exert

a repulsive force, and above which the spring exerts an attractive force. This is in

contrast to the Hookean spring potential which always produces a pure attractive

interbead force. The rm in the FENE spring potential, see equation (6.31), is the

maximum extension length of the chain beyond which the attraction becomes infinite.

Equation (6.32) describes the worm-like chain pairwise interaction as it was described

earlier in more detail in section 6.1.2. Here similar to I , Aeff is the effective persistencep p

length which is the measure of chain's stiffness and Lsp is the maximum length of each

chain segment. It is interesting to note to the similarity in form of equation (6.22) for a

comprehensive polymer stretching model and equation (6.32) for the bead-spring model.

The analogy of these two equations comes from replacing the long chain to smaller

chains extracted by the relation of each of the beads with the entire contour length, Le.

!L". (8.)
Lsp Rmax

We can implement any of the above mentioned potentials at simple equilibrium state and

investigate the scaling laws. Selecting the appropriate model which matches well with

the experimental data of our application is essential. Figure 6.6 shows the freely

suspended chain in a typical solvent using the DPD simulation with the WLC bead

spring forces.
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N 5

y

Figure 6.6 A 40 bead 3D polymer chain at equilibrium state in a periodic box of solution.

6.3.2 DPD Simulation of Worm-Like Chain in a Dilute Solution and

Scaling Laws

In this section we investigate the dynamics of single polymer chains of different sizes in

a dilute solution. We used the DPD to simulate two dimensional cases and different

parameters are explored to determine the scaling exponent as a measure of excluded

volume effects. Also, different solvent conditions are examined in order to achieve real

chains behaviors. Since our application in the next chapter is related to DNA migration

we are more interested in the simulation of WLC which is one of the best models that

can capture DNA physical conformations.

Since all the simulations we carried out involve the WLC and no LJ potential is

involved, there is no need to use any time staggered scheme. For time integration and

especially choice of time step, we may face difficulties if it is not properly selected

mainly during the initialization of the chain and also for fast changing field phenomenon,

which may arise in our DNA application in the next chapter. As we are using the WLC

force of equation (6.32) and when each segment length approaches near maximum spring
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length Lsp ' the spring force may become too large such that the net exerted force by the

surrounding particles is unable to compensate in kind. In this situation if the time step is

not decreased the distance between the beads of the chain would drastically increase and

the chain may break. In order to overcome this, we select a main time step of

(~t)main = 0.02 and dynamically refine it according to the current chain segment length

~j' in the following manner:

If Ii) ~ 0.85 Lsp then ~t = (~t)main'

If 0.85 < Ii) ~ 0.9Lsp then ~t = (L~t)main /2.

If 0.9 < Ii) ~ 0.95Lsp then ~t = (~t)main /4.

If 0.95L, < r.. then ~t =(~t) . /8 and FI·~LC = FI'J~LC 1( ... =095L ) •
~p I) main IJ 'ij . sp

We track the length of every segment of the chain and we use the time step associated

with the longest segment for calculating the evolution of all particles in the system.

Another issue is proper application of the periodic conditions for the chain beads and

how these beads interact with each other and other solvent particles. This issue can be

handled by storing the position of the chain beads in two different coordinates. The first

is the unmapped or real chain coordinate which allows us to calculate the interbead

forces. The second is the coordinate similar to the coordinate of all other particles which

the polymer beads can freely move in and can have the periodic conditions similar to the

solvent particles. The latter is helpful for estimating the interactions of polymer beads

with solvent particles and we shall term these beads as ghost particles. It should be noted

that both mentioned coordinates are identical when the chain beads are in dimensions
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less than the box sizes. In Figure 6.7 the schematic representation of both real and ghost

chain particles is shown.

e.:q.;
....

Figure 6.7 The 20 representation of a 128 bead chain (blue balls) in a 20 X 20 simulation box. The
yellow crossed circles show the positions of the ghost chain beads. The small green dots represent the

solvent particles.

To explore the effects of different parameters on the scaling of the chain, we shall

examine two dimensional cases since it takes significantly less computational time than

3D simulations. The dilute solution condition is mimicked by immersing the single

chains in ocean of DPD particles within a periodic box of size lOin each direction.

Using the described periodic chain methodology, the effect of box size is negligible. We

choose the WLC of equation (6.32) in all of the cases and the corresponding static

exponent values v for both radius of gYfation and end-to-end distance, are computed for

each case, using 5, 10, 20, 50 and 100 bead chains. The main DPD simulation

parameters (the 2D run parameters) are listed in Table 6-2. We run simulations for

250,000 time steps and average all quantities over the last 10,000 steps. Thi s large

integration time is not necessary for short chains but it is essential for longer chains (100

beads or longer) where the relaxation times are much longer. The scaling exponent is
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estimated by fitting a line to first four or five points in log-log plot. We eventually used a

4 point fitting (for 5, 10, 20 and 50 bead chains) since larger simulation time is required

for complete relaxation of a 100 bead chain. In addition, the chain temperature absolute

error, the ratio (R 2 )/(Rg
2

) and the chain average contour length per bead Lc are

computed. In the following, the 5 point line fitting of radius of gyration is discussed

unless otherwise stated.

In order to verify our DPD source code we simulate one 3D case with parameters similar

to [96] and the results are shown in Figure 6.8. We obtained the exponent value of

V =0.5521 which is in a very good agreement to the value V =0.5516 in [96].

First we increase the persistence length from 2;ff = 0.05 to 2;ff = 0.15 to obtain better

scaling exponent values as represented in Figure 6.9 and Figure 6.10. Increasing the

persistence length causes a rise in chain temperature so we correspondingly increased the

maximum segment length to Lsp = 1.5 (see Figure 6.11 and Figure 6.12). We analyzed

Figure 6.9 to Figure 6.12 and found a very logical trend that increasing maximum

segment length Lsp or persistence length 2;11' caused the chain beads to have more space

to interact with solvent particles and this results in better excluded volume effects as the

exponent values rise from V = 0.6994 to V = 0.7304 .

Next we examined the solvent quality by altering the polymer fluid repulsion parameter

from apf = 0.5aff to apf = 1.25aff . From the results in Figure 6.13 to Figure 6.15 we

observe that the scaling of radius of gyration decreases from V = 0.7425 to V = 0.4720

for 4 points line fittings. This is due to the fact that as we increase apf the solvent

particles are repulsed from the chain and the chain tends to fold over itself and collapse.
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On the other hand, decreasing api leads to more attraction of the chain segments toward

the solvent and thus better expansion of the polymer segments into the fluid and this

enhances the excluded volume effects.

Table 6-2 OPO simulation parameters for 20 simulation.

dt

4 18.75 3 0.02

Finally we define S as the minimum number of neighboring polymer beads that could

sense the original conservative bead-bead force, i.e. when Ii - Jl
pp
~ S , we set different

values for the polymer-polymer repulsion parameter a pp' This allows us to alter the

bead-bead interaction for different distances along the chain segments and as a result the

neighboring segments may able to fold softly while remote beads expel each other

strongly. For instance, in the case of Figure 6.16, setting S =2 and a pp =2aff result in

better scaling laws v =0.7685 for 4 point radius gyration fitting.

One remarkable observation from all above results is the ratio (R 2
) I(R

g
2) which

apparently can be used as another measure of chain discrepancy from the ideal chain

condition where (R 2 )/(R/) = 6 according to equation (6.6). From the results we

observe that when the scaling laws exponent values are improved, the values of this ratio

are greater than 6.
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Figure 6.9 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio ~,22~ (red) and the chain

temperature absolute error (blue). Simulation parameters: Lsp = 0.5, A;JJ = 0.05, apf = a JJ ' Lc = 0.253.

Figure 6.8 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio (::)) (red) and the chain

temperature absolute error (blue). 3D Simulation parameters: Lsp =2, A:f =1/7 , apf =a JJ ' kBT = 0.2, Lc = 0.695.
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Figure 6.10 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio (~g22~ (red) and the chain

temperature absolute error (blue). Simulation parameters: Lsp = 0.5, ),,;JJ = 0.15, apf = an ' Lc = 0,304.
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Figure 6.11 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio (~g22~ (red) and the chain

temperature absolute error (blue). Simulation parameters: Lsp = 1, ),,;! = 0.15, apf = aJJ , Lc = 0.434.
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Figure 6.12 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio (~,22~ (red) and the chain

temperature absolute error (blue). Simulation parameters: Lsp =1.5, J&.;Jl =0.15, apf = aff ' Lc =0.525.
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Figure 6.13 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio (~)) (red) and the chain

temperature absolute error (blue). Simulation parameters: Lsp =1.5, J&.;ff =0.15, a
pf

= 0.75a
ff

, L
c

=0.613.
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Figure 6.14 Left: Scaling of radius of gyration (red) or end-to-end distance (blue), Right: Ratio (~g22~ (red) and the chain

temperature absolute error (blue). Simulation parameters: Lsp =1.5, A;ff =0.15, apf =0.5aff , L
c
=0.667 .
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Figure 6.15 Left: Scaling of radius of gyration (red) or end-to-end distance (blue). Right: Ratio ~g2)) (red) and the chain

temperature absolute error (blue). Simulation parameters: Lsp =1.5, A;ff =0.15, apf =1.25aff , L
c
=0.485.
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Figure 6.16 Left: Scaling of radius of gyration (red) or end-to-end distance (blue), Right: Ratio (~22~ (red) and the chain

temperature absolute error (blue), Simulation parameters: L,p =1.5, A;ff =0,15, apJ =aff, L, =0,566, S =2, app =2aff'
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Chapter 7

Dissipative Particle Dynantics SilDulation of DNA

Separation in Entropic Trap

7.1 Motivation

Microtluidics and more recently Nanofluidics are advancing fields traversing over vast

areas of engineering, physics, chemistry and biotechnology. More importantly,

micro/nano devices are fabricated in order to carry out highly efficient as well as

simultaneous analysis of particles, molecules or cells such as in genomic, proteomic, and

metabolic applications in biotechnology. In addition to the natural complexity of these

devices (in terms of time and length scales) there may involve geometrical complexity as

well as suspension of different particles or macro molecules. Achieving appropriate and

optimized design for specific application requires advancements of the related electro­

mechanical devices, in terms accuracy and speed of analysis. This development of

micro- and nano-electromechanical systems (MEMSINEMS) is leading to the need for

continuous improvements in the modeling approaches. Numerical simulation is a way to

model these complex systems, which usually involves simulation of coupled electrical,

mechanical, thermal and fluid domains.
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Chapter 7: DPD Simulation of DNA Separation in Entropic Trap

Here our focus is on these micro/nano channel devices, consisting of many entropic

traps, which are designed and fabricated for the separation of long DNA molecules. The

channel comprises narrow constrictions and wider regions that cause size-dependent

trapping of DNA strands at the onset of a constriction. This process creates

electrophoretic mobility differences, thus enabling efficient separation without the need

for gel matrices or pulsed electric fields [1-3]. Simulation and in particular numerical

simulation is an efficient way to investigate the complex flow in the related electro­

mechanical devices and to understand the underlying physics and chemistry of the flow

characteristics. For the purpose of simulation we choose the Dissipative Particle

Dynamics (DPD) method, which is an appropriate mesoscale simulation approach due

not only to its relatively larger time and length scales (compared to molecular dynamics)

but also its ability to model rheology of complex systems with relative ease compared

other mesoscale techniques.

7.2 Entropic Trapping - Theory and Experiment

7.2.1 Experimental background

DNA separation is important for various biological analyses, such as DNA fingerprinting

and genome sequencing. Gel electrophoresis is the standard method for separation of

DNA by length. However, it is efficient only for DNA molecules up to about 40kbp (kilo

base pairs), where beyond this limit mobility difference is diminished. Slab gel pulsed­

field gel electrophoresis (PFGE) can be used to separate longer (a few mbp) double­

stranded DNA (dsDNA), but in addition to the length limits the process usually takes

several days if not weeks. Advances in the field of micro-total analysis systems (/-1-

TAS) and especially the lab-on-a-chip devices provide many researchers with the
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capability to propose novel separation mechanisms using these micro- and/or nano­

fluidic devices. Turner [97] presented a device capable of separating DNA molecules

according to their length. This device consists of pillar-free and pillared regions. A dense

matrix of nano-pillars each with a diameter of 35nm, and spacing of 160nm is fabricated

in the pillared region. When the driving electric field is applied, DNA molecules are

forced into the pillared region where they are stretched to fit nano-channels inside the

pillar matrix. When an entire small molecule enters the pillar matrix and only part of a

large molecule enters, the electric field is turned off. The large molecule will recoil back

in the pillar-free region because of the tendency to maximize its conformational entropy

while the small molecule remains inside the matrix due to uniform entropy. In this

manner, molecules of different lengths can be separated. Bakajin [98] devised a micro­

chamber with hexagonal array of pillars 2J.lm wide where transverse pulsed electrical

fields are applied alternatively along two axes of the array, separated by 120 degrees.

Shorter molecules move faster in the array because they spend less time to reorient

themselves along the axis of the field and longer molecules use most of the pulse period

to align entirely to the axis of the field. Huang [99] applied a similar concept and

fabricated a DNA prism where DNAs of different sizes are forced to follow different

routes inside the micro-structured sieving matrix under an asymmetric pulsed electric

field.

For efficient separation without the use of gel matrices or pulsed electric fields, Han et

al. [1-3] designed and fabricated an entropic trapping array, which consists of alternative

deep and shallow channels, to separate long DNA molecules (>2 kbp). These silicon

based periodic constriction channels are fabricated using standard etching techniques and

are enclosed with a Pyrex cover plate as shown in Figure 7.1. The DNA molecules are

suspended in the cathode side of the device which is filled with buffer solution before the
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start of the separation process. The DNA molecules start traveling from the cathode

towards the anode when a dc electric field is applied. The shallow section is much

smaller than the moving molecules' radius of gyration such that the molecules must

change their conformations and uncoiled in order to pass through the channel. Size­

dependent trapping is produced because entropic free energies for DNA molecules of

different sizes are different. Thus, the separation is enabled using micro-fabricated

entropic trapping array. More recently and following Han's work, Fu [l00] introduced an

anisotropic nano-filter array (ANA) for continuous-flow bio-molecule separation, where

both small (short) and long molecules can be separated through Ogston sieving and

entropic trapping mechanism respectively. He similarly demonstrated the separation of

proteins with different charges with ANA [101].

7.2.2 Theoretical aspects

In the trapping array device of Han et al. [1-3], the authors observed counterintuitive

phenomenon in that "longer DNA molecules found to escape faster than shorter one".

They proposed a simple kinetic theory (hernia nucleation in [102] or beachhead scenario

in [103]) to obtain more insight into the separation mechanism which we shall review

here briefly. Crossing over the thin region of channel requires the overcoming of the

entropic barrier. The existence of this barrier is due to the conformational change and

uncoiling of the DNA in the gap which reduces the entropic elasticity of the chain. The

electric field drives the DNA towards the gap and the high intensity field region of the

gap sucks the chain hernias at the entrance of the gap. Entering nucleated hernias with

longitudinal length of x inside the gap causes decrease of the total energy by x 2Es while

the conformational free energy penalty cost is proportional to xT, where Es is the

electric field strength in shallow region and T is the temperature. Therefore the total free
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energy difference during the escape process is I1F = xT - x2 Es • In intermediate electric

field strengths, the escape of the DNA chain from the shallow region begins when a

certain amount of DNA length Xc (critical hernia size [102]) is pushed into the gap

longitudinally and at this time the free energy difference reaches its maximum which

scales as I1Fmax Da / Es ' where a is a constant that depends solely on experimental

setup conditions and is not a function of the length of the chains [2]. Assuming the

electric field dependence of energy barrier, the probability of escape would be

proportional to exp(Mmax / kBT) = exp(a / EskBT) where kB is the Boltzmann constant.

In the condition of intermediate fields and at low Es the entropic penalty dominates and

the DNA chains retard into well while at high Es the chains pass the energy barrier

easily and escape from the trap. The long chains have higher probability of the

monomers to contacting the gap region so the rate of escape for long DNA is higher than

shorter ones. The authors [2] proposed the following simple expression for the trapping

time of the chain:

(7.1 )

where 1:'0 is dependent on the strength of electric field and chain length. 1:'0 decreases as

the DNA size increases and this implies the size-selective separation of the designed

microfluidic device. Based on equation (7.1), the authors [2] predicted that the trapping

time and more specifically the selectivity depend on structural parameters like the depth

of well and shallow region and the length of channels as well as the strength of applied

electric field and they proved this experimentally.

116

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



117

Chapter 7: DPD Simulation of DNA Separation in Entropic Trap

bufter
solution

i FI~Jore$cence

microscopy
observation

DNA

mesoscopic numerical techniques that have been applied in this area.

very expensive, if not completely infeasible. Furthermore, the mechanical properties of

used for understanding the separation process. Apart from DPD, the Monte Carlo (MC)

method and the more widely used Brownian Dynamics (BD) simulation are examples of

(A) Pyrex coverslip

Figure 7.1 schematic diagram ofnanofluidic separation device (adapted from Han et al. [1-3])

A: cross-section of two period of the device. B: experimental setup.

total experimental time has the scale of order of several minutes. Due to the molecular

from dozens of nanometers to several micrometers. In addition traveling and

Cathode(-)---

length scales. The micro-channels used in the DNA separation have characteristic size

Besides some of the mentioned experimental studies, numerical simulation provides an

scales involved, direct simulation techniques, such as molecular dynamics (MD), are

alternative route to study DNA separation processes which involve different time and

DNA are actually physically relevant at mesoscopic scale (0.1 flm) level and can thus be

conformation of DNA in each trap is in the micro-second time scale regime, while the

7.2.3 Numerical Simulation
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Using the Monte Carlo Technique, Tessier et al. [102] simulated the flow of DNA

through entropic trap arrays where the polymer is modeled by a lattice model with bond

fluctuation. Their results mostly confirmed the qualitative observation of Han et al. [1-3]

that longer molecules were trapped for a shorter time due to high probably of hernia

nucleation and the deformation of molecules at the gap entrance. However, the trapping

time was unexpectedly long in their simulation and it may be due to the discrete lattice

chain model. In the Monte Carlo simulation of Chen and Escobedo [104], the free energy

barrier for escape M max as a function of chain length was examined in different electric

field regimes and in the intermediated fields (LlFmax 0 kBT) they confirmed that trapping

lifetime decreases as the chain length increases. In addition they showed that in weak

electric fields the main controlling factor in the escape process is

exp(Mmax / kBT) = exp(a / E.~kBT) term while at moderate to strong fields To is dominant

prefactor.

Streek et al. [105] performed BD simulations to model the same process using the chain

model with Hookean linear spring force to represent the DNA. They found two key

mechanisms which contribute to longer trapping lifetimes for smaller molecules, namely

the probabilistic delayed entry of the short chains at the entrance of constriction and the

diffusion of small molecules to the corner of the well. The latter may be explained by the

shorter chains having higher diffusivity, such that the small molecules have more inertia

to escape from the electric field lines and trapped in the deep regions.

To our knowledge, Panwar and Kumar [106] have done the most comprehensive work in

characterizing time scales involving electrophoresis of polymer chains through

constrictions. They modeled the polymer as a freely jointed linear bead-rod (Kramers)

chain and used BD simulations in order to identify three time scales, i.e. T ,T T andapp ac
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"cross' Their results are characterized in different conditions of varying electric filed

strength, size of narrow channel and problem dimensionality (2D and 3D). They found

that the approach time "app' which is related to the motion of the polymer in the deep

region towards the entrance of constriction, and activation time "act' which defines the

time scale for overcoming entropic barrier, are both decreased as the sizes of the

molecules become larger. However the traveling time through the shallow region "cross'

increased upon increase of the length of the chains. Furthermore, they dentified crossing

mechanisms involved in polymer electrophoresis through confined geometries and

nanopores.

More recently and in similar manner, Lee and 100 [107] used the worm like chain

(WLC) models and performed BD numerical experiments for the electrophoretic motions

of both linear and branched polyelectrolyte molecules traversing entropic traps. In

addition, they applied the coarse grained bead spring model to investigate the effects of

polymer topology and found the radius of gYration to be the dominant factor influencing

time scales during escape of polymer through the entropic array.

In most of the above simulations, several important physical phenomena were not

considered, these include:

• According to [108] , the surface of channel walls may be negatively charged during

the experiment generating electroosmotic flow which slows down DNA molecules

from their migration towards the anode. Since in most experimental conditions the

induced forces from electroosmotic flow on chains segments were found to be weak,

this effect was neglected. However electroosmotic flow is strengthened in intense
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electric fields and high buffer concentrations which lead to converging or diverging

flow patterns as well as circulation.

• Debye screening length of DNA in usual buffer solutions is of the order of a few

nanometers. However the persistence length of DNA is about 50 nm , thus

electrostatic interactions between monomers were omitted.

• DNA and solvent hydrodynamic interactions were neglected. The assumption was

made by the argument that the induced friction by motion of counter ions cancels the

hydrodynamic flow generated by the migration of chain segments in the cases of free

solution electrophoresis. However, according to Viovy [109], hydrodynamic

interaction is not negligible for DNA undergoing electrophoresis. Jendrejack et al.

[110] also claimed that a hydrodynamic interaction model will generate results

which are in qualitative agreement with experimental data. Moreover, the

cancellation argument is not valid if the chain blocked by an obstacle [Ill, 112] and

this is the case especially near the entrance of the constriction.

• Both hydrodynamic and electrostatic interactions between chains and the walls are

disregarded. This could be unnatural, since the walls are being charged during the

process and have some electrostatic effects especially during the migration of

polymer through the shallow region and when the chain contacts the walls or are very

close to the wall boundaries. In addition, walls always induce hydrodynamic effects

thus affecting flow patterns as well as chain trajectories.

• Some authors have not taken into account the excluded volume interactions.

However, it is obvious that the chain segments do not overlap each other and cannot

occupy the same position.
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Bearing in mind the above restrictions, we investigate an alternative approach in order to

simulate the migration of DNA through constriction. We find dissipative particle

dynamics (DPD), which is a mesoscopic method that can bridge the gap between

atomistic simulations and continuum network simulations, as an appropriate tool to

explore the process. Using the DPD technique with appropriate parameters, we can

naturally capture some of the dYnamical and rheological properties, such as the

hydrodynamic interactions, the DNA-wall interactions and excluded volume effects. In

particular, the DPD is becoming noted as a promising method for the simulation of

complex fluids such as suspensions of DNA, polymers and colloids, and thus it is more

easier to simulate electroosmotic effects with DPD than other techniques.

7.3 Description of Simulation Model and Parameters

7.3.1 DPD Algorithm and Chain Model

DPD algorithm was explained in detail in detail in Chapter 2 and the time evolution of

the system is adopted using the velocity Verlet algorithm equation (4.6) with the same

parameters described earlier Table 7-1 lists the parameters used in the present DPD

simulations.

Table 7-1 OPO simulation parameters.

kBT

0.2

Pf

4

Pw

6

rc
a

3

dt

0.02

We employ the WLC model that was described earlier in Chapter 6 and the chain

par,ameters are shown in Table 7-2, where Q if is the repulsive force coefficient between

fluid-fluid particles, Q pp that between polymer-polymer, a pf that between polymer-fluid,
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awf that between wall-fluid and a pw that between polymer-wall. The choices of these

coefficients are based on the results obtained in the previous chapter, the quality of the

solvent and the excluded volume effects. In addition to all the inter-particle forces, the

electrical force (see next section) is applied on each bead according to the chain position

in the channel.

Table 7-2 Simulation parameter sets for WLC model.

a.lf =a pp =a pf

0.106 20r4 3.75 5.6 7.5

7.3.2 Microchannel Geometry and Wall Boundary Conditions

The electrophoretic motion of DNA is mimicked by distributing uniform charges q

among each of the beads in the chain. In order to find the driving force, the 2D electric

potential ¢J(x, y) in the channel was determined by solving the Laplace equation

V 2¢J =O. The equation was solved numerically, using a second-order finite difference

scheme on a very refined mesh of size L\.x = ~y = 0.04 . The channel walls are insulated

implying zero electric flux or von Neumann boundary conditions at surface boundaries

(n. V ¢J =0, where n is the wall normal vector). We enforced the periodic voltage drop

condition at the two sides of the slits ¢J( L, y) - ¢J(O, y) =EavL, where L is the length of

each period and Eav is the average electric field applied to the microchannel.

Subsequently the nonuniform local electric field is obtained from the gradient of the

electric potential E =- V ¢J and the electric force exerted on each bead is thus Fie =qE .

In solving the Laplace equation for this case it is sufficient to solve the equation for unit

voltage drop (~V = EavL = 1). To obtain solutions for different potential differences we

only need to multiply the unity solution to the required voltage drop. Figure 7.2 and
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Figure 7.3 depict the field contour plots of ¢J, Ex and E y with the channel dimensions

shown in Table 7-3. In Figure 7.2 the x -component of the electric field along the

channel is plotted and it shows good agreement with the following approximation

E =~E =!.L E
S t + t av t d

d S s

(7.2)

where td and ts are the depths of thick and shallow regions and Ed is the electric field

strength at the well (see Figure 7.1).

Table 7-3 The dimensions of the microchannel.

Ld

40

Ls

40

td

20

t s

2

In DPD simulations we impose periodic boundary conditions on both the fluid and chain

particles in the x (along two sides of the constriction) and z directions. As described in

Chapter 6, we use the method of ghost particles to impose periodic boundary condition to

the chain beads. The walls are simulated using the earlier proposed random distribution

of fixed particles and in order to prevent the chain and fluid particles penetrating to

walls, we applied the earlier developed bounce normal reflection as described in Chapter

5.
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Figure 7.2 Top: The electric potential ¢ contour plot and representation of several electric field vectors

near the slit. Bottom: The x-component of the electric field inside the channel Ex' as a function of length of

channel, measured along the plane in middle of the shallow region.
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Figure 7.3 Top: The electric field x-component Ex contour plot. Bottom: The electric field y-component

Ey contour plot.
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7.4 Results and Discussions

In this section the migration of DNA chains in microchannels is examined as we present

the results of the present simulations. First the electric field was set to Eav = 0.5 and we

found the x-component of the center of mass trajectories for DNA chains of length

N = 5,10,20,40,80, as shown in Figure 7.4. This allows us to define the dimensionless

mobility Ii. We estimated Ii as the slope of the line fitted through the x-component

trajectory of the chain which has passed at least 20 periods. From Figure 7.4, we

observed that when the chain length increased, we found that in addition to higher slope

of the trajectories, they also became smoother. More specifically, for the longest chain of

length N = 80, the steps in the trajectory appear smaller and gentler than the shortest

chain of length N = 5 .

In order to study the effects of the electric field strength and the chain length on mobility,

we conducted several simulation runs. We perfonned runs for different chain lengths of

N=10,20,40,80,160,320 in average field values of Eav =0.0625,0.125,0.25,0.5. The

estimated mobility Ii as a function of N or Eav are plotted in Figure 7.5. For all field

values we find that the longer chains travel faster. In this figure we observe that the

mobility of the chain increased significantly when the chain length increased from

N =40 to N =80 or 160, and this is in a good qualitative agreement to the

experimental observations of Han et al. [1-3]. Furthermore, as the electric field is

intensified, the mobility variation also becomes larger.

In this work, our main interest is the overall motion of the chains and our results

generally show that the longer the chains, the greater the mobility. Three regions are
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identified where chains with different sizes translate with different conformation and

speed. Following we describe the mechanisms of chain migration in each region

qualitatively.

First is the migration of the chain through the deep region. In this region the electric field

lines are nonuniform and due to higher Brownian mobility smaller chains are more

probable to diffuse out of the field lines. This causes small molecules to reach the deeper

areas or the comer of the well and be trapped there for longer times. The x- y trajectories

of chains with N =5,20,80 are illustrated in Figure 7.6. The effect of random Brownian

diffusion from the field lines is more visible in high electric fields and for smaller

molecules. Here the random motion depends on two dominant parameters, namely the

length of the chain and the conformation of the molecule. When the chain is longer, it

has more segments which come under influence of the electric field lines and so there is

very low probability of a sudden crossing of the molecule occurring. In addition the

relaxation time of a small chain is very low and as a result when the molecule gets

pushed out of the slit, it would quickly recoil. The coiled chains have little surface

contact with the solvent molecules and electric field lines so they would have higher

random motion while long chains remain stretched and move in a smoother manner (see

Figure 7.6 and Figure 7.4).

The opening of the slit is the second region where several migration mechanisms were

discussed in earlier sections. From our results, we found two main conformations by

which the chains approach and pass through the opening of the gap; the hairpin and two

ends escapes. The formation of each state near the slit depends mainly on the size of the

chain and the conformation of the chain as it approaches the gap from the well. Sebastian

and Paul [113] argued that the free energy barrier for the hairpin escape is twice that of

127

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 7: DPD Simulation of DNA Separation in Entropic Trap

the two ends escape because each hairpin can be considered as two chains crossing from

the ends. Similar to Han et al. [1-3], they found that in the case of hernia formation and

chain migration in the hairpin shape, the speed of escape is decreased as the chain length

increased. However when the chain approaches slit through its end they claimed that the

speed of process is not dependent on molecule size since all linear chains have two ends.

In our present simulations, we observed both mechanisms. However when the chain

becomes longer, we found that hairpin formation is the dominant mode of escape (see

Figure 7.7 to Figure 7.10 for two ends and hairpin migration of DNA chains). We note

that for very small chains (Rg « t s )' none of the above mechanisms were present and

the chain passes through the slit rapidly and without significant deformation.

Finally the speed of migration of molecules crossing through the shallow region is size

dependant and we expect it to increase with N as discussed in [113]. We observed that

due to high electric field strength, the DNAs generally travel very fast in this region.

Also, we note that when the DNA enters the slit from one of its ends, it would have the

chance to stretch out and uncoil completely. In Figure 7.7 and Figure 7.8, the

conformation evolution snapshots of a DNA chain with N =80 approaching and passing

the gap are shown. In these figures, the DNA is approaching with one end having a small

hairpin formed. The DNA is completely uncoiled as it travels through the slit but recoils

soon after exiting from the gap. In Figure 7.9 and Figure 7.10, the DNA approaches the

slit while forming two hairpins in the middle of the chain. As the chain length increases,

the probability of the number of hairpins which would be formed also increases, and this

assists in faster travel of the DNA from the entrance of the slit. The extension of the

chain in z direction in order to form higher contact surface with the gap is the other

physical trend which was generally observed for longer chains.
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Figure 7.4 The x -component of the center of mass trajectories of DNA chains of N = 5,10,20,40,80

beads for the case of Eav = 0.5 and L
sp

= 4 .

7.5 Concluding Remarks

We have presented DPD simulations studies of migration of DNA chains through

entropic traps and our results generally show a good qualitative agreement with existing

experimental data. The mesoscopic features of the DPD technique enabled us to capture

the hydrodynamic interactions automatically. Three distinct regions where the chains

migrate with different mechanisms were distinguished. Each region has different effects

on the speed of the total process. Moreover, we observed several conformational

phenomena which depend on chain length, the geometry of the microchannel and the

strength of the electric field. The chains formed hernias and were sucked into the gap

while approaching the shallow region. The geometrical and field (electrical) conditions

in the gap force the DNA chains to uncoil and travel smoothly through the slit. The chain
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then escapes from the gap and recoils in the deep region. According to the speed and

form of relaxation and evolution of the chain in the well, it becomes ready to approach

the next constriction.

Two mechanisms are identified that cause the size-dependent trapping of DNA chains

and thus mobility differences. Firstly, small molecules are found to be trapped in the

deep region due to higher Brownian mobility and crossing of electric field lines.

Secondly, longer chains have higher probability to form hernias at the entrance of the

gap and can pass the entropic barrier more easily. Consequently longer DNA molecules

have higher mobility and travel faster than shorter chains.
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Figure 7.8 Conformation evolution snapshots of DNA chain with N =80 beads passing through trap for case of Euv =0.5

and Lsp =4. Top (or xz) view of translations from (a) time t =3600 to (f) time t =4000.

134

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



(a)

Chapter 7: DPD Simulation of DNA Separation in Entropic Trap

(d)

(b)

(c)

>0"

>0"

>0"

tC"""~":~,

(e)

>0"

(f)

>0" >.!()

Figure 7.9 Conformation evolution snapshots of DNA chain with N = 80 beads passing through trap for case of Eav = 0.5

and Lsp =4. Traverse (or xy) view of translations from (a) time t =5520 to (j) time t =5820.

135

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



(g)

Chapter 7: DPD Simulation of DNA Separation in Entropic Trap

(i)

•

(h)

. ; ····.--titL

~

......

U)

.

Continue Figure 7.9.

136

..... . .

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



(a)

Chapter 7: DPD Simulation of DNA Separation in Entropic Trap

(d)

(b)

(c)

l' "4 ': ..'if 1'! j":fi;i:r:;i~ti!:ri":;·lli)'ffi;)"
x

" f.······.:.···;·.·.···.····;..···.1.······;·;·.I.·•..•..... ;.....•.•. :'.r·...,..•..j,.•.•.•...••.•.•.'.••. :·;.··.··.".··.·.···.··,··~.l.· .:. '.·.'1.·.····· ••..•.......••.].•":"· .• "i'·.·····,···.·. ......•. :' .....•, ; «- ••.•... ':: •..•.•• , ."".': •• -.'.'

_II Jtl IICI /11 !Ht tlt lllfj I III '111

X

(e)

(f)

"r;(If,t)'cil~j,/i-I

1'" .' , .' '" '. . .,. ",'" " '.. j'. . . . '.. . '. '. ... .. '. .. . . .' , " ~' ,

~. . . '. , . ",;' , :" _.' . ',' .;

"} ..i'f·)B:ir!,E:t,li;·,'./i,i"

I ' Ii> 11 Ii j
.. ' ,'-' , •. :,' ", . ' " " .",;, j -".:";"',- :'... : -~.. -', - ,.', . ~

":.·r·;···:~y,~·".}··/"

Figure 7.10 Conformation evolution snapshots of DNA chain with N = 80 beads passing through trap for case of
Eav =0.5 and Lsp =4. Top (or xz) view of translations from (a) time t =5520 to (j) time t =5820.

137

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



(g)

Chapter 7: DPD Simulation of DNA Separation in Entropic Trap

(i)

(h)

"1···;•••.• ··.·l •..·.··,;~.· •.••.• ····.: •.•. ··.··.·.··.··.l··.•.·.jff.; ••ii.·.j

U)

".!..• •···••i•.••..• ·.1···· •..••.••...;....... ......:.........:••.•.. ·····.•1(·;•••······ •....•.•.•j

Continue Figure 7.10.

138

ATTENTION: The Singapore Copyright Act applies to the use of this document. Nanyang Technological University Library



Chapter 8

Concluding Rentarks and Future Perspective

8.1 Concluding Remarks and Major Contribution

This thesis can be divided into two parts. The first part started with the introduction of

the DPD method followed by in depth review and derivation of the theoretical features of

DPD. Next we have a very comprehensive review of boundary models for the DPD.

Following the definition of required DPD simulation models and parameters, we propose

in Chapter 5 a new boundary condition for the significant reduction of density

fluctuations. In the second part of this work which begins in Chapter 6, we formulate a

coarse grained DPD WLC model to simulate and determine the static properties of

polymer chains in dilute solutions. Eventually we study the motion of DNA molecules

traveling trough entropic channels.

The major contributions of this work can be summarized as follow:

1. We derived the DPD algorithm and identified the appropriate DPD simulation

parameters. Subsequently we comprehensively studied different boundary models

applicable in DPD simulations and identified their characteristics.

2. We proposed the new bounce normal reflection in combination with random wall

distribution in order to capture the density fluctuations near the wall boundaries. To
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validate our new boundary condition, we applied it to three flow regimes and we

obtained very good results which were consistent with macroscopic features.

3. We indentified the OPO bead spring models for polymer chains. Following this,

we optimized the WLC bead spring OPO model to obtain the correct exponent value of

polymer scaling laws.

4. We applied the OPO in simulation of WLC bead-spring models to explore the

electrophoresis migration of ONA molecules traveling through narrow constrictions and

our results generally show excellent qualitative agreement with existing experimental

data.

8.2 Possible Future Work

The OPO method, a relatively new mesoscopic simulation technique for the simulation

of complex systems, addresses certain features such as geometry complexity that other

methods like BO fail to point out. However there are several open issues associated with

the OPO that may require new development work or future refinements. These include

possible new directions in theoretical aspects as well as applications.

8.2.1 Theoretical Aspects

• Heat Transfer: To formulate appropriate OPO theories and algorithms that can

handle heat transfer problems would be one of the most desired theoretical

features for OPO in the future.

• Time Integration Techniques: Fast time evolution algorithms to speed up the

simulations are still in high demand.
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• Computer Algorithms: Depending on the application, huge computational cost

may be required. There are vast opportunities for particle methods to decrease

this cost by improving cell algorithms (such as the Neighbor List method) as well

as efficient parallel implementation.

• Inter Particle Forces: The particle based nature of DPD offers promising

potential in modeling not only different types of interaction within the same type

of particles in single phase but also for various other multi phase interactions.

This requires enhancements in defining particle forces, such as conservative

forces for example.

• Boundary Conditions: Although we introduced the bounce normal boundary

reflection at the walls, further refinements for implementation of boundary

conditions for other geometries and problems may still be necessary.

• Multiscale Modeling: It would a major achievement if we can concurrently

couple DPD with other particle based methods like MD in order to handle

multiscale problems. In the nano scale regions or close to boundaries where DPD

can not capture the details of microscale or even nanoscale interactions, more

refined techniques can be used while DPD is being used to simulate the bulk

region.

8.2.2 Applications

• Variety of single phase, two phase or multiphase problems.

• Complex flow in nano/micro systems and porous media.
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• Simulation of biological macromolecules subject to different flows and

geometries.

• Rheology and suspension of polymers in various applications.
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