UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

3D-printed Franz type diffusion cells

Sil, BC; Alvarez, MP; Zhang, Y; Kung, C-P; Hossain, M; Iliopoulos, F; Luo, L; ... Hilton, ST; + view all (2018) 3D-printed Franz type diffusion cells. International Journal of Cosmetic Science , 40 (6) pp. 604-609. 10.1111/ics.12504. Green open access

[thumbnail of Sil_et_al-2018-International_Journal_of_Cosmetic_Science.pdf]
Preview
Text
Sil_et_al-2018-International_Journal_of_Cosmetic_Science.pdf - Accepted Version
Available under License : See the attached licence file.

Download (435kB) | Preview

Abstract

Objective Franz cells are routinely used to measure in vitro skin permeation of actives and must be inert to the permeant under study. The aim of the present work was to develop and manufacture transparent Franz‐type diffusion cells using 3D printing and test these using a range of model active compounds. The study also aims to identify the critical 3D printing parameters necessary for the process including object design, choice of printing resin, printout curing and post‐curing settings and introduction of model coatings. Methods Transparent Franz cells were constructed using an online computer aided design program and reproduced with different stereolithography 3D printers. The two acrylate‐based resins used for the fabrication process were a commercially available product and a polymer synthesised in‐house. Comparative studies between glass and 3D printed Franz cells were conducted with selected model actives: terbinafine hydrochloride (TBF), niacinamide (NIA), diclofenac free acid (DFA) and n‐methyl paraben (MPB). In preliminary studies, MPB showed the lowest recovery when exposed to the receptor compartment of 3D printed cells. Consequently, in vitro permeation studies were carried out using only MPB with polydimethylsiloxane (PDMS) membrane. RESULTS: A decrease in the amounts of selected compounds was observed for transparent 3D printed Franz cells compared to glass cells. MPB showed the lowest recovery (53.8 ± 13.1%) when compared with NIA (74.9 ± 4.0%), TBF (81.5 ± 12.0%) and DFA (90.2 ± 12.9%) after 72 h. Permeation studies conducted using 3D printed transparent cells with PDMS membrane also showed a decrease in MPB recovery of 51.4 ± 3.7% for the commercial resin and 94.4 ± 3.5% for the polymer synthesised in‐house, when compared to glass cells. Although hydrophobic coatings were subsequently applied to the 3D printed cells the same reduction in MPB concentration was observed in the receptor solution. Conclusion Transparent Franz cells were successfully prepared using 3D printing and were observed to be robust and leak‐proof. There are few resins currently available for preparation of transparent materials and incompatibilities between the actives investigated and the 3D printed cells were evident. Hydrophobic coatings applied as barriers to the printed materials did not prevent these interactions

Type: Article
Title: 3D-printed Franz type diffusion cells
Open access status: An open access version is available from UCL Discovery
DOI: 10.1111/ics.12504
Publisher version: https://doi.org/10.1111/ics.12504
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher’s terms and conditions.
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy > Pharma and Bio Chemistry
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > UCL School of Pharmacy > Pharmaceutics
URI: https://discovery.ucl.ac.uk/id/eprint/10062744
Downloads since deposit
0Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item