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Summary

Increasing availability of vehicle GPS data has created potentially transformative
opportunities for tra�c management, route planning and other location-based services.

Critical to the utility of the data is their accuracy. Map-matching is the process of improving
the accuracy by aligning GPS data with the road network. In this paper, we propose a purely
probabilistic approach to map-matching based on a sequential Monte Carlo algorithm known
as particle filters. The approach performs map-matching by producing a range of candidate
solutions, each with an associated probability score. We outline implementation details and

thoroughly validate the technique on GPS data of varied quality.
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1 Introduction

Over the last years we have witnessed a rapid increase in the availability of GPS-receiving devices,
such as smart phones or car navigation systems. The devices generate vast amounts of temporal
positioning data that have been proven invaluable in various applications, from tra�c management
(Kühne et al., 2003) and route planning (Gonzalez et al., 2007; Li et al., 2011; Kowalska et al.,
2015) to inferring personal movement signatures (Liao et al., 2006).

Critical to the utility of GPS data is their accuracy. The data su↵er from measurement errors caused
by technical limitations of GPS receivers and sampling errors caused by their receiving rates. When
digital maps are available, it is common practice to improve the accuracy of the data by aligning
GPS points with the road network. The process is known as map-matching.

Most map-matching algorithms align GPS trajectories with the road network by considering posi-
tions of each GPS point, either in isolation or in relation to other GPS points in the same trajectory.
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The techniques, although computationally e�cient, are not very accurate in cases when the sam-
pling rate is low or the street network complexity is high. More advanced map-matching techniques
utilise both timestamps and positions of GPS points in order to achieve a higher degree of accu-
racy. They would typically use temporal information to infer speed and then assign GPS points
to roads that are in their proximity and which speed profiles best match the inferred speed. A
prominent example of a spatio-temporal algorithm is ST-Matching (Lou et al., 2009). It has been
shown to outperform purely spatial map-matching approaches, especially when the sampling rate
is low.

The major limitation of both spatial and spatio-temporal approaches is their deterministic nature.
They would always snap a GPS trajectory to a road network, regardless if it even came from the
road network in the first place. The lack of confidence scores associated with their outputs might
lead to very misleading results, especially when the data quality is low.

In this paper, we address the issue of certainty by proposing a purely probabilistic spatio-temporal
map-matching approach. It is based on a sequential Monte Carlo algorithm known as particle filters.
The algorithm originates from the field of robotics (Thrun, 2002), where it has been widely applied
in robot localisation problems. In the context of map-matching, it uses both spatial and temporal
information to iteratively align a GPS trajectory with the road network; hence it can be used for
both tracking and o✏ine map-matching. It outputs the most likely road sequence that the GPS
data came from together with the associated likelihood.

2 Problem Statement

In this section, we define the problem of probabilistic map-matching.

Definition 1 (GPS trajectory): A sequence of GPS points, where each GPS point contains latitude,
longitude, bearing and timestamp.

Definition 2 (Road network): A directed graph with vertices representing road intersections and
edges representing road segments. Bidirectional road segments are represented by two edges, each
corresponding to a single direction of flow. Roads and intersections can be uniquely identified using
their IDs.

Definition 3 (Path): A connected sequences of street segments in the road network.

Given a road network and a GPS trajectory, the goal of probabilistic map-matching is to find most
probable paths that the GPS trajectory was generated from, together with their associated probability
values.

3 Methodology

Our map-matching framework is based on particle filters. The algorithm computes candidate paths
and their probabilistic values given a GPS trajectory. The most probable candidate path can then



Figure 1: Exemplary road network with a GPS trajectory to be map-matched.

be selected as the map-matching outcome. The framework is evaluated using cross-validation.

3.1 Particle Filter

Particle filter is a sequential Monte Carlo technique that approximately infers true states of a
dynamical system given its noisy observations. In our case, the dynamical system is a vehicle
following a path along the road network, noisy observations are GPS points and the true states that
we want to infer are actual locations of the vehicle at di↵erent timestamps.

The algorithm is based on the assumption that the dynamical system can be modeled as a first-
order Markov chain with unobserved (hidden) states (see Figure 2). That is, it assumes that the
state of the system xt at time t solely depends on the state at time t � 1 through the so-called
transition probability p(xt|xt � 1, ut), where ut is the control giving information about the change
of the system in the time interval (t � 1; t]. It adds that any measurements of the system are
noisy descriptions of the unobserved true states, where the noise is modelled by the measurement
probability p(yt|xt). The goal of particle filters is to infer xt given all available measurements y1:t.
The algorithm approximates the solution by recursively sampling from the posterior distribution
(Bishop, 2006):

p(xt | yt, ut) = const. · p(yt | xt)
Z
p(xt | xt�1, ut) · p(xt�1 | yt�1

, u

t�1) (1)

under the initial condition p(x0|y0, u0) = p(x0) where p(x0) is the so-called initialisation distribu-
tion. The samples are represented by particles, i.e. possible states of the system given measure-
ments.

Definition 4 (Particle): A point on the road network containing unique road segment identifier, dis-
tance along the segment and direction of travel (defined by from-to endpoints of the segment).

The most basic version of particle filters is given by the following algorithm.



Figure 2: Graphical representation of a first-order Markov chain with hidden states x1:N , measure-
ments y1:N and controls u1:N�1 at times t = 1 : N .

• Initialisation: At time t = 0, draw M particles according to p(x0). Call this set of particles
X0.

• Recursion: At time t > 0, generate a particle xt for each particle in Xt�1 by sampling from
the transition probability p(xt | xt�1, ut). Call the resulting set Xt. Subsequently, draw M

particles (with replacement) with a probability proportional to the measurement probability
p(yt | xt). The resulting set of particles is Xt.

When the recursion reaches the last measurement at t = N , the particles stored in XN are ap-
proximate samples from the desired distribution p(xN | y1:N , u2:N ). In our context, they represent
possible paths taken by a vehicle given the GPS trajectory. The certainty associated with each path
is proportional to the fraction of particles that it is represented by.

3.2 Method Validation

The easiest way to validate the accuracy of our map-matching approach would be to compare
predicted paths with actual paths taken by a vehicle. Unfortunately, the ground truth is not
available in our case study and we need validation techniques that overcome this limitation.

We propose a validation framework based on the well-established technique of cross-validation (Bar-
ber, 2012). We remove 10% of GPS points from each available GPS trajectory (see Figure 3). We
then align the incomplete trajectories with the road network. Finally, we measure the distance
between each removed point and the corresponding aligned path. The average distance across all
removed points is our estimate of map-matching error.

4 Results

4.1 Data

The data motivating the project is a complete GPS trajectory of a police patrol vehicle during its
night shift (9pm to 7am) in the London Borough of Camden on February 9th 2015. The dataset



Figure 3: Exemplary GPS trajectory with points split into training and test sets.

contains 4,800 GPS points that were emitted roughly every second when moving. It was acquired
for research purposes as part of the ”Crime, Policing and Citizenship” project.1

4.2 Implementation

A Initialisation

The initialisation probability distribution p(x0) is defined as a Gaussian centred at the position
and bearing of the first GPS point. Particles initialised from the distribution are required to
be positioned on the road network, hence their positions are first sampled (see Figure 4a) and
then either kept or discarded depending on whether they coincide with the road network or
not (see Figure 4b). Their direction of travel is inferred from the sampled bearing.

B Transition probability

The transition probability p(xt | xt�1, ut) is set as a linear estimate equal to the Cartesian
distance between GPS points xt�1 and xt (the control ut) plus an additive Gaussian noise.

In the recursive step of particle filter, particles move along the road network by a distance
sampled from p(xt | xt�1, ut). When they encounter a road intersection, they randomly choose
which road to follow.

C Measurement probability

1
UCL Crime Policing and Citizenship: http://www.ucl.ac.uk/cpc/.



(a) unconstrained (b) constrained to the road network

Figure 4: Initialisation of particles around the first GPS point in a trajectory.

Finally, the measurement noise p(yt | xt) is also modelled as a Gaussian distribution, i.e. it is
expected that GPS points are normally distributed around the true vehicle locations.

4.3 Performance Evaluation

In the first instance, the proposed algorithm is applied to the police vehicle data. An exemplary
output of the algorithm is shown in Figure 5. The median cross-validation error is 4.9 meters, i.e.
the inferred paths tend to be 4.9 meters away from GPS points not included in the map-matching.
The error approximately equals the measurement noise of the GPS data themselves, therefore the
results seem to be accurate.

The applicability of the algorithm to other datasets is then tested by artificially reducing the sam-
pling rate of the data (removing some GPS points) and by increasing the noise of the data (per-
turbing GPS points). The algorithm shows good robustness against variation of the measurement
noise (Figure 6a) that might in reality be due to high buildings, weather, etc.. However, it per-
forms poorly on datasets with low sampling rates (Figure 6b). The decreased performance can be
explained by the fact that low sampling rates largely increase the number of possible paths that
the vehicle could have taken between subsequent GPS measurements (too many to cover with a
fixed number of particles). The decrease in the algorithm’s performance is particularly apparent
when compared to the relatively good performance of the state-of-the-art deterministic approach,
the ST-Matching algorithm.

Further work is already being undertaken to bring together strengths of the two algorithms into a
highly accurate, yet fully probabilistic, map-matching algorithm.



(a) most likely (b) second most likely

Figure 5: Exemplary map-matching outcome with colour-coded probability scores for the two most
probable paths.

(a) measurement error (b) sampling rate

Figure 6: Sensitivity of Particle Filter (blue) and ST-Matching (red) to GPS measurement error
and sampling rate represented as 25th, 50th and 75th percentiles of map-matching errors.
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