Sher, E;
Chronis, A;
Glynn, R;
(2014)
Adaptive behavior of structural systems in unpredictable changing environments by using self-learning algorithms: A case study.
In:
Simulation: Transactions of the Society for Modeling and Simulation International.
(pp. pp. 991-1006).
Sage
Preview |
Text
SELF-LEARNING ALGORITHM AS A TOOL TO PERFORM ADAPTIVE BEHAVIOUR IN UNPREDICTABLE CHANGING ENVIRONMENTS sher glynn.pdf - Accepted Version Download (843kB) | Preview |
Abstract
Adaptive architecture is expected to improve the performance of buildings and create more efficient building systems. One of the major research areas under this scope is the adaptive behavior of structural elements affected by load distribution. In order to achieve this, current studies develop structures that adapt by either following a database of pre-calculated equilibrium solutions or using self-learning algorithms to acquire active control systems to structures. This paper examined a case study element, which demonstrates an adaptive behavior in real time, based on self-learning abilities. The focus of this experiment was to gain control over a structural system as a whole (not only on a singular component) according to both objective and subjective parameters, that is, both load distribution parameters and spatial parameters, which are design related. The examined structural element was a canopy, situated in a dynamic environment that brought a change in the element’s load distribution. The learning ability was given by applying a supervised learning algorithm—Artificial Neural Network (ANN)—on a physical prototype. The ANN was trained by an optimized database of finite solutions, which was created by a Genetic Algorithm. Through this method, complex calculations are conducted “offline”, and the component operates in a “decision-making” mode in real time, adapting to a versatile environment while using minimal computational resources. Results show that the case study successfully exhibited self-learning and acquired the ability to adapt to unpredictable changing forces while keeping certain design requirements. This method can be applied over different structural elements (façade elements, canopies, structural components, etc.) to achieve adaptation to various parameters with an unpredictable pattern, such as human behavior or weather conditions.
Type: | Proceedings paper |
---|---|
Title: | Adaptive behavior of structural systems in unpredictable changing environments by using self-learning algorithms: A case study |
Event: | Society for Computer Simulation International (SimAUD '13) |
Location: | San Diego, California |
Dates: | 07 April 2013 - 10 April 2013 |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1177/0037549714543090 |
Publisher version: | https://doi.org/10.1177/0037549714543090 |
Language: | English |
Additional information: | This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions. |
Keywords: | Adaptive architecture, supervised learning, Genetic Algorithms, Artificial Neural Network, structural optimization |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of the Built Environment > The Bartlett School of Architecture |
URI: | https://discovery.ucl.ac.uk/id/eprint/10062989 |
Archive Staff Only
View Item |