IDENTIFYING ACOUSTIC SIGNATURE OF INFLOW CONTROL VALVE’S CONDITION
USING DISTRIBUTED ACOUSTIC SENSORS
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ABSTRACT

In this paper, we present a novel method to identify the
acoustic signature of Inflow Control Valve’s conditions and
classify them. The proposed method consists of three stages:
preprocessing sounds data, acoustic feature extraction and
multi-class classification. In the preprocessing stage, we ap-
plied power normalisation to smooth the acoustic signals and
then fed the normalized acoustic data into feature extraction
algorithms. We analysed the series of acoustic features in
time domain, frequency domain and also in an unsupervised
feature extraction algorithm. In time domain, we performed
an extensive feature statistic analysis by comparing six audio
features and selected the best one. In frequency domain, the
features from wavelet transform was extracted. In addition,
acoustic data is converted to frequency domain by applying
short time Fourier transform and its output fed into Princi-
pal Component Analysis algorithm. Our proposed method
combined all extracted features from different methods and
composed the novel feature set. In the last, two classifi-
cation algorithms, Artificial Neural Network and support
Vector Machine, are implemented to test and validate the
novel feature set. We evaluated our method by performing
an experiment on seven real word datasets and experimental
results demonstrated its superior performance compared to
other method.

Index Terms— Acoustic feature extraction, inflow con-
trol valves classification, wavelet feature extraction, principal
component analysis.
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1. INTRODUCTION

Unlike a conventional well, an intelligent well is equipped
with monitoring and completion components such as packers
(sealing parts), sensors, and inflow control valves. Intelligent
well systems are becoming a necessity in the oil and gas in-
dustry because they allow an efficient and more controlled
production. In addition to the cost effectiveness of long term
operations, the operator can manage where water is injected
or oil is extracted to mobilize unswept reserves [1].

An Inflow Control Valve (ICV) is a component which is
installed in a well completion to control the flow into the well.
In a multilateral well, ICVs are used to control the flow from
each branch or lateral, which allows the production from the
well to be optimised. An Autonomous Inflow Control Device
(AICD) was developed and patented [2] to improve extraction
of extra heavy oil production from mature and marginal fields.

ICVs can be controlled remotely from the surface, in
which a permanent downhole cable is used to provide electric
and hydraulic conduits [3]. Cable electric intelligent well
completion system (EIWS) was recently tried in Tuha oilfield
at a 3000 m deep well long in conjunction with a rod pump to
remotely control and monitor the valve opening degree. The
system consists of control circuit, downhole valve, tempera-
ture and pressure sensor. It is connected to a ground control
device by a tubing-encased conductor cable that is used for
power supply and signal transmission. They reported EIWS
is reliable and convenient to observe the changes in pressure
and temperature trends [3].

The real time wellbore monitoring can assess well in-
tegrity for possible leaks, monitor the opening and clos-
ing of Inflow Control Valve (ICV) actuators to make sure
they are operating as expected, to assess the amount of sand
and hydrates in the flow and ratios of oil, gas or water in
wells. However, most recently Distributed Acoustic Sensor
(DAS) instrumentation has been developed which records
the acoustic sounds and vibrations along the whole length of
well pipeline. The DAS are optical fibres which lie beside



the main fluid filled pipeline. Their operation is described
in [4-6]. The DAS are effectively an array of microphones
spaced about half a metre apart along the whole length of the
pipeline so acoustic sounds and vibrations can be monitored
along the whole pipeline length. At each effective micro-
phone the acoustic sound as a function of time is recorded.

Determining whether an ICV is fully open, partially open,
or fully shut is crucial for the downhole oil management. It is
possible that the ICV controlling signal breaks down, which
makes it difficult to determine its status directly. Hence, de-
termining the condition of an ICV using alternative methods,
such as using data obtained from intelligence Acoustic Sen-
sors (iDAS) [7], could be a potential monitoring tool for the
oil industry.

In this paper, We proposed the new method to identify the
condition of ICVs by extracting its acoustic signature. Firstly
we normalized the acoustic signals that were recorded from
Distributed Acoustic Sensors (DAS). The analysis followed
by extracting the acoustic features in time domain and fre-
quency domain. The extracted features from all the methods
were combined and formed a new feature set as it shown in
Diagram 1. We employed two popular classification meth-
ods, Support vector Machine and Artificial Neural Network,
to evaluate our new feature set and compared the performance
of the classifiers with the time and frequency domain feature
set. The proposed method is tested and validated on real word
dataset that contains the acoustic signals from seven differ-
ent ICVs, exhibiting favorable performance compared to the
other methods.
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Fig. 1. The proposed method to form a new feature set by
combining features that are extracted from time domain, fre-
quency domain.

2. THE PROPOSED METHOD

2.1. Preprocessing Acoustic Data

The raw acoustic data is pre-processed by applying normal-
ization methods. As some parts of the optical fibre DAS are
tightly bound to the fluid filled pipe they will record a higher
amplitude acoustic signal so it is essential to normalize the
acoustic datasets. Statistical normalisation, power normaliza-
tion and scaling normalization are three normalization tech-
niques that have been implemented as suggested by the lit-
erature [8]. However, we selected power normalisation 1 as

it outperforms the other two methods for our datasets where
X is an input acoustic data, X is mean of data and X’ is a
normalized data.
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2.2. Acoustic Feature Extraction

Extraction of characteristic features (acoustic signature) is the
most significant and crucial task in ICV’s condition detection.
A sound generated by flowing the fluid through pips and at
the ICV location. The characteristic features from sound gen-
erated by travelling the fluid in the pipe could be different
when ICV is open, fully shut or partially open. Acoustic sig-
nals have very few representations and we must find the most
important coefficients or characteristic, which contain infor-
mation that will be used to discriminate among input classes.
This set of characteristic features is known as a feature vec-
tor [9] and has a significant role on the performance of the
classification algorithm. Therefore, in this study we concen-
trate on forming a novel feature vector to achieve the best
performance of ICV’s condition classification. In the follow-
ing sections we extracted acoustic features in time domain,
frequency domain and also applying dimensionally reduction
technique.

2.2.1. Time Domain Features

Audio feature extraction in time domain is the simplest
method because no transformation is required so compu-
tationally it is less complex [9]. In particular, six audio
features and respective statistics are extracted for each au-
dio file. The feature statistics are; Energy Entropy Standard
Deviation (std), Energy Entropy Standard Deviation (std),
Signal Energy Std by Mean (average) Ratio, Zero Crossing
Rate Std, Zero Crossing Rate Std, Spectral Rolloff Std and
Spectral Flux Std by Mean Ratio. A simple algorithm [9]
is used for estimating the separability of the audio classes.
Two of the six features that demonstrated a higher probability
of being classified easily are Zero Crossing Rate Standard
Deviation and Spectral Centroid Standard Deviation.

2.2.2. Frequency Domain Features

The techniques used to extract features in time-frequency do-
main are Wavelet Transform (WT) and Short Time Fourier
Transform (STFT) [10]. In particular wavelet scattering is
implemented to produce low-variance representations of the
data by propagating datasets through a series of wavelet trans-
forms, non-linearities, and averaging. These low-variance
representations are then used as inputs to a classifier [11]. In
order to create the wavelet time scattering decomposition we
used the framework suggested by [12] as it works for many
applications. The suggested framework [12] has two wavelet



filter banks such that the first one has eight wavelets per oc-
tave and the second one has one wavelet per octave.

Short time Fourier Transform (STFT) is also applied on
acoustic data in which STFT divides a acoustic signal into
small parts so they can be overlapped and windowed. Then,
DFT is computed for each part separately and calculated by;

N-1
w(k,n) =Y a(m+ n)w(m)e I2mkm/N @
m=0

where w(m) is a finite window to select a segment from
the sliding signal z(m + n) , which can be of different types.
A Hamming window can be used to reduce spectral leakage,
as opposed to a rectangular window. Frequency and time in-
dices are denoted by k and n respectively [13]. Fig. 2 shows
the spectrograms of acoustic data from an ICV during 15 sec-
onds, with a sliding Hamming window of length 512 samples.
The windows are overlapped by 511 samples in time.
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Fig. 2. A sample of acoustic data after applying Short Time
Fourieh Transform (STFT)

Principal Component Analysis (PCA) is a popular statis-
tical technique for dimensionality reduction technique. PCA
computes principal eigenvectors of the covariance matrix of
the set of signals. These eigenvectors can be considered as
characteristic feature vector which is used to characterize the
variation between ICV signals [14]. The spectra of acoustic
signals are obtained by applying a Short Time Fourieh Trans-
form (STFT) on a moving Hamming window in the time do-
main with one second length. The resultant spectra are trun-
cated at 1 kHz to remove redundant data. Fig. 3 shows a
2D plot of the first 100 eigenvalues corresponding to the first
100 Principal Components, and their perceptual weights. The
first, second and thirds Principal Components account for up
to 67.9% of the data variance.

2.3. Acoustic Classifcation Method

This is the final stage of a Inflow Control Valves condition
detection process in which the condition of the ICV (open,
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Fig. 3. Reduced spectra using the first three Principal Com-
ponents.

closed, partially open) is determined by the help of classi-
fier. A classifier provides the functions that is used to di-
vide the feature space into various regions, where each region
belongs to a particular class [15]. Classifiers can be mainly
categorized as parametric and non-parametric, depending on
the knowledge of signal distribution parameters [9]. We im-
plemented one parametric and one non-parametric classifier
called Support Vector Machine (SVM) and Artificial Neural
Network (ANN) respectively for acoustic data classification
stage as recommended by the literature [15]. In a paramet-
ric classifier, some assumptions are made about the probabil-
ity density function for each class whereas in non-parametric
classifiers no assumptions are made about density function

[9].

A ANN can have a variety of forms depending on the
number of hidden layers, number of inputs and outputs, and
the underlying structure. A 3-layer NN is implemented since
studies on this type account for around 80% of the current
studies on multilayer NNs [16]. The reduced data is fed to the
NN input layer linearly. A hyperbolic tangent is used as the
activation function in the hidden layer, since it is one of the
most used non-linear functions in NNs. A softmax function
is used in the output layer, so that the outputs are between
0, and 1. Cross validation is implemented to avoid overfit-
ting. Data is divided into 15%, 35%, and 50% for training,
validation and testing, as suggested by my supervisor. Early
stopping is used to stop the learning once the validation error
is not decreasing anymore. Weights are initialised randomly
to improve speed of convergence. The used cost function is
the cross entropy.

We fed all different the set of extracted features from the
acoustic data into our classifiers, SVM and ANN and com-
pared the performance of with our proposed features set. The
result is presented in section 3.2.



3. EXPERIMENTS

The data was recorded from real subsea wells and so has a
lot of apparent noise. The Distributed Acoustic Sensor is an
optical fibre which is usually placed along the outside of the
pipeline and is strapped to the pipeline in intimate contact
at binding points. The acoustic signal strength is stronger at
these binding points as the sound does not exit the pipe, travel
through the air and then enter the optical fibre as it can go
directly from the pipeline into the fibre. These binding points
are approximate and not exactly evenly spaced along the
pipeline. The optical fiber cables were permanently clamped
and installed along the production and injection tubing pipe.
In some cases the central pipeline is surrounded by a larger
radius exterior pipeline with the annulus between being filled
with seawater or gas which may also be flowing down the
annulus. The central fluid filled pipe radius changes at points
where a pipe of one radius is bolted to a pipe of another ra-
dius. The Inflow Control Valve (ICV) actuators also throttle
the flow at various points along the pipeline. The pipeline is
vertical as between the well head on the production platform
passing down through the sea and into the sea bed where it
usually turns through an angle so the remainder of the well is
at an angle to the horizontal. Several side pipes receiving oil
from several reservoirs through ICVs are attached to the main
flow pipe.

3.1. Dataset

Data is taken from an oil producer, having three different
ICVs. Each ICV is used to control the flow from a specific
lateral. The mother bore (MB) ICV, installed at 14 distance
2867.6 m, is used to control the flow in the mother-bore. Sim-
ilarly, a lower lateral (L1) ICV, and an upper lateral (L2) ICV
(located at 2519.2 m, and 1874.5 m respectively) are used to
control the flow from their corresponding laterals. To indicate
the condition of an ICV, three numbers are used. Conditions
0, 3, and 10, indicate whether an ICV is fully shut, partially
open or fully open accordingly. A sensitivity refers to a set of
settings of three ICVs. Table 1 shows the available different
sensitivities taken by the iDAS from the well.

Table 1. ICV Setting

Sensitivities MBICV L1ICV L2ICV
Sensitivitiy B 10 0 0
Sensitivitiy 1 10 0 3
Sensitivitiy 2 10 3 3
Sensitivitiy 3 10 10 10
Sensitivitiy 4 0 10 10
Sensitivitiy 6 3 10 0
Sensitivitiy 7 10 3 0

Table 2. Result of Classification Algorithms

Feature extraction method SVM classifier ANN classifier
PCA 80.5% 89.8 %
Statistic features 68.5% 70.9 %
Wavelet transform 81% 88%
Propsed feature set 93.3% 99.1%

3.2. Results

We validated our method by applying our feature extracted
techniques on the validation dataset (MB ICV). Both classi-
fiers, ANN and SVM, produced a higher classification rate
for condition 3 of ICV which is partialy open status. In par-
tially open ICV, more noise is produced when fluid flowing
through the pipe in comparison with fully open or fully shut
condition. Therfore more acoustic characterstics is presented
in a partially open ICV data and this explain the classifica-
tion result. The result of classification on validation dataset
shown in Table 2 where the proposed method is demonstrated
the best clssification rate.

4. CONCLUSION

To our knowledge, this is the first time a study has been
performed to classify the condition of Inflow Control Valve
(ICV) by analyzing acoustic datasets that collected form Dis-
tributed Acoustic Sensors. We validated and evaluated our
proposed method on the new dataset and compared the per-
formance of the classifiers with the existing feature extraction
techniques. We proved our proposed method to form the fea-
ture set can achieve the higher performance and identified an
acoustic signature for each condition of ICV. We performed
our testing and validation on real word datasets and the result
of this analysis will lead to industrial applications.

5. REFERENCES

[1] M. Konopczynski and A. Ajayi, “Design of intelli-
gent well downhole valves for adjustable flow control,”
in SPE Annual Technical Conference and Exhibition.
IEEE, 2004.

[2] H. Aakre, B. Halvorsen, B. Werswick, and V. Math-
iesen, “Autonomous inflow control valve for heavy and
extra-heavy oil,” in SPE Heavy and Extra Heavy Oil
Conference: Latin America. Society of Petroleum Engi-
neers, 2014.

[3] C. Liao, P. Zhang, W.and Huang, G. Zhang, J. Qian,
Z. Shen, and X. Pei, “The study and application of a
electric intelligent well completion system with electri-
cally driven inflow control device and long-term moni-
toring,” in SPE/IATMI Asia Pacific Oil & Gas Confer-



(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

ence and Exhibition. Society of Petroleum Engineers,
2017.

C.S. Baldwin, “Applications for fiber optic sensing in
the upstream oil and gas industry,” in Fiber Optic Sen-
sors and Applications XII. International Society for Op-
tics and Photonics, 2015, vol. 9480, p. 94800D.

K. Hicke, M.T. Hussels, R. Eisermann, S. Chruscicki,
and K. Krebber, “Condition monitoring of industrial in-
frastructures using distributed fibre optic acoustic sen-
sors,” in Optical Fiber Sensors Conference (OFS), 2017
25th. IEEE, 2017, pp. 1-4.

X. He, Y. Pan, H. You, Z. Lu, L. Gu, F. Liu, D. Yi, and
M. Zhang, “Fibre optic seismic sensor for down-well
monitoring in the oil industry,” Measurement, vol. 123,
pp. 145-149, 2018.

J.J. Xiao, M. Farhadiroushan, A. Clarke, R.A. Abdal-
mohsen, E. Alyan, T.R. Parker, J. Shawash, and H.C.
Milne, “Intelligent distributed acoustic sensing for in-
well monitoring,” in SPE Saudi Arabia Section Tech-
nical Symposium and Exhibition. Society of Petroleum
Engineers, 2014.

C. Kim and R.M. Stern, “Power-normalized cepstral
coefficients (pncc) for robust speech recognition,” in
Acoustics, Speech and Signal Processing (ICASSP),
2012 IEEE International Conference on. IEEE, 2012,
pp- 4101-4104.

V.K. Kakar and M. Kandpal, “Techniques of acous-
tic feature extraction for detection and classification of
ground vehicles,” International Journal of Emerging
Technology and Advance Engineering, vol. 3, no. 2, pp.
419-426, 2013.

M.E. Munich, “Bayesian subspace methods for acoustic
signature recognition of vehicles,” in EUSIPCO, 2004,
pp. 2107-2110.

G. Tzanetakis and P. Cook, ‘“Musical genre classifica-
tion of audio signals,” IEEE Transactions on speech and
audio processing, vol. 10, no. 5, pp. 293-302, 2002.

J. Andén and S. Mallat, “Deep scattering spectrum,”’
IEEE Transactions on Signal Processing, vol. 62, no.
16, pp. 41144128, 2014.

J.O. Smith, “Mathematics of the discrete fourier trans-
form (dft),” W3K: Charleston, SC, USA, pp. 7-9, 2007.

X. Wang and H. Qi, “Acoustic target classification using
distributed sensor arrays,” in IEEE International confer-
ence on acoustics speech and signal processing, 2002,

vol. 4, pp. 4186—4186.

[15] D. Li, K.D. Wong, Y.H. Hu, and A.M. Sayeed, “Detec-
tion, classification, and tracking of targets,” IEEE signal
processing magazine, vol. 19, no. 2, pp. 17-29, 2002.

[16] E. Barnard and L.F. Wessels, “Extrapolation and inter-
polation in neural network classifiers,” IEEE Control
Systems Magazine, vol. 12, no. 5, pp. 50-53, 1992.



