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Abstract—There has been a keen interest in detecting abrupt se-
quential changes in streaming data obtained from sensors in wire-
less sensor networks for Internet of Things applications, such as
fire/fault detection, activity recognition, and environmental moni-
toring. Such applications require (near) online detection of instan-
taneous changes. This paper proposes an online, adaptive filtering-
based change detection (OFCD) algorithm. Our method is based
on a convex combination of two decoupled least mean square win-
dowed filters with differing sizes. Both filters are applied inde-
pendently on data streams obtained from sensor nodes such that
their convex combination parameter is employed as an indicator
of abrupt changes in mean values. An extension of our method
(OFCD) based on a cooperative scheme between multiple sensors
(COFCD) is also presented. It provides an enhancement of both
convergence and steady-state accuracy of the convex weight pa-
rameter. Our conducted experiments show that our approach can
be applied in distributed networks in an online fashion. It also pro-
vides better performance and less complexity compared with the
state-of-the-art on both of single and multiple sensors.

Index Terms—Cooperative (diffusion-based) strategy, mean
change detection, multi-sensory data, streaming data.

I. INTRODUCTION

R ECENT advances in sensing and actuator technologies in
wireless sensor network (WSN) and the further evolution

of the Internet of Things (IoT) paradigm enable each sensor in
a network to collect large quantities of measurement and obser-
vation data streams. This empowers monitoring and detecting a
wide range of real-world phenomena in areas, such as environ-
mental monitoring, segmentation, quality control, healthcare,
and smart city [1]–[3].
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Changepoint detection is a problem of identifying time points
where abrupt variations in the statistical properties (e.g., mean
and power) of data streams occur. It has received considerable
attention and has been widely applied [4]–[6].

Changepoint detection approaches are divided into two main
categories: offline and online. Offline approaches are capable
of detecting sequential changepoints when accessing and pro-
cessing entire data streams sequence at once. These approaches
cannot detect changes in an infinite sequence of data streams
in near-real time. On the other hand, online approaches identify
sequential changes in continuous streaming data by processing
at least p data points ahead of the actual changepoints, where p
depends on the amount of data an algorithm requires to detect a
change (i.e., delay) [6].

The most common approach for detecting changes of mean
values in WSNs is to monitor sensor data streams published by
each sensor, such as moving average, Page’s cumulative sum
(CUSUM) [7], exponentially weighted moving average [8] and
Page Hinckley [9]. However, these approaches tend to have a
high false alarm (i.e., false positive) rate [10] and do not take
advantage of sharing information globally between sensors in
distributed environments that might lead to better detection of
abrupt changes in sensor networks [11]. Other likelihood-based
and density estimation change detection approaches have also
been proposed in [12] and [13]. However, such approaches can-
not detect changes in data streams in an online manner. Another
algorithm for detecting changes in data streams has been pro-
posed in [14]. This paper relies on using two fixed-size windows
such that changes are detected by comparing data distribution
in a current window with the data distribution in a reference
window. This approach is slower than using a sliding-based
window [15]. A global cooperative approach between multiple
sensors that record different observations of a monitored phe-
nomenon would be desirable to provide efficient detection of
instantaneous changes [16]. Distributed change detection ap-
proaches that rely on communication between neighboring sen-
sors have been presented in [2] and [17]. These approaches avoid
a single point bottleneck of transmitting observations from every
sensor to a central fusion node in a sensor network by adopt-
ing the cooperative scheme. In [2], the CUSUM algorithm is
computed in a distributed fashion for detecting changepoints,
whereas in [17], each sensor in the network runs an indepen-
dent CUSUM and once a sensor node detects a changepoint, it
broadcasts to other nodes to sleep the system. However, there is
no cooperation between sensors in the former, and the system
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does not provide sequential change detection where the system
terminates once one of the sensors detects a change in the latter.

The nature of sensor data streams that are available continu-
ously in IoT/WSN applications demands efficient and adaptive
changepoint detection methods for detecting (significant) se-
quential changes with the smallest possible delay [18].

In this paper, we propose a novel online, adaptive filtering-
based change detection (OFCD) algorithm for the efficient and
accurate detection of sequential changes in data streams pub-
lished by a single sensor. The algorithm is then extended by
providing a cooperative scheme between multiple sensors for
updating a weight parameter that employs as an indicator for
abrupt changes in mean values. Such cooperative scheme aims
at detecting changes in more accurate and with minimal possible
delay, as well as, less complexity.

A. Motivation

Given a set of sensors that publish streaming data in the
same environment (i.e., same area and at the same time), we are
interested in the following.

1) Detecting abrupt changes in sensory data streams pro-
duced by a single sensor.

2) A cooperation between multiple sensors for better per-
formance and accuracy in detecting sequential changes in
their published data streams.

Addressing these two concerns in an online fashion will allow
us to monitor and detect changepoints for real-world applica-
tions continuously. Examples include identifying instantaneous
changes in temperature caused by a fire or detecting activities in
time series and multi-sensor wearable data for activity detection
applications. To this end, we propose a novel way of detecting
changepoints in a sequence of data streams.

The proposed approach is also extended to support a coop-
erative strategy for sharing parameter (a weight parameter λ)
estimation between multiple sensors in WSN. Our distributed
and cooperative algorithm asymptotically minimizes the detec-
tion delay and global false detection (false positive) rate of a
particular phenomenon in distributed WSN.

We compare our algorithm with the optimal single-sided and
two-sided CUSUM algorithm for a single sensor case and with
RuLSIF (a changepoint detection by relative density ratio es-
timation) [13] for single/multi-sensory cases. The results show
that our proposed algorithm outperforms the state-of-the-art in
both small and significant changes in mean values and can detect
the changes with minimal delay and better accuracy.

B. Outline

This paper is structured as follows. The problem formulation
is explained in Section II. Section III provides the required
background and the related work. Our proposed algorithm is
demonstrated and discussed in Section IV. The performance
evaluation, parameter settings, and reproducibility descriptions
are included in Section V. Moreover, the proposed algorithm is
evaluated and analyzed against the state-of-the-art approaches
in Section VI. The algorithm is also evaluated on a real-world
dataset (i.e., human activity use-case), which is described in
Section VII. We conclude this paper and explain the future

TABLE I
SUMMARY OF PARAMETERS

directions of our research in Section VIII. We have summarized
the parameters that are used for the equations in Table I.

II. PROBLEM FORMULATION

Consider a network of N sensor nodes that are placed in
a monitoring region/space. At each time instance t ≥ 0, each
sensor node sn publishes a data stream. Data streams are a
sequence of numerical data points in a consecutive order. Let
x(t) ∈ RN be data points that are published by N sensors at
a time t. Data streams are drawn from the Normal distribu-
tion N (μ, σ2) with k piecewise constant segments (i.e., ob-
servation windows). Each segment has a length li data points
(L =

∑k
i=1 li , i = 1, 2, . . . , k). There exists unknown transition

time instances (τ1 , τ2 , . . . , τk ) at which instantaneous changes
in the mean values of the Normal distribution exist. Let X(n)
be a sequence of a length L time-dependent data points that are
published by a sensor n and τi is the transition time instance
where i = 1, 2, . . . , k

X(n) = [xn,t , xn,t+1 , . . . , xn,T ] ∈ RL . (1)

Let x(t) represent a set of data points that are published by
N sensors at a time t. To this end, x(t) can be represented as
follows:

x(t) = [x1,t , x2,t , . . . , xN,t ] ∈ RN . (2)

Fig. 1 gives an illustrative example of our notations. We also
show an example of data points obtained from multiple sensors
in Fig. 2. The vertical lines in the figures represent instanta-
neous changes in the mean value. Accordingly, we address a
problem of detecting changepoints in piecewise constant vari-
ation in mean values in an online fashion. In other words, our
OFCD algorithm is to detect sequential changes in data streams
produced by an individual sensor and its cooperative scheme
(COFCD) between multiple sensors is to detect changes in data
streams produced by a set of N sensors in a monitored area.

III. BACKGROUND AND RELATED WORK

This section briefly discusses some of the existing works in
this area and describes the background information.
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Fig. 1. Illustrative example of notations used for problem formulation.

Fig. 2. Multiple data streams of five sensors with abrupt changes in the mean
value.

A. Cumulative Sum (CUSUM)

The CUSUM algorithm has been well researched for detect-
ing sequential changes in mean values [12], [18], [19]. There
are different forms of the CUSUM; directed/recursive forms and
(one/two)-sided forms. CUSUM has been shown to be optimal
(regarding worst time delay) when the mean time between false
positives (i.e., false alarms) goes to∞ for detecting changes in
mean value [18]. On the other hand, it has also been shown its
optimality from the asymptomatic point of view in [20].

Following the work in [18] and [19], one-sided CUSUM has
two main design parameters threshold h (h > 0) and a change
in the magnitude of mean value δ. It has also a decision function
G(t) such that the detection of a changepoint at a time t relies on
comparing G(t) with the positive threshold h. Therefore, G(t)
can be formulated as follows:

G(t) = max{G(t− 1) + s(t), 0}. (3)

Consider the changes in the mean value has μ0 before the
change and μ1 after the same change, whereas the parameter δ
takes the magnitude of the change. Therefore, instantaneous log-
likelihood s(t) ratio is calculated. It relies on the mean values

prior and after a change at any time t and the current data point
x(t) that is published by a sensor

s(t) =
δ

σ2
t

(
x(t)− μ0 − δ

2

)
(4)

where σ2 is the constant variance of the data points so far. In
this case, the CUSUMS(t) can be defined through instantaneous
log-likelihood s(t) (4)

S(t) = S(t− 1) + s(t). (5)

One-sided CUSUM detects the change in only one direction
(i.e., increase or decrease) for all data points. However, most of
the applications such as automatic segmentation and detecting
activities require detecting changes in both directions. Two one-
sided CUSUM have been proposed in [7]. In this case, two
decision functions (G(t)i and G(t)d ) should be compared with
the positive threshold h. In addition, two instantaneous log-
likelihood functions are used (s(t)i and s(t)d ), where i and d
are the increase and decrease in the mean value, respectively

s(t)i = s(t) (6)

s(t)d = −s(t). (7)

Using the aforementioned equations and (4), s(t)i and s(t)d

are formulated as follows:

s(t)i =
δ

σ2
t

(
x(t)− μ0 − δ

2

)
(8)

s(t)d = − δ

σ2
t

(
x(t)− μ0 +

δ

2

)
. (9)

In this case, the decision functions G(t)i and G(t)d have
similar formulas similar to (3) where

G(t)i > h and G(t)d > h. (10)

CUSUM has been used for detecting changes in different
applications, such as surveillance, security, quality control,
and power system applications [21]. Furthermore, two-sided
CUSUM has been effectively applied to fault detection in power
system applications. However, the CUSUM has a drift parame-
ter δ that is a prior constant variable which is initialized once,
and the algorithm continues to use its value all the time [21].
Such a global variable and a single calculation might limit the
applicability of CUSUM for monitoring streaming sensory data.
For more details about the CUSUM and its variants, we refer
the readers to [12] and [19].

B. Least-Mean-Square (LMS) Algorithm and Adaptive Filters

LMS is a de facto adaptive filtering algorithm among others
that has a set of filtering coefficients (i.e., weights) that are
estimated continuously to minimize the least mean squared error
(i.e., the difference between the desired and output/estimated
data points). LMS has a low computational overhead. It relies
on a stochastic gradient descent approach in which coefficients
are updated iteratively to minimize the least mean squared error
e(t) of the filter at the current time t

e(t) = x(t)− y(t) (11)
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where x(t) is a data point at time t and y(t) is the output of
applying an adaptive filter on x(t) such that

y(t) = w(t)x(t) (12)

wherew(t) is the adaptive filter weight for minimizing the error
e(t) with a step size α (i.e., learning rate) using the standard
LMS rule

w(t) = w(t− 1) + αe(t)x(t). (13)

Combination scheme of two filters instead of using one filter
has been investigated to improve the steady-state characteristics
and performance of LMS [22]. Following the work in [22]–[24],
a convex combination employs two filters that are decoupled
and simultaneously applied to the same input. Their weights
are adjusted to minimize the overall errors of the filters. To
this end, a convex combination scheme is used to combine the
weights of the two filters using a parameter λ(t). λ(t) is a mixing
scalar parameter (0 � λ(t) � 1) to preserve the convexity of this
combination [24]. In this case, the overall weight w(t), which
is the mixture filter weight, is represented as follows:

w(t) = λ(t)w1(t) + [1− λ(t)]w2(t) (14)

where w1(t) and w2(t) are the weights of the first filter and the
second filter at a time instant t, respectively. λ(t) is updated as
a convex combination parameter with a step size of α using the
standard LMS adaptation rule [25] similar to (13) as follows:

λ(t+ 1) = λ(t) + αe(t)x(t). (15)

Adaptive combination of two filters (i.e., fast and slow) have
been used in plant identification applications, where w1(t) is a
fast filter and w2(t) is a slow filter [23]. In such a case, λ is near
1 for high tracking situations and is near 0 for slow tracking
[see (14)]. The scheme has been improved and refined in [26]
to enable more robust results by transferring the coefficients
of the faster LMS filter to the coefficients of the slower LMS
filter to accelerate its convergence. Another convex combination
scheme is to use two filters independently in which one different
step size is used for each filter [27]. It is worth noting that the
idea of a combinational scheme of two filters is not new. It has
been proposed earlier in [28]. However, the scheme is composed
of one filter that has an adaptive weight, whereas the other filter
has a fixed weight. If the former performs better than the latter,
the latter’s weights are updated by the adaptive weights.

More recently, in consonance with the idea of the convex
combination of two filters, a change detection approach based
on a combination of two models have been proposed in [2]. The
approach relies on long-term (LT) memory and short-term (ST)
memory models with the aim of detecting changepoints based
on using a growing window for LT model and fixed window
size for ST model to obtain a better change detection using the
collaboration between the two models.

It is worth noting that there are other types of methods for
change detection approaches, such as supervised learning ap-
proaches that are based on labeled training data. If the number
of states is specified, the learning approach is trained to find each
state boundary, and consequently, detects the changepoint [6].

IV. PROPOSED ALGORITHM

In this paper, we use the concept of an adaptive LMS algo-
rithm, which is based on using a convex combination of two
adaptive filters. The adaptive filters are so-called “fast” and
“slow” filters according to the speed of convergence of the
filters when transient changes in the mean values occur. The
convex combination of the two filters is to find the best fit of
their linear models to an input streaming sensory data where
the abrupt changes in the mean values are unknown. To this
end, the aim is to achieve a better steady-state performance and
keep monitoring the sensory data streams continuously to de-
tect instantaneous changepoints in the mean values in an online
fashion.

Both filters are applied separately on data streams that are
produced by a set of sensor nodes. However, in contrast to the
existing solutions, there is a cooperation between neighboring
sensor nodes for estimating the convex combination parame-
ter of both filters. The parameter employs as an indicator for
detecting sequential changes in mean values, which is the key
difference here compared with the slow/fast filters explained in
the previous section. We also use the moving average estimator
for LMS filters.

Given the input data streams X(t),X(t+ 1), . . . , X(T ) (as
explained previously in Section II), the output of our pro-
posed approach is to find the unknown transition time instances
(τ1 , τ2 , . . .) at which instantaneous changes in the mean values
exist, with minimal possible delay.

Our proposed algorithm: OFCD is summarized in
Algorithm 1. The main idea is to detect changepoints in mean
values as fast and accurate as possible.

We adopt using a convex combination of two LMS adaptive
filters and a moving average. The two component filters are
decoupled and have different window sizes. One of the adap-
tive filters is fast, whereas the other is slow. The fast filter has a
short-term observation memory based on using a relatively small
fixed window size wf , whereas the slow has a long-term obser-
vation memory based on an increasingly large window size ws .
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The fast filter has higher tracking capabilities that allow detect-
ing changepoints in streaming sensory data with fast changes.
On the other hand, the slow filter has a better steady-state that
minimizes the detection error. The advantage of the convex com-
bination of both filters is retained such that fast filter provides
a fast convergence, whereas the slow filter provides a better
steady-state through minimizing the mean squared error.

Running moving average with a fixed window ŷf and an
increasing window ŷs for fast and slow adaptive filters, re-
spectively, is to have a good combination for estimating the
next observation value based on the previous set of values (i.e.,
window size). To this end, the outputs of the fast ŷf and slow
ŷs filters are as follows:

ŷf =
1
wf

t∑

i=t−wf

X(t) (16)

ŷs =
1
ws

t∑

i=t−ws

X(t) (17)

where wf is a fixed window size for fast filter and ws is an in-
creasing window size for slow filter such that wf < ws . Similar
to [23], the overall output for filters ŷ(t) is a convex combination
of the outputs of both filters mentioned before

ŷ(t) = λ(t) ŷf + [1− λ(t)] ŷs (18)

e(t) = [X(t)− ŷ(t− 1)] (19)

where the mixing parameter λ of their combination is adaptively
updated in an online manner that aims at minimizing the overall
filters error e(t) between the desired signal X(t) and overall
output of both filters ŷ(t− 1). In addition, λ is considered as
a forgetting factor that determines how to treat streaming data
by giving more weight to the recent streaming sensory data and
down-weighting (i.e., forgetting) earlier observations.

The motivation of our proposed approach is to extract the
best properties of the decoupled fast ŷf and slow ŷs filters by
assigning and updating λ that is a combination of both filters by
an appropriate value at time t.

The fast filter with a small fixed window sizewf can track the
quick transition time instances. However, the fast filter cannot
provide a steady-state performance for the detection of long-
term trends, and consequently, it will not be very accurate for
long-term observations. On the other hand, the slow filter with
a large growing window size provides a stable steady-state ob-
servation. Therefore, the convex combined weight parameter λ

is adaptively estimated at each time t such that it can detect an
abrupt changepoint and consequently the fast filter (with a small
window size) can provide an optimal solution with the aim to
minimize the mean squared error

λ(t+ 1) = λ(t) + α e(t) [ŷf − ŷs ] (20)

where α is the learning rate parameter. The learning rate in-
fluences the stability and the convergence of the model. It was
noted that LMS filters do not converge if α > 1.0 [29]. The
mixing parameter λ is initialized by zero. While monitoring
streaming data, the λ(t) is normalized to be independent of the
data streams scale. Therefore, λ(t) is guaranteed to be within an

interval of [0, 1]. It is compared with a threshold h such that the
updated weight λ is mapped to an output of a decision functions
s(t) as follows:

s(t) =

{
0, λ(t) < h

1, λ(t) ≥ h
(21)

where s(t) = 1 corresponds to detect a change in streaming data
and s(t) = 0 otherwise. If λ is above a threshold h, which is
prior information that depends on the problem definition, this
indicates that a detection alarm occurs and that a changepoint is
detected (τt) at the time t. The algorithm resets after a change
occurs such that λ reinitializes to zero after the detection to allow
the algorithm to forget all the old information instantaneously
and to get a fresh start.

The advantage of convex combination is to minimize the
excess mean squared error (EMSE) of the overall filter e(t)
comparing to the EMSE for both filters e1(t), e2(t) as discussed
in [22] such that

e(t) ≤ min[e1(t), e2(t)]. (22)

We extend our algorithm by using cooperation between mul-
tiple sensors. The extended approach called cooperative on-
line, adaptive filtering based change detection (COFCD) (see
Algorithm 2) is based on a diffusion cooperation scheme in
which neighboring sensor nodes can communicate and share
information between each other. At each node, an estimation
of λ value is calculated and fused to other nodes. Their local
estimated values are then fed into the local adaptive filters with
the aim to have a shared estimator ψ between neighboring sen-
sors for improving detection of instantaneous changepoints. The
updates of λ for each sensor node is based on the combine-then-
adapt (CTA) approach [30]. To this end, λ(t) is updated byψ(t).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

The following equations describe the CTA diffusion scheme
{
ψ(t) = 1

N

∑N
n=1 λn (t) (diffusion step)

λn (t+ 1)← ψ(t) + α en (t) [ŷf ,n − ŷs,n ] (incremental step)

(23)

where n is a sensor index and each sensor has λn that is updated
adaptively (in the incremental step) based on cooperation be-
tween sensors to estimateψ (in diffusion step). It is worth noting
that the extended algorithm assumes that all sensors observe the
same phenomena.

It is worth mentioning that we consider a detection alarm is
correct if there is a true alarm at step t at which t ∈ [t, t+N ],
where N is considered the maximum number of samples that
might cause a time delay (i.e., detection latency) before detecting
a true changepoint. Furthermore, duplication in detection alarm
might occur. Similar to [13], we remove ith detection alarm
such that {ti − ti−1} < 20 (verified experimentally). Both of
these steps depend on the time that is needed for estimating
parameters to detect a change in mean value and for a slow
filter to converge after a change has occurred. Since the convex
combination parameter of the adaptive filters employs as an
indicator for a detection alarm for abrupt changes, a threshold
parameter h has to be initialized beforehand to filter out all
alarms whose convex parameter is ψ(t) ≤ h.

V. EVALUATION

As discussed in the previous section, the proposed solution
is composed of a convex combination of two adaptive filters re-
lying on diffusion and cooperative approach. The experiments
are conducted by first evaluating our algorithm (OFCD) on uni-
variate (single sensor) data. We then evaluate (COFCD) on a
multi-sensor use case. We compare our algorithm and its exten-
sion to the following approaches in the state-of-the-art.

1) Baseline 1 (B 1): One-sided CUSUM recursive form ([19,
Algorithm 3]).

2) Baseline 2 (B 2): Two-sided CUSUM ([19, Algorithm 5])
with a fixed (i.e., a short term) and an increasing (i.e., a
long term) observation window sizes.

3) RuLSIF: Changepoint detection by relative density-ratio
estimation, which was proposed in [13].

Our motivation to compare our proposed algorithm with these
baselines is that baseline 1 calculates the cumulative sum recur-
sively and efficiently, which makes it suitable for online appli-
cations [19]. However, one-sided CUSUM can only detect the
changes in one direction (as discussed earlier). To this end, we
have conducted some experiments in which the change in mean
values is only in one direction. Furthermore, other experiments
are carried out in which the changes in mean are in both direc-
tions. Therefore, we compare our algorithm in the latter case
with baseline 2 (two-sided algorithm) to show the usefulness
of our proposed approach. Two-sided CUSUM can be imple-
mented using either a fixed window or an increasing observation
window. We have implemented our algorithm to support both
window size setting methods and compare it with two-sided
CUSUM. It worth noting that different observation windows
are applied to the slow filter in our algorithm because the fast
filter typically observes the fast changes in data streams and
consequently it is not suitable to have a long-term observation
window.

Some other methods and approaches use density functions
to detect changes [12], [31]. RuLSIF approach is proposed
in [31]. It is a statistical approach for detecting changes based
on Pearson divergence that is estimated by a method of a
direct density-ratio estimation. RuLSIF code is available via
http://www.ism.ac.jp/∼liu/software.html, which makes it more
convenient for the performance comparison.

A. Dataset

In our experiments, we assume that multiple sensors observe
the same phenomena. Therefore, we consider having a set of
sensors N in which we generate a sequence of data points for
each sensor. The data points are drawn from a Normal distri-
bution with the same piecewise constant mean and a constant
global variance σ2 . In other words, a mean value is selected
uniformly between [μ1 , μ2 ] per segment across N sensors. The
number of samples per segment (i.e., segment’s length) is se-
lected uniformly between the interval [s1 , s2 ] and the mean for
each segment has a scale of increase or decrease that is selected
uniformly at which its magnitude is also selected uniformly be-
tween the interval [d1 , d2 ]. The scale of a segment is selected
according to the mean of the previous segment. This will create
the same transition time instances (τ1 , τ2 , . . . , τS ) across the
sensors at which instantaneous changes in the mean values of
the Normal distribution exist.

We also consider that streaming sensory data for multiple
sensors can be generated with a different inter-sensor correla-
tion ρ between sensors. We use the Cholesky factorization [32]
to generate such streaming data. A summary of how we gener-
ate piecewise constant variation in mean values for N sensors
is demonstrated in Algorithm 3 and we have summarized the
parameters used in the algorithm in Table II.
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TABLE II
SUMMARY OF PARAMETERS

The following are the specific values that we have used for
each of the parameters.

1) Range of each segment’s length [s1 , s2 ]← [100, 500].
2) Mean value [μ1 , μ2 ]← [−3, 3].
3) Magnitude of the scale [d1 , d2 ]← [1, 3].
4) Number of transition time instances (i.e., change points)

S = 10.
It is worth mentioning that we have used different values

of ρ and N during the simulation experiments. Therefore, we
have mentioned the specific values that we have used in each
experiment in the following sections.

B. Performance Evaluation

The performance evaluation is based on the following criteria.
1) False positive rate (FPR): It is the percentage where the

algorithm detects changepoints that actually not exist

FPR =
FP

TN + FP
. (24)

2) False negative rate (FNR): It is the percentage where the
algorithm fails to detect changepoints that actually exist

FNR =
FN

FN + TP
. (25)

3) Detection latency (L): It is the number of samples that
is required to detect a true changepoint that has occurred.
Obviously, by dividing the number of samples by the sam-
pling frequency, we can also obtain the latency time in
seconds.

In (24) and (25), TN is the number of true negative change-
points, FP is the number of false positive changepoints, FN is
the number of false negative changepoints, and TP is the number
of true positive changepoints.

C. Parameter Settings and Reproducibility

We have considered two kinds of experiments for detecting
instantaneous changes in streaming sensory data while conduct-
ing the evaluations. It is worth mentioning that the results are
the average of 1000 independent trials.

1) Case 1: Univariate streaming data (for a single sensor) at
which a scale of μ is at one direction (e.g., increase), and
at both directions (i.e., increase and/or decrease). Results

TABLE III
CASE 1 (a): SINGLE SENSOR RESULTS

TABLE IV
CASE 1 (b): SINGLE SENSOR RESULTS

TABLE V
CASE 2: 10 SENSOR RESULTS WITH ρ = 0

TABLE VI
CASE 2: 10 SENSOR RESULTS WITH ρ = 0.5

of applying the OFCD (see Algorithm 1) algorithm are
reported in Table III for one direction and in Table IV for
both directions.

2) Case 2: Multivariate streaming data (from N sensors)
at which a scale of μ has both directions and with
a cooperation-based diffusion strategy (COFCD: Algo-
rithm 2). Results are reported in Tables V and VI.

The first set of simulation results (Case 1) considers a univari-
ate case X(n), which is a sequence of data points of a sensor
n, and the data are drawn from a Normal distribution N (μ, 1)
with a set of transition time instances (τ1 , τ2 , . . .) at which in-
stantaneous changes in the mean values of Normal distribution
exist. Using Algorithm 3, we generate streaming sensory data
to represent a single sensor (N = 1). Because there is a single
sensor in this set of experiments, the ρ value does not have any
effect.

It is worth noting that detection threshold, the size of win-
dows, and learning rate parameters are highly dependent on the
characteristics of streaming data. To this end, these parameters
might need fine-tuning based on the application domain. There-
fore, we will discuss the sensitivity analysis of the performance
of our algorithm on different choices later. For this set of experi-
ments, we have used specific values (h = 8, d = 2, w = 50) for
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baselines 1 and 2 and (h = 0.6, α = 0.1, ws = 50, wf = 4) for
our algorithm (OFCD). However, for RuLSIF, we have used the
recommended values (n = 50, k = 10, α = 0.01) [13].

The second set of simulation results (Case 2) aims to ana-
lyze the performance of our extended algorithm (COFCD) that
applies collaborative adaptive filtering approach for detecting
changepoints in a fully connected network of N sensors that
produced data streams {X(1),X(2), . . . ,X(N)} with an as-
sumption that sensors observe the same piecewise constant vari-
ation in the mean values. Similar to the first set of simulations,
we have used Algorithm 3 to generate streaming sensory data
for multiple sensors (N > 1). In this set of results, we assume
N = 10 and other parameters have the same values similar to
previous simulation results.

To ensure the reproducibility of our results, we have made the
code and datasets of our implementation and baselines available
and have also provided details of a configurable experimen-
tal setup at http://github.com/YasminFathy/Adaptive-Filtering-
Based-ChangeDetection.

VI. RESULTS AND DISCUSSION

We evaluate the performance of the OFCD algorithm against
baselines 1 and 2. Table III demonstrates the performance eval-
uation for detecting sequential changes in one direction (i.e.,
increase) data streams produced by an individual sensor. Simi-
larly, Table IV demonstrates the same result, but for detecting
instantaneous changes in both directions.

In Table III, OFCD (case b) offers better accuracy in terms of
false positive and false negative rates than one-sided CUSUM
(baseline 1: B1). Both of the algorithms have the same number
of samples for latency detection (i.e., seven samples). Although,
two-sided CUSUM (baseline 2) in case b has better latency than
OFCD (case b), it has more false negative and false positive rates
6 times and 2.5 times, respectively. On the other hand, OFCD
(case a) performs better than baseline 2 (case a) in which a fixed
observation window size is considered in all evaluation criteria
(i.e., FPR, FNR, and latency). RuLSIF provides 0% for FNR;
however, it requires the highest number of samples to detect
changepoints compared to all other algorithms. We believe that
RuLSIF requires more time to detect changes, since it relies
on a cross-validation mechanism for model selection, which
tends to add more complexity and requires more time. Overall,
it is evident in the Table III that OFCD with an increasing
observation window for the slow filter (case b) outperforms
all other approaches and its fixed observation window (case a)
performs better than baseline 2 (case a).

Table IV shows that OFCD (case b) outperforms all other
algorithms. OFCD (case a) provides a better result than baseline
2 (case a). When the scale of the mean values are in both direc-
tions, RuLSIF provides higher FNR and detection latency than
OFCD (cases a and b) and baseline 2 (case b). It is worth men-
tioning that the experimental results of RuLSIF in [13] show
that it outperforms other change-detection algorithms.

The second set of results (case 2) is included in Tables V
and VI where we assume having a fully connected network
of ten sensors with inter-sensor correlations ρ = {0, 0.5}. The

comparison includes our algorithm COFCD that provides col-
laborative adaptive filtering method between N = 10 sensors
for detecting changes against the RuLSIF that supports detect-
ing changes in multi-sensor data.

In these results, COFCD outperforms RuLSIF in false pos-
itive, false negative, and detection latency criteria. Moreover,
RuLSIF requires more (approximately three times) number
of samples to detect sequential change points compared with
COFCD that requires only seven samples (case b) for detecting
the same changepoints (see Table V). COFCD offers better accu-
racy in terms of false positive and false negative rates compared
to RuLSIF.

On the other hand, RuLSIF performs better when there is
no correlation (see Table V) between data streams produced by
a multiple sensors set than if there is a correlation. Generally,
RuLSIF requires running on the full data in an offline manner
because it splits the data into a set of windows as an initial step
before running the algorithm. It also relies on a cross-validation
mechanism for model selection, which tends to add more com-
plexity and requires more time. Another drawback of RuLSIF is
that it requires running the algorithm in two directions; forward
and backward. The algorithm runs from the beginning of the
streaming data until the end and then starts in the reverse order
(i.e., from the end of the streaming data to the beginning). The
detected changepoints are based on the accumulative values of
density functions for both of the directions.

COFCD performs slightly better when there is a correlation
in streaming sensory data produced by multiple sensors (see
Table VI) compared with the situations that there are no cor-
relations (see Table V). Our proposed algorithm OFCD and its
extension COFCD perform better than the state of the art for
sequential detection in data streams produced by an individual
and multiple sensors, respectively. There are two main and in-
teresting observations from the last set of results. The first is that
COFCD in Table VI has the same performance with a short-term
(case a) and long-term (case b) observation windows when there
is an inter-sensor correlation (ρ > 0). The second observation
is that the results of COFCD in Table V have a quite different
behavior compared to the first observation. We have conducted
extensive experiments to study the behavior of our algorithm
(i.e., FPR, FNR, and average latency) with different ρ values.

The experiments are done with different number of sen-
sors N = {2, 3, . . . , 10} and inter-sensor correlation values
ρ = {0, 0.1, 0.3, 0.5} for COFCD cases (a and b). Figs. 3–5
demonstrate the behavior of COFCD (case b) with differing
inter-sensor correlation values between multiple sensors. It is
clear that COFCD performs better in terms of FPR and FNR,
as shown in Figs. 3 and 4, respectively, regarding ρ value. On
the other hand, if the number of sensors N < 4, FNRs decrease
with higher ρ values (see Fig. 3). However, it is a contradic-
tion to Fig. 4 where FPRs increase with higher ρ values. It is
sometimes the case that reducing FNRs come at the expense
of increasing FPRs. Moreover, the algorithm can detect the
changepoints faster when ρ values are higher (see Fig. 5). Fig. 6
gives a closer look into how the average detection latency is
influenced by different N and ρ values. The algorithm detects
instantaneous changepoints faster while the number of sensors
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Fig. 3. False negative rate of different number of sensors with inter-sensor
correlation values (ρ = {0, 0.1, 0.3, 0.5}).

Fig. 4. False positive rate of different number of sensors with inter-sensor
correlation values (ρ = {0, 0.1, 0.3, 0.5}).

Fig. 5. Average detection latency of different number of sensors with inter-
sensor correlation values (ρ = {0, 0.1, 0.3, 0.5}).

Fig. 6. Average detection latency (i.e., number of samples) for different num-
ber of sensors using different inter-sensor correlation values.

Fig. 7. False negative rate of different number of sensors with inter-sensor
correlation values (ρ = {0, 0.1, 0.3, 0.5}).

N increases. This shows how collaborative adaptive filtering
strategy performs better when multiple sensors cooperate for
updating a weight parameter that employs as an indicator for
abrupt changes in the mean values. Moreover, COFCD can de-
tect changes between highly correlated data streams (ρ = 0.5).

Similarly, we have studied the behavior of COFCD (case
a). Figs. 7–9 demonstrate the behavior of COFCD (case a)
with differing inter-sensor correlation values between multi-
ple sensors. COFCD (case a) has quite similar behavior to
(case b). For example, FNRs decrease with higher ρ values
when N < 4 (see Fig. 7). However, FPRs increase with higher
ρ values (see Fig. 8). In addition, with highly correlated data
streams produced from multiple sensors, COFCD (case a) de-
tects changepoints faster (see Fig. 9). Overall, COFCD (case a)
has higher false positive and false negative rates than (case b).
In addition, the former detects abrupt changes slower than the
latter.
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Fig. 8. False positive rate of different number of sensors with inter-sensor
correlation values (ρ = {0, 0.1, 0.3, 0.5}).

Fig. 9. Average detection latency (i.e., no. of samples) for different number
of sensors using different inter-sensor correlation values.

A. Sensitivity Analysis

We have investigated the sensitivity of the different choices
for COFCD (case b). In this section, we discuss the sensitivity
analysis by varying the key parameters and show their impact
on the stability and the accuracy of our proposed algorithms.

During our empirical experimentation, we have investigated
the parameters that affect our results the most. The following
parameters affect the behavior of the algorithm.

1) Size of windows (e.g., ws and wf for slow and fast filters,
respectively, such that wf < ws ).

2) Learning rate α (it has often 0.1 value; verified experi-
mentally).

It is worth noting that the adjustment of such parameters is
also application dependent.

1) Window Sizes: The length of the sliding window for fast
filter wf should be long enough to achieve a fast convergence
and a good tracking while fast changes are taking place; how-
ever, it should not be too long in order to detect fast abrupt

TABLE VII
COFCD (b): DIFFERENT WINDOW SIZES FOR SLOW FILTER ws

WITH N = 10 AND ρ = 0

TABLE VIII
COFCD (b): DIFFERENT WINDOW SIZES FOR FAST FILTER fs

WITH N = 10 AND ρ = 0

changes. On the other hand, the slow filter ws should provide a
good approximation for detecting slow changes. As mentioned
earlier, the simulation results are provided with ws = 50 sam-
ples andwf = 4 samples. Tables VII and VIII show the effect of
slow filter (ws) and fast filter (wf ) with differing window sizes
in the performance of the algorithm. From the tables, we can
see that if the length of the slow filter ws is too long, which is
approximately larger than the number of samples between two
consecutive abrupt changes, there will be a poor approximation
of the weight parameter and consequently the number of false
alarms may increase. On the other hand, increasing the length
of the fast filter such thatwf < ws adds more delay in detecting
sequential changepoints.

2) Learning Rate: Learning rate (i.e., step sizeα) is an adap-
tive step for the convex combination parameter that combines
the higher tracking capabilities of the fast filter (wf ) with a
better steady-state performance of slow filter (ws). α affects the
convergence and the accuracy of the algorithm. In other words, it
controls how to move fast/slow toward obtaining optimal values
of the mixing parameter λ. If α is too large, the algorithm could
skip the optimal weight for the mixing parameter and if it is
too small, it could misadjust the mixing parameter λ that affects
the stability of the algorithm. Small α allows the convergence
of λ with some values that might be near the optimal values.
A suitable value for α provides a faster convergence for the
adaptive filters as well as a good accuracy. When α = 1.0, the
adaptive filters cannot converge [29]. During our experiments,
we noticed that our algorithm has a stable performance when
α = 0.1.

We have shown how different learning rate values have a
direct effect on the performance of our algorithm in Fig. 10.
The experimental results are obtained with different learning
rates α = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} while
other parameters have the same values as other experiments
(N = 10, ρ = 0, S = 10, ws = 50, wf = 4). If α is zero, the
weight of the mixing parameter will still be near where it was
initialized. Therefore, FNR is almost 100%, and consequently,
FPR is 0%. The FNR drops to 0% when α = 0.1, whereas FPR
starts to rise when α is roughly 0.2. We believe that the algo-
rithm is stable when α ≤ 0.1 and this means that with only 10%
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Fig. 10. False positive rates on the right-hand side and false negative rates on
the left-hand side with different learning rates (α = {0, 0.1, 0.2, . . . , 1}).

of recent values and 90% of old values, the algorithm can have
a good performance for detecting changepoints. A smaller step
size α of adaptive filters is required to preserve its stability [33].

It should be noted that although our cooperative scheme has
shown a better performance for detecting changes when mul-
tiple sensors cooperate for updating a weight parameter that
employs as an indicator for abrupt changes, the accuracy of our
approach might be affected if some of these sensors are out of
battery or disconnected from the network. In such a case, the
weight parameter is not correctly estimated, and consequently,
this degrades the performance and accuracy of our algorithm.

VII. USE CASES: HUMAN ACTIVITY

In this section, we show and analyze our algorithms against
RuLSIF on a real-world sensors activity dataset [34]. The dataset
is available at http://ps.cs.utwente.nl/Datasets.php. The dataset
is collected for seven physical activities: walking, sitting, stand-
ing, jogging, biking, walking upstairs, and walking downstairs
of different participants. Each activity was collected for each
participant at a rate of 50 samples per second. We have exam-
ined the dataset, and we have noticed that all the participants
were doing the same activity at the same time. For example,
each participant was walking upstairs from time index 45 001
to 54 000 and was biking from time index 36 001 to 45 000
and the same for other activities. The total number of samples
that we have used in our experiment is 54 000 in which each
activity has 9000 samples for the following 6 physical activities:
standing, jogging, sitting, biking, walking upstairs, and walking
downstairs.

The data are collected by tri-accelerometer (x, y, z). We have
transformed the three orthogonal planes into a vector magnitude
such that

A =
√
x2 + y2 + z2 (26)

where A is a vector magnitude. We have tested our algorithm
COFCD (cases a and b) and RuLSIF on six physical activi-
ties (i.e., standing, jogging, sitting, biking, walking upstairs,

TABLE IX
HUMAN ACTIVITY DATASET

TABLE X
CHEST-MOUNTED DATASET

and walking downstairs) for five participants and we have re-
ported the performance evaluation in Table IX. We have tested
the algorithms with the same parameter settings for our simu-
lation results reported previously in Section V-C. However, we
used α = 0.05 while performing COFCD experiments which
required adjustment as it is application dependent.

As shown in Table IX, RuLSIF and COFCD have the same
FNRs. On the other hand, COFCD has a lower FPR compared
with RuLSIF. Moreover, COFCD can detect changepoints faster
than RuLSIF. RuLSIF requires more (i.e., 2.8 times more) num-
ber of samples to detect sequential change points compared
with COFCD (case b). COFCD requires only 10 samples (case
b) and 19 samples (case a) for detecting the same changepoints.
Overall, such results match our simulation results as reported
previously in Tables V and VI in which COFCD (case b) out-
performs all other approaches and its fixed observation window
(case a) performs better than RuLSIF.

Similar observations are obtained while conducting ex-
periments on a real-world chest-mounted accelerometer
dataset [35]1 where COFCD outperforms RuLSIF (as shown
in Table X). The data are collected from a wearable accelerom-
eter mounted on the chest of different participants performing
different activities. The accelerometer has also been transformed
into a vector magnitude (as explained previously) and we have
used samples for walking, going up/down stairs, walking, and
talking with someone activities. We used α = 0.001, and other
parameters are the same for COFCD experiments and RuLSIF.

It should be noted that our algorithm only focuses on detect-
ing the changes to identify an activity, but we did not use any
methods to label the type of activity. To label and identify the
type of activity, different classification methods such as support
vector machines can be used (we have labeled data to train the
classifiers). The classification is not in the scope of this paper
and to keep our description focused on change detection, we
did not describe this aspect in this paper. The interested read-
ers can refer to several well-established works in the domain
including [6], [36], and [37].

1http://archive.ics.uci.edu/ml/datasets/Activity+Recognition+from+Single+
Chest-Mounted+Accelerometer
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VIII. CONCLUSION AND FUTURE WORK

We have introduced a novel, online, and adaptive filtering-
based change detection algorithm. The proposed algorithm em-
ploys a convex combination of two LMS adaptive filters with
differing window sizes. We have extended our algorithm with
a cooperative scheme between multiple sensors. We have then
provided a comparison between our proposed algorithm and
other baseline algorithms. The comparison includes two sets of
results. The first set provides a comparison between the pro-
posed algorithm and other state-of-the art algorithms in which
the instantaneous changes have an increase and/or decrease
in the mean value. The second set provides a comparison
between the extended version of our algorithm with another
state-of-the-art algorithm across multiple sensors. Through our
experiments, our algorithm has provided a higher performance
to remain fast responding and more accurate for detecting
changes in the mean values compared with other baseline al-
gorithms. Our algorithm also does not require any extra compu-
tational complexity. We have also investigated the parameters
that affect our results the most in our sensitivity analysis. For
future work, we will also consider applying our proposed algo-
rithm to a larger scale and more dynamic data.

Although our cooperative scheme has shown a better per-
formance for detecting changes, the future work will focus on
an implementation for providing cooperation among neighbor-
ing sensors in a large-scale sensor networks that publish high-
dimensional data streams. To deal with the dimensionality prob-
lem in streaming data, the algorithm will be further improved
by incorporating dimensionality reduction techniques. We also
plan to provide dynamic window sizes that can adapt based on
the statistical properties of streaming sensory data.
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