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ABSTRACT

Data structure selection and tuning is laborious but can vastly im-
prove an application’s performance and memory footprint. Some
data structures share a common interface and enjoy multiple im-
plementations. We call them Darwinian Data Structures (DDS),
since we can subject their implementations to survival of the fittest.
We introduce ARTEMIS a multi-objective, cloud-based search-based
optimisation framework that automatically finds optimal, tuned
DDS modulo a test suite, then changes an application to use that
DDS. ARTEMIS achieves substantial performance improvements for
every project in 5 Java projects from DaCapo benchmark, 8 popular
projects and 30 uniformly sampled projects from GitHub. For exe-
cution time, CPU usage, and memory consumption, ARTEMIS finds
at least one solution that improves all measures for 86% (37/43) of
the projects. The median improvement across the best solutions is
4.8%, 10.1%, 5.1% for runtime, memory and CPU usage.

These aggregate results understate ARTEMIS’s potential impact.
Some of the benchmarks it improves are libraries or utility functions.
Two examples are gson, a ubiquitous Java serialization framework,
and xalan, Apache’s XML transformation tool. ARTEMIS improves
gson by 16.5%, 1% and 2.2% for memory, runtime, and CPU; ARTEMIS
improves xalan’s memory consumption by 23.5%. Every client of
these projects will benefit from these performance improvements.
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“Programmers waste enormous amounts of time thinking about,
or worrying about, the speed of noncritical parts of their
programs, and these attempts at efficiency actually have a strong
negative impact when debugging and maintenance are
considered. We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of all evil. Yet
we should not pass up our opportunities in that critical 3%.”

— Donald E. Knuth [24]

1 INTRODUCTION

Under the immense time pressures of industrial software devel-
opment, developers are heeding one part of Knuth’s advice: they
are avoiding premature optimisation. Indeed, developers appear
to be avoiding optimisation altogether and neglecting the “critical
3%". When selecting data structures from libraries, in particular,
they tend to rely on defaults and neglect potential optimisations
that alternative implementations or tuning parameters can offer.
This, despite the impact that data structure selection and tuning
can have on application performance and defects. Consider three
examples. Selecting an implementation that creates unnecessary
temporary objects for the program’s workload [46]. Selecting a
combination of Scala data structures that scaled better, reducing
execution time from 45 to 1.5 minutes [36]. Avoiding the use of
poor implementation, such as those in the Oracle bug database that
leak memory [48].

Optimisation is time-consuming, especially on large code bases.
It is also brittle. An optimisation for one version of a program can
break or become a de-optimisation in the next release. Another rea-
son developers may avoid optimisation are development fads that
focus on fast solutions, like “Premature Optimisation is the horror
of all Evil" and “Hack until it works" [18]. In short, optimisation is
expensive and its benefits unclear for many projects. Developers
need automated help.

Data structures are a particularly attractive optimisation tar-
get because they have a well-defined interface; many are tunable;
and different implementations of a data structure usually repre-
sent a particular trade-off between time and storage, making some
operations faster but more space-consuming or slower but more
space-efficient. For instance, an ordered list makes retrieving the
entire dataset in sorted order fast, but inserting new elements slow,
whilst a hash table allows for quick insertions and retrievals of
specific items, but listing the entire set in order is slow. We intro-
duce Darwinian data structures, distinct data structures that are
interchangeable because they share an abstract data type and can
be tuned. The Darwinian data structure optimisation problem is
the problem of finding an optimal implementation and tuning for a
Darwinian data structure used in an input program.

We aim to help developers perform optimisation cheaply, focus-
ing solving the data structure optimisation problem. We present
ARTEMIS, a cloud-based optimisation framework that identifies Dar-
winian data structures and, given a test suite, automatically searches
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for optimal combinations of implementations and parameters for
them. ARTEMISs is language-agnostic; we have instantiated it for
Java and C++, and present optimisation results for both languages
(Section 5). ARTEMIS’ search is multi-objective, seeking to simulta-
neously improve a program’s execution time, memory usage, and
CPU usage while passing all the test suites. ARTEMIS scales to large
code bases because is uses a Genetic algorithm on those regions
of its search space with the most solutions (Section 4.4). ARTEMIS
is the first technique to apply multi-objective optimisation to the
Darwinian data structure selection and tuning problem.

ARTEMIS promises to change the economics of data structure
optimisation. Given a set of Darwinian data structures, ARTEMIS can
search for optimal solutions in the background on the cloud, freeing
developers to focus on new features. ARTEMIS makes economical
small optimizations, such as a few percent, that would not pay
for the developer time spent realizing them. And sometimes, of
course, ARTEMIS, by virtue of being used, will find unexpectedly
big performance gains.

ARTEMIS is a source-to-source transformer. When ARTEMISs finds
a solution, the program variants it produces differ from the original
program only at constructor calls and relevant type annotations.
Thus, ARTEMIS’ variants are amenable, by design, to programmer
inspection and do not increase technical debt [7]. To ease inspection,
ARTEMIS generates a diff for each changes it makes. Developers can
inspect these diffs and decide which to keep and which to reject.

We report results on 8 popular diverse GitHub projects, on Da-
Capo benchmark which was constructed to be representative, and
a corpus of 30 GitHub projects, filtered to meet ARTEMIS’s con-
straints and sampled uniformly at random. In this study, ARTEMmIS
achieves substantial performance improvements for all 43 projects
in its corpus. In terms of execution time, CPU usage, and mem-
ory consumption, ARTEMIS finds at least one solution for 37 out of
43 projects that improves all measures. Across all produced opti-
mal solutions, the median improvement for execution time is 4.8%,
memory consumption 10.1% and CPU usage 5.1%. This result is
for various corpora, but it is highly likely to generalise to arbitrary
programs because of the care we took to build a representative
corpus (Section 5.1).

These aggregate results understate ARTEMIS’s potential impact.
Some of our benchmarks are libraries or utilities. All of their clients
will enjoy any improvements ARTEMIS finds for them. Three ex-
amples are the Apache project’s powerful XSLT processor xalan,
Google-http-java-client, the unbiquitious Java library for ac-
cessing web resources, and Google’s in-memory file system Jimfs.
Section 5 shows that ARTEMIS improved xalan’s memory consump-
tion by 23.5%, while leaving its execution time unchanged; ARTEMIS
improved Google-http-java-client’s execution time by 46% and
its CPU usage by 39.6%; finally, ARTEMIS improved Jimfs’s execu-
tion time by 14.2% and its CPU usage by 10.7%, while leaving its
memory consumption unchanged.

Our principal contributions follow:

e We formalise the Darwinian data structure selection and
optimisation problem DS? (Section 3).

e We implement ARTEMIS, a multi-language optimisation frame-
work that automatically discovers and optimises sub-optimal
data structures and their parameters.
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1 <T> List<T> getAsList(T value) {

2 if (value == null)

3 return null;

4 List<T> result = new ArraylList<T>();
5 result.add(value);

6 return result;

7

}

Listing 1: A function from http-java-client.

e We show the generalizability and effectiveness of ARTEMIS
by conducting a large empirical study on a corpus compris-
ing 8 popular GitHub project, 5 projects from the DaCapo
benchmark, and 30 Github projects, filtered then sampled
uniformly. For all 43 subjects, ARTEMIS find variants that
outperforms the original for all three objectives.

e We provide ARTEMIS as a service, along with its code and
evaluation artifacts at http://darwinianoptimiser.com.

2 MOTIVATING EXAMPLE

Listing 1 contains a code snippet from google-http-java-client!,
a popular Java library for accessing efficiently resources on the web.
In the Listing 1, getAsList packages HT TP headers and is invoked
frequently from other methods because they use it every time they
construct an HTTP request. Thus, its functionality is important for
the performance of google-http-java-client.

Listing 1 uses ArrayList to instantiate the result variable.
However, other List implementations share the same functionality
but different non-functional properties. Thus, replacing ArrayList
with other List implementations may affect the performance of the
program. Considering the variant created when replacing ArraylList
(Listing 1, line 4) with LinkedList, when we compare it with the
original program against the same test set for 30 runs (Section 4),
we see that the google-http-java-client achieves a median 46%,
with 95% Confidence Interval [45.6%, 46.3%] improvement in exe-
cution time (Section 5).

ARTEMIS, our optimization framework, automatically discovers
underperforming data structures and replaces them with better
choices using search-based techniques (Section 4.4). First, it au-
tomatically creates a store of data structures from the language’s
Collection Ap1 library (Section 4.1). Then, ARTEMIS traverses the
program’s AsT to identify which of those data structures are used
and exposes them as parameters to the ARTEMIS’s OPTIMIZER (Sec-
tion 4.4) by transforming line 4 into

List<T> result = new D<T>();

where D is the tag that refers to the exposed parameter associated
with the defined data structure type (Section 4).

Listing 1 does not specify the initial capacity size of the ArrayList,
so the default size 10 was used. If the instantiated List object con-
tains less than 10 items, the default capacity can result in memory
bloat. If the List object contains more than 10 items, the default
capacity can slow the execution time; more memory realllocation
operations will happen. Therefore, an appropriate value must be
chosen to find a good tradeoff between memory and execution time.

Uhttps://github.com/google/google-http-java-client
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ARTEMIS automatically exposes such arguments as tunable pa-
rameters, then adjusts them to improve the runtime performance
of the program. For instance, ARTEMIS changes line 4 to the code
below:

List<T> 1 = new ArrayList<>(S);

where S refers to the exposed parameter associated with the amount
of pre-allocated memory.

3 DARWINIAN DATA STRUCTURE
SELECTION AND TUNING

This section defines the Darwinian data structure and parameter
optimisation problem we solve in this paper.

DEFINITION 1 (ABSTRACT DATA TYPE). An Abstract Data Type
(ADT) is class of objects whose logical behavior is defined by a set of
values and a set of operations [10].

A data structure concretely implements an ADT. For the corpus of
programs C and the ADT aq, the data structure extraction function
dse(a, C) returns all data structures that implement a in C. This
function is integral to the definition that follows.

DEFINITION 2 (DARWINIAN DATA STRUCTURE). When 3dy, d; €
dse(a,C)Ady # di Ady and dy are observationally equivalent modulo
a, dy and di are Darwinian data structures.

In words, Darwinian data structures are darwinian in the sense
that they can be replaced to produce program mutants whose fitness
we can evaluate. The ADT a has Darwinian data structures when
it has more than one data structure that are equivalent over the op-
erations the ADT defines. In Java, List is an ADT and ArrayList,
which implements it, is a data structure. LinkedList also imple-
ments List, so both ArrayList and LinkedList are Darwinian.
For the ADT a and the corpus C, Darwinian data structures are
interchangeable. Thus, we can search the variants of P € C formed
by substituting one Darwinian data structure for another to im-
prove P’s nonfunctional properties, like execution time, memory
consumption or CPU usage.

Just as we needed a function to extract an ADT’s data structures
from a corpus for Definition 2, we need a function that returns
the ADT that a data structure implements: when d = dse(a, C), let
adte(d,C) = a. Let I'p bind fully scope-qualified declarations of
names to Darwinian data structures in C. We use I'p when creating
variants of a program via substitution. We are interested not just
searching the space of Darwinian data structures, but also tuning
them via their constructor parameters. To this end, we assume
without loss of generality that a defines a single constructor ¢
and we let n.c(x) denote calling identifier n’s constructor ¢ with
parameters x : 7.

To create a variant of P € C that differs from P only in its k
bindings of names to Darwinian data structures or their constructor
initialization parameter, we define

PP, (n, di)kydjl-c’xj) =
Pl(n.c(x;))* /(n.c(x;))¥], if 3d;,d; s.t. adte(d;) # adte(d;)
Pl(n, di)* /(n, dj)*1[(n.c(x;))* /(n.c(x)¥], otherwise

DEFINITION 3 (DARWINIAN DATA STRUCTURE SELECTION AND
TUNING). For the real-valued fitness function f over the corpus C,
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the Darwinian data structure and tuning problem is

f(@(P.(ni,di). dj, x;))

arg max

(ni,d;)* GF,’; 0l]’.C €adte(d;,C)k,xjer

This vector-based definition simultaneously considers all pos-
sible rebinding of names to Darwinian data structures in P; it is
also cumbersome, compared to its point-substitution analogue. We
could not, however, simply present a scalar definition and then
quantify over all potential DDSS substitutions, as doing so would
not surface synergies and antagonisms among the substitutions.

4 ARTEMIS

The ARTEMIS’s optimisation framework solves the Darwinian Data
Structure Selection problem. Figure 1 illustrates the architecture
with its three main components: the DARWINIAN DATA STRUCTURES
STORE GENERATOR (DDSSG), the EXTRACTOR, and the OPTIMISER.
ARTEMIS takes the language’s Collection ap1 library, the user’s
application source code and a test suite as input to generate an
optimised version of the code with a new combination of data
structures. The pDssG builds a store that contains data structure
transformation rules. The EXTRACTOR uses this store to discover po-
tential data structure transformations and exposes them as tunable
parameters to the OPTIMISER (see Section 4.2). The OPTIMISER uses
a multi-objective genetic search algorithm (NSGA-II [13]) to tune
the parameters [25-27, 44, 45] and to provide optimised solutions
(see Section 4.4). A regression test suite is used to maintain the cor-
rectness of the transformations and to evaluate the non-functional
properties of interest. ARTEMIS uses a built-in profiler that measures
execution time, memory and CPU usage.

ARTEMIS relies on testing to define a performance search space
and to preserve semantics. ARTEMIS therefore can only be applied
to programs with a test suite. Ideally, this test suite would comprise
both a regression test suite with high code coverage for maintain-
ing the correctness of the program and a performance test suite
to simulate the real-life behaviour of the program and ensure that
all of the common features are covered [4]. Even though perfor-
mance test suites are a more appropriate and logical choice for
evaluating the non-functional properties of the program, most real
world programs in GitHub do not provide such performance test
suite. For this reason, we use the regression test suites to evaluate
the non-functional properties of the GitHub projects of this study
whenever a performance test suite is not available.

4.1 Darwinian Data Structure Store

ARTEMIS needs a Darwinian data structure store (DDss) from which
to choose when creating variants. Let A be a set of ADTs known to
be Darwinian. A developer can augment this set; Figure 2 shows
those that ARTEMIS knows by default. For our corpus C of Java
benchmarks augmented with JDK libraries over A,

DDSS = U dse(a, C). 1)

acA
To build the default ppss for Java, ARTEMIS extracts and tra-
verses each project’s class hierarchy, similar to the one illustrated
in Figure 2. This hierarchy shows potential Darwinian data struc-
tures of a specific interface. When this traversal finishes, ARTEMIS
extracts all the implementations of a particular Darwinian data
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Figure 1: System Architecture of ARTEMIS.
Colloct and outputs a scope-qualified list of names of Darwinian data struc-
ollection .
tures and their constructor parameters (Extracted Data Structures
and Parameters in Figure 1). For all a € DDSS, EXTRACTOR’s output
List . Set realises dse(a, P) (Section 3). To mark potential substitions to the
—~— o transformer, the EXTRACTOR outputs a templated version of the
code which replaces the data structure with data structure type
ArrayList | ® = = | LinkedList HashSet | = = = | TreeSet identifiers (Templated Source Code in Figure 1).

Figure 2: DDS in the Java Collections APIL.

Abstract Data Type  Implementation

List  ArrayList, LinkedList
Map HashMap, LinkedHashMap
Set  HashSet, LinkedHashSet
Concurrent List ~ Vector, CopyOnWriteArrayList

Concurrent Deque  ConcurrentLinkedDeque,
LinkedBlockingDeque
ArrayBlockingQueue, SynchronousQueue,
LinkedBlockingQueue, DelayQueue,
ConcurrentLinkedQueue, LinkedTransferQueue

Thread Safe Queue

Table 1: Data structure groups.

structure; e.g,, List, ArrayList, LinkedList. ARTEMIS considers
these implementations mutually replaceable. For Java, a default
DDsS is provided by ARTEMIS, which the developer can edit. For
other languages, the pDss can be provided manually by the user
and this step can be skipped. The OPTIMISER, described next, uses
the store during its search.

The developer can also extend the store with custom user-supplied
implementations or with implementations from other third-party
libraries such as Google Guava Collections?, fastutil® and Apache
Commons Collections®.

4.2 Discovering Darwinian Data Structures

The EXTRACTOR takes as input the program P’s source code, identi-
fies Darwinian data structures in P modulo its store (Section 4.1),
Zhttps://github.com/google/guava

3https://github.com/vigna/fastutil
4https://github.com/apache/commons-collections

To find DARWINIAN data structures, the EXTRACTOR builds an Ab-
stract Syntax Tree (asT) from its input source code. It then traverses
the AsT to discover potential data structure transformations based
on a store of data structures as shown in Table 1. For example, when
an expression node of the AsT contains a LinkedList expression,
the EXTRACTOR marks this expression as a potential DARWINIAN
data structure that can take values from the available List imple-
mentations: LinkedList or ArraylList. The EXTRACTOR maintains
a copy of the AsT, referred to as the REWRITER, where it applies
transformations, without changing the initial AsT. When the ast
transformation finishes, the REWRITER produces the final source
code which is saved as a new file.

4.3 Code Transformations

When implementing ARTEMIS, we encountered coding practices
that vastly increase the search space. Many turn out to be known
bad practices [43]. Consider Listing 2. In lines 2 and 8, we see two
LinkedList variables that the Extractor marks DARWINIAN and
candidates for replacement by their equivalent ArrayList imple-
mentation. In these lines, user is violating the precept to "program
to the interface”, here List, but is, instead, declaring the variable
to have the concrete, data structure not ADT, type LinkedList.
This bad practice [43] adds dependencies to the code, limiting code
reuse. They are especially problematic for ARTEMIS, because they
force ARTEMIS to apply multiple transformations to replace and
optimise the data structure. Further, func3 takes a LinkedList as
a parameter, not List, despite the fact that it only calls the get
method defined by List on this parameter. This instance of violat-
ing the "program to the interface" precept triggers a compilation
error if ARTEMIS naively changes funcl’s type. ARTEMIS transforms
the code to reduce the oPTIMISER’s search space and handle these
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void funcl(){

LinkedList<T> v;

v = new LinkedList<>();
v.add(new T());

int value = func3(v);

}

void func2(LinkedList<T> v){
LinkedList<T> vl = new LinkedList<>();
int value = func3(vl);

}

int func3(LinkedList<T> v){
Tt = v.get(0);

return 2xt.value;

}

O 0 N QN U1 R W N =

e e
W N RO

Listing 2: Code to illustrate bad practices.

bad practices. ARTEMIS supports thee transformations - parserless,
supertype, and profiler.

The parserless mode changes greadily each appearance of a Dar-
winian implementation. When optimising List, it exhaustively
tries every implementation of List for every List variable. It is
parserless, since it needs only a regular expression to identify rewrit-
ings. This makes it simple, easily portable to other languages, and
fast, so it is ARTEMIS’ default. However, it generates invalid pro-
grams and a large search space.

ARTEMIS’ sypertype transformation converts the type of a Dar-
winian implementation to that of their Darwinian ADT, for example
LinkedList<T> — List<T> on lines, 2,7,8 and 11. For Listing 2,
this tranformation exposes only two DDS to the opTIMISER and
produces only syntactically valid code. To implement this transfor-
mation, ARTEMIS invokes Eclipse’s re-factoring functionality via
its APL, then validates the result. ARTEMIS aims to be language-
agnostic without any additional dependencies on language specific
tools. For this case, ARTEMIS auto performs this transformation by
adding the supertype as an equivalent parameter in the store of
data structures. Whenever the AsT visitor traverses a variable or
parameter declaration expression it may replace the DARWINIAN
data structure with its supertype.

"All data structures are equal, but some data structures are more
equal than others" °; some DDS affect a program’s performance
more than others, as when one stores only a few, rarely accessed
items. To rank DDS, ARTEMIS profiles its input program to identify
costly methods. The EXTRACTOR uses this info to identify the subset
of a program’s DDS worth considering for optimisation. ARTEMIS’
instrumentation is particularly important for large programs.

4.4 Search Based Parameter Tuning

The oPTIMISER searches a combination of data structures that im-
proves the performance of the initial program while keeps the
original functionality. Practically, we can represent all those data
structures as parameters that can be tuned using Search Based Soft-
ware Engineering approaches [19]. Because of the nature of the
various conflicting performance objectives, the problem we faced

5 Adapted from "Animal Farm" by George Orwell
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here requires a multi-objective optimisation approach to search the
(near) optimal solutions.

An array of integers is used to represent the tuning parameters.

Each parameter refers either to a Darwinian data structure or to the
initial size of that data structure. If the parameter refers to a data
structure, its value represents the index in the list of Darwinian data
structures. The oPTIMISER keeps additional mapping information
to distinguish the types of the parameters. For each generation,
the NSGA-II applies tournament selection, followed by a uniform
crossover and a uniform mutation operation. In our experiments,
we designed fitness functions to capture execution time, memory
consumption, and CPU usage. After fitness evaluation, ARTEMIS ap-
plies standard non-dominated selection to form the next generation.
ARTEMIS repeats this process until the solutions in a generation con-
verge. At this point, ARTEMIS returns all non-dominated solutions
in the final population.
Search Space size: We used GA because the search space is huge.
Let D be the definitions of darwinian data structures in program P.
Let I be the number of implementations for a particular d € D. The
size of the search space is:

1_[ I(d) = |dom(d.c)|, where d.c is d’s constructor. (2)
deD

4.5 Deployability

ARTEMIS provides optimisation as a cloud service. To use the service,
developers only need to provide the source code of their project in
a Maven build format and a performance test suite invoked by mvn
test. ARTEMIS returns the optimised source code and a performance
report. ARTEMIS exposes a RESTful API that developers can use
to edit the default store of Darwinian data structures. The API
also allows developers to select other Search Based algorithms;
the oPTIMISER uses NSGA-II by default. To use our tool from the
command line, a simple command is used:

./artemis input—program-src

where this command defaults to ARTEMIS’s built in DDSSG. ARTEMIS
writes the source of an optimized variant of its input for each
measure. ARTEMIS also supports optional parameters to customise
its processing.

5 EVALUATION

To demonstrate the performance improvements that ARTEMIS auto-
matically achieves and its broad applicability, we applied it to three
corpora: 8 popular GitHub projects, 5 projects from the Dacapo
Benchmark, and 30 projects, filtered to meet ARTEMIS’S require-
ments, then sampled uniformly at random from Github. To show
also that ARTEMISis language-agnostic, we applied it to optimise
Guetzli® (Section 5.3), a JPEG encoder written in C++.

5.1 Corpus

ARTEMIS requires projects with capable build systems and an ex-
tensive test suites. These two requirements entail that ARTEMIS be
able to build and run the project against its test suite. ARTEMIS is

Chttps://github.com/google/guetzli
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language-agnostic but is currently only instantiated for Java and
C++, so it requires Java or C++ programs.

Our first corpus comprises eight popular GitHub projects. We
selected these eight to have good test suites and be diverse. We
defined popular to be projects that received at least 200 stars on
GitHub. We deemed a test suite to be good if its line coverage met or
exceeded 70%. This corpus contains projects, usually well-written,
optimised and peer code-reviewed by experienced developers. We
applied ARTEMIs on those projects to investigate whether it can
provide a better combination of data structures than those selected
by experienced human developers.

This first corpus might not be representative, precisely because
of the popularity of its benchmarks. To address this threat to va-
lidity, we turned to the DaCapo benchmarks [5]. The authors of
DaCapo built it, from the ground up, to be representative. The goal
was to provide the research community with realistic, large scale
Java benchmarks that contain a good methodology for Java evalua-
tion. Dacapo contains 14 open source, client-side Java benchmarks
(version 9.12) and they come with built-in extensive evaluation.
Each benchmark provides accurate measurements for execution
time and memory consumption. DaCapo first appeared in 2006 to
work with Java v.1.5 and has not been further updated to work
with newer versions of Java. For this reason, we faced difficulties in
compiling all the benchmarks and the total number of benchmarks
were reduced to 5 out of 14. In this corpus we use the following
five: fop, avrora, xalan, pmd and sunflow (Figure 4).

Because of its age and the fact that we are only using subset of it,
our DaCapo benchmark may not be representative. To counter this
threat, we uniformly sampled projects from GitHub. We discarded
those that did not meet ARTEMIS’s constraints, like being equipped
with a build system, until we collected 30 projects. Those projects
are diverse, both in domain and size. The selected projects include
static analysers, testing frameworks, web clients, and graph pro-
cessing applications. Their sizes vary from 576 to 94K lines of code
with a median of 14881. Their popularity varies from 0 to 5642 stars
with a median of 52 stars per project. The median number of tests
is 170 and median line coverage ratio is 72%.

Collectively, we systematically built these corpora to be represen-
tative in order to demontrate the general applicably of the ARTEMIS’
optimization framework. The full list of the programs used in this
experimental study are available online’ in the project’s website.

5.2 Experimental Setup

Experiments were conducted using Microsoft Azure™ D4-v2 ma-
chines with one Intel E5-2673v3 CPU featuring 8 cores and 14GB
of DRAM and built with Oracle JDK 1.8.0 and Ubuntu 16.04.4 LTS.

Performance measurements may lead to incorrect results if not
handled carefully [1]. Thus, a statistical rigorous performance eval-
uation is required [16, 23, 28]. To mitigate instability and incorrect
results, we differentiate VM start-up and steady-state. We ran our
experiments in a fresh Azure VM that contained only the JVM
and the subject. We use JUnit, which runs an entire test suite in
a single JVM. We manually identified and dropped startup runs,
then we spot-checked the results to confirm that the rest of the
runs achieved a steady state and were exhibiting low variance. All
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of the means and medians we reported fall within the computed
interval with 95% confidence. To assure the accuracy and reduce
the bias in the measurement, program profiling period was set as
0.1 seconds, and each generated solution was run for more than 30
simulations. Also we use Mann Whitney U test [15] to examine if
the improvement is statistically significant.

To measure the memory consumption and CPU usage of a subject
program, we use the popular JConsole profiler® because it directly
handles JDK statistics and provides elegant Ap1. We extended JCon-
sole to monitor only those system processes belonging to the test
suite. We use Maven Surefire plugin’ to measure the test suite’s
execution time because it reports only the execution time of each
individual test, excluding the measurement overhead that other
Maven plugins may introduce.

For the oPTIMISER, we chose an initial population size of 30 and a
maximum number of 900 function evaluations. We used the tourna-
ment selection (based on ranking and crowding distance), simulated
binary crossover (with crossover probability 0.8) and polynomial
mutation (with the mutation probability 0.1). We determined these
settings from calibration trials to ensure the maturity of the results.
Since NSGA-II is stochastic, we ran each experiment 30 times to
obtain statistical significant results.

5.3 Research Questions and Results Analysis

ARTEMIS aims to improve all objectives at the same time. Therefore
the first research question we would like to answer is:

RQ1: What proportion of programs does ARTEMIS improve?

To answer RQ1, we applied ARTEMIS to our corpus. We inspected
the generated optimal solutions from 30 runs of each subject by
examining the dominate relation between the optimal and inital
solutions regarding the optimisation objectives. We introduce the
terms strictly dominate relation and non-dominated relation to de-
scribe the relation. Defined by Zitzler et al. [49], a solution strictly
dominates another solution if it outperforms the latter in all mea-
sures. A solution is non-dominated with another solution if both
outperform the other in at least one of the measures.

For DaCapo, ARTEMIS found at least one strictly dominant solu-
tion for 4 out of 5 projects; it found no such solution for sunflow. It
found 1072 solutions, from which 3% are strictly dominant (median
is 5.5 solutions per project) and 64% are non-dominated (median is
18 solutions per project).

For the popular Github projects, ARTEMIS found at least one
strictly dominant solution for all 8 projects. The total number of
solutions found is 10218 and 16% of them are strictly dominant
(median is 50 solutions per project) and 59% are non-dominated
(median is 749.5 solutions per project).

For the sampled Github projects, ARTEMIS found a strictly domi-
nant solution for 25 out of 30 projects, but found no solution for
projects rubix-verifier, epubcheck, d-worker, telegrambots
and fqueue. It found 27503 of which 10% of them are strictly domi-
nant (median is 24 solutions per project) and 66% are non dominant

8http://openjdk.java.net/tools/svc/jconsole/
“http://maven.apache.org/components/surefire/maven- surefire-plugin/
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(median is 125 solutions per project). With these results, we answer
RQ1 affirmatively:

Finding1: ARTEMIS finds optimised variants that outperform
the original program in at least one measure for all programs
in our representative corpus.

This finding understates ARTEMIS’s impact. Not only did it improve
at least one measure for all programs, ARTEMIS found solutions that
improve all measures for 88% of the programs.

Having found that ARTEMIS finds performance improvements,
we ask "How good are these improvements" with:

RQ2: What is the average improvement that ARTEMIS provides for
each program?

Though ARTEMIS aims to improve all candidate’s measures, it can-
not achieve that if improvements are antagonistic. In some domains,
it is more important to significantly improve one of the measures
than to improve slightly all measures; e.g., a high frequency trading
application may want to pay the cost of additional memory over-
head in order to improve the execution time. Our intuition is that
the optimiISER will find many solutions on the Pareto-front and at
least one of them will improve each measure significantly.

We answer RQ2 quantitatively. We report the maximum improve-
ment (median value with 95% confidence interval) for execution
time, memory and CPU usage for each subject of the three corpora.
We use bar charts with error bars to plot the three measures for each
program. In Y axis, we represent the percentage of improvement
for each measure. A value less than 100% represents an improve-
ment and a value greater than 100% means degradation; e.g., 70%
memory consumption implies that the solution consumes 70% of
the memory used in the input program.

Selected popular GitHub programs. Figure 3a presents the
three measures of the solutions when the execution time is min-
imised, for each program from the popular GitHub programs. We
observe that ARTEMIS improves the execution time of every pro-
gram. google-http-java-client’s execution time was improved
the most; its execution time was reduced by M=46%, 95% CI [45.6%,
46.3%). We also notice that this execution time improvement did
not affect negatively the other measures, but instead the CPU us-
age was reduced by M=41.6%, 95% CI [39.6%, 43.6%] and memory
consumption remained almost the same. The other interesting pro-
gram to notice from this graph is solo, a blogging system written
in Java; its execution time improved slightly by 2% but its memory
consumption increased by 20.2%. Finally, for this set of solutions,
the median execution time improvement is 14.13%, whilst memory
consumption slightly increased by 1.99% and CPU usage decreased
by 3.79%. For those programs, ARTEMIS extracted a median of 12
data structures and the optimal solutions had a median of 4 data
structures changes from the original versions of the program.

Figure 3b shows the solutions optimised for memory consump-
tion. We notice that ARTEMIS improves the memory consumption
for all programs, with a median value of 14%. The execution time
was improved by a median value of 2.8% for these solutions, while
the median value of CPU usage is slightly increased by 0.4%. We
notice that solo has the best improvement by M=31.1%, 95% CI
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(a) Best execution time of popular GitHub programs. The median value
is 93.3%, mean is 86.4%. Median number of DDs is 12 and mean is 14.6.
Median number of pDs changes is 4 and mean is 5.
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(b) Best memory consumption of popular GitHub programs. The median
value is 86% and mean is 84%. Median number of DDs is 12 and mean is
14.6. Median number of pps changes is 4 and mean is 5.85.
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(c) Best CPU usage of popular GitHub programs. The median value is
90.3% and mean is 84.6%. Median number of DDs is 12 and mean is 14.6.
Median number of pDDs changes is 5 and mean is 7.42.

Figure 3: Answers RQ2. Description.

[29.3%, 33%], but with an increase of M=8.7%, 95% CI [8.5%, 8.9%]
in execution time and M=21.3%, 95% CI [20.6%, 22%] in CPU usage.
Graphjet, a real-time graph processing library, has the minimum
improvement of M=0.9%, 95% CI [0.6%, 1.1%]. The optimal solutions
had a median of 4 data structures changes per solution.

Figure 3c presents solutions optimised for CPU usage. The me-
dian CPU usage improvement is 9.7%. The median value of exe-
cution time improved by 5.2% and the median value of memory
consumption improved by 2.3%. The program with the most signif-
icant improvement in CPU is http-java-client with M=49.7%,
95% CI [48%, 51.4%), but with a decrease in memory of M=9.8%,
95% CI [7.5%, 12.9%]. The optimal solutions make a median of 5
data structures changes to the original versions of the program.

DaCapo. Figure 4 presents all solutions optimised for execution
time and memory consumption for the DaCapo benchmark. We
used only two measures for the DaCapo benchmark as those were
the ones built in the benchmark suite. We chose not to extend or
edit the profiling method of DaCapo, to avoid the risk of affecting
the validity of its existing, well tested profiling process.

ARTEMIS found solutions that improve the execution time for
every program without affecting significantly the memory con-
sumption, except project xalan which had improvement (M=4.8%,
95% CI [4.6%, 5.7%] in execution time but with an increase (5.8%,
95% CI [3.5%, 7%]) in memory consumption. All solutions for opti-
mised memory consumption did not affect execution time, except
for a slight increase for program fop. Finally, for this set of solu-
tions, the median percentage of execution time improvement is
4.8%, and 4.6% for memory consumption. For this set of programs,
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(a) Best execution time of the Dacapo benchmark. The median value is
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(b) Best memory consumption of the Dacapo benchmark. The median
value is 95.7% and mean is 92.1% . Median number of pDs is 18 and mean
is 14.8. Median number of pDs changes is 3 and mean is 4.2.

Figure 4: Answers RQ2. Description.

ARTEMIS extracted a median of 18 data structures per program, and
the optimal solutions had a median of 5 data structures changes
for the execution time optimised solutions and 4 for the memory
optimised solutions.

Sampled GitHub programs. Figure 5 presents all solutions opti-
mised for execution time, memory consumption and CPU usage
for the sampled GitHub programs. As with the previous corpora,
ARTEMIS found solutions that improved each measure significantly.
ARTEMIS improves the median value of execution time across all
projects by 4.6%, memory consumption by 11.4% and CPU usage
by 4.6%.

ARTEMIS found solutions with antagonistic improvement for
projects jafka and documents4j. ARTEMIS found a solution that im-
proves the execution time of jafka, a distributed publish-subscribe
messaging system, by M=12%, 95% CI [11.2%, 13.6%], but also in-
creases its memory consumption by M=23.6%, 95% CI [21.4%, 25.7%).
It also found a solution that improves the memory consumption
of documents4j (M=38%, 95% CI [38%, 41%]) but introduced extra
CPU usage M=26.1%, 95% CI [24.2%, 28%]. A median of 9.5 data
structures were extracted and the optimal solutions had a median of
5 data structures changes from the original versions of the program.

Observing again the numbers across the three corpora, we can
say that they are quite consistent, showing that ARTEMIS finds opti-
mal solutions that improve significantly the different optimisation
measures. We also see that the number of Darwinian Data struc-
tures extracted (between 9.5 and 18) and the optimal solutions DDS
changes (between 4 and 5) are quite similar for the three corpora.

Analysing all results from the 3 corpora we conclude the discus-
sion of RQ2 with:

Finding2: ARTEMIS improves the median across all programs
in our corpus by 4.8% execution time, 10.2% memory con-
sumption, and 5.1% CPU usage.

RQ3: Which Darwinian data structures does ARTEMIS find and
tune?

We ask this question to understand which changes ARTEMIS
makes to a program. Table 2 contains the transformations ARTEMIS
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Tranformation Time Memory CPU
HashMap -> LinkedHashMap 60 53 57
LinkedList -> ArrayList 16 13 18
HashSet -> LinkedHashSet 22 21 21
LinkedBlockingQueue -> LinkedTransferQueue 1 2 2
ArrayList -> LinkedList 91 86 87
LinkedHashSet -> HashSet 7 8 5
Vector -> CopyOnWriteArrayList 1 0 2
LinkedHashMap -> HashMap 17 23 19

Table 2: DDS changes for optimal solutions across all measures.
applied across all optimal solutions. We see that the most com-
mon transformation for all measures is replacing ArrayList with
LinkedList, it appears 91, 86 and 87 times respectevely across all
measures. This transformation indicates that most developers pre-
fer to use ArrayList in their code, which in general is considered
to be faster, neglecting use cases in which LinkedList performs
better; e.g., when the program has many list insertion or removal
operations. Except HashMap to LinkedHashMap, the other transfor-
mations happen relatively rare in the optimal solutions. Last, the
median number of lines Artemis changes is 5.

Finding3: ARTEMIS extracted a median of 12 Darwinian data
structures from each program and the optimal solutions had a
median of 5 data structure changes from the original versions
of the program.

RQ4: What is the cost of using ARTEMIS?

In order for ARTEMIS to be practical and useful in real-world
situations, it is important to understand the cost of using it. The
aforementioned experimental studies reveal that, even for the pop-
ular programs, the existing selection of the data structure and the
setting of its parameters may be sub-optimal. Therefore, optimising
the data structures and their parameters can still provide signifi-
cant improvement on non-functional properties. To answer this
research question, the cost of ARTEMIS for optimising a program
is measured by the cost of computational resources it uses. In this
study, we used a Microsoft Azure™ D4-v2 machine, which costs
£0.41 per hour at a standard Pay-As-You-Go rate'’, to conduct all
experiments.

The experiments show that an optimisation process takes 3.05
hours on average for all studied subjects. The program GraphJet
and jimfs are the most and the least time-consuming programs
respectively, with 19.16 hours and 3.12 minutes optimisation time.
Accordingly, the average cost of applying ARTEMIS for the subjects
studied is £1.25, with a range from £0.02 to £7.86. The experimen-
tal results show that overall cost of using ARTEMIS is negligible
compared to a human software engineer, with the assumption that
a competent software engineer can find those optimisation in a
reasonable time.

ARTEMIS transforms the selection of data structure and sets pa-
rameters by rewriting source code, thereby allowing human devel-
opers to easily investigate its changes and gain insight about the
usage of data structures and the characteristics of the program.

Ohttps://azure.microsoft.com/en-gh/pricing/
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(a) Best execution time of uniformly selected GitHub programs. The median value is 95.4% and mean is 94.7%. Median number of
DDSs is 9.5 and mean is 11.6. Median number of pDDs changes is 5 and mean is 4.8.
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(c) Best CPU usage of the uniformly selected GitHub programs. The median value is 5.1% and mean is 8%. Median number of DDs
is 9.5 and mean is 11.6. Median number of pDs changes is 5 and mean is 4.5.

Figure 5: Answers RQ2. Description.

Finding4: The cost of using ARTEMIS is negligible, with an
average of £1.25 per project, providing engineers with insights
about the optimal variants of the project under optimisation.

To show the versatility of the ARTEMIS framework, we ask RQ2,
RQ3 and RQ4 over Google guetzli, a very popular JPEG encoder
written in C++. We used the STL containers and their operations
as Darwinian data structures. More specifically, we considered the
push_back and emplace_back as equivalent implementations of
the same functionality and exposed those as tunable parameters
to ARTEMIS’s optimiser. We collected a random sample of images
(available online '') and used it to construct a performance suite
that evaluates the execution time of guetzli.

We answer RQ2 by showing that ARTEMIS found an optimal
solution that improves execution time by 7%. We answer RQ3 by
showing that ARTEMIS extracted and tuned 25 parameters and found
an optimal solution with 11 parameter changes. ARTEMIS spent 1.5
hours (costs £0.62) to find optimal solutions which is between the
limits reported in RQ4. Last, we spent approximately 4 days to
extend ARTEMIS to support C++, using the parserless mode.

6 THREATS TO VALIDITY

Section 5.1 discusses the steps we took to address the threats to
the external validity of the results we present here. In short, we
built three subcorpora, each more representative than the last, for
a total of 43 programs, diverse in size and domain. The biggest
threat to the internal validity of our work is the difficulty of taking
accurate performance measurements of applications running on
VM, like the JVM. Section 5.2 details the steps, drawn from best
practice, we took to address this threat. In essence, we conducted
calibration experiments to adjust the parameters such that the

http://darwinianoptimiser.com/corpus

algorithm converges quickly and stops after the results become
stable. For measuring the non-functional properties, we carefully
chose JConsole profiler that directly gathers runtime information
from jpK, such that the measurement error is minimised. Moreover,
we carefully tuned JConsole to further improve the precision of
the measurements by maximising its sampling frequency such that
it does not miss any measurements while minimising the CPU
overhead. To cater for the stochastic nature of ARTEMIS and to
provide the statistic power for the results, we ran each experiment
30 times and manually checked that experiments had a steady state
and exhibited low variance.

7 RELATED WORK

Multi-objective Darwinian Data Structure selection and optimisa-
tion stands between two areas: search-based software engineering
and data structure performance optimisation.

7.1 Search-based software engineering

Previous work applies Genetic Programming [21, 29, 30, 35, 37, 39]
to either improve the functionality (bug fixing) [11, 17] or non-
functional properties of a program [8, 21, 25, 35, 38, 44]. Their
approaches use existing code as the code base and replace some
of the source code in the program under optimisation with the
code from the code base. However, many of these approaches rely
on the Plastic Surgery Hypothesis [2], which assumes that the
solutions exist in the code base. ARTEMIS, on the other hand, does
not rely on this hypothesis. ARTEMIS can harvest Darwinian data
structures both from the program, but also from external code
repositiories; further, ARTEMIS relies on a set of transformation
rules that it can automatically exhaustively extract from library
code or documentation.

Wu et al. [45] introduced a mutation-based method to expose
“deep” parameters, similar to those we optimise in this paper, from
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the program under optimisation, and tuned these parameters along
with “shallow” parameters to improve the time and memory per-
formance of the program. Though the idea of exposing additional
tunable parameter is similar to ARTEMIS, their approach did not
optimise data structure selection, which can sometimes be more
rewarding than just tuning the parameters. Moreover, they applied
their approach to a memory management library to benefit that li-
brary’s clients. The extent of improvement usually depends on how
much a program relies on that library. In contrast, ARTEMIS directly
applies to the source code of the program, making no assumptions
about which libraries the program uses, affording ARTEMIS much
wider applicability.

7.2 Data structure optimisation and bloat

A body of work [3, 14, 32-34, 42, 47] has attempted to identify
bloat arising from data structures. In 2009, Shacham et al. [40, 41]
introduced a semantic profiler that provides online collection-usage
semantics for Java programs. They instrumented Java Virtual Ma-
chine (JVM) to gather the usage statistics of collection data struc-
tures. Using heuristics, they suggest a potentially better choice for
a data structure for a program.

Though developers can add heuristics, if they lack sufficient
knowledge about the data structures, they may bias the heuristics
and jeopardise the effectiveness of the approach. ARTEMIs directly
uses the performance of a data structure profiled against a set of per-
formance tests to determine the optimal choices of data structures.
Therefore, ARTEMIS does not depend on expert human knowledge
about the internal implementation and performance differences
of data structures to formulate heuristics. Instead. ARTEMIS relies
on carefully-chosen performance tests to minimse bias. Further-
more, ARTEMIS directly modifies the program instead of providing
hints, thus users can use the fine-tuned program ARTEMIS generates
without any additional manual adjustment.

Other frameworks provide users with manually or automatically
generated selection heuristics to improve the data structure selec-
tion process. JitDS [12] exploits declarative specifications embedded
by experts in data structures to adapt them. CollectionSwitch [9]
uses data and user-defined performance rules to select other data
structure variants. Brainy [22] provides users with machine learn-
ing cost models that guide the selection of data structures. ARTEMIS
does not require expert annotations, user-defined rules or any ma-
chine learning knowledge. Storage strategies [6] changes VMs to
optimize their performance on collections that contain a single prim-
itive type; Artemis rewrites source code and handles user-defined
types and does not make VM modifications.

In 2014, Manotas et al. [31] introduced a collection data struc-
ture replacement and optimisation framework named SEEDS. Their
framework replaces the collection data structures in Java applica-
tions with other data structures exhaustively and automatically
select the most energy efficient one to improve the overall energy
performance of the application. Conceptually ARTEMIS extends this
approach to optimise both the data structures and their initialization
parameters. ARTEMIS also extends the optimisation objectives from
single objective to triple objectives and used Pareto non-dominated
solutions to show the trade-offs between these objectives. Due to
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a much larger search space in our problem, the exhaustive explo-
ration search that used by SEEDS is not practical, therefore we
adopted meta-heuristic search.

Furthermore, ARTEMIS directly transforms the source code of
the programs whilst SEEDS transforms the bytecode, so ARTEMIS
provides developers more intuitive information about what was
changed and teaches them to use more efficient data structures.
Moreover, ARTEMIS can be more easily applied to other languages
as it does not depend on language specific static analysers and refac-
toring tools such as WALA [20] and Eclipse IDE’s refactoring tools.
In order to support another language we just need the grammar of
that language and to implement a visitor that extracts a program’s
Darwinian data structures. We note that ANTLR, which ARTEMIS
uses, currently provides many available grammar languages '°.

Apart from the novelties mentioned above, this is the largest
empirical study to our knowledge compared to similar work. In
the studies mentioned above, only 4 to 7 subjects were included
in the experiments. Our study included the DaCapo benchmark,
30 sampled Github subjects and 8 well-written popular subjects
to show the effectiveness of ARTEMIS, therefore our results are
statistically more meaningful.

8 CONCLUSION

Developers frequently use underperformed data structures and for-
get to optimise them with respect to some critical non-functional
properties once the functionalities are fulfilled. In this paper, we
introduced ARTEMIS, a novel multi-objective multi-language search-
based framework that automatically selects and optimises Dar-
winian data structures and their arguments in a given program.
ARTEMIS is language agnostic, meaning it can be easily adapted to
any programming language; extending ARTEMIS to support C++
took approximately 4 days. Given as input a data structure store
with Darwinian implementations, it can automatically detect and
optimise them along with any additional parameters to improve the
non-functional properties of the given program. In a large empiri-
cal study on 5 DaCapo benchmarks, 30 randomly sampled projects
and 8 well-written popular Github projects, ARTEMIS found strong
improvement for all of them. On extreme cases, ARTEMIS found
46% improvement on execution time, 44.9% improvement on mem-
ory consumption, and 49.7% improvement on CPU usage. ARTEMIS
found such improvements making small changes in the source code;
the median number of lines ARTEMIS changes is 5. Thus, ARTEMIS
is practical and can be easily used on other projects. At last, we es-
timated the cost of optimising a program in machine hours. With a
price of £0.41 per machine hour, the cost of optsimising any subject
in this study is less than £8, with an average of £1.25. Therefore,
we conclude that ARTEMIS is a practical tool for optimising the data
structures in large real-world programs.

ACKNOWLEDGEMENTS

We would like to thank Graham Barrett, David Martinez, Kenji
Takeda and Nick Page for their invaluable assistance with respect
to developing ARTEMIS. Lastly, we are grateful to Microsoft Azure
and Microsoft Research for the resources and commercial support.

2https://github.com/antlr/grammars-vd/


https://github.com/antlr/grammars-v4/

Darwinian Data Structure Selection

REFERENCES

(1]
(2]

(8]

=
0

[10

(1]

[12]

[13]

[14]

(15

[16]

[17]

(18]

[19]

[20

[21]

[22]
[23]
[24]

[25

M. Arnold, M. Hind, and B. G. Ryder. Online feedback-directed optimization of
java. In ACM SIGPLAN Notices, volume 37, pages 111-129. ACM, 2002.

E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro. The plastic surgery
hypothesis. In Proceedings of the 22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2014, pages 306-317, New York, NY,
USA, 2014. ACM.

M. Basios, L. Li, F. Wu, L. Kanthan, and E. T. Barr. Optimising darwinian data
structures on google guava. In International Symposium on Search Based Software
Engineering, pages 161-167. Springer, 2017.

R. V. Binder. Testing object-oriented systems: models, patterns, and tools. Addison-
Wesley Professional, 2000.

S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur,
A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, et al. The dacapo benchmarks:
Java benchmarking development and analysis. In ACM Sigplan Notices, volume 41,
pages 169-190. ACM, 2006.

C. F. Bolz, L. Diekmann, and L. Tratt. Storage strategies for collections in dynam-
ically typed languages. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages &#38; Applications,
OOPSLA 13, pages 167-182, New York, NY, USA, 2013. ACM.

N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. MacCormack,
R. Nord, I. Ozkaya, et al. Managing technical debt in software-reliant systems.
In Proceedings of the FSE/SDP workshop on Future of software engineering research,
pages 47-52. ACM, 2010.

B. R. Bruce, J. Petke, and M. Harman. Reducing energy consumption using
genetic improvement. In Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO ’15, pages 1327-1334, New York, NY,
USA, 2015. ACM.

D. Costa and A. Andrzejak. Collectionswitch: a framework for efficient and
dynamic collection selection. In Proceedings of the 2018 International Symposium
on Code Generation and Optimization, pages 16-26. ACM, 2018.

N. Dale and H. M. Walker. Abstract data types: specifications, implementations,
and applications. Jones & Bartlett Learning, 1996.

H. Dan, M. Harman, J. Krinke, L. Li, A. Marginean, and F. Wu. Pidgin crasher:
searching for minimised crashing gui event sequences. In International Sympo-
sium on Search Based Software Engineering, pages 253-258. Springer, 2014.

M. De Wael, S. Marr, J. De Koster, J. B. Sartor, and W. De Meuter. Just-in-time data
structures. In 2015 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward!), pages 61-75. ACM, 2015.
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation,
6(2):182-197, 2002.

B. Dufour, B. G. Ryder, and G. Sevitsky. A scalable technique for characterizing
the usage of temporaries in framework-intensive java applications. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of software
engineering, pages 59-70. ACM, 2008.

M. P. Fay and M. A. Proschan. Wilcoxon-mann-whitney or t-test? on assumptions
for hypothesis tests and multiple interpretations of decision rules. Statistics
surveys, 4:1, 2010.

A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java performance
evaluation. ACM SIGPLAN Notices, 42(10):57-76, 2007.

C. L. Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In 2012 34th
International Conference on Software Engineering (ICSE), pages 3-13, June 2012.

B. Hardin. Companies with hacking cultures fai. https://blog.bretthard.in/
companies-with-hacking- cultures-fail-b8907a69e3d#.ffdkyb1w2, 2016. [Online;
accessed 25-February-2017].

M. Harman. The current state and future of search based software engineering.
In 2007 Future of Software Engineering, pages 342-357. IEEE Computer Society,
2007.

IBM. T.J. Watson Libraries for Analysis (WALA). http://wala.sourceforge.net/
wiki/index.php/Main_Page, 2009. [Online; accessed 18-February-2017].

Y. Jia, F. Wu, M. Harman, and J. Krinke. Genetic improvement using higher order
mutation. In Genetic and Evolutionary Computation Conference, GECCO 2015,
Madrid, Spain, July 11-15, 2015, Companion Material Proceedings, pages 803-804,
2015.

C. Jung, S. Rus, B. P. Railing, N. Clark, and S. Pande. Brainy: effective selection of
data structures. In ACM SIGPLAN Notices, volume 46, pages 86-97. ACM, 2011.

T. Kalibera and R. Jones. Rigorous benchmarking in reasonable time. In ACM
SIGPLAN Notices, volume 48, pages 63-74. ACM, 2013.

D. E. Knuth. Structured programming with go to statements. ACM Comput. Surv.,
6(4):261-301, Dec. 1974.

W. B. Langdon, M. Modat, J. Petke, and M. Harman. Improving 3d medical image
registration cuda software with genetic programming. In Proceedings of the
2014 Annual Conference on Genetic and Evolutionary Computation, pages 951-958.
ACM, 2014.

ESEC/FSE 18, November 4-9, 2018, Lake Buena Vista, FL, USA

[26]
[27]

(28]

[29]

[32

[33

[34

(36]

[37

(38]

[39

[41

[42]

[43

[44]

[45]

=
22,

L. Li. Exact analysis for next release problem. In Requirements Engineering
Conference (RE), 2016 IEEE 24th International, pages 438-443. IEEE, 2016.

L. Li. Exact analysis for requirements selection and optimisation. PhD thesis, UCL
(University College London), 2017.

L. Li, M. Harman, E. Letier, and Y. Zhang. Robust next release problem: handling
uncertainty during optimization. In Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation, pages 1247-1254. ACM, 2014.

L. Li, M. Harman, F. Wu, and Y. Zhang. Sbselector: Search based component
selection for budget hardware. In International Symposium on Search Based
Software Engineering, pages 289-294. Springer, 2015.

L.Li, M. Harman, F. Wu, and Y. Zhang. The value of exact analysis in requirements
selection. IEEE Transactions on Software Engineering, PP (99), pages 1-1, 2016.

L. Manotas, L. Pollock, and J. Clause. Seeds: A software engineer’s energy-
optimization decision support framework. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 503-514, New York, NY,
USA, 2014. ACM.

N. Mitchell and G. Sevitsky. The causes of bloat, the limits of health. In ACM
SIGPLAN Notices, volume 42, pages 245-260. ACM, 2007.

N. Mitchell, G. Sevitsky, and H. Srinivasan. Modeling runtime behavior in
framework-based applications. In European Conference on Object-Oriented Pro-
gramming, pages 429-451. Springer, 2006.

F. Nagel, G. M. Bierman, A. Dragojevic, and S. Viglas. Self-managed collections:
Off-heap memory management for scalable query-dominated collections. In
EDBT, pages 61-71, 2017.

J. Nanavati, F. Wu, M. Harman, Y. Jia, and J. Krinke. Mutation testing of memory-
related operators. In Eighth IEEE International Conference on Software Testing,
Verification and Validation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015,
pages 1-10, 2015.

R. J. Nowling. Gotchas with Scala Mutable Collections and Large
Data Sets. http://rnowling.github.io/software/engineering/2015/07/01/
gotcha-scala-collections.html, 2015. [Online; accessed 18-February-2017].

J. Petke, S. Haraldsson, M. Harman, D. White, J. Woodward, et al. Genetic improve-
ment of software: a comprehensive survey. IEEE Transactions on Evolutionary
Computation, 2017.

J. Petke, M. Harman, W. B. Langdon, and W. Weimer. Using genetic improvement
and code transplants to specialise a c++ program to a problem class. In European
Conference on Genetic Programming, pages 137-149. Springer, 2014.

R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza. A field guide to genetic
programming. Lulu. com, 2008.

O. Shacham, M. Vechev, and E. Yahav. Chameleon: Adaptive selection of col-
lections. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09, pages 408-418, New York, NY,
USA, 2009. ACM.

O. Shacham, M. Vechev, and E. Yahav. Chameleon: Adaptive selection of collec-
tions. SIGPLAN Not., 44(6):408-418, June 2009.

A. Shankar, M. Arnold, and R. Bodik. Jolt: lightweight dynamic analysis and
removal of object churn. ACM Sigplan Notices, 43(10):127-142, 2008.

J. Vlissides, R. Helm, R. Johnson, and E. Gamma. Design patterns: Elements of
reusable object-oriented software. Reading: Addison-Wesley, 49(120):11, 1995.

F. Wu, J. Nanavati, M. Harman, Y. Jia, and J. Krinke. Memory mutation testing.
Information & Software Technology, 81:97-111, 2017.

F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke. Deep parameter optimisa-
tion. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, pages 1375-1382. ACM, 2015.

G. Xu, M. Arnold, N. Mitchell, A. Rountev, and G. Sevitsky. Go with the flow:
profiling copies to find runtime bloat. ACM Sigplan Notices, 44(6):419-430, 2009.
G. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg, and G. Sevitsky. Finding
low-utility data structures. ACM Sigplan Notices, 45(6):174-186, 2010.

G. Xu and A. Rountev. Precise memory leak detection for java software us-
ing container profiling. In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th
International Conference On, pages 151-160. IEEE, 2008.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Transactions on Evolutionary Computation, 7(2):117-132, April 2003.


https://blog.bretthard.in/companies-with-hacking-cultures-fail-b8907a69e3d#.ffdkyb1w2
https://blog.bretthard.in/companies-with-hacking-cultures-fail-b8907a69e3d#.ffdkyb1w2
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://rnowling.github.io/software/engineering/2015/07/01/gotcha-scala-collections.html
http://rnowling.github.io/software/engineering/2015/07/01/gotcha-scala-collections.html

	Abstract
	1 Introduction
	2 Motivating example
	3 Darwinian Data Structure Selection and Tuning
	4 Artemis
	4.1 Darwinian Data Structure Store
	4.2 Discovering Darwinian Data Structures
	4.3 Code Transformations
	4.4 Search Based Parameter Tuning
	4.5 Deployability

	5 Evaluation
	5.1 Corpus
	5.2 Experimental Setup
	5.3 Research Questions and Results Analysis

	6 Threats to Validity
	7 Related Work
	7.1 Search-based software engineering
	7.2 Data structure optimisation and bloat

	8 Conclusion
	References

