

Appendix

1

Appendix

Appendix

2

Table of Contents

Appendix 1

1.1 Appendix – Chapter 3 3
1.1.1 Chapter 3 – Appendix 1: Chimera Script to prepare ligand files for Hungarian

algorithm 3
1.1.2 Chapter 3 – Appendix 2: Python Script to determine RMSD using Hungarian

algorithm 7
1.1.3 Chapter 3 – Appendix 3: RDKit 3D file generator from smiles 19
1.1.4 Chapter 3 – Appendix 4: Table of A-867744, TBS and TQS family compounds 21
1.1.5 Chapter 3 – Appendix 5 – Chemical data 25

1.2 Appendix – Chapter 4 34
1.2.1 Chapter 4 – Appendix 1: Chemical data 34

1.3 Appendix – Chapter 5 55
1.3.1 Chapter 5 – Appendix 1: Compounds used in the actives database 55
1.3.2 Chapter 5 –Appendix 2: Python script for determination of the CNS MPO scores

for compounds listed in a table with their corresponding physicochemical properties 61
1.3.3 Chapter 5 – Appendix 3: Table of compounds identified by virtual screening 64
1.3.4 Chapter 5 – Appendix 4: Chemical data 68

1.4 Appendix – Chapter 6 72
1.4.1 Chapter 6 – Appendix 1: Sequence Alignment for use with MODELLER 72
1.4.2 Chapter 6 – Appendix 2: MODELLER script 75

Appendix

3

1.1 Appendix – Chapter 3

1.1.1 Chapter 3 – Appendix 1: Chimera Script to prepare ligand files
for Hungarian algorithm

#!/usr/bin/python

'''
retrieve docking solutions and use chimera to
prepare files for input into RMSD script
'''

from chimera import runCommand as rc
from chimera import replyobj
import os
import re
import sys

flexible = True #is the docking run flexible
consensus_level = 2.0 #the level of consensus you want to search
for in Angstroms

#location of vina output results
vina_path =
"/Users/nj001/Documents/Docking/201702/20170221/VINA/20170221_2_A
bb/"

#location of gold output results
gold_path =
"/Users/nj001/Documents/Docking/201702/20170221/GOLD/20170221_2_A
bb/"

#where to put results
out_dir =
"/Users/nj001/Documents/Docking/201702/20170221/clusters/20170221
_2_Abb/"
#os.mkdir(out_dir)

vina_out_directories = []
dirs = []
open_models = 0

make_GvA = 'T' #raw_input('Write GvA files? (T/F) --->')

#--

def alphanum_keys(s):
 num = s[:-5].split("_")
 item = num.pop(-1)
 return int(item)

def sort_nicely(l): #sort by natural sort
 keys = []
 for item in l:
 key = alphanum_keys(item)
 keys.append(key)

Appendix

4

 file_keys = zip(l, keys)
 return sorted(file_keys, key = lambda x:x[1])

#--

vina_out_directories = [fn for fn in next(os.walk(vina_path))[1]
if fn.startswith('ligand')]
gold_out_directories = [fn for fn in next(os.walk(gold_path))[1]
if fn.endswith('_m1')]

gold_out_directories_2 = [re.sub('.pdb','',x) if '.pdb' in x else
x for x in gold_out_directories]

#vina_out_directories = sort_nicely(vina_out_directories)
#gold_out_directories = sort_nicely(gold_out_directories)

print vina_out_directories
print gold_out_directories

for item in vina_out_directories:
 if (item[7:]+'_m1') in gold_out_directories_2:
 continue
 else:
 print item,'not in GOLD solutions'
 vina_out_directories.remove(item)

print vina_out_directories
print gold_out_directories

dirs.append(vina_out_directories)
dirs.append(gold_out_directories)

print dirs

#go through each vina out.pdbqt and write a mol2 file
if make_GvA == 'T':
 for directory in vina_out_directories:
 if flexible == True:
 replyobj.status("Processing " + directory) #what
are we working on
 f = (vina_path + directory + "/out.pdbqt")
 rc("viewdock " + f) #open pdbqt files
 rc("sel
#0:phe,ile,leu,asn,met,thr,tyr,ser,glu,lys") #select flexible
sidechains
 rc("delete sel") #remove the atoms
 rc("addh spec #0") #add all hydrogens
 elif flexible == False:
 replyobj.status("Processing " + directory) #what
are we working on
 f = (vina_path + directory + "/out.pdbqt")
 rc("viewdock " + f) #open pdbqt files
 rc("addh spec #0") #add all hydrogens
 for i in range(1,21): #iterate through open models
(max 20 for vina)
 rc("sel #0."+str(i))

Appendix

5

 #write .mol2 for each model will write empty
atom files if not 20 models
 rc("write format mol2 selected relative 0.1 #0
"+vina_path+directory+"/"+directory+"_"+str(i)+".mol2")
 rc("close session") #close everything so that in next
iteration the model number stays at 0

 for i in range(len(vina_out_directories)):
 os.chdir(vina_path+"/"+dirs[0][i]) #go to vina
directory
 files = [f for f in os.listdir(".") if
f.endswith(".mol2")]
 print files
 files = sort_nicely(files)
 print files
 for f in files:
 fo = open(f[0],"r")
 for x, line in enumerate(fo): #remove files that
contain no atoms
 if x == 2: #third line of .mol2 reads '0 0
0 0' if no atoms in file
 ln = line.split()
 if ln[0] == "0":
 os.remove(f[0])
 else:
 rc("open "+f[0]) #open all vina
results written to .mol2 files
 open_models += 1
 fo.close()
 os.chdir(gold_path+dirs[1][i])
 files = [f for f in os.listdir(".") if
f.startswith("gold_soln_")] #go to gold directory
 print files
 files = sort_nicely(files)
 print files
 for f in files:
 rc("open "+f[0]) #open all gold solutions
labelled as they were run
 open_models += 1
 rc("select")
 rc("addh spec sel") #remove lone pairs on gold
solutions
 if os.path.isdir(out_dir+dirs[1][i]) == False: #check
to see is directory for output already exists
 os.mkdir(out_dir+dirs[1][i])
 for x in range(open_models):
 rc("sel #"+str(x))
 rc("write format mol2 selected relative 0
"+str(x)+" "+out_dir+dirs[1][i]+"/"+dirs[1][i][:-
2]+str(x+1)+".mol2") #write .mol2 for each model
 rc("close session")
 os.chdir(out_dir+dirs[1][i])
 files = [f for f in os.listdir(".") if
f.endswith(".mol2")]
 files = sort_nicely(files)
 for f in files: #remove any defunct files again after
writing all the gold and vina files to one directory
 fo = open(f[0],"r")

Appendix

6

 for x, line in enumerate(fo):
 if x==2:
 ln =line.split()
 if ln[0] == "0":
 os.remove(f[0])
 fo.close()
 #concatenate all the files into one GvA.mol2 file
 fname = (dirs[1][i][:-2]+"GvA.mol2")
 outfile = open((out_dir+fname),"w")
 for f in files:
 with open(f[0],'r') as infile:
 outfile.write(infile.read())
 outfile.close()
 open_models = 0

os.system('/usr/bin/python
~/Documents/Docking/ANALYSIS/docking_soln_analysis_2.py
'+vina_path+' '+gold_path+' '+out_dir)

Appendix

7

1.1.2 Chapter 3 – Appendix 2: Python Script to determine RMSD
using Hungarian algorithm

#usr/bin/python

import sys
import os
import scipy
from scipy.cluster import hierarchy
import numpy as np
from munkres import Munkres, print_matrix
from math import sqrt
import matplotlib.pyplot as plt
import itertools
import operator
#from Tkinter import Tk
#from tkFileDialog import askdirectory
import pylab
import re

#atom types in SYBYL MOL2 format
atom_types = ['C.3','C.2','C.ar','N.pl3','O.2','S.o2',
 'C.1','N.1','S.3','S.O','P.3','N.4','O.co2','S.2',
 'P.3','N.3','O.3']

consensus_level = 2.5 #the level of consensus you want to search
for in Angstroms

#location of vina output results
vina_path = sys.argv[1]
#"/Users/nj001/Documents/Chemistry/Open_Eye/ALLOSTERIC_AGONISTS/P
DBQT_FILES/"

#location of gold output results
gold_path = sys.argv[2]
#"/Users/nj001/Documents/Chemistry/Open_Eye/ALLOSTERIC_AGONISTS/G
OLD_RESULTS/"

#where to put results
out_dir = sys.argv[3]
#"/Users/nj001/Documents/Chemistry/Open_Eye/ALLOSTERIC_AGONISTS/c
luster_analysis/"
#os.mkdir(out_dir)

flexible = bool(sys.argv[4]) #is the docking run flexible

number_of_solns = 5 #number of consensus solutions to be included
in hierarchical clustering
rmsd_cut_off = 2.5 #distance cutoff for clustering of ligand
solutions against each other

vina_out_directories = []
dirs = []
open_models = 0

make_rmsd_matrix = 'T' #raw_input('Write RMSD matrix? (T/F) ---
>')

Appendix

8

consensus_scoring = 'T' #raw_input('Calculate and write Borda
ranks? (T/F) --->')
create_interligand_mol2 = 'T' #raw_input('Make mol2 with
consensus solutions? (T/F) --->')
make_all_by_all_matrix = 'T' #raw_input('Write all by all RMSD
matrix? (T/F) --->')
write_clusters = 'T' #raw_input('Write the clusters into files?
(T/F) --->')
run_chimera = 'T' #raw_input('Make chimera session of largest
cluster? (T/F) --->')

#--

def make_matrices(file_name, first_time):
 '''
 take a GvA file and make list of lists of atom coordinates
 returned structure:
 [[[atom[atom_idx,x,y,z,atom_type]], mol_name, atom_count]]
 '''
 parsing = False
 in_molecule = False
 dictionary = {}
 atom_list = []
 mol_list = []
 atom_count = 0
 molecule_count = 0
 vina_count = 0
 name_counter = 0
 with open(file_name) as f:
 lines = f.readlines()
 for line in lines:
 #read only the relevant lines in the file
(parsing between the
 #start of atom list and start of bond list)
 if line.startswith("@<TRIPOS>BOND"):
 parsing = False
 #make a dictionary of the dictionaries of
coordinates
 mol_list.append([atom_list,mol_name,
atom_count])
 atom_list = []
 molecule_count += 1
 #total_atoms = atom_count
 atom_count = 0
 if parsing:
 ln = line.split()
 coords = []
 #add the coordinates to a dictionary with
the atom number as the key
 atom_idx = int(ln[0])
 atom_type = ln[5]
 x = float(ln[2])
 y = float(ln[3])
 z = float(ln[4])
 if atom_type != 'H':
 coords = [atom_idx, x, y, z,
atom_type]

Appendix

9

 atom_list.append(coords)
 atom_count += 1
 if line.startswith("@<TRIPOS>ATOM"):
 parsing = True
 if line.startswith("@<TRIPOS>MOLECULE"):
 in_molecule = True
 continue
 if in_molecule == True:
 if first_time == True:
 mol_name = file_name[:-
9]+'_'+str(molecule_count+1) #(mol[1][:-4]+'_'+mol[4][4:-1])
 if first_time == False:
 mol = line.split('|')
 #print mol
 mol_name = (mol[1]+'_m1_'+mol[4][4:])
 in_molecule = False
 #vina_count = molecule_count - 50
 #ligand = file_name[:-10]
 #mols_list = [mol_list, molecule_count] #ligand,
vina_count, total_atoms,
 return mol_list #[]

#--

def hungarian_alg(matrix):
 '''
 runs hungarian algorithm to determine "lowest cost"
assignment
 of atoms, for the calculation of RMSD
 very slow to only use if you have to
 '''
 m=Munkres()
 indexes = m.compute(matrix)
 total = 0
 matched_atoms = 0
 for row, column in indexes:
 value = matrix[row][column]
 total += value
 matched_atoms += 1
 #print '(%d, %d) -> %d' % (row, column, value)
 return [total, matched_atoms]

#--

def rmsd_matrix(list1, list2):
 '''
 creates all atom against all atom RMSD matrix
 for input to hungarian algorithm
 list format is [atom[atom_idx,x,y,z,atom_type]]
 '''
 j_list = []
 rmsds = []
 index = 0
 for i in range(len(list1)):
 for j in range(len(list2)):
 for c in (1,2,3):

Appendix

10

 index += (list2[j][c]-list1[i][c]) ** 2
 j_list.append(index)
 index = 0
 rmsds.append(j_list)
 j_list = []
 return rmsds

#--

def f7(seq):
 '''
 removes duplicates from list
 used here to ensure molecules which come in top 5 ranks
 more than once are only accounted for once
 '''
 seen = set()
 seen_add = seen.add
 return [x for x in seq if not(x in seen or seen_add(x))]

#--

def condense(atom_type, list):
 '''
 shortens list of atoms into atom types to form smaller
matrices
 for hungarian algorithm. The specificity of only matching
the
 atoms of the same type also affords correct asisgnment using
 the hungarian algorithm
 '''
 condensed_list = []
 for item in list:
 if item[4] == atom_type:
 #print item[4], atom_type
 condensed_list.append(item)
 return condensed_list

#--

def sort_nicely(l): #sort by natural sort
 keys = []
 for item in l:
 key = alphanum_keys(item)
 keys.append(key)
 file_keys = zip(l, keys)
 return sorted(file_keys, key = lambda x:x[1])

#--

def ranking(ordered_list):
 ranks = [1]
 for i in range(1, len(ordered_list)):
 if ordered_list[i][0] == ordered_list[i-1][0]:
 ranks.append(ranks[i-1])

Appendix

11

 else:
 ranks.append(len(ranks)+1)
 return ranks

#--

def get_vina_rank(consensus_list): #WORKING
 numbering = range(1,len(consensus_list)+1)
 vina_list = zip(consensus_list, numbering) #assign order by
rmsd to solution numbers
 vina_list = sorted(vina_list, key=lambda tuple: tuple[0])
#sort by vina score
 ranks = ranking(vina_list)#[1]
 vina_ranks = zip(vina_list,ranks)
 vina_ranks = sorted(vina_ranks, key = lambda tuple:
tuple[0][1]) #reorder by rmsd rank so that the correct solutions
can be related back to the gold solns
 return vina_ranks

#--

def get_goldscore(consensus_list,file): #WORKING
 gold_scores_list = []
 numbering = range(1,len(consensus_list)+1)
 gold_list = zip(consensus_list, numbering) #assign order by
rmsd to solution numbers
 with open(file) as f:
 for i, line in enumerate(f):
 if i > 3 and i < 54: #only read the relevant
section of the file
 ln = line.split()
 for item in gold_list:
 print item
 print item[0]
 print ln[0]
 if item[0] == int(ln[0]):

 gold_scores_list.append([item[0], float(ln[1]), item[1]])
#[gold_soln_num, gold_score, rmsd_rank]
 gold_score_solns_sorted = sorted(gold_scores_list, key
= lambda tuple: tuple[1], reverse=True)
 ranks = ranking(gold_score_solns_sorted)
 gold_score_ranks = zip(gold_score_solns_sorted, ranks)
 gold_score_ranks = sorted(gold_score_ranks, key =
lambda tuple: tuple[0][2])
 return gold_score_ranks

#--

def get_chemplp(consensus_list,sorted_rmsd_name,rescore_file,
flexible): #WORKING
 print "<<getting chemplp>>",sorted_rmsd_name[15:-4]
 chem_plp_list = []
 numbering = range(1,len(consensus_list)+1)
 gold_chemplp_list = zip(consensus_list, numbering)

Appendix

12

 print "<<CONSENSUS_LIST>>\n",gold_chemplp_list
 with open(rescore_file) as f:
 for i, line in enumerate(f):
 if i > 2:
 ln = line.split()
 if flexible == True:
 identifier = ln[12]
 else:
 identifier = ln[11]
 fitness_score = float(ln[3])
 broken_ids = identifier.split('|')
 mol_name = broken_ids[1]
 dock_num = int(broken_ids[4][4:])
 print "<<Docking run number>>",dock_num
 if sorted_rmsd_name[15:-4] == mol_name:
 for item in gold_chemplp_list:
 if item[0] == dock_num:
 print fitness_score

 chem_plp_list.append([item[0], fitness_score, item[1]])
 #[gold_number, chem_plp_score, rmsd_rank]
 chem_plp_sorted = sorted(chem_plp_list, key = lambda
tuple:tuple[1], reverse=True)
 ranks = ranking(chem_plp_sorted)
 chem_plp_ranks = zip(chem_plp_sorted, ranks)
 chem_plp_ranks = sorted(chem_plp_ranks, key = lambda
tuple: tuple[0][2])
 return chem_plp_ranks

#--

def borda_score(total_number, ranks):
 bordascore = 0
 for i in range(len(ranks)):
 bordascore += total_number - ranks[i]
 return bordascore

#--

def get_soln_numbers(file): #WORKING
 vina = []
 gold = []
 with open(file) as f:
 lines = f.readlines()
 for line in lines:
 if line.startswith('#'):
 continue
 else:
 ln = line.split()
 RMSD = float(ln[2])
 vina_soln_no = int(ln[0])
 gold_soln_no = int(ln[1])
 if RMSD <= 2.0:
 vina.append(vina_soln_no)
 gold.append(gold_soln_no)
 vina_gold = zip(vina,gold)

Appendix

13

 if len(vina_gold) == 0:
 return 'ERROR: NO SOLNS < 2.0 A RMSD'
 else:
 return vina_gold

#--

def check_vina_gold(vina_gold):
 for tuple in vina_gold:
 print tuple
 dup_list = [tup for tup in vina_gold if tup[1] ==
tuple[1]]
 if len(dup_list) > 1:
 dup_list_sorted = sorted(dup_list, key = lambda
tuple: tuple[0])
 for i in range(len(dup_list_sorted)):
 if i > 0:
 vina_gold.remove(dup_list[i])
 return vina_gold

#--

def sort_by_cluster(list, cluster_num):
 '''
 sorts output of fcluster into a list of molecules in each
cluster
 '''
 cluster = []
 for item in list:
 if item[1] == cluster_num:
 cluster.append(item)
 return cluster

#--

def file_len(fname):
 with open(fname) as f:
 for i, l in enumerate(f):
 pass
 return i + 1

#--

###

os.chdir(out_dir)
GvAs = [f for f in os.listdir(".") if f.endswith("GvA.mol2")]

Calculate RMSDS ####

for GvA in GvAs:
 molecules = make_matrices(out_dir+GvA, True)

 if make_rmsd_matrix == 'T':
 molecule_rmsds = []

Appendix

14

 condensed_rmsds = []
 rmsd_square_matrix = []
 rmsds = []
 print len(molecules)
 for i,item in enumerate(molecules[:(len(molecules)-
50)]):
 #print item
 for j,item2 in
enumerate(molecules[(len(molecules)-50):]):
 lowest_cost = 0
 matched_atoms = 0
 for atom_type in atom_types:
 condensed_1 =
condense(atom_type,item[0])
 condensed_2 =
condense(atom_type,item2[0])
 matey =
rmsd_matrix(condensed_1,condensed_2)
 if len(matey) > 0:
 #print matey
 hungry = hungarian_alg(matey)
 #print hungry
 lowest_cost += hungry[0]
 matched_atoms += hungry[1]
 rmsd = sqrt(lowest_cost/matched_atoms)
 molecule_rmsds.append(rmsd)
 if rmsd < 2.0:
 rmsds.append([i+1,j+1,rmsd])
 #print molecule_rmsds
 #condensed_rmsds = non_redundant(molecule_rmsds)

 rmsd_square_matrix.append(molecule_rmsds)
 molecule_rmsds = []
 with open(out_dir+'rmsd_'+GvA+'_matrix.txt','w') as
outfile:
 for item in rmsd_square_matrix:
 for rmsd in item:
 outfile.write(str(rmsd)+'\t')
 outfile.write('\n')
 sorted_rmsds = sorted(rmsds,key = lambda tuple:
tuple[2])
 print GvA[:-9]
 print 'VINA\tGOLD_soln\tRMSD'
 for item in sorted_rmsds:
 print
(str(item[0])+'\t'+str(item[1])+'\t'+str(item[2]))
 with open((out_dir+'sorted_munkres_'+GvA[:-
9]+'.txt'),'w') as outfile:
 outfile.write('#'+GvA[:-
9]+'\n#VINA\tGOLD_soln\tRMSD\n')
 for item in sorted_rmsds:

 outfile.write(str(item[0])+'\t'+str(item[1])+'\t'+str(item[2
])+'\n')
 else:
 with
open(out_dir+'rmsd_'+str(number_of_solns)+'matrix.txt','r') as
infile:

Appendix

15

 rmsd_square_matrix=[]
 for line in infile:
 ln = line[:-1].split()
 #print ln
 line_lis = []
 for item in ln:
 #print item
 line_lis.append(float(item))
 rmsd_square_matrix.append(line_lis)

 rmsd_square_matrix = np.array(rmsd_square_matrix)

Get scores and perform borda analysis ####

if consensus_scoring == 'T':
 chem_plp_log = "rescore.log"

 sorted_rmsd_files = [f for f in os.listdir(out_dir) if
f.startswith('sorted_')]
 gold_ligand_dirs = next(os.walk(gold_path))[1]

 os.chdir(out_dir)

 for file in sorted_rmsd_files:
 print ('#'+file[15:-4])
 vina_gold = get_soln_numbers(file) #[vina_soln_num,
gold_soln_num]
 print vina_gold
 if type(vina_gold) is list:
 vina_gold = check_vina_gold(vina_gold)
 print vina_gold
 vina_consensus = [item[0] for item in vina_gold]
 vina_ranks = get_vina_rank(vina_consensus)
 print 'VINA ===> ',vina_ranks # ((vina_number,
order_by_rmsd), rank)
 gold_consensus = [item[1] for item in vina_gold]
 print 'GOLD Consensus solutions
==>',gold_consensus
 gold_score_ranks = get_goldscore(gold_consensus,
(gold_path+file[15:-4]+'_m1/'+file[15:-4]+'_m1.rnk'))
 print 'GOLD_SCORE ===> ',gold_score_ranks
#((gold_number, goldscore, order_by_rmsd) rank)
 chem_plp_ranks = get_chemplp(gold_consensus,
file, (gold_path+'rescore.log'),flexible)
 print 'CHEM_PLP ===> ',chem_plp_ranks

 VINA_GS_PLP = [] #combine the ranks of all the
scoring functions into a matrix (list of lists) columns = scoring
function, rows = solution
 borda_scores = []
 total_consensus_solutions = len(vina_ranks)

 print
len(vina_ranks),len(gold_score_ranks),len(chem_plp_ranks)
 VINA_GS_PLP = zip([x[1] for x in
vina_ranks],[y[1] for y in gold_score_ranks],[z[1] for z in
chem_plp_ranks])

Appendix

16

 print VINA_GS_PLP

 for j in range(len(VINA_GS_PLP)):
 score =
borda_score(total_consensus_solutions, VINA_GS_PLP[j])
 borda_scores.append(score)
 print score
 VINA_GOLD_BORDA =
zip(vina_consensus,gold_consensus,borda_scores)
 ranked_solutions = sorted(VINA_GOLD_BORDA, key =
lambda tuple: tuple[2], reverse=True)
 print "CHECK_VGB ==>",VINA_GOLD_BORDA
 with open((out_dir+'borda_ranked_'+file[15:-
4]+'.txt'),'w') as outfile:
 outfile.write('#'+file[15:-4]+'\n')
 outfile.write('#vina gold borda \n')
 for i in range(len(ranked_solutions)):
 for j in range(3):

 outfile.write(str(ranked_solutions[i][j])+' ')
 outfile.write('\n')
 else:
 print 'NO CONSENSUS SOLUTIONS FOR FILE ', file

Cluster the consensus solutions between different ligands

os.chdir(out_dir)

rank_files = [f for f in os.listdir('.') if
f.startswith('borda_ranked_')]

all_top_solns = []

if create_interligand_mol2 == 'T':
 for file in rank_files:
 top_gold = []
 with open(file) as infile:
 for i, line in enumerate(infile):
 if i > 1 and i < 2+number_of_solns:
 ln = line.split()
 top_gold.append(file[13:-
4]+'_m1_'+str(ln[1])+'.mol2')
 elif i > 1+number_of_solns:
 break
 gold_soln_dir_name = (file[13:-4]+'_m1/')
 top_gold = f7(top_gold)
 for soln in top_gold:
 all_top_solns.append(soln)
 #gold_file_name = ('gold_soln_'+file[13:-
4]+'.pdb_m1_'+soln+'.mol2')

 with
open(out_dir+'top_'+str(number_of_solns)+'_solns_all.mol2','w')
as outfile:
 for item in all_top_solns:
 print item
 parts = item.split('_')

Appendix

17

 print parts
 m1_idx = parts.index('m1')
 name = '_'.join(parts[0:(m1_idx+1)])
 with open(gold_path+name+'/gold_soln_'+item) as
infile:
 for line in infile:
 if 'P-T' in line:
 line=re.sub('P-T','P_T',line)
#match all occurences
 outfile.write(line)
 elif 'U-1' in line:
 line=re.sub('U-1','U_1',line)
#match all occurences
 outfile.write(line)
 else:
 outfile.write(line)

RMSD calculation for clustering ####

molecules =
make_matrices(out_dir+'top_'+str(number_of_solns)+'_solns_all.mol
2', False)

if make_all_by_all_matrix == 'T':
 molecule_rmsds = []
 condensed_rmsds = []
 rmsd_square_matrix = []

 for item in molecules:
 #print item
 for item2 in molecules:
 lowest_cost = 0
 matched_atoms = 0
 for atom_type in atom_types:
 condensed_1 = condense(atom_type,item[0])
 condensed_2 = condense(atom_type,item2[0])
 matey =
rmsd_matrix(condensed_1,condensed_2)
 if len(matey) > 0:
 #print matey
 hungry = hungarian_alg(matey)
 #print hungry
 lowest_cost += hungry[0]
 matched_atoms += hungry[1]
 rmsd = sqrt(lowest_cost/matched_atoms)
 molecule_rmsds.append(rmsd)
 #print molecule_rmsds
 #condensed_rmsds = non_redundant(molecule_rmsds)

 rmsd_square_matrix.append(molecule_rmsds)
 molecule_rmsds = []
 with
open(out_dir+'rmsd_'+str(number_of_solns)+'matrix.txt','w') as
outfile:
 for item in rmsd_square_matrix:
 for rmsd in item:
 outfile.write(str(rmsd)+'\t')
 outfile.write('\n')

Appendix

18

else:
 with
open(out_dir+'rmsd_'+str(number_of_solns)+'matrix.txt','r') as
infile:
 rmsd_square_matrix=[]
 for line in infile:
 ln = line[:-1].split()
 #print ln
 line_lis = []
 for item in ln:
 gold_path #print item
 line_lis.append(float(item))
 rmsd_square_matrix.append(line_lis)

rmsd_square_matrix =np.array(rmsd_square_matrix)

print rmsd_square_matrix
z= hierarchy.linkage(rmsd_square_matrix, 'single')
#clusts =
hierarchy.fcluster(z,number_of_clusters,criterion='maxclust')
clusts = hierarchy.fcluster(z,rmsd_cut_off, criterion='distance')
print clusts

file_names = []
for item in molecules:
 print item[1]
 file_names.append(item[1])

clustered = zip(file_names,clusts)

for i in range(1,max(clusts)+1):
 cluster = sort_by_cluster(clustered,i)
 #representative = representative_class(cluster)
 #print 'Cluster',i,'representative class
=',representative,'of',len(cluster),'solutions\n'
 if len(cluster) > 2:
 print cluster #representative[0], cluster
 #for item in representative[1]:
 # print item
 if write_clusters == 'T':
 with
open(out_dir+'cluster_'+str(cluster[0][1])+'.txt','w') as
file_names_file:
 for item in cluster:
 pieces = item[0].split('_')
 gold_file_name =
'_'.join(['gold_soln']+pieces[:-1]+[pieces[-1][:-1]+'.mol2'])
 gold_dir_name = '_'.join(pieces[:-1])
 print gold_dir_name, gold_file_name

 file_names_file.write(gold_dir_name+'/'+gold_file_name+'\n')

cluster_files = [f for f in os.listdir('.') if
f.startswith('cluster') and f.endswith('txt')]
largest_cluster = ''
cluster_size = 0
for file in cluster_files:
 clus_length = file_len(file)

Appendix

19

 print 'Number in cluster '+file+' ===> ',clus_length
 if clus_length > cluster_size:
 cluster_size = clus_length
 largest_cluster = file

print 'Largest cluster is ====>',largest_cluster
'''
if run_chimera == 'T':
 os.system('/Applications/Chimera.app/Contents/Resources/bin/
chimera --nogui --script
"~/Documents/Docking/ANALYSIS/open_clusters.py '+out_dir+'
'+gold_path+' '+largest_cluster+'"')
'''
for file in cluster_files:
 os.system('/Applications/Chimera.app/Contents/Resources/bin/
chimera --nogui --script
"~/Documents/Docking/ANALYSIS/open_clusters.py '+out_dir+'
'+gold_path+' '+file+'"')

1.1.3 Chapter 3 – Appendix 3: RDKit 3D file generator from smiles

from rdkit import Chem
from rdkit.Chem import AllChem
import sys

#get smiles suppl
smiles_f = sys.argv[1]
smiles = []
codes = []
with open(smiles_f,'r') as smi_f:
 for line in smi_f:
 ln = line.split()
 smiles.append(ln[0])
 codes.append(ln[1])

#iterate through smiles creating 3D mols and appending to list
embedded_mols = [] # 3D molecule representations to get written
to file
cann_smiles = [] #list of canonical smiles that are put forward
for docking
names = [] #unique names for molecules
for i in range(0,len(smiles)):
 # check smiles are read correctly before making mol instance
 if Chem.MolFromSmiles(smiles[i]) == None:
 print "Molecule Not Read: %s" % smiles[i]
 continue
 m = Chem.MolFromSmiles(smiles[i])

 # check molecule is unique and not already read
 if smiles[i] in cann_smiles:
 print "Smiles already read: %s" % smiles[i]
 continue

 # check that the name is unique
 if codes[i] in names:
 print "Code already used: %s" % codes[i]

Appendix

20

 codes[i] = 'NC'+str(i)
 print "Replaced with: %s" % codes[i]

 m.SetProp('_Name',codes[i])
 m.SetProp('smiles',smiles[i])
 m2 = Chem.AddHs(m) #AddH to ensure more plausible
conformations
 AllChem.EmbedMolecule(m2)
 AllChem.UFFOptimizeMolecule(m2) #optimize geom with UFF
forcefield
 embedded_mols.append(m2)
 cann_smiles.append(smiles[i])
 names.append(codes[i])

#print cann_smiles
print len(embedded_mols), len(cann_smiles), len(names)
if len(embedded_mols) == len(cann_smiles) and len(cann_smiles) ==
len(names):
 SDF_basename = smiles_f.split('.')[0]
 w = Chem.SDWriter(SDF_basename+'.sdf')
 for mol in embedded_mols:
 w.write(mol)

 #used_mols = zip(cann_smiles,names)
 used_mols = []
 for i in range(len(cann_smiles)):

 used_mols.append(''.join([cann_smiles[i],'\t',names[i],'\n']
))
 with open(SDF_basename+"used.smi",'w') as used_mol_out:
 used_mol_out.writelines(used_mols)

Appendix

21

1.1.4 Chapter 3 – Appendix 4: Table of A-867744, TBS and TQS
family compounds

Short
Name

Structure Compound Name Ref
.

A-867744 Family

A-
867744

4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-
yl)benzenesulfonamide

(2)

A10a

ethyl 5-(4-chlorophenyl)-2-methyl-1-(4-sulfamoylphenyl)-1H-

pyrrole-3-carboxylate
(2)

A10b

ethyl 5-(4-bromophenyl)-2-methyl-1-(4-sulfamoylphenyl)-1H-
pyrrole-3-carboxylate

(2)

A15

4-(3-(4-chloro-3-methylbenzoyl)-5-(4-chlorophenyl)-2-methyl-

1H-pyrrol-1-yl)benzenesulfonamide
(2)

A18

4-(3-acetyl-5-(4-chlorophenyl)-2-methyl-1H-pyrrol-1-
yl)benzenesulfonamide

(2)

A20

4-(5-(4-chlorophenyl)-3-(cyclopropanecarbonyl)-2-methyl-

1H-pyrrol-1-yl)benzenesulfonamide
(2)

A21

4-(5-(4-chlorophenyl)-2-methyl-3-(3-methylbutanoyl)-1H-
pyrrol-1-yl)benzenesulfonamide

(2)

A28

5-(4-chlorophenyl)-N-(2-hydroxyethyl)-2-methyl-N-propyl-1-

(4-sulfamoylphenyl)-1H-pyrrole-3-carboxamide
(2)

TBS-516 Family

Appendix

22

TBS51

6

4-(5-benzyl-3-(4-bromophenyl)-1H-1,2,4-triazol-1-

yl)benzenesulfonamide
(3)

TBS54

6

4-(3-(4-bromophenyl)-5-propyl-1H-1,2,4-triazol-1-

yl)benzenesulfonamide
(3)

TBS34
5

4-(3-(4-bromophenyl)-5-phenyl-1H-1,2,4-triazol-1-
yl)benzenesulfonamide

(3)

TBS55

6

4-(3-(4-bromophenyl)-5-phenethyl-1H-1,2,4-triazol-1-

yl)benzenesulfonamide
(3)

TQS-Family

TQS

cis-cis-4-(napthalen-1-yl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide

(4)

2345M

P-TQS

cis-cis-4-(2,3,4,5-tetramethylphenyl)-3a,4,5,9b-tetrahydro-

3H-cyclopenta[c]quinoline-8-sulfonamide

(5)

234MP-

TQS

cis-cis-4-(2,3,4-trimethylphenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide

(5)

235MP-
TQS

cis-cis-4-(2,3-dimethylphenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide

(5)

23MP-
TQS

cis-cis-4-(2,3-dimethylphenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide

(5)

Appendix

23

245MP-

TQS

cis-cis-4-(2,4,5-trimethylphenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide
(5)

24MP-

TQS

cis-cis-4-(2,4-dimethylphenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide
(5)

25MP-
TQS

cis-cis-4-(2,5-dimethylphenyl)-3a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinoline-8-sulfonamide

(5)

2BP-

TQS

cis-cis-4-(2-bromophenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide
(6)

2MP-

TQS

cis-cis-4-(o-tolyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide
(5)

2N-

TQS

cis-cis-4-(naphthalen-2-yl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide
(6)

345MP-

TQS

cis-cis-4-(3,4,5-trimethylphenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide
(5)

34BP-
TQS

cis-cis-4-(3,4-dibromophenyl)-3a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinoline-8-sulfonamide

(6)

34MP-

TQS

cis-cis-4-(3,4-dimethylphenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide
(5)

35MP-

TQS

cis-cis-4-(3,5-dimethylphenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide
(5)

3BP-
TQS

cis-cis-4-(3-bromophenyl)-3a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinoline-8-sulfonamide

(6)

Appendix

24

3IP-

TQS

cis-cis-4-(3-iodophenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide
(6)

3MP-

TQS

cis-cis-4-(m-tolyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide
(5)

4BP-
TQS

cis-cis-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinoline-8-sulfonamide

(7)

4CP-

TQS

cis-cis-4-(4-chlorophenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide
(6)

4FP-

TQS

cis-cis-4-(4-fluorophenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide

(6)

4HP-

TQS

cis-cis-4-(4-hydroxyphenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide

(6)

4IP-

TQS

cis-cis-4-(4-iodophenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide

(6)

4MP-
TQS

cis-cis-4-(p-tolyl)-3a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinoline-8-sulfonamide

(6)

P-TQS

cis-cis-4-phenyl-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide

(6)

Appendix

25

1.1.5 Chapter 3 – Appendix 5 – Chemical data

1.1.5.1 TQS 1H NMR

Appendix

26

1.1.5.2 TQS 13C NMR

Appendix

27

1.1.5.3 TQS HSQC

1.1.5.4 TQS Mass Spec

Appendix

28

1.1.5.5 4-(2-((4-bromophenyl)(nitro)methylene)hydrazineyl)benzenesulf

onamide 1H NMR

1.1.5.6 4-(2-((4-bromophenyl)(nitro)methylene)hydrazineyl)benzenesulf

onamide 13C NMR

Appendix

29

1.1.5.7 4-(2-((4-bromophenyl)(nitro)methylene)hydrazineyl)benzenesulf

onamide HSQC

1.1.5.8 4-(2-((4-bromophenyl)(nitro)methylene)hydrazineyl)benzenesulf

onamide Mass Spec

Appendix

30

1.1.5.9 4-bromo-N-phenethyl-N'-(4-sulfamoylphenyl)benzohydrazonam

ide 1H NMR

1.1.5.10 4-bromo-N-phenethyl-N'-(4-sulfamoylphenyl)benzohydraz

onamide 13C NMR

Appendix

31

1.1.5.11 4-bromo-N-phenethyl-N'-(4-sulfamoylphenyl)benzohydraz

onamide HSQC

1.1.5.12 TBS-516 1H NMR

Appendix

32

1.1.5.13 TBS-516 13C NMR

1.1.5.14 TBS-516 HSQC

Appendix

33

1.1.5.15 TBS-516 Mass Spec

Appendix

34

1.2 Appendix – Chapter 4

1.2.1 Chapter 4 – Appendix 1: Chemical data

1.2.1.1 2,2,2-Trifluoro-1-phenylethan-1-one oxime

1.2.1.1.1 1H NMR

Appendix

35

1.2.1.1.2 13C NMR

1.2.1.1.3 LRMS

JN01 #749-767 RT: 4.55-4.61 AV: 19 NL: 6.92E7
T: {0,0} + c EI Full ms [50.00-400.00]

60 80 100 120 140 160 180 200 220 240 260 280
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e
A

bu
nd

an
ce

77.11

189.13
78.12

51.10
103.13

76.11

120.13
92.12

69.07 94.11 127.12
141.12104.13

63.10
52.11 190.14161.1389.10 107.11 135.1260.06 162.12142.13 188.15 191.15 207.16 228.14222.15 246.18 267.16253.23 277.24

Appendix

36

1.2.1.2 2,2,2-Trifluoro-1-phenylethan-1-one O-tosyl oxime

1.2.1.2.1 1H NMR

1.2.1.2.2 13C NMR

Appendix

37

1.2.1.2.3 HRMS

1.2.1.3 3-Phenyl-3-(trifluoromethyl)diaziridine

1.2.1.3.1 1H NMR

Appendix

38

1.2.1.3.2 13C NMR

1.2.1.3.3 19F NMR

Appendix

39

1.2.1.3.4 GCMS

RT: 3.18 - 4.94

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9
Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e
A

bu
nd

an
ce

RT: 3.88
AA: 248981908

RT: 3.29
AA: 2426573

RT: 3.65
AA: 3138040

RT: 3.55
AA: 614079

RT: 4.20
AA: 1306909

RT: 4.13
AA: 923358

RT: 3.77
AA: 1334853

RT: 4.32
AA: 1205109

RT: 4.50
AA: 2344418

RT: 4.62
AA: 666823

RT: 4.94
AA: 1018448

NL:
7.37E7
Base Peak
m/z=
40.00-
299.97
MS ICIS
JN_39_1

JN_39_1 #537-578 RT: 3.82-3.96 AV: 42 NL: 3.22E7
T: {0,0} + c EI Full ms [50.00-600.00]

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e
A

bu
nd

an
ce

187.17

167.16

119.17

77.13

51.10

104.1692.14

65.13 83.98

63.11
188.1986.05 168.1776.13 118.18102.1552.11 120.17

138.14 158.16 173.17108.1557.11 137.15 147.16 189.21174.17 207.20 251.18223.08 237.10

Appendix

40

1.2.1.4 3-Phenyl-3-(trifluoromethyl)-3H-diazirine

1.2.1.4.1 1H NMR

Appendix

41

1.2.1.4.2 13C NMR

1.2.1.5 4-(3-(Trifluoromethyl)-3H-diazirin-3-yl)benzaldehyde

1.2.1.5.1 1H NMR

Appendix

42

1.2.1.5.2 13C NMR

Appendix

43

1.2.1.6 4-(4-(3-(Trifluoromethyl)-3H-diazirin-3-yl)phenyl)-3a,4,5,9b-

tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide (4TFD-

TQS)

1.2.1.6.1 1H NMR

1.2.1.6.2 13C NMR

Appendix

44

1.2.1.6.3 HRMS

1.2.1.6.4 IR

Appendix

45

1.2.1.7 4-(4-Nitrophenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide

1.2.1.7.1 1H NMR

1.2.1.7.2 13C NMR

Appendix

46

1.2.1.7.3 HRMS

1.2.1.7.4 IR

c I

i"/
"1 10

0
10

5
11

0
85

90

95

1 : t I
-<

a

_I
\ 1\
l 1\ l]{ 1\
{

€|
:

3 3

].

\

q q

Appendix

47

1.2.1.8 4-(4-Aminophenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide

1.2.1.8.1 1H NMR

1.2.1.8.2 13C NMR

Appendix

48

1.2.1.8.3 HRMS

Appendix

49

1.2.1.9 2-Chloro-N-(4-(8-sulfamoyl-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinolin-4-yl)phenyl)acetamide

1.2.1.9.1 1H NMR

1.2.1.9.2 13C NMR

Appendix

50

1.2.1.9.3 HRMS

1.2.1.9.4 IR

4 a i s s

11
0

Tr
an

sm
itt

an
ce

l%

l
10

0
10

5
95

90

=,
i

3 3

;

_,
,,!

\\

t)

li r-E

\

-/

/- -E
:

1

e:
_

:-

:^
::

-

Appendix

51

1.2.1.10 4-(Chloromethyl)benzaldehyde

1.2.1.10.1 1H NMR

1.2.1.10.2 13C NMR

Appendix

52

1.2.1.10.3 LRMS

1.2.1.11 4-(4-(Chloromethyl)phenyl)-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide

1.2.1.11.1 1H NMR

JN02 #973-988 RT: 5.31-5.36 AV: 16 NL: 7.37E7
T: {0,0} + c EI Full ms [50.00-400.00]

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100
R

el
at

iv
e

A
bu

nd
an

ce
119.13

91.12 154.10

153.09

89.10

125.09

63.09

156.10

65.11
127.10

62.10

118.13
92.13 99.0661.08 86.0773.06 157.1159.08 101.0677.10 128.1066.11 97.06 117.14 158.10152.07142.05 176.00 207.15 215.20193.14181.18 223.18

Appendix

53

1.2.1.11.2 13C NMR

1.2.1.11.3 HRMS

Appendix

54

1.2.1.11.4 IR

ffi L$ 1

{

-\

10
5

11
0

Tf
an

sm
iiia

nc
e I%

l
90

95

10

0
85

80
75

€t
:

= 3

7h e B n s

Appendix

55

1.3 Appendix – Chapter 5

1.3.1 Chapter 5 – Appendix 1: Compounds used in the actives
database

Structure Name Reference

TQS-family

4-(2,3,4,5-tetramethylphenyl)-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline-8-

sulfonamide
(1)

4-(2,3,4-trimethoxyphenyl)-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline-8-

sulfonamide
Unpublished

4-(2,3,4-trimethylphenyl)-3a,4,5,9b-

tetrahydro-3H-cyclopenta[c]quinoline-8-
sulfonamide

(1)

4-(2,3,5-trimethylphenyl)-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline-8-

sulfonamide
(1)

4-(2,3-dimethylphenyl)-3a,4,5,9b-

tetrahydro-3H-cyclopenta[c]quinoline-8-
sulfonamide

(1)

4-(2,4,5-trimethylphenyl)-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline-8-

sulfonamide
(1)

4-(2,4-dimethylphenyl)-3a,4,5,9b-

tetrahydro-3H-cyclopenta[c]quinoline-8-
sulfonamide

(1)

Appendix

56

4-(2,5-dimethylphenyl)-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline-8-

sulfonamide
(1)

4-(naphthalen-2-yl)-3a,4,5,9b-tetrahydro-
3H-cyclopenta[c]quinoline-8-sulfonamide (2)

4-(3,4,5-trimethylphenyl)-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline-8-

sulfonamide
(1)

4-(3,4-dimethylphenyl)-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline-8-

sulfonamide
(1)

4-(3,5-dimethylphenyl)-3a,4,5,9b-

tetrahydro-3H-cyclopenta[c]quinoline-8-
sulfonamide

(1)

4-(4-azidophenyl)-3a,4,5,9b-tetrahydro-

3H-cyclopenta[c]quinoline-8-sulfonamide Unpublished

4-(4-(trifluoromethyl)phenyl)-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline-8-

sulfonamide
(2)

4-(4-(chloromethyl)phenyl)-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline-8-

sulfonamide
Unpublished

4-(4-cyanophenyl)-3a,4,5,9b-tetrahydro-
3H-cyclopenta[c]quinoline-8-sulfonamide Unpublished

Appendix

57

4-(4-hydroxyphenyl)-3a,4,5,9b-

tetrahydro-3H-cyclopenta[c]quinoline-8-
sulfonamide

(2)

4-(4-iodophenyl)-3a,4,5,9b-tetrahydro-

3H-cyclopenta[c]quinoline-8-sulfonamide (2)

4-(4-isopropylphenyl)-3a,4,5,9b-

tetrahydro-3H-cyclopenta[c]quinoline-8-
sulfonamide

Unpublished

4-(4-methoxyphenyl)-3a,4,5,9b-

tetrahydro-3H-cyclopenta[c]quinoline-8-
sulfonamide

Unpublished

 4-(4-nitrophenyl)-3a,4,5,9b-tetrahydro-
3H-cyclopenta[c]quinoline-8-sulfonamide Unpublished

4-(4-(tert-butyl)phenyl)-3a,4,5,9b-

tetrahydro-3H-cyclopenta[c]quinoline-8-
sulfonamide

Unpublished

4-phenyl-3a,4,5,9b-tetrahydro-3H-

cyclopenta[c]quinoline-8-sulfonamide (2)

4-(4-(3-(trifluoromethyl)-3H-diazirin-3-

yl)phenyl)-3a,4,5,9b-tetrahydro-3H-
cyclopenta[c]quinoline-8-sulfonamide

Unpublished

Appendix

58

4-(5-bromothiophen-2-yl)-3a,4,5,9b-
tetrahydro-3H-cyclopenta[c]quinoline-8-

sulfonamide
(4)

Abbott-family

 4-(5-(4-chlorophenyl)-3-(5-fluoro-2-
methoxybenzoyl)-2-methyl-1H-pyrrol-1-

yl)benzenesulfonamide
(3)

 4-(3-(4-chloro-3-methylbenzoyl)-5-(4-
chlorophenyl)-2-methyl-1H-pyrrol-1-

yl)benzenesulfonamide
(3)

 ethyl 5-(4-bromophenyl)-2-methyl-1-(4-
sulfamoylphenyl)-1H-pyrrole-3-

carboxylate
(3)

 4-(5-(4-chlorophenyl)-3-
(cyclopropanecarbonyl)-2-methyl-1H-

pyrrol-1-yl)benzenesulfonamide
(3)

 ethyl 5-(4-chlorophenyl)-2-methyl-1-(4-
sulfamoylphenyl)-1H-pyrrole-3-

carboxylate
(3)

Appendix

59

 4-(5-(4-chlorophenyl)-2-methyl-3-(3-
methylbutanoyl)-1H-pyrrol-1-

yl)benzenesulfonamide
(3)

 4-(3-acetyl-5-(4-chlorophenyl)-2-methyl-
1H-pyrrol-1-yl)benzenesulfonamide (3)

 5-(4-chlorophenyl)-N-(2-hydroxyethyl)-2-
methyl-N-propyl-1-(4-sulfamoylphenyl)-

1H-pyrrole-3-carboxamide
(3)

 4-(5-(4-chlorophenyl)-2-methyl-3-
(pyrrolidine-1-carbonyl)-1H-pyrrol-1-

yl)benzenesulfonamide
(3)

 4-(5-(4-chlorophenyl)-2-methyl-3-
propionyl-1H-pyrrol-1-
yl)benzenesulfonamide

(3)

Janssen-family

(2-((4-fluoro-3-
(trifluoromethyl)phenyl)amino)-4-
(pyridin-4-yl)thiazol-5-yl)methanol

(5)

2-(3-((2,2-difluorobenzo[d][1,3]dioxol-5-
yl)amino)-5-(2,6-dimethylpyridin-4-yl)-
1H-1,2,4-triazol-1-yl)-N-ethylacetamide

(6)

Appendix

60

4-chloro-N-((2-(2,6-dimethylmorpholino)-

5-(2,6-dimethylpyridin-4-yl)thiazol-4-
yl)methyl)-2-methylbenzamide

(7)

Pfizer-family

1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-

methylisoxazol-3-yl)urea (8)

TBS-family

 4-(3-(4-bromophenyl)-5-phenyl-1H-1,2,4-
triazol-1-yl)benzenesulfonamide (9)

 4-(5-benzyl-3-(4-bromophenyl)-1H-1,2,4-
triazol-1-yl)benzenesulfonamide (9)

 4-(3-(4-bromophenyl)-5-phenethyl-1H-
1,2,4-triazol-1-yl)benzenesulfonamide (9)

1. Gill-Thind JK, Dhankher P, D’Oyley JM, Sheppard TD, Millar NS (2015)
Structurally Similar Allosteric Modulators of α7 Nicotinic Acetylcholine
Receptors Exhibit Five Distinct Pharmacological Effects. J Biol Chem
290(6):3552–3562.

2. Gill JK, Dhankher P, Sheppard TD, Sher E, Millar NS (2012) A series of α7
nicotinic acetylcholine receptor allosteric modulators with close chemical
similarity but diverse pharmacological properties. Mol Pharmacol 81(5):710–8.

3. Thakur GA, Kulkarni AR, Deschamps JR, Papke RL (2013) Expeditious
synthesis, enantiomeric resolution, and enantiomer functional characterization
of (4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3 h -cyclopenta[c]quinoline-8-
sulfonamide (4BP-TQS): An allosteric agonist-positive allosteric modulator of
alpha7 nAChR. J Med Chem 56(21):8943–8947.

Appendix

61

4. Faghih R, et al. (2009) Discovery of 4-(5-(4-Chlorophenyl)-2-methyl-3-
propionyl-1 H -pyrrol-1-yl)benzenesulfonamide (A-867744) as a Novel
Positive Allosteric Modulator of the α7 Nicotinic Acetylcholine Receptor. J
Med Chem 52(10):3377–3384.

5. Dinklo T, et al. (2011) 4- (4-pyridinyl) -5-thiazolemethanol (JNJ-1930942),
a Novel Positive Allosteric Modulator of the α7 Nicotinic Acetylcholine
Receptor □. Pharmacology 1:560–574.

6. Janssen Pharmaceutica NV; Thuring J, et al. (2007) 2-Aniline-4-aryl
substituted thiazole derivatives; WO 2009/115547 A1,

7. Janssen Pharmaceutica NV; Macdonald G. J., De Boeck B. C. A. G., Leenaerts
J. E. (2011) Morpholinothiazoles as alpha 7 positive allosteric modulators; WO
2011/064288 A1

8. Hurst RS, et al. (2005) A novel positive allosteric modulator of the alpha7
neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization.
J Neurosci 25(17):4396–4405.

9. Chatzidaki A, D’Oyley JM, Gill-Thind JK, Sheppard TD, Millar NS (2015)
The influence of allosteric modulators and transmembrane mutations on
desensitisation and activation of α7 nicotinic acetylcholine receptors.
Neuropharmacology 97:75–85.

1.3.2 Chapter 5 –Appendix 2: Python script for determination of the
CNS MPO scores for compounds listed in a table with their
corresponding physicochemical properties

#!usr/bin/python
#python implementation of CNS MPO approach to selecting molecules
for synthesis

#get's database IDs, tanimoto combo scores and calculates
paramters for CNS MPO
#then uses these to rank the molecules on drug 'likeness' out of
6
#and similarity to the pharmacophore (ROCS) query (tanimoto
combo) out of 2

import os

#--
-

def score_single_decay(prop, des, undes):
 '''
 generate desirability scores for parameters that are
 represented with a monotonic decreasing function

Appendix

62

 '''
 if prop == 'NULL':
 score = 0
 elif prop < des:
 score = 1
 elif prop > undes:
 score = 0
 elif prop >= des and prop <= undes:
 m = (-1)/(undes - des)
 c = 1 - (m * des)
 #print m, c
 score = m * prop + c
 #print prop,"score", score
 return score

#--
-

def score_hump(prop, undes_lower, des_lower, des_upper,
undes_upper):
 '''
 generate desirability scores for parameters represented by
 a hump function
 '''
 if prop == 'NULL':
 score = 0
 elif prop < undes_lower or prop > undes_upper:
 score = 0
 elif prop > des_lower and prop < des_upper:
 score = 1
 elif prop >= undes_lower and prop <= des_lower:
 m = (1)/(des_lower - undes_lower)
 c = 1 - (m * des_lower)
 score = m * prop + c
 elif prop >= des_upper and prop <= undes_upper:
 m = (-1)/(undes_upper - des_upper)
 c = 1 - (m * des_upper)
 score = m * prop + c
 #print prop,'score',score
 return score

#--
-

def grab_value(item):
 '''
 get items from combined_data.txt file and set as float for
manipulation
 by scoring functions. If it is not a valid number, sets
value to 'NULL'
 which results in a score of 0 from the MPO scoring functions
 '''
 try:
 var = float(item)
 except ValueError:
 var = 'NULL'
 next
 return var

Appendix

63

#--
-

'''
Region bounds for monotonic functions for each of the 6 CNS MPO
parameters.
As defined in ACS Chem. neurosci. 2010, 1, 6, 435
'''

clogP_des = 3.0
clogP_undes = 5.0
clogD_des = 2.00
clogD_undes = 4.0
MW_des = 360.0
MW_undes = 500.0
TPSA_undes_lower = 20.0
TPSA_des_lower = 40.0
TPSA_des_upper = 90.0
TPSA_undes_upper = 120.0
HBD_des = 0.0
HBD_undes = 4.0
basicpKa_des = 8.0
basicpKa_undes = 10.0

#--
-

files = os.listdir('.')

if not 'hit_IDs.txt' in files:
 os.system("python get_ids.py > hit_IDs.txt")
if not 'CNS_MPO_Params.txt' in files:
 os.system("evaluate -e
\"logp();logd('7.4');mass();psa('7.4');donorcount('7.4');pka('1')
\" Drugbank_ROCS_T2_hits_1.sdf > CNS_MPO_Params.txt")
if not 'combined_data.txt' in files:
 with open('CNS_MPO_Params.txt','r') as pars,
open('hit_IDs.txt','r') as names, open('combined_data.txt','w')
as f_out:
 for t in zip(names,pars):
 f_out.write(';'.join(x.strip() for x in t) +
'\n')

with open('combined_data.txt','r') as in_file:
 for i, line in enumerate(in_file):
 ln = line.split(';')

 # get the parameter values for each compound
 identifier = ln[0]
 tanimoto_combo = ln[1]
 clogP = grab_value(ln[2])
 clogD = grab_value(ln[3])
 MW = grab_value(ln[4])
 TPSA = grab_value(ln[5])
 HBD = grab_value(ln[6])
 basicpKa = grab_value(ln[7])
 #print identifier,clogP,clogD,MW,TPSA,HBD,basicpKa

Appendix

64

 #calculate the CNS MPO score
 T0_clogP = score_single_decay(clogP, clogP_des,
clogP_undes)
 T0_clogD = score_single_decay(clogD, clogD_des,
clogD_undes)
 T0_MW = score_single_decay(MW, MW_des, MW_undes)
 T0_TPSA = score_hump(TPSA, TPSA_undes_lower,
TPSA_des_lower, TPSA_des_upper, TPSA_undes_upper)
 T0_HBD = score_single_decay(HBD ,HBD_des, HBD_undes)
 T0_basicpKa = score_single_decay(basicpKa,
basicpKa_des, basicpKa_undes)
 CNS_MPO_score = T0_clogP + T0_clogD + T0_MW + T0_TPSA
+ T0_HBD + T0_basicpKa
 if CNS_MPO_score > 4.0 and float(tanimoto_combo) >
0.599:
 print i+1, identifier, CNS_MPO_score,
tanimoto_combo

1.3.3 Chapter 5 – Appendix 3: Table of compounds identified by
virtual screening

Rank DrugBank
ID

Compound Name Target*

1 DB04763 1-N-(4-sulfamoylphenyl-ethyl)-2,4,6-trimethylpyridinium CAII

2 DB07476 N-[4-(aminosulfonyl)phenyl]-2-mercaptobenzamide CAII

3 DB08122 N-methyl-4-{[(2-oxo-1,2-dihydro-3h-indol-3-ylidene)methyl]amino}benzenesulfonamide CDK2

4 DB08202 4-({[(4-methylpiperazin-1-yl)amino]carbonothioyl}amino)benzenesulfonamide CAII

5 DB04371 AL6528 CAII

6 DB00695 Furosemide NKCC

7 DB02602 AL7182 CAII

8 DB07257 4-(2-chlorophenyl)-8-(2-hydroxyethyl)-6-methylpyrrolo[3,4-e]indole-1,3(2H,6H)-dione CAII

9 DB07048 N-[(2R)-5-(aminosulfonyl)-2,3-dihydro-1h-inden-2-yl]-2-propylpentanamide CAII

10 DB02610 N-(2,3,4,5,6-pentaflouro-benzyl)-4-sulfamoyl-benzamide CAII

11 DB03294 1-methyl-3-oxo-1,3-dihydro-benzo[c]isothiazole-5-sulfonic acid amide CAII

12 DB01964 AL5424 CAII

13 DB02221 4-(aminosulfonyl)-N-[(2,4,6-trifluorophenyl)methyl]-benzamide CAII

14 DB04549 4-(aminosulfonyl)-N-[(2,3,4-trifluorophenyl)methyl]-benzamide CAII

15 DB03039 4-(aminosulfonyl)-N-[(2,5-difluorophenyl)methyl]-benzamide CAII

16 DB04180 4-(aminosulfonyl)-N-[(2,4-difluorophenyl)methyl]-benzamide CAII

17 DB03221 AL7099A CAII

18 DB02220 AL7089A CAII

Appendix

65

19 DB07742 N-(2,3-difluoro-benzyl)-4-sulfamoyl-benzamide CAII

20 DB03844 N-(2,6-diflouro-benzyl)-4-sulfamoyl-benzamide CAII

21 DB02069 N-(2-flouro-benzyl)-4-sulfamoyl-benzamide CAII

22 DB00487 Pefloxacin DNAG

23 DB03333 (4-sulfamoyl-phenyl)-thiocarbamic acid O-(2-thiophen-3-yl-ethyl) ester CAII

24 DB03950 (S)-N-(3-indol-1-yl-2-methyl-propyl)-4-sulfamoyl-benzamide CAII

25 DB02479 (R)-N-(3-indol-1-yl-2-methyl-propyl)-4-sulfamoyl-benzamide CAII

26 DB07791 4-{[4-(1-cyclopropyl-2-methyl-1h-imidazol-5-yl)pyrimidin-2-yl]amino}-N-methylbenzenesulfonamide CDK2

27 DB08673 4-[(5-isopropyl-1,3-thiazol-2-yl)amino]benzenesulfonamide CDK2

28 DB08083 2-(1,3-thiazol-4-yl)-1h-benzimidazole-5-sulfonamide CAII

29 DB08165 indane-5-sulfonamide CAII

30 DB07798 (3R)-3-(fluoromethyl)-N-(3,3,3-trifluoropropyl)-1,2,3,4-tetrahydroisoquinoline-7-sulfonamide PNMT

31 DB06771 Besifloxacin DNAG

32 DB07115 N-(4-chlorobenzyl)-N-methylbenzene-1,4-disulfonamide CAXIII

33 DB07363 Thiophene-2,5-disulfonic acid 2-amide-5-(4-methyl-benzylamide) CAII

34 DB08134 4-[(6-chloropyrazin-2-yl)amino]benzenesulfonamide CDK2

35 DB01208 Sparfloxacin DNAG

36 DB01689 Inhibitor Idd 384 AR

37 DB04608 9-hydroxy-4-phenyl-6h-pyrrolo[3,4-c]carbazole-1,3-dione W1LPK

38 DB02292 Irosustat CAII

39 DB02197 4-[(4-imidazo[1,2-a]pyridin-3-ylpyrimidin-2-yl)amino]benzenesulfonamide CDK2

40 DB01059 Norfloxacin DNAG

41 DB00817 Rosoxacin DNAG

42 DB08301 N-({[4-(aminosulfonyl)phenyl]amino}carbonyl)-4-methylbenzenesulfonamide CAII

43 DB02741 CD564 RAR

44 DB05488 Technetium Tc-99m ciprofloxacin DNAG

45 DB00537 Ciprofloxacin DNAG

46 DB01657 2-amino-3-[4-hydroxy-6-oxo-3-(2-phenyl-cyclopropylimino)-cyclohexa-1,4-dienyl]-propionic acid PAO

47 DB03034 D-Levofloxacin DNAG

48 DB04089 AL5300 CAII

49 DB07226 N-[4-(2-chlorophenyl)-1,3-dioxo-1,2,3,6-tetrahydropyrrolo[3,4-c]carbazol-9-yl]formamide W1LPK

50 DB08106 N-[(6-butoxynaphthalen-2-yl)sulfonyl]-D-glutamic acid UDGL

51 DB08105 N-[(6-butoxynaphthalen-2-yl)sulfonyl]-L-glutamic acid UDGL

52 DB01224 Quetiapine DR

Appendix

66

53 DB00311 Ethoxzolamide CAII

54 DB01137 Levofloxacin DNAG

55 DB08157 Ethyl 3-[4-(aminosulfonyl)phenyl]propanoate CAII

56 DB07006 9-hydroxy-6-(3-hydroxypropyl)-4-(2-methoxyphenyl)pyrrolo[3,4-c]carbazole-1,3(2h,6h)-dione W1LPK

57 DB00467 Enoxacin DNAG

58 DB08107 N-{[6-(pentyloxy)naphthalen-2-yl]sulfonyl}-d-glutamic acid UDGL

59 DB01194 Brinzolamide CAII

60 DB09047 Finafloxacin DNAG

61 DB00218 Moxifloxacin DNAG

62 DB02861 4-(aminosulfonyl)-N-[(3,4,5-trifluorophenyl)methyl]-benzamide CAII

63 DB07790 N-(2-methoxyethyl)-4-({4-[2-methyl-1-(1-methylethyl)-1h-imidazol-5-yl]pyrimidin-2-
yl}amino)benzenesulfonamide

CDC2

64 DB07265 3-(9-hydroxy-1,3-dioxo-4-phenyl-2,3-dihydropyrrolo[3,4-c]carbazol-6(1h)-yl)propanoic acid W1LPK

65 DB11491 Sarafloxacin DNAG

66 DB08304 (3r)-3-cyclopentyl-7-[(4-methylpiperazin-1-yl)sulfonyl]-3,4-dihydro-2h-1,2-benzothiazine 1,1-dioxide GR

67 DB05095 Cimicoxib COX

68 DB08303 (3S)-3-cyclopentyl-6-methyl-7-[(4-methylpiperazin-1-yl)sulfonyl]-3,4-dihydro-2H-1,2,4-

benzothiadiazine 1,1-dioxide

GR

69 DB06803 Niclosamide RT

70 DB08729 5-ethoxy-4-(1-methyl-7-oxo-3-propyl-6,7-dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)thiophene-2-
sulfonamide

CSCP

71 DB06891 5-{[(4-amino-3-chloro-5-fluorophenyl)sulfonyl]amino}-1,3,4-thiadiazole-2-sulfonamide CAII

72 DB08701 2-(3-bromophenyl)-6-[(2-hydroxyethyl)amino]-1h-benzo[de]isoquinoline-1,3(2h)-dione GP

73 DB07050 5-[(phenylsulfonyl)amino]-1,3,4-thiadiazole-2-sulfonamide CAII

74 DB02429 4-(aminosulfonyl)-n-[(4-fluorophenyl)methyl]-benzamide CAII

75 DB00998 Frovatriptan SR

76 DB00685 Trovafloxacin DNAG

77 DB08485 (1S,4S,5S)-1,4,5-trihydroxy-3-[3-(phenylthio)phenyl]cyclohex-2-ene-1-carboxylic acid DD

78 DB01748 N-benzyl-4-sulfamoyl-benzamide CAII

79 DB03307 4-[(6-amino-4-pyrimidinyl)amino]benzenesulfonamide CDK2

80 DB03873 Tamibarotene RAR

81 DB07683 N-(dibenzo[b,d]thiophen-3-ylsulfonyl)-L-valine MM

Appendix

67

Compounds identified by virtual screening of the DrugBank database are listed in rank order.
The four compounds examined by pharmacological techniques in the Millar lab are
highlighted in red.

* Target site of compounds identified in the DrugBank database. Abbreviations used:

AR: aldose reductase

CAII: carbonic anhydrase II

CAXIII: carbonic anhydrase XIII

CDK2: cyclin-dependent kinase 2

COX: cyclooxygenase

CSCP: cGMP-specific 3',5'-cyclic phosphodiesterase
DNAG: DNA gyrase/topoisomerase (target of fluoroquinolone antibiotics)

DD: 3-dehydroquinate dehydratase
DR: dopamine receptor

GP: genome polyprotein
GR: glutamate receptor

MM: macrophage metalloelastase
NKCC: Na+/K+/2Cl- cotransporter (target of loop diuretics)

PAO: primary-amine oxidase

PNMT: phenylethanolamine N-methyltransferase

RAR: retinoic acid receptor

RT: regulation of transcription

SR: serotonin receptor
UDGL: UDP-N-acetylmuramoylalanine-D-glutamate ligase

W1LPK: Wee1-like protein kinase

Appendix

68

1.3.4 Chapter 5 – Appendix 4: Chemical data

1.3.4.1 2,4,6-trimethyl-1-(4-sulfamoylphenethyl)pyridin-1-ium

tetrafluoroborate (DB04763)

1.3.4.1.1 1H NMR

1.3.4.1.2 13C NMR

Appendix

69

1.3.4.1.3 19F NMR

1.3.4.1.4 11B NMR

1.3.4.1.5 HRMS

Appendix

70

1.3.4.2 (Z)-N-methyl-4-(((2-oxoindolin-3-ylidene)methyl)amino)benzen

esulfonamide (DB08122)

1.3.4.2.1 1H NMR

Appendix

71

1.3.4.2.2 13C NMR

1.3.4.2.3 HRMS

Appendix

72

1.4 Appendix – Chapter 6

1.4.1 Chapter 6 – Appendix 1: Sequence Alignment for use with
MODELLER

Standard .pir format MODELLER sequence alignment (for explanation of sequence

headers, see https://salilab.org/modeller/documentation.html). ‘-‘ represents a

sequence alignment gap, ‘/’ represents a chain break, ‘.’ Represents a ‘BLK’ residue

these are used for heteroatom assignments for ligands (in this case either

glycosylation or sodium ions), ‘w’ represents water molecules. All amino acids are

assigned with their standard 1 letter codes. In the 5-HT3A model, all heteroatoms are

assigned at the end of the PDB file, while in the re-ordered α4β2 nAChR model all

heteroatoms are assigned at the end of each chain to which they belong.

>P1;6BE1_5ht3_TM4_HOH_NA
structureX:6BE1_5ht3_TM4_HOH_NA:397:A:602:E::::
--
--
--
--
--
--
--
-----------------------LAVRGLLQELSSIRHFLEKRDEMREVARDWLRVGYVL
DRLLFRIYLLAVLAYSITLVTLWSIWHYS---------------------/
--
--
--
--
--
--
--
-----------------------LAVRGLLQELSSIRHFLEKRDEMREVARDWLRVGYVL
DRLLFRIYLLAVLAYSITLVTLWSIWHYS---------------------/
--
--
--
--
--
--
--
-----------------------LAVRGLLQELSSIRHFLEKRDEMREVARDWLRVGYVL
DRLLFRIYLLAVLAYSITLVTLWSIWHYS---------------------/
--
--
--
--
--
--
--
-----------------------LAVRGLLQELSSIRHFLEKRDEMREVARDWLRVGYVL
DRLLFRIYLLAVLAYSITLVTLWSIWHYS---------------------/

Appendix

73

--
--
--
--
--
--
--
-----------------------LAVRGLLQELSSIRHFLEKRDEMREVARDWLRVGYVL
DRLLFRIYLLAVLAYSITLVTLWSIWHYS---------/./wwwwwwwwww-
*
>P1;6CNJ_a4b2_NAG_reorder
StructureY:6CNJ_a4b2_NAG_reorder:5:A:501:E::::
---------------------ETRAHAEERLLKKLF--SGYNKWSRPVANISDVVLVRFG
LSIAQLIDVDEKNQMMTTNVWVKQEWHDYKLRWDPADYENVTSIRIPSELIWRPDIVLYN
NADGDFAVTHLTKAHLFHDGRVQWTPPAIYKSSCSIDVTFFPFDQQNCTMKFGSWTYDKA
KIDLVNMH------------SRVDQLDFWESGEWVIVDAVGTYNTRKYECCAEI-YPDIT
YAFVIRRLPLFYTINLIIPCLLISCLTVLVFYLPSECGE-KITLCISVLLSLTVFLLLIT
EIIPSTSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHRSPRTHTMPTWVRRVFLDIVP
RLLLMKR-----/---
--FERSVKEDWKYVAMVI
DRIFLWMFIIVCLLGTVGL---FLPPW----------.------------/
-------------------------DTEERLVEHLLDPSRYNKLIRPATNGSELVTVQLM
VSLAQLISVHEREQIMTTNVWLTQEWEDYRLTWKPEEFDNMKKVRLPSKHIWLPDVVLYN
NADGMYEVSFYSNAVVSYDGSIFWLPPAIYKSACKIEVKHFPFDQQNCTMKFRSWTYDRT
EIDLVLKS------------EVASLDDFTPSGEWDIVALPGRRNEN----PDDSTYVDIT
YDFIIRRKPLFYTINLIIPCVLITSLAILVFYLPSDCGE-KMTLCISVLLALTVFLLLIS
KIVPPTSLDVPLVGKYLMFTMVLVTFSIVTSVCVLNVHHRSPTTHTMAPWVKVVFLEKLP
ALLFMQQ-----/---
---SVSEDWKYVAMVI
DRLFLWIFVFVCVFGTIGM---F--------------.------------/
-------------------------DTEERLVEHLLDPSRYNKLIRPATNGSELVTVQLM
VSLAQLISVHEREQIMTTNVWLTQEWEDYRLTWKPEEFDNMKKVRLPSKHIWLPDVVLYN
NADGMYEVSFYSNAVVSYDGSIFWLPPAIYKSACKIEVKHFPFDQQNCTMKFRSWTYDRT
EIDLVLKS------------EVASLDDFTPSGEWDIVALPGRRNEN----PDDSTYVDIT
YDFIIRRKPLFYTINLIIPCVLITSLAILVFYLPSDCGE-KMTLCISVLLALTVFLLLIS
KIVPPTSLDVPLVGKYLMFTMVLVTFSIVTSVCVLNVHHRSPTTHTMAPWVKVVFLEKLP
ALLFMQQ-----/---
---SVSEDWKYVAMVI
DRLFLWIFVFVCVFGTIGM---F--------------.------------/
---------------------ETRAHAEERLLKKLF--SGYNKWSRPVANISDVVLVRFG
LSIAQLIDVDEKNQMMTTNVWVKQEWHDYKLRWDPADYENVTSIRIPSELIWRPDIVLYN
NADGDFAVTHLTKAHLFHDGRVQWTPPAIYKSSCSIDVTFFPFDQQNCTMKFGSWTYDKA
KIDLVNMH------------SRVDQLDFWESGEWVIVDAVGTYNTRKYECCAEI-YPDIT
YAFVIRRLPLFYTINLIIPCLLISCLTVLVFYLPSECGE-KITLCISVLLSLTVFLLLIT
EIIPSTSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHRSPRTHTMPTWVRRVFLDIVP
RLLLMKR-----/---
--FERSVKEDWKYVAMVI
DRIFLWMFIIVCLLGTVGL---FLPPW----------.------------/
-------------------------DTEERLVEHLLDPSRYNKLIRPATNGSELVTVQLM
VSLAQLISVHEREQIMTTNVWLTQEWEDYRLTWKPEEFDNMKKVRLPSKHIWLPDVVLYN
NADGMYEVSFYSNAVVSYDGSIFWLPPAIYKSACKIEVKHFPFDQQNCTMKFRSWTYDRT
EIDLVLKS------------EVASLDDFTPSGEWDIVALPGRRNEN----PDDSTYVDIT
YDFIIRRKPLFYTINLIIPCVLITSLAILVFYLPSDCGE-KMTLCISVLLALTVFLLLIS
KIVPPTSLDVPLVGKYLMFTMVLVTFSIVTSVCVLNVHHRSPTTHTMAPWVKVVFLEKLP
ALLFMQQ-----/---
---SVSEDWKYVAMVI
DRLFLWIFVFVCVFGTIGM---F--------------.--------------
*

Appendix

74

>P1;2BG9_TM4CTER
StructureZ:2BG9_TM4CTER:407:A:476:E::::
--
--
--
--
--
--
--
--
DHILLCVFMLICIIGTVSV---FAGRLIELSQEG----------------/
--
--
--
--
--
--
--
--
-RLFLYIFITMCSIGTFSI---FLDASHNVPPDNPFA-------------/
--
--
--
--
--
--
--
--
DRLSMFIITPVMVLGTIFI---FVMGNFNRPPAK----------------/
--
--
--
--
--
--
--
--
DHILLCVFMLICIIGTVSV---FAGRLIELSQEG----------------/
--
--
--
--
--
--
--
--
DKACFWIALLLFSLGTLAI---FLTGHLNQVPE-------------------
*

>P1;ACHR_TORMA
Sequence:ACHR_TORMA::::::::
------------------------SEHETRLVANLL--ENYNKVIRPVEHHTHFVDITVG
LQLIQLINVDEVNQIVETNVRLRQQWIDVRLRWNPADYGGIKKIRLPSDDVWLPDLVLYN
NADGDFAIVHMTKLLLDYTGKIMWTPPAIFKSYCEIIVTHFPFDQQNCTMKLGIWTYDGT
KVSISPES------------DRPDLSTFMESGEWVMKDYRGWKHWVYYTCCPDTPYLDIT
YHFIMQRIPLYFVVNVIIPCLLFSFLTVLVFYLPTDSGE-KMTLSISVLLSLTVFLLVIV
ELIPSTSSAVPLIGKYMLFTMIFVISSIIVTVVVINTHHRSPSTHTMPQWVRKIFINTIP

Appendix

75

NVM---------/---
---------------------------SAIEGVKYIAEHMKSDEESSNAAEEWKYVAMVI
DHILLCVFMLICIIGTVSV---FAGRLIELSQEG---.------------/
------------------------SVMEDTLLSVLF--ENYNPKVRPSQTVGDKVTVRVG
LTLTSLLILNEKNEEMTTSVFLNLAWTDYRLQWDPAAYEGIKDLSIPSDDVWQPDIVLMN
NNDGSFEITLHVNVLVQHTGAVSWHPSAIYRSSCTIKVMYFPFDWQNCTMVFKSYTYDTS
EVILQHALDA--/----VKEIMINQDAFTENGQWSIEHKPSRKNWRS----DDPSYEDVT
FYLIIQRKPLFYIVYTIVPCILISILAILVFYLPPDAGE-KMSLSISALLALTVFLLLLA
DKVPETSLSVPIIISYLMFIMILVAFSVILSVVVLNLHHRSPNTHTMPNWIRQIFIETLP
PFL---------/---
---------------------------EAVEAIKYIAEQLESASEFDDLKKDWQYVAMVA
DRLFLYIFITMCSIGTFSI---FLDASHNVPPDNPFA.------------/
------------------------VNEEERLINDLLIVNKYNKHVRPVKHNNEVVNIALS
LTLSNLISLKETDETLTTNVWMDHAWYDHRLTWNASEYSDISILRLRPELIWIPDIVLQN
NNDGQYNVAYFCNVLVRPNGYVTWLPPAIFRSSCPINVLYFPFDWQNCSLKFTALNYNAN
EISMDLMT----/----IEWIIIDPEAFTENGEWEIIHKPAKKNIYGDKFPNGTNYQDVT
FYLIIRRKPLFYVINFITPCVLISFLAALAFYLPAESGE-KMSTAICVLLAQAVFLLLTS
QRLPETALAVPLIGKYLMFIMSLVTGVVVNCGIVLNFHFRTPSTHVLSTRVKQIFLEKLP
RIL---------/---
---------------------------SGIDSTNYIVKQIKEKNAYDEEVGNWNLVGQTI
DRLSMFIITPVMVLGTIFI---FVMGNRPPAK-----.------------/
------------------------SEHETRLVANLL--ENYNKVIRPVEHHTHFVDITVG
LQLIQLINVDEVNQIVETNVRLRQQWIDVRLRWNPADYGGIKKIRLPSDDVWLPDLVLYN
NADGDFAIVHMTKLLLDYTGKIMWTPPAIFKSYCEIIVTHFPFDQQNCTMKLGIWTYDGT
KVSISPES------------DRPDLSTFMESGEWVMKDYRGWKHWVYYTCCPDTPYLDIT
YHFIMQRIPLYFVVNVIIPCLLFSFLTVLVFYLPTDSGE-KMTLSISVLLSLTVFLLVIV
ELIPSTSSAVPLIGKYMLFTMIFVISSIIVTVVVINTHHRSPSTHTMPQWVRKIFINTIP
NVM---------/---
---------------------------SAIEGVKYIAEHMKSDEESSNAAEEWKYVAMVI
DHILLCVFMLICIIGTVSV---FAGRLIELSQEG---.------------/
-------------------------NEEGRLIEKLL--GDYDKRIKPAKTLDHVIDVTLK
LTLTNLISLNEKEEALTTNVWIEIQWNDYRLSWNTSEYEGIDLVRIPSELLWLPDVVLEN
NVDGQFEVAYYANVLVYNDGSMYWLPPAIYRSTCPIAVTYFPFDWQNCSLVFRSQTYNAH
EVNLQLSAEEG-/----VEWIHIDPEDFTENGEWTIRHRPAKKNYNWQLTKDDIDFQEII
FFLIIQRKPLFYIINIIAPCVLISSLVVLVYFLPAQAGGQKCTLSISVLLAQTIFLFLIA
QKVPETSLNVPLIGKYLIFVMFVSLVIVTNCVIVLNVSLRTPNTHSLSEKIKHLFLEFLP
KYL---------/---
---------------------------SCVEACNFIAKSTKEQNDSGSENENWVLIGKVI
DKACFWIALLLFSLGTLAI---FLTGHLNQVPE----././wwwwwwwwww-
*

1.4.2 Chapter 6 – Appendix 2: MODELLER script
Homology modeling by the automodel class
from modeller import * # Load standard Modeller
classes
from modeller.automodel import * # Load the automodel class

Redefine the special_patches routine to include the additional
disulfides
(this routine is empty by default):
class mymodel(automodel):
 def special_patches(self, aln):
 self.patch_ss_templates(aln)

log.verbose() # request verbose output

Appendix

76

env = environ(rand_seed=-556) # create a new MODELLER
environment to build this model in

env.io.atom_files_directory = ['.', '../atom_files']
env.io.hetatm = True #read hetatms from pdb to generate ligands
in the model
env.io.water = True

a = mymodel(env,
 alnfile = 'multi-chain_multi-seq.pir', #
alignment filename
 knowns =
('6CNJ_a4b2_NAG_reorder','6BE1_5ht3_TM4_HOH_NA','2BG9_TM4CTER'),
codes of the templates
 sequence = 'ACHR_TORMA', # code of the target
 assess_methods=assess.DOPE) # gives DOPE energy
readouts at bottom of log file

a.starting_model= 1 # index of the first model
a.ending_model = 200 # index of the last model
 # (determines how many models
to calculate)

a.md_level = None # do not perform any
optimisation
a.make() # do the actual homology
modeling

Get a list of all successfully built models from a.outputs
ok_models = filter(lambda x: x['failure'] is None, a.outputs)

Rank the models by DOPE score
key = 'DOPE score'
ok_models.sort(lambda a,b: cmp(a[key], b[key]))

Get top model
m = ok_models[0]
print "Top model: %s (DOPE score %.3f)" % (m['name'], m[key])

Appendix

77

