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Abstract
Background  Conditions leading to reduced gastric volume are difficult to manage and are associated to poor quality-of-life. 
Stomach augmentation using a tissue-engineered stomach is a potential solution to restore adequate physiology and food 
reservoir. Aim of this study was to evaluate the decellularisation of whole rat stomach using a detergent-enzymatic protocol.
Methods  Stomachs harvested from rats were decellularised through luminal and vascular cannulation using 24-h detergent-
enzymatic treatment and completely characterized by appropriate staining, DNA and Extracellular matrix -component 
quantifications.
Results  The detergent-enzymatic protocol allows a complete decellularisation of the gastric tissue, with a complete removal 
of the DNA with two cycles as confirmed by both quantifications and histological analysis. Extracellular matrix components, 
collagen, fibronectin, laminin and elastin, were optimally preserved by the treatment, while glycosaminoglycans were reduced.
Conclusion  Gastric tissue can be efficiently decellularised. Scaffolds retained original structure and important components 
that could enhance integration with other tissues for in vivo transplant. The use of naturally derived material could be poten-
tially considered for the treatment of both congenital and acquired conditions.
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Introduction

Congenital and acquired conditions can lead to a reduced 
volume of the stomach. Congenital microgastria is a rare 
condition first reported in the 1800s. Less than 50 cases have 
been reported in the literature so far. Gastric tissue is widely 
used in the surgical treatment of congenital and acquired 
childhood diseases involving the oesophagus. Whether to 

achieve correction of long gap oesophageal atresia or to treat 
oesophageal stenosis following caustic ingestion, part of the 
stomach can be tubulised and used as substitute for the una-
vailable or unusable oesophagus [1]. In adults, gastric tissue 
can also be lost following bariatric surgery such as gastric 
sleeve surgery or after partial gastric resection due to cancer. 
These conditions, together with the rare congenital pathol-
ogy known as microgastria [2], could cause a high morbidity 
due to reduced gastric volume and related loss of digestive 
and reservoir function. Following total or partial gastrec-
tomy, dumping syndrome and reduced intestinal adsorption 
of vitamins are indeed to be kept in mind dealing with chil-
dren since they can influence life-long quality-of-life [3].

Gastric augmentation could potentially reduce the symp-
toms described above; however, current strategies involve 
complex surgical reconstruction using the intestine and 
achieve sub-optimal results. Roux–en–Y (Hunt-Lawrence 
pouch) jejunal loops have been recommended to increase 
gastric volume in microgastria, but leads to patients show-
ing highly abnormal motility with hypomotile or obstructive 
patterns.
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It would be ideal if gastric tissue could be engineered in 
an autologous setting. Regenerative medicine is an emerg-
ing field in science showing the possibility of healing and 
regenerate damaged or missing tissue. Decellularised tis-
sue in particular seems to have the potential to be used for 
the replacement of damaged tissue or organs, and we have 
successfully transplanted engineered cadaveric trachea to 
substitute children airway. There are several advantages 
on using decellularised scaffolds which preserve the native 
extracellular-matrix (ECM) architecture, its composition and 
all the biological cues which are necessary for regeneration.

To date, there have been no study published using decel-
lularised gastric tissue as xenogenic material for stomach 
augmentation. Aim of this paper is to develop a decellulari-
sation protocol to efficiently create a scaffold suitable for 
stomach augmentation.

Materials and methods

Tissue isolation

Whole stomachs were harvested from female and male 
Sprague Dawley rats, weighing approximately 200–250 g. 
After sacrifice, the abdominal wall was sterilized with 70% 
ethanol and a midline incision was performed to expose 
the abdominal cavity. Celiac artery was cannulated with a 
27G cannula (Introcan Certo, B. Braun Medical AG, Ger-
many) secured in place with a 3–0 silk suture (Ethicon, 
UK). Hepatic artery was ligated and portal vein sectioned. 
The stomach was harvested and barbed to luer-lock connec-
tors (Cole Parmer, US) were used to cannulate cardias and 
pylorus.

Stomachs were decellularised using a detergent-enzy-
matic treatment (DET) as previously described. Both the 
vasculature and the organ lumen were perfused with a 1 ml/
min flow rate using a Masterflex L/S variable speed roller 
pump (Masterflex, US). Each DET cycle was consisting 
of: 24 h perfusion with deionized water (18.2 MU/cm), 4 h 
with 4% sodium deoxycholate (Sigma, UK), 1 h with deion-
ized water, 3 h 22,5 mg/l DNase-I in 0,9% sodium chloride 
(NaCl, Sigma, UK) and 1,11 g/l calcium chloride (CaCl2, 
Sigma, UK). All organs after DET were preserved at 4 °C, 
in PBS (Gibco, UK) and antibiotics (Penicillin/streptomycin 
1%) and irradiated to eliminate all contaminants.

Histological evaluation

To allow histologic evaluation, samples were fixed in 4% 
paraformaldehyde (PFA; Sigma, UK). Afterward they have 
been dehydrated in ethanol scale, paraffin-embedded and 
sectioned with a 7 µm thickness.

Tissue slides were stained with Haematoxylin and Eosin, 
Masson’s Trichrome (RAL Diagnostic) Picro-sirius Red 
(Abcam), Elastica Van Gieson (EMD Millipore corpora-
tion) and Alcian Blue (Sigma–Aldrich) stains. Appropriate 
positive controls have been used to ensure that histological 
stains were correctly performed. For all histological samples 
three biological and technical replicates have been assessed 
using standard Haematoxylin and Eosin prior to any special 
stains to ensure homogeneity.

Immunohistochemistry

Immunohistochemistry (IHC) was performed with DAKO 
Dual Link System-HRP DAB+ (Dako North America). 
Staining was performed on paraffin-embedded slides, after 
antigen retrieval. Permeabilization was performed with 
25 min incubation in 0.5% PBS Triton X at room tem-
perature and quenching of endogenous peroxidase activity 
using 3% H2O2 in PBS for 10 min. Later, the slides were 
incubated for 20 min with one drop of the blocking agent 
Dual Endogenous Enzyme Block and then incubated over-
night with primary antibodies diluted in Antibody Diluent 
provided as listed. Primary antibodies against fibronectin 
(Santa Cruz, SC59826), laminin (Abcam, AB11575) and 
collagen IV (Abcam, AB6586) were used at dilutions of 
1:100 in BSA 1%. The following day, slides were washed 
rapidly with 0.05% tween in PBS and out 30 min to incubate 
with Labelled Polymer-HRP (Dako Kit). Finally, slides were 
developed with DAB Permanent Stain Solution, counter-
stained with Hematoxylin and mounted. Appropriate fresh 
tissue and no primary antibody controls were used to ensure 
appropriate tissue positivity.

Paraffin-embedded slides were rehydrated and under-
went quenching of endogenous peroxidase activity using 1% 
H2O2 (Sigma, UK). Following quenching, antigen retrieval 
was performed with pepsin (Sigma, UK) at a concentration 
of 1 mg/ml in 1N HCl (Sigma, UK), at 37 °C for 60 min. 
Appropriate fresh tissue and no primary antibody controls 
were used to ensure appropriate tissue positivity.

Characterisation of decellularised tissue

The DNA content of decellularised tissues was assessed 
using the Qiagen DNeasy Blood and Tissue kit (Qiagen, 
Valencia, CA) following manufacturer’s protocol. Briefly, 
normal and decellularised tissues were enzymatically lysed 
using proteinase K and then passed through a selective 
DNA binding membrane. Purified DNA elute was analysed 
spectrophotometrically (Nanodrop, Thermo Scientific, US) 
and normalised by weight. Optical densities at 260 nm and 
280 nm were used to estimate the purity and yield of nucleic 
acids.
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To further confirm staining results, we also performed 
ECM components quantifications.

The collagen content was quantified using the Total 
collagen assay (QuickZyme, UK). Samples were homog-
enized and collagen was solubilized in 0.5 M acetic acid. 
Extracts were incubated with Sirius red dye, and absorb-
ance was determined at 555 nm with a microplate reader 
(Tecan Infinity). The elastin content was quantified using 
the FASTIN elastin assay (Biocolor, UK). After homog-
enization, elastin was solubilized in 0.25 M oxalic acid 
to ensure complete extraction of elastin. Extracts were 
incubated with 5,10,15,20-tetraphenyl-21H,23H-porphine 
tetrasulfonate (TPPS) dye, and absorbance was deter-
mined at 555 nm spectrophotometrically (Tecan Infinity, 
US). The sulfated glycosaminoglycan (GAG) content was 
quantified using the Blyscan GAG Assay Kit (Biocolor, 
UK). In brief, 50 mg of minced wet tissue was weighed 
and placed in a micro-centrifuge tube containing 1 ml of 
Papain digestion buffer and incubated in a water bath at 
65 °C for 18 h, with occasional tube removal and vortex-
ing. Aliquots of each sample were mixed with 1,9-dime-
thyl-methylene blue dye and reagents from the kit. The 

absorbance at 636 nm was measured using a microplate 
reader (Tecan Infinity). Collagen, elastin and GAGs con-
centrations from a standard curve were used to calculate 
the content of each ECM component in the tissue. For 
all quantifications at least three biological and technical 
replicates were obtained.

Statistic

P values are described in the figure legends. Mann–Whitney 
and Kruskal–Wallis tests were used. The investigators were 
blinded during experiments.

Results

Stomachs were decellularised using either 1 or 2 detergent-
enzymatic decellularisation cycles. Macroscopic appear-
ance of the whole organ shows preservation of the structure 
without any evident failure even after two decellularisation 
cycles (Fig. 1). Histologic appearance showed removal of 
cells and preservation of the microstructure. The mucosal 

Fig. 1   Macroscopic appearance 
of decellularised rat stomachs 
after 1 and 2 decellularisation 
cycles showing preservation 
of the macroscopic structure 
compared to the native organ 
(scale bar 1 cm)

Fig. 2   a Haematoxylin and eosin staining showing preservation of the 
micro structure throughout the whole tissue thickness in decellular-
ised rat stomachs after 1 and 2 decellularisation cycles compared to 

the native organ (scale bar 100 µm). b Residual DNA content show-
ing that two decellularisation cycles are required to reach an efficient 
decellularisation
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glandular pattern is preserved and the muscle layer retained 
ECM fibres orientation and vessels (Fig. 2a). DNA quantifi-
cation was performed to validate cell removal, and it showed 
that two decellularisation cycles were required to achieve a 
significant reduction in the DNA content (Fig. 2b).

ECM components were assessed using staining and quan-
tifications. Overall the different ECM components retained 
their distribution as confirmed by the specific staining, 
in particular Masson Trichrome confirmed cell removal 
(Fig. 3). Quantification of collagen revealed an increase 
in its relative content (Fig. 4a) while elastin was preserved 
(Fig. 4b) and a reduction was observed in glycosaminogly-
cans (Fig. 4c). Immunostaining demonstrated that collagen 
type IV structure as fine strands in the muscular layer, as 
well as in the mucosa was preserved even after two decel-
lularisation cycles as well as laminin and fibronectin which 
retained their pattern throughout the whole stomach thick-
ness (Fig. 5).

Discussion

In this study we demonstrate that whole rat stomachs can be 
decellularised using a detergent-enzymatic protocol which 
preserves the micro- and macro-structure of the extracel-
lular matrix. Decellularisation has been investigated over 
the last few years on almost every tissue with the aim of 
producing suitable scaffold for tissue engineering and regen-
erative medicine purposes [4]. While removing cells from 
tissues has been explored since the seventies [5], it is only 
in the last decade that ECM derived from tissues and organs 
has regained major attention for the implication in clinical 
translation [6]. Acellular matrices obtained by a detergent-
enzymatic method [5] can be used to regenerate various both 
relatively simple tissues such as oesophagus [7] trachea [8, 
9], skeletal muscle [10, 11], and small bowel [12], but they 
can also be used to prepare matrices from complex organs 
such as liver [13] and lungs [14]. Decellularised tissues have 
also reached clinical application for some specific tissues, 
as for the trachea [15]. Interestingly, decellularised tissue 
may also be used in the context of xenogenic transplantation 
where they have proved to maintain their pro-regenerative 
potential [16].

However, few attempts have been made so far to deliver a 
full decellularised stomach to be used for tissue engineering 
purposes [17–20]. Besides being used to repair oesophagus 
or intestine, decellularised stomach could potentially provide 
an easy-to-use and safe scaffold for stomach augmentation to 
treat microgastria and post-gastrectomy syndromes. Defini-
tive surgery in the form of a Hunt-Lawrence (HL) jejunal 
pouch for gastric augmentation is a complex surgery asso-
ciated to complications such as dumping syndrome, leak-
age and obstruction [21, 22]. Despite pouch augmentation, 
children with microgastria have generally feeding problems, 
resulting in failure to thrive and growth retardation [23]. 
Similarly, adults receiving partial gastrectomy following 
cancer resection or undergoing bariatric surgery needs fre-
quent small feeding and may also require jejunal feeding 
which is associated to a lower quality-of-life [24].

The results that we have obtained in this study pose strong 
basis for a future use of decellularised scaffold in the context 
of stomach augmentation. Indeed, we applied a gentle deter-
gent-enzymatic protocol which we have used before in the 
context of other tissues [12, 14, 25, 26]. This gentle protocol 
is able to properly remove the cellular component, as dem-
onstrated by the absence of nuclei in the hematoxylin–eosin 
staining and by the DNA quantification. Alongside cell 
removal, this protocol is able to maintain tissue structure, 
which is of crucial importance for tissue re-cellularisation, 
since the ECM structure and composition drive the regenera-
tion process in decellularised tissues [27]. In particular, we 
have demonstrated that the main components of the extracel-
lular matrix are overall conserved both structurally and on 
their composition with some variations. Specifically, colla-
gen quantification showed an increase in the relative content, 
which is due to the fact that, by removing cells, the ratio 
between the different ECM components change in respect 
to the overall tissue weight, in particular for collagen which 
is the most abundant one as previously described for other 
tissues [28]. Beside collagen, elastin ratio was maintained, 
of note, preservation of collagen and elastin is an important 
feature to maintain the biomechanical response of the tis-
sue once transplanted. Glycosaminoglycans (GAG) quantity 
dropped instead. This is related to the fact that GAGs are 
highly present not only on the ECM, but also in cells which 
have been removed by the decellularisation process.

In conclusion, this work highlights the possibility of 
decellularising the whole stomach in rat using a simple enzy-
matic treatment. Applying decellularisation to gastric tissue 
may have clinical implication for the treatment of complex 
diseases such as microgastria. Future work will be dedicated 
to the translation of this protocol to large animal models for 
the delivering a gastric scaffold without cellular remnants 
that maintains tissue structure and ECM component.
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Fig. 3   Principal extracellular 
matrix components distribu-
tion is maintained as shown by 
respective histological markers 
(scale bar 100 µm)
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Fig. 4   a Collagen quantification shows an increase in the relative collagen content. b Elastin quantification shows preservation of the relative 
elastin content. c Glycosaminoglycans (GAG) quantification shows a reduction in the relative GAGs content

Fig. 5   Immunohistochemistry staining of stomachs which were decel-
lularised using 1 and 2 cycles compared to native tissue showing that 
collagen IV, laminin and fibronectin are maintained after the decel-

lularisation process and their distribution in the tissue is preserved 
(scale bar 100 µm)
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